Chapter 9
Fuzzy Relation Equation

Fuzzy relation plays a fundamental rule in the design of fuzzy controllers, fuzzy
logical inferences, and the application of fuzzy control to engineering problems,
the application of fuzzy inference to medical diagnosis etc. The problem of finding
fuzzy relations was firstly investigated by E. Sanchez, who proposed the so called
fuzzy relational equation and provided some fundamental principles [4]. Then Y.
Tsukamato et.al investigated the solvability of a class of lower dimensional fuzzy
relational equations [6].
This chapter ...

9.1 Operators on Boolean Matrices

In the following we use A for “product” and V for “plus”. That is,

a+zb:=aVb=max{a,b}, a,be]l0,1]. .1
axgbi=aAb=min{a,b}, abel0,1]. 9.2)

It follows that let A = (a; j) € Mxn and B = (b; j) € Myxs, Witha; j, b; j € [0,1].
Then their Boolean product is defined as

C= (Cl',j) =AoB € Mnxs, 9.3)
where
n
A kZ1 aikbr,j = (aiy Xz b1,j) +2(ai2 xzb2j)+z-+2(ain X zbn),
i=1,--,m; j=1,---,s.
The following proposition is an immediate consequence of the definition.

Proposition 9.1. 1. LetA€ 9, ., BE I, ,, and C € I}

xg- Then (Associativity)

169



170 9 Fuzzy Relation Equation
(AoB)oC=A0(BoC). 9.4)

2. Let A, B,C be matrices with entries in 2° and of proper dimensions such that the
following involved operations are well defined. Then (Distributivity)

Ao(B+4C)=(AoB)+4(AcC);

(A+zB)oC=(AoC)+5(BoC). )

Next, we define a partial order > on Z;. ,, as follows.

mxn
Definition 9.1. 1. Let A = (a; j),B = (bi ;) € Dyy,- We say A > B if
aij>bij, i=1,m;j=1,-,n.

2.IfA > Band A # B, then we say A > B.

3.Let ® C Z,,,,- A € O is called a maximum (minimum) element, if there is no
Be€®suchthat B> A (B<A)

4. A € O is called the largest (smallest) element; if

A>B, VBeO, (A<B, VBe®.)

The following order preserving property is an immediate consequence of the
definition of product.

Proposition 9.2. Ler A, B € 9., and C, D € I

i, Assume A > B and C > D.
Then

AoC>BoD. 9.6)

Throughout this paper we consider only some universes of discourse, which are
finite. Particularly, we set

U:{Ml,“‘,um}, V:{Vlv"'avn}a W:{Wl,"',WS}.

Then we have

Definition 9.2. Let R € .% (U x V) be given. The relation matrix of R, denoted by
Mp, is defined as

pg(u1,v1) Ur(u1,v2) -+ Hr(u1,vy)

Ug(u2,v1) Ur(u2,v2) -+ Hr(u2,vy)
Mg = ) , 9.7

HR(u:mVl) .uR(“maVZ) e lJR(umvvn)
where g is the membership degree of Ron U x V.

For notational ease, conventionally R is also used for Mg. Hereafter, we use this
convention.
Usually, two kinds of fuzzy relational equations (FRE) were investigated.
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Fig. 9.1 (a): Unknown Fuzzy Relation (b): Unknown Fuzzy Input

o Type l: Let A .#(U xV), and B € .#(U x W). We are looking for a fuzzy
relation X € .7 (V x W), such that

AoX = B. 9.8)

We refer to Fig. 9.1 (a) for this type of FRE’s, which is commonly used in the
design of fuzzy controllers.

o Type 2: Let R€ .Z(V xW), and B € .7 (U xW). We are looking for a fuzzy
input X € .Z (U x V), such that

XoR—=B. (9.9)

We refer to Fig. 9:1 (b) for this type of FRE’s, which may be used for a prob-
lem similar to the diagnosing diseases via symptoms, where the fuzzy relation is
known [3].

Taking a transpose on both sides of (9.9), we have
RT oXT =BT,

which has the same form as (9.8). We, therefore, consider the solvability of (9.8)
only.

To state the existing result for solving (9.8), we need some preparations. The
following statements are copied from [7].

Definition 9.3 ([7]).
(i) Leta, b € [0,1]. Then

b, a>b
Ob=<¢ 9.10
a4 {1, a<b; ( )

and
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b. a>h
aob=1" 4= ©.11)
0, a<b.

(i) Let A € F(U) and B € .# (V). Then A & B is defined by
Hagp(u,v) := pa(u) © up(v); 9.12)
and AT @ B is defined by

M7 op(u,v) == piy () @ up(v). (9.13)
Then the following result is a commonly used method in fuzzy control design.

Theorem 9.1 ([7]). In equation (9.8) assume (i) A € F (U) and B € % (V ), (ii) there
exists at least one solution, then

(i)
x*=AT @B (9.14)
is the largest solution;
(ii)
X, =AToB (9.15)

is also a solution.

It is obvious that the result of Theorem 9.1 is very limited. It provides only some
particular solutions under very strong constrains on A and B. The purpose of this
paper is to provide a general algorithm, which provides all the solutions of (9.8),
without any restrictions on both A and B. This approach is based on the semi-tensor
product of matrices and the vector expression of multi-valued logic, which were
proposed recently in [1].

9.2 Matrix Expression of k-valued Logical Relations
Let x € ¥, where k < . We identify

i

k—1

~8F =01, k1.

Then we have x € A, which is called the vector expression of x.
Let 6: 2% x--- x 2F — @*_ & is called an r-ary k-valued logical operator (al-
|

M
ternatively, logical function). If the logical variables are expressed in vector form, &
becomes a mapping 0 : Ay X - -+ X Ay — Ag.

—_———

r
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Theorem 9.2 ([1]). Let f be an r-ary k-valued logical function. Then there exists a
unique logical matrix My € Ly, such that in vector form

f(XI,"'7.Xr):Mf[><x1[X"'[)(xr' (9.16)

(9.16) is called the algebraic form of f, and My is called the structure matrix of f.
We refer to [1] for how to calculate My from its logical form and how to convert the
algebraic form back to its logical form.
Particularly, when o is a unary operator, we can find its structure matrix Mg such
that
ox=Mgsx, x€ Ay

when o is a binary operator, we can find its structure matrix Mg such that
X0y =MsXxXYy, X,y€EAg.

In the following example we provide the structure matrices of —, A, and V respec-
tively.
Example 9.1. For notational ease, we introduce a set of k-dimensional vectors as:

US:(lz...s_ls...s)

k—s+1
Vi =(s--ss+1s+2-k), s=1.2-- k.

N

Then we have

1. For k-valued negation (—), its structure matrix is

MK =& lkk—1 ---1]. (9.17)

When k = 3 we have
M3 =&[321]. (9.18)

When k = 4 we have
M}=§[4321]. 9.19)

2. For k-valued disjunction (V), its structure matrix is
ME =8, [U Uy --- Uy (9.20)
When k = 3 we have
MS:&;[111122123]. 9.21)

When k£ = 4 we have
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M4:34[1111122212331234]. (9.22)

3. For k-valued conjunction (A), its structure matrix is

MK =&V Vs - V. (9.23)

When k = 3 we have
M?=8[123223333]. (9.24)

When k = 4 we have
M*=58,1234223433344444)] (9.25)

9.3 Structure of the Set of Solutions

Consider equation (9.8). Let A = (g; j), B=(b; ;), and R = (x; ;), where x; ; are used
to emphasize that R is the unknown matrix. We can further convert it into canonical
linear algebraic equations as

AoX; =B, i=1,-s, (9.26)

where X; is the i-th column of R and B; is the i-th column of B.
Collecting different values of the entries of A and B as

S={aijbpgli=1,-,myj=1,-- ,mp=1,---,myq=1,--- s},
and adding 1 and/or 0 when they are not in S, we construct an ordered set as
E={§li=1,--,rn7and §=0< &< <& < =1)
Then we have S C Z.

Definition 9.4. Let x € [0, 1]. Then we define

(i) m. :[0,1] = E as

7 (x) =max {& € E|& < x}; 9.27)

(i) #*: [0,1] = & as

7" (x) =min{& € Z|§ > x}. (9.28)

Note that if x = §; € &, then
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Otherwise, there exists a unique i such that

Gi<x<&ijr.

Then we have
m(x) =& 7w (x) =&

For statement ease, we identify &; with %, i=1,---,r. It means we identify
= with Z,. Then we have the following result, which allows us to search solutions

from a finite set.

Lemma 9.1. Let R = (x; ;) € Iy be a solution of (9.8). Then m.(R) := (7. (x; )
is also a solution of (9.8).

Proof. 1Tt suffices to prove it for each equation in (9.26), which is simply denoted by
Aoz=h. (9.29)
Assume z = (z1,-+- ,2,)7 is a solution of (9.29). Set Zy = {z1,++- ,z,} and define
7' =7\&.

1fz0 = 0, we are done. Otherwise, we can find

2" = max{z; € 2°}.
3j

Then there is an iy such that
&y <2< ig1- (9.30)

Next, we replace all the elements in Z°, which are greater than &iy» by &;y. Such a
replacement converts Z; to a new set, called Z;. We claim that Z; is also a solution
of (9.29).

Consider a particular equation of (9.29), say, j-th equation, which is

[aj,l/\z]]\/[aj72/\12]\/---[aj7,,/\z,,}:bj. 9.31)

First, we assume b; > &;; 1. Then there must be a term a; s A zs, which equals b;.
Then replacing any &;, < < &ip+1 by &, will not affect the equality.

Next, we assume b; < &;,. Then multiplying both sides of (9.31) by &;, (precisely,
operating both sides by &;; A). Then the right hand side is still ;, and on the left hand
side, since each term should be less than or equal to b;, it changes nothing. But if
there is a term, say, a; s A zg, which has z, satisfying (9.30), then we can replace it
by

EipNajsNzs=ajsNEj,.

We conclude that Z; is a solution of (9.29). Now for Z;, we can do the same thing
as setting
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z'=7)\&,

defining

7' =max{z; € Z'},
3j

and finding i; such that
& <z <& 9:32)

Finally, in the solution Z; = (z} ;oo ,2)) all z{, satisfying (9.32), can be replaced by
&, to produce a new solution Z,. Note that now &;, < &;;. Continuing this procedure,
finally, we can have ZK = @, where k* < r. The conclusion follows. O

Similar to Lemma 9.1, we can prove the following result.

Lemma 9.2. Let R = (x; j) € Dy be a solution of (9:8). Then w*(R) 1= (7*(x; ;))
is also a solution of (9.8).

Now we can prove the following result, which shows the structure of the set of
solutions.

Theorem 9.3. R = (x; ;) € Iy, is a solution of (9.8), if and only if both m.(R) and
7*(R) are solutions of (9.8).

Proof. The necessity comes from Lemmas 9.1 and 9:2. We prove the sufficiency.
That is, if both 7, (R) and 7*(R) are solutions of (9.8), then so is R.

IfR=m,(R) or R=7*(R), we are done. So we assume R # 7, (R) and R # 7*(R).
We prove it by contradiction. Assume R is not a solution of (9.8). Since R > 7. (R),
according to Proposition 9.2 we have A o R > B. But since R is not a solution, we
have

AoR > B.

Now since 7*(R) > R, we have
Aom*(R)>AoR > B.

This is absurd. O

Theorem 9.3 gives a complete picture for the set of solutions. It has also clearly
demonstrated that the set of PSS’s is enough to describe the whole set of solutions.

We have the following useful proposition for the set of solutions. In fact, The-
orem 9.1 shows the following result for the particular case, where A and B are re-
stricted.

Proposition 9.3. If there is a solution of (??) in E". Then there is a largest solution
in E".

Proof. If we can prove the maximum solution is unique, we are done. Now assume
both z] and z; are two different maximum solutions. Using (9.5), it is easy to prove
that z} + 25 is also a solution. But zj +4 25 > z7, which is a contradiction. O



9.4 Solving Fuzzy Relational Equation 177

9.4 Solving Fuzzy Relational Equation

In the following all the matrix products are assumed to be semi-tensor product. For
compactness, the symbol x is omitted unless we want to emphasize it.

To solve the fuzzy relation we have only to solve equations in (9.26). That is, we
have only to develop a method to solve (9.29).

Recall that in vector form we have the structure matrices such that all the logical
expressions with operators can be expressed as a matrix product. Particularly, in this
paper we need the following expressions.

Using algebraic form, we can convert the left hand side (LHS) of equation (9.31)
(as the j-th equation of (9.29)), into the following form:

LHS = (M})""(M}ajiz1)--- (Majnzn)
= (M) '"Mfaj [l @ (Mlaj2)][Le @ (Mla;j3)] - [La1 @ (Mlaju)] X7 zi
= sz,

(9.33)

Lj = (M) "Mlaj[I, © (Maj2)][2 ® (Miaj3)] - a1 @(Mlaja)] € Lo
Z = l><?:1Zi-

Then (9.29) becomes
Liz=bj, j=1,2,m. (9.34)
Multiplying both sides of m equations of (9.34), we can express (9.29) as
Lz=b, (9.35)

where L =Ly x Ly %% Ly € Lmym,and b = X"  b;. Here “ x ” is the Khatri-Rao
product of matrices [2]. Precisely,

Col, (L) = Col,(L;) x Col,(Ly) X --- X Cols(Ls), t=1,---,r"

Next, we show how to solve the equation (9.35). Note that since L is a logical
matrix, b € Am and z € Apn, the following result is obvious.

Theorem 9.4. Equation (9.35) has solution, if and only if
b € Col(L). (9.36)

Now assume
A = {A|Col, (L) = b}.

Then the solution set is

{Zl = 622;1

AeA}. (9.37)
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Finally, we have to convert z back to (z1,-- ,z,) € E".

9.5 Illustrative Examples

This section presents some examples to demonstrate the algorithm for solving the
fuzzy relational equations. In fact, the method developed in previous section is ap-
plicable to general fuzzy logical equations. First example is a simple one, which is
used to show the solving process.

Example 9.2. Consider the following logical equation

{x/\y—O.SZ ©38)

(—x) Vy =0.68.
First, one sees easily that the logical values canbe divided into 4 levels. That is,
E =/{1, 0.68, 0.32, 0}«
Then we identify the values with their vector forms as
1~8}; 068~687; 032~8; 0~8).

Now (9.38) can be converted into its-algebraic form as

M} xxxy=26;
. NI (9.39)
M x (M, xx)xy=2§.
Setting z = x X ¥, (9.39) can be converted as
Giz=§;
T (9.40)
Gzz = 54,
where
Gi=M*=5,(1234223433344444],
Gy=MjxM}=58[1234123312221111].
Multiplying two equations together yields
Lz=b, (9.41)

where
L=G %Gy =0;4[1611165611159101014 13 13 13 13],

b= 87w 52 =810,
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Since
CO][()(L) = Coly; (L) = 6118,

we have solutions
10 11
21 =204, 22=70j4.

X1 = 3: X2 = 52
y1 =82, y2=28;.
Back to the fuzzy values, we have
X1 =0.32 X2 =0.32
y1 = 0.68, y2 = 0.32.
The next example is from [5]. It will be used to demonstrate some structure prop-
erties of the solution set of fuzzy relational equations.

It follows that

Example 9.3. Consider the following relational equation [5]

QoX =T, (9.42)
where
02 0 08 1 0.70.3 1
0=10403 0 07|; T=106040.7
0.50.90.2 0 0.80.90.2

First, we figure out the levels of the membership degrees and identify them with
their vector forms:

1~38ly; 0.9~ 8%; 0.8~ 8 0.7~ 8}y 0.6 ~ 8y
0.5~ 685 0.4 ~ 83 0.3~ 85, 0.2~ 8]; 0~ 5.

We start by solving the first column of X. Let X; = (x11,%21,%31,X41)7 = Col; (X).
Then the algebraic equation for X; becomes

(8ip Ax11) V(815 Axar) V (8 Axi) V (8 Axar) = i
(8{ Ax11) V (8 Axar) V (89 Axar) V (8 Axar) = 87 (9:43)
(8 A1) V (8 Axar) V (8 Axar) V (819 Axar) = 8y

Let x; = xj‘:,xﬂ. Then equation (9.43) can be converted into its algebraic form as
Lx; = by, (9.44)

where

L = 81000[32 132 232 232 242 252 262 262 262 262---
899 40 140 240 340 450 560 670 780 890 1000] € “Z1000x 10000,
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and
o4 5 3 343
by = 61 x 85y X 8jp = Sig0-

Using the Toolbox!, we can solve it out as

X! =680[1345]", X?=38,0[2345],
xf=510[4345}T, X7 =6810[5345]T,
X! =610[7345]T, X} =06,0[8345T, X/
x‘O 610[10345]

For the second column, we have
Lxy = by,

where
8 o7 82 ST62
by = &y % 81 X 819 = Jin00-

Solving it, we have

X) =810[1188]T, Xj=230[1 L89],

[ = 010
X+ =3810[1198]T, X =38[11108]T, X%=

9 Fuzzy Relation Equation

Xf = 51()[3 34 S]T,
X16 = 510[6 34 S]T,
= 510[9 34 S]T,

(9.45)

[11810],
S10[128 8],

X] =610[1289]T, X3 =35[128 107, X5 = jo[1 298],

X10=50[12108)7, X1 =8p[2 1887, Xx)2=

X13 = 510[2 18 10]7, X14 = 5,0[219 8], X”

X)0 = 6102288]T, X, = 6102289]T X18

X219 22987, X5° =6810[22108)7 X221

S10[2189)7,

Si0[21108]7,

610 228107,
d10[31838]7,

X3* = 03189]T, X33 = 50[31810]7 X224_5103198]T,

X2 =§,0[31108]7, X260 = 03288]T, Xy =

X228_610328 107, X3° = 810[3 29 8]7, X230

X' =610[4 1887, X2 = 04189]T, X% =

81032897
S10[32108]7,
Sio[4 18 10]7,

~ -

X34 =804 1987, X3°=68,p41108]T X;6_6104288]T,

X;7_6104289]T, X% =610[428 107, X5° =

X3 =810[5 18 10]7, X3* = 810[5 19 8]7, X“

810[4298]7,

310[51108]7,

X360 =5,9[528 8], X47*5105289]T X48*51052810}T,
X3 =805298", X3°=68,[52108]T X251_5106188]T,

X;2_6106189]T x‘* 810[6 18107, X3* =

S10[6198]7,

X355 = 89[6 1 108)7 X56*8106288]T X57*5|06289]T,

X58 = 810[628 10]7, X5° = 810629 87, X0 =

X8 =807 188, X262 810[7189]7, X“

310[62 10 8]7,
310[71810]7,

X264_5107198]T, X85 =§9[71108]7 X266_5107288]T,

X8 = §9[7289], x68 810[728 107, X0 =

x;“ S10[72108]7.

Finally, for the last column, we have

! The STP toolbox for Matlab is available at *

[ [
[ [
S1o] [
[ [
[ [
[ [
[ [
S o
X30=§9[42108)" X;“ _510[5 188]7, X42
[ [
[ [
[ [
[ [
[ [
[ [
[ [
[ [
[ [
[

[
[
[
[
[
[
[
[
[
310[5189)7,
[
[
[
[
[
[
[
[
[

810[7298]7,
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— by, (9.46)

ol s s9 239
b3 = &y X Oy X 81 = Sip00-

Solving it, we have

Xi=3810[9911]7, X _510[9921] X3 =809931],
X;‘ =810[994 1]T, =810[9951]7, X36 =810[996 1]T,
X] =3810[9971]T, =3810[998 1]7 = 3810999 1]T,

X{O 810[99 10 1]T, X3“
X3 =8p9103 1), xi*
X§6 =80[91061)7, X7 =
X% =3810[9109 17, X3°=
X3 =810[1092 1], X%“
X3 =689[1095 1]T, X360 =
X8 =810[1098 17, X%9
X3! = 610[10 10117, x52 =
X34 = 810[10 10 4 1]7, x35
X§7 S10[10 107 1T, X;

We conclude the following:

=810[9101 1], X312 810[9 1021T,

] ]

=819 104 1)7, X5 =819[9105 1],
Sio[9107 17, X8 = 510[9 10 8 1]7,
810[9 10 10 1]7, X3! = §,9[109.1 1]7,
810[1093 1], X24 810[1094 1],
810[1096 1], X$7 819[1097 17

810[1099 17, X0 =8,4[109 10 1]7,
Si10[101021)7, X2 = 610[10 103 1]7,
810[1010 5 1]T7 X36 810[10.106 117,
= 810[10 10 8 1]7, X3° = §;0[10 109 1]7.

1. We have totally 10 x 70 x 39 = 27300 solutions in Z*.
2. The largest solution, corresponding to the largest solutions of each column, is

=[x\ X; X3]~

1 102
0.8 1 0.2
0703 1
0603 1

3. There is no smallest solution, because for the second column there are two mini-

mum solutions

98 — 810[72810]7

0.4 0.4
09| 70 r 109
03] X2'=810[72108] 0
0 0.3

Hence, we have also two minimum solutions for X as

X=X X* X3P~

and

0040
0.80.9 0
0.7030.2]|’
06 0 1
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0 040
0.809 0
0.7 0 0.2
0.603 1

X2 = 6" " X~

4. The solution provided in [5] is

0.30.50.2
081 O
0.7 0 0.5
0.60.3 1

which corresponds to
X =[x} x5° x}9).

5. Finally, we consider the set of all solutions. Note that for PSS’s we have
X, =8p[a345", 1<a<]10.
It follows from Theorem 9.3 that

(04
0.8
07|’
0.6

X = where 0 < o <1.

Similarly, we can calculate that X5 is either

X) = B , where04<a<1,09<B<1,0<1n<0.3;

or

X7 = B , where0.4<a<1,09<B<1,0<y<03.
0.3

X3 can be expressed as

0.2

or
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or

Summarizing them, we have 6 groups of solutions (with possible overlaps),
which are expressed as

[(0<r; <104<rp<1 0.2 i
Ry = 0.8 09<rm <10<m; <02
0.7 0.3 0<r3<l1 |’
i 0.6 0<rp <03 1 ]
or )
OSFH S 1 0.4§r12§ 1 OSI‘B SO?J
Ry — 0.8 09<rp<l1 0.2 .
0.7 0.3 0<ri<l1 |’
0.6 0<rp <03 1 ]
or ) i
0§r11 S 1 0.4§}"12§ 1 O§r13 §02
Re— 0.8 09<rn<10<r3<02|
< 0.7 03  02<rm<1|’
0.6 0<ryp <03 1 ]
or )
0<r£104<rp<1 0.2
R 0.8 09<rn<10<r<0.2
g 07 0<rp<03 0<r3<1 |’
0.6 0.3 1 ]
or ) i
0<r1<104<r<10<r3<0.2
R 0.8 09<r<I1 0.2
ST 07 0<rp<03 0<r;3<l1 |’
0.6 0.3 1 |
or i _
0<r<104<rn<10<r3<0.2
Re — 0.8 0.9§r22§10§r23 §02
6= 07 0<r3p<0302<ri3<I
i 0.6 0.3 1 |

Remark 9.1. Searching all the solutions and providing the overall picture of the set
of solutions are significant in applications. For instance, in designing fuzzy con-
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trollers it provides a knowledge for finding “best” solutions, or to find where is the
problem if there is no solution. Then further improvement can be directed.

Exercise 9

1. (to be completed).
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