Chapter 8
Fuzzy Control

Since Zadeh’s pioneering work [3], the fuzzy control has been studied widely for
more than forty years. Now it has been developed into a relatively mature theoretical
system [4, 1], and received many applications [2].

This chapter introduces fuzzy control. We first introduce the fuzzy relations. Par-
ticularly, we emphasize multiple fuzzy relations.

8.1 Fuzzy Relations

We first introduce the fuzzy relations between two universes of discourse, which is
commonly used in fuzzy control.

Definition 8.1. 1. Let E and F be two sets. The product set E x F is defined as the
set of pairs as
ExF={(e,d)lec Eandd € F}.

2. A fuzzy relation between E and F is a fuzzy set R € F(E X F).

Assume E = {ej,-- ey} and F ={d,--- ,d,}. Then a fuzzy relation R between
E and F can be expressed by a matrix, called the matrix form of relation R, defined
as

Ur(e1,d1) R(ei,da) --- ur(er,dy)

Ur(e2,d1) R(ez,da) -+ ur(ea,dy)
Mg = ) (8.1)

.uR(emadl) R<en17d2) tee IJR(emadn)
Remark 8.1. 1. Since Mg € %,..,,, the matrices of relations satisfy Proposition ??.
2. Since Mp, is essentially the vector form of the fuzzy set R (by identifying M with

V,(Mg) or V.(Mg)), Proposition ?? and Remark ?? hold. Particularly, equalities
(7.41)—(7.45) are still correct.
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154 8 Fuzzy Control

Definition 8.2. 1. R € .7 (E x F) is called a zero relation, if ug(x,y) =0, Vx €
ENVycF.

2. R € .Z(E x F) is called a universal relation, if pg(x,y) = 1,Vx€ E,Vy € F.

3.LetRe F(E XF),S € .%(F xE) is called the inverse relation of R. If

ugr(x,y) = ps(y,x), Vx€E\NyeF.

As a convention, the inverse of R is denoted by RT . 1t follows from the definition
that

Mpr = (Mg)T. (8.2)
The inverse relation has the following properties.

Proposition 8.1. Assume R, T, R) € % (E X F), A € A. Then

1.
(RT)" = (R)". (8.3)
2.
(UreaRa)t = Urea(®y)". (8.4)
3.
(MeaR,)" = Maea(R)T. (8.5)
4. IfRC T, then
RT 71T,

Next, we consider the compounded relations.

Definition 8.3. Let £, F,G be three sets, R and S be two relations over £ X F' and
F x G respectively. That is, R € F (E x F), S € % (F x G). Then the compounded
relation Ro S € .7 (E x G) is a relation on E x G, defined as

nuROS(evg):vdGF[:uR(€7d)/\uS(d7g)]7 eeEagEG'
The following result is an immediate consequence of the definition.

Proposition 8.2. Let E, F, and G be three finite sets, and R € 7 (E X F), S € .F (F x
G). Assume R and S have their matrix forms as Mg and My respectively. Then

MRoS:MR X@Ms. (86)
Consider the relations on same universe.

Definition 8.4. 1. R € #(E X E) is called an identity relation, if
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1, x=y

0, otherwise.

U (x,y) = {
Note that if |E| = n, then identity relation R has its matrix form Mg = I,.
2. Re % (E X E) is said to be self-related, if
pr(x,x)=1, VxekE.
It is said to be self-unrelated, if
Ur(x,x) =0, Vx€E.
3. R€ Z(E x E) is said to be symmetric, if
Br(x,y) = pr(y:x), Vx,y€E.
4. R € F(E X E) is said to be transitive, if
RxzR=R* CR.

A relation may connect more than two sets. In the following we consider a rela-
tion on three sets. More than three cases can be treated in exactly the same way.

Definition 8.5. Let X, Y and Z be three sets. A relation among them is a fuzzy set
Re F(X XY XZ).

Assume X = {x1, x5 y%m}, ¥ = {y1,y2, - ,¥n}, and Z = {z1,22,--- ,2+}. Then
we can arrange {Ug(x;,y;,zx)|[i = 1,---,m;j=1,--- ,nsk=1,---,r} as a relation
matrix. There are several ways to do this. If we arrange it using row order Id (i;m)
and column order Id(j, k;n,r), then we have

,u'A(-xlayl)Zl) HA(xla)’th) HA(Xla}’naZl) .UA(xlayer)

pa(x2,y1,21) - Ma(x2,¥1.27) =+ Ma(X2,Yn,21) -+ MA(X2,Yn,2r)
Mp(xxyz) = .

Ha (Xmsy1521) = HA(Xms Y152r) =+ MaA (X Yna21) =+ Ma (X Yns2r)
(8.7)

If we use row order Id(j;n) and column order Id (i, k;m,r), then we have

pa(x,y1521) <+ Pa(x1,9152) -+ M, Y1521) o la (Xms Y1, 27)
pa(x1,y2,21) <+ Pa(X1,52:2) -+ Ha(Xm,¥2,21) -+ Ha (Xms Y2, 2r)
Mgpyxxz) = .
MA(XT,Yn,21) =+ MA(XT,Yn52r) =+ MA(Xm, Y5 21) =+ MA (X, Vs Zr)
(8.8)

Definition 8.6. Let X, Y and Z be three sets.
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1. Assume there are two relations as R € .#(X x Z) and S € .# (Y x Z). Then we
define a mapping *: # (X xZ) X F(Y X Z) — F (X XY x Z) as

Ures(x,y,2) = ur(x,2) Als(y,z), x€X,y€Y, z€Z.
2. Assume there are two relations as R € # (X xY) and S € .# (X x Z). Then we
define a mapping *: F (X xY) X F(X X Z) = F(X XY xZ) as
R*S= [RT*ST]T.
The following result is an immediate consequence of the definition.

Proposition 8.3. Let X = {x|,x2, - ,xm}, Y ={y1,y2, - s yn}, and Z = {21520, -+ , 2}

1. Assume there are two relations R € .F(X x Z) and S € .F(Y X Z) with their
matrix form as Mg and Mg respectively. Then

Mp.s(xy=z) = MRr*2z Ms. 8.9)

2. Assume there are two relations R € F(X xY) and S € F(X x Z) with their
matrix form as Mg and M respectively. Then

T
Mp.sxxyz) = (Mg *z M3 ) (8.10)

The compounded relation can be obtained via multi-relations. Principally, they
are the same. We give an example to show this.

Example 8.1. Let X ={x1,x2}, Y ={y1,y2,y3}, Z={z1, 22}, and W = { w1, wp, w4 }.
Wehave Re Z (X XY xZ),S€ F (Y xW),and T € .#(Z x W). Their matrix forms
are

s

Y 02 00105091
RXxYZ)=10.40.30.70.8 0 0

0 0.50.6
Ms= [0.10308|; Mr= {005 Oil 82} |
0207 1 - :

Intuitively, W has relation with X through both Y and Z. Therefore, we intend to
find the relation of X and W. First, we calculate product Mg with M7 to get a relation
inY xZxW as

0 0.10.6
0 0503
0 0.10.8
0.1030.3
0 0.10.9
0.20.70.3

Mg.r(yzxw) = Ms*Mr =

Then ¥ =Ro (SxT) € .F(X,W) has its matrix form as
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0.20.70.9
¥ = Mpxxyz) X2 MsiT(vzxw) = {0_1 03 0_7] .

8.2 Fuzzy Inference

Definition 8.7. Let E = {e¢|§ € £} and F = {f;|A € A} be two universes of dis-
course. R € .Z (E X F). Then R determined a mapping 7ig : .7 (F) — Z(E) as fol-
lows: Let B€ % (F) and A = mg(B) € #(E), which is defined as

tales) = Vaealr(eg, fr) Nus(A), & € E. (8.1D)
7R is called a fuzzy inference (based on R).

Assume E = {ey, - ,ep}, F ={d1, - ,d,}, and R € F(E X F) has its structure
matrix Mg = (7;,j) € By, Where

}"1'7]':,U-R(ei,dj)7 i:],...jm;j:]7...’n.

The following result comes from definition immediately. In fact, it is commonly
used in fuzzy control.

Proposition 8.4. Let R € .7 (E x F) be given as in the above. Assume 7g(B) = A,
where A € F (E) and B € F(F) with their vector forms Xs € %;,.., and Xp € By, |
respectively. Then

X4 = Mg Xz Xp. (8.12)

Next, we extend it to multiple relation case. Assume there is a fuzzy relation
Re ,?(HLE,'), where E; = {e’i,--- ,ef,i}, i=1,--- k. Moreover, we have k— 1
fuzzy sets in any k — 1 factor spaces. Then the fuzzy inference is to produce a fuzzy
set in the remain factor space. For statement ease, assume A; € .F (E;), i =2,--- ,k
are given. Then 7g : Hf;zfi (E;) — .ZE, is defined by

Xa, =Mp Xz Xpa, Xz XpXa,, (8.13)

where Mg = Mg, x £, E;.--E, is amatrix of {r;, ... ; }, arranged in the order of id(i1; 1) x
ld(IZa o 3ik;n27' o 7nk)'

Note that the arrangement of the entries in Mg depends on the unknown fuzzy
set.

Now assume {1,--- ,k} = #U _#Z, where # U _# form a partition of the index
set. Assume A;, i € .# is a given fuzzy sets. Then using relation R, we can only
deduce a fuzzy relation R' € 7 ([1jc 4 E)).

We give an example to show how to do this.

Example 8.2. Assume we have universes of discourse X = {x],x2,x3,x4}, ¥ =
{y1,¥2,y3}, and Z = {z1,22 }. Moreover, a relation R € # (X x Y x Z) is given, i.e.,
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Tijk :IJR(xi»)’jaZk)» i= 1727374; J: 17273, k= 1727

are known.

Now assume we have A € .#(X) and B € .% (Y). Using R, we can have a fuzzy
inference C € 2. Then following is a numerical example.

Assume Mp is arranged as id(k;2) x id(i, j;4,3) as

1003071 0509040.10030.10

Mr = 102030503020.70.8104061 |’

and the vector forms of A and B are

A=1[0.10.5104]T;
B=1[0.80.70.5]T.

Then we have C as
C=MrxzAxz=[050.7]".

When only a fuzzy set A € % (E) is given. Then the fuzzy inference provides a
relation R’ € % (F,G), which has the matrix form as

Mpr= Mp X A.
If we use previous R and A, then we have

My = {0.5 0.5 0.5] .

0.70.8 1

Next, we consider the compounded relations. Assume we have two fuzzy rela-
tions R€ .Z(E X F)and S € % (Fx G). Then T := RoSis arelation in .7 (E X G)
with its matrix form as

MT ZMROMs. (8]4)
We are particularly interested in the composition of multiple fuzzy relations.

Definition 8.8. Let E, F,G be three sets, R and S be two relations over E X F' and
F x G respectively. That is, R € % (E x F) § € % (F x G). Then the compounded
relation Ro S € .7 (E x G) is a relation on E x G, defined as

:uROS(e?g):\/dEF[uR(e7d)/\“S(d7g)]7 e€E7g€G'
The following result is an immediate consequence of the definition.

Proposition 8.5. Let E, F, and G be three finite sets, and R€ .# (E X F), § € % (F x
G). Assume R and S have their matrix forms as Mg and My respectively. Then

MRoS:MR ngMs. (8]5)
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Consider the relations on same universe.

Definition 8.9. 1. R € .Z(E x E) is called an identity relation, if

1, x=y

HR(x,y) = {

0, otherwise.

Note that if |E| = n, then identity relation R has its matrix form Mg = I
2. R € .Z(E x E) is said to be self-related, if

Ur(x,x) =1, Vx€E.
It is said to be self-unrelated, if
Ur(x,x) =0, Vx€E.
3. R€ .7 (E x E) is said to be symmetric, if
Hr(x,y) = Hr(y,X), Vx,y €E.
4. R e Z(E X E) is said to be transitive, if
RxzR=R*” CR.

A relation may connect more than two sets. In the following we consider a rela-
tion on three sets. More than three cases can be treated in exactly the same way.

Definition 8.10. Let X, Y and Z be three sets. A relation among them is a fuzzy set
Re F(X xY x2Z).

Assume X = {x1,x2,- -, xm }, ¥ = {y1,¥2,-* ,yn}> and Z = {z1,22,--* ,z,}. Then
we can arrange {Ug(xi,y;,2)|i=1,---,m;j=1,--- ,n;k=1,--- ,r} as a relation
matrix. There are several ways to do this. If we arrange it using row order Id(i;m)
and column order 1d(j,k;n,r), then we have

pa(X1,y1,21) - MA(X1,Y1.27) -+ HA(X1,Y0,21) -+ HA(X1,Yn,2r)

MA(X2,y1,21) -+ MA(X2,¥1.27) - MA(X2,Yn,21) -+ MA(X2,Yn,2r)
Mgpixxyz) = .

HA (X y1521) = HA(Xms Y152r) =+ MA(Xm Yna21) =+ A (X Yns2r)
(8.16)

If we use row order Id(j;n) and column order Id (i, k;m,r), then we have
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I-LA(xlabel) IJA(xlayl»Zr) ,uA(xmaylaZl) ,LLA(xmaylazr)

HA(x17YZ7Z1) I-LA(xl-,yLZr) ,UA(xm;YZ-,Zl) NA(XmJ’LZr)
Mgy xxz) = )

HA(XI7Yn7ZI) IJA(xl-,Yer) IvLA(xma)’n-,Zl) ,uA(xmy)’er)
(8.17)

Definition 8.11. Let X, Y and Z be three sets.
1. Assume there are two relations as R € . (X x Z) and S € .Z (Y x Z). Then we
define a mapping *: F (X xZ) X F(Y X Z) = F (X xY x Z) as
HR*s(x,y,Z):,UR(X,Z)/\HS()’,Z)7 xeX:)’GY,ZGZ-

2. Assume there are two relations as R € .# (X x Y) and S € .# (X x Z). Then we
define a mapping *: F (X xY) X F(X X Z) = F (X x¥Y. x Z) as

RxS=[RT«ST]".
The following result is an immediate consequence of the definition.

Proposition 8.6. Let X = {x|,x2, - , %}, Y ={1,y2, - s ynfo and Z={z1,22,- - , 2}

1. Assume there are two relations R € % (X X Z) and S € F (Y x Z) with their
matrix form as Mg and M respectively. Then

Mpisxy xz) = Mr*2 Ms. (8.18)

2. Assume there are two relations R € F(X xY) and S € F (X x Z) with their
matrix form as Mg and M respectively. Then

T
Mpis(xxyz) = (M§ x5 MS) " . (8.19)

The compounded relation can be obtained via multi-relations. Principally, they
are the same. We give an example to show this.

Example 8.3. LetX = {x1,x2}, Y ={y1,¥2,y3}, Z={z1,22}, and W = {wy, w2, w4 }.
WehaveR € Z(X xY xZ),S€ . Z (Y xW),and T € .%(Z x W). Their matrix forms
are

s

y ~[0.2 0 0105091
RXxYZ) = 10.40.30.70.8 0 0

0 050.6
Mg=10.10308|; Mr= {005 Oil 82} .
0207 1 ' '

Intuitively, W has relation with X through both Y and Z. Therefore, we intend to
find the relation of X and W. First, we calculate product Mg with M7 to get a relation
inYxZxW as
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0 0.10.6
0 0503
0 0.10.8
0.10.30.3
0 0.10.9
0.20.70.3

Mg.r(yzxw) = Ms*Mr =

Then ¥ =Ro (S+T) € Z#(X,W) has its matrix form as

0.20.70.9
¥ = Mpxxyz) X& Msir(vzxw) = {0.1 03 0_7] .

8.3 Fuzzy Control

Rule-Base

Input, Inputs Outputs

Reference
Rl e Fmifaaion | e | T ootiicaion | B proces 1 7,
Mechanism u(t) ¥(t)

r(r) e(r)

Fig. 8.1 A fuzzy control system

Fig. 8.1 [1] shows the structure of a fuzzy control system. In this section, a gen-
eral framework, based on matrix approach, is investigated.

8.3.1 Fuzzification

This section considers only the fuzzification. We first introduce a dual fuzzy struc-
ture.

Definition 8.12. 1. Let E be a universe of discourse, and ./ = {A},--- ,A;} be a set
of fuzzy sets on E. Then (E, <) is called a fuzzy structure. The support of A; is
defined as

Supp(Ai) = {e € E|ua,(e) #0} CE.

2. Assume E is a well ordered set. &7 = {A,--- , A} is called a set of degree-based
fuzzy sets, if
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sup(supp(4;)) < sup(supp(A;; 1)), and  inf(supp(A;)) < inf(supp(A; 1)),
i=1,---k—1.

(8.20)

3. Given a fuzzy structure (E,.«7) as in item 1. Assume E is a well ordered set and
o/ is a set of degree-based sets, i.e., (8.20) is satisfied. Then we may consider
(o ,E) as a fuzzy structure, where & = {A,--- ,A;} is considered as a unverse
of discourse, each e € E is a fuzzy set, with

He(Ai) i=pa,(e), i=1,--- k. (8.21)
This fuzzy structure is called the dual structure of (E,.o).
In fact, fuzzification is basically finding the dual structure. We use an example to

describe this.

ule)

Fig. 8.2 The membership functions of fuzzy set

Example 8.4. Consider a measurement error e, which could be [—14,14]. We con-
sider 7 fuzzy sets, which have linguistic statements respectively as: NB (negative
big), NM (negative medium), NS (negative small), ZO (Zero), PS (positive small),
PM (positive medium), and PB (positive big). The membership functions of the
fuzzy sets are depicted in Fig. 8.2. Now for each point x in the universe of discourse
E = [—14,14], we know its membership degrees for each fuzzy set. For instance,
for point A, we have

Uns(A) =0.75; puzo(A) =0.25; uy(A) =0,Y = NB,NM,PS,PM,PB. (8.22)
Similarly, for point B we have
Ups(B) =0.25; upy(B) =0.75; uy(A) =0, Y = NB,NM,NS,Z0,PB. (8.23)

Checking the fuzzification in fuzzy control, one sees easily that what we need to
do is to convert a point e € E to a fuzzy set. To do this, people basically interchange
the universe of discourse with the set of degree-based fuzzy sets. Precisely, as in
Example ?? we consider
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D:= {d1 =NB, d, =NM, d3 =NS, dy =720, ds = PS, d¢ = PM, d7 = PB}

as the universe of intercourse and consider each e € E as a fuzzy set. In this consid-
eration we can express (8.22) and (8.23) respectively as

tia(e3) = 0.75; pa(es) = 0.25; pa(e;)) =0, i=1,2,5,6,7. (8.24)

[.13(65) =0.25; I»LB(36) =0.75; [.LB(e,') =0,i=1,2,3,4,7. (825)
In vector form we have

_ T.
2 - (000.750.25000]T; (8.26)

[00000.250.750]7.

8.3.2 Fuzzy Controller

In general, a fuzzy controller is a fuzzy inference mechanism. In general, assume
the system in Fig. 8.1 has m inputs and p outputs, then the fuzzy controller has the
form as

e FY x-xYyxU x-:xUpy), (8.27)

where Y;,i=1,---,p,and Uj;, j = 1,--- ,m have been fuzzificated and described in
the previous subsection:
We give an example to depict this.

Example 8.5 ([5]). Assume a system has a single control U, which depends on A
and B. Both A and B have 7 levels as {NB, NM, NS, ZO, PS, PM,PB}, and U
has 13 levels as {NVB, NB, NMB, NMS, NS, NVS, ZO, PVS, PS, PMS, PMB,
PB, PVB}. Using the previous orders, we denote by

EA :{017"',07},
EB :{b17"'7b7}7
EU:{M17"',M]3.}

the universes of discourse for A, B, and U respectively.
1. In general, we can arrange
{ps(aibjc)|i=1,--7 j=1,-- T3 k=1,---,13}
into a matrix, My, in the order of id(k; 13) x id(i, j;7,7). Then

Ms € B, . (8.28)



164 8 Fuzzy Control

2. Particularly, we may use the “If A = x, and B = X, Then U = x” rules, a rule
table can be obtained. For instance, we have Table 8.1.

Table 8.1 Rule Table
|A\U\B||NB|NM| NS [ZO] PS |PM|PN|
NB -1 [-0.8(-0.6|-0.4{-0.2|-0.1{ O
NM [[-0.8(-0.6(-0.4]-0.2|-0.1| 0 [0.1
NS |[|-0.6{-0.4{-0.2|-0.1| 0 |0.1(0.2
70 ||-0.4|-0.2]-0.1| 0 [0.1|0.2]0.4
PS |[-0.2]-0.1] 0 |0.1[0.2|0.4(0.6
PM (|-0.1] 0 [0.1]{0.2/0.4]0.60.8
PB 0 0.1{02(04]06(0.8] 1

To use vector expression we identify

NB ~8]; NM ~ 8% «-- PB ~ §};
—1~8}3; —08~8!7; .- 1~ 8L,

Then My can be expressed as

Ms = 83[ 131211109 8 7 61211109 8 7 6 5
111098765410987 6543 (8.29)
9876543287654321 '
765432 100€%,

Itis easy to see that (8.29), which is obtained by “If... Then...” rules, is a particular
case of (8.27).

In general case a fuzzy controller is mathematically equivalent to a fuzzy relation
(8.27). To get its matrix expression, we specify ¥; and U; as

Yi:{yip"'ay;c,-}v i=1,--,p;

. (8.30)
Uj:{u{’.”’ué,'}’ J:],/m
Then we have
Y N S S W < B2
Hz (y‘gl7 7yép’-unl’ 7“11,,,) T Ym-"ﬂmv . (831)
5[:1,"',ai,l:1,"',p;njzl,"',Bj,]:],"',m.

Arranging {yg}::ﬁfn} into a matrix in the order of id(ny, -+, Mm;B1,--+,Bm) X

id(&1,---,Eprau,- -+, ap), we have
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111 112 1---logy o+ 0p

Y1 Y 711...111 N

Lol o112 Loy o0
71~-~12 7/1._.12

N1z N1z

My = (8.32)

1»:11 1--12 1--loy o+ 0lp
}/ﬁl"'ﬁm yﬁl"'ﬁm yBl"'ﬁm yﬁ]"'ﬁm

Now assume a fuzzy controller is designed, which means the structure matrix
My in (8.32) is known. Then each feedback

Y, = A, i:lv"'vpv
can produce control output B, j =1,--- ,m as

BiXg- - XgBy=MyXgA| Xz XzgA,. (8.33)

8.3.3 Defuzzification

The control output from the controller, equivalent to (8.33), is

B:=B; M@"'KU@BME%E’XU (8.34)

where B =TI, Bi.
The purpose of defuzzification is-to provide controls (1, ,u,) from fuzzy set
B. We first use a simple example to depict it.

Example 8.6. Assume there are two controls u; and up with u; € [—4,4], and u, €
[—6,6]. Moveover, their degree-based fuzzy sets are depicted in Fig. 8.3.
Now for u; we identify

Vi :=NB~ 8 Vo :=NS~ 82, V3:=20 ~ 83; Vy := PS ~ 82, Vs := PB ~ 8.
For u; we identify

Wi =NB~ 8]; Wo :=NM ~ 8% W5 :=NS ~ &; Wy :=ZO0 ~ &};
Ws :=PS ~ 83; Wg := PM ~ 83; Wy := PB ~ §]

Then we have
Hvysew; (1, u2) = py; (un) A pw; (u2),  i=1,---,5; j=1,---,7. (8.35)
Now we consider
Bvyscw; (1, u2) = py, (un) A pw; (uz),  i=1,--,5; j=1,---,7. (8.36)

Note that in this example we have unique
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p(ur)

NB NS V4 o) PS PB

ui

NB NM NS 70 PS PM PB

U
—6 —4 -2 0 2 4 6
Fig. 8.3 Degree-based fuzzy sets of u; and u;
-1 . o o
Hypew, (1), =1, 5 =1, 1. (8.37)

For instance,
iy oy (D= (4,65 pry Ly (1) = (4,4),---

Then we may choose iy iwj( 1) as the defuzzificated value of 8! x 67j .
Denote the fuzzy values obtained from (8.34) as

B=1[b1 - bz by -+ by7 -+~ b5y --- b57]T.
Then we take the weighted values as the defuzzificated controls. That is,
5 7 bij O
(wu) =Y Y | =5 | vk, (1)- (8.38)

i=1j=1
i=1j bij
1

s

1

J

We can extend the procedure proposed in Example 8.6 to general case. Assume
the degree-based fuzzy sets for controls are of the forms as isosceles triangle or
isosceles trapezoid. Then

[,l&llme.m(l), iszla"'aﬁs;szla"'am
|

im

are either a point or a segment. Then we use ,uljllx g (1) both the point value or
i Y

im

the average value of the segment.
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Next, assume the fuzzy values obtained from (8.34) are

B = [bl"'ll e bl"'lﬁm o .blﬁZ"'Bm o bﬁ] BZ"'ﬁm]'

Then the defuzzificated controls are chosen as

ﬁl ﬁm b .. _—
o) = Y oo Y | i ), (8.39)
Jj1=1 Jm=1 Z z"‘: b,‘l...l‘m 1 Jm

i1=1 im=1

Exercise 8

1. (to be completed).
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