Chapter 7
Fuzzy Set and Fuzzy Logic

In1965, L.A. Zadeh firstly proposed the fuzzy set theory to describe fuzzy nature in
[1], which created a new area of fuzzy mathematics and applications.

In this chapter we first investigate the matrix expression of general fuzzy sets,
their logical operators etc. Then the fuzzy mappings and their expressions are stud-
ied. Finally, the fuzzy logic is considered:

7.1 Matrices of General Logical Variables

Definition 7.1. Let A = (4;j) € Mjux,. A is called a k-valued Boolean matrix (BM),
if its entries a;; € Z. Where 2 < k' < o. When k = 2 it is called a Boolean matrix.
When k = o0 2., := [0, 1], and A is called a fuzzy matrix. The set of m x n k-valued
matrices is denoted by 2% . . When k = 2, the superscript k can be omitted, i.e.,
Bonxn = B2

When m =1 (n = 1) it is called a row (column) k-valued Boolean vector.

Next, we define the logical operators on %,

Definition 7.2. 1. Let o, € %. Then

—oi=1—-a. (7.1)
o AB:=min{a,B}. (7.2)
oV f :=max{c,B}. (7.3)

2. LetA = (a;;),B = (bij) € B, Then

AAB:= (al-j/\b,-J). (7.5)
AVB:= (al-j \/b,"j). (7.6)

We give some new notations:
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138 7 Fuzzy Set and Fuzzy Logic

() Lxn: Lnsn € B, with all entries equal to 1.
(ii) 1,, :=1,,x1. If m is obvious, it can be omitted.
@1i1) Omxcn: Opxn € %’,’;Xn with all entries equal to O.
@iv) 0,, := 0,,. If m is obvious, it can be omitted.
(v) LetA = (a;j),B = (b;j) € B, Then

mxn
A<B & a; <bj, Vi, j.
(vi) Let & € Zy and A = (a;;) € H,.,,- Then
A =Aa = (aNaj ;) € BE.
The following simple examples are used to depict the operators.

Example 7.1. Let
A= [0.2 0.5] - {0.4 0.6] .

107 0.8 0
Then
0.80.5 0.20.5 04 0.6 0.20.5
A= {0 0.3}’ ANB= [0.8 0 ] B [ 1 0.7}’ (0-5)4 = [0.5 0.5}’

0.20.5

1 0.7

A“M:A:{ 08 0

] B0, =B {0.4 0.6} .

The following properties are enhanced from the corresponding properties for
scalar logical variables.

Proposition 7.1. Let A,B,C,1,0 € %", Then
(i) (nilpotent)

ANA=A; AVA=A. (7.7)
(ii)
ANO=0; AV1=1. (7.8)
(iii)
AVO=A4; AAN1=A. (7.9)
(iv) (commutative)
AANB=BAA; AVB=BVA. (7.10)

(v) (associative)

(AAB)AC=AN(BAC); (AVB)VC=AV(BVC). (7.11)
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(vi) (distributive)

(AAB)VC=(AVC)AN(BVC); (AVB)AC=(ANC)V(BAC).
(vii) (absorptive)
(AAB)VA=A; (AVB)ANA=A.
(viii)
—(-A) = A.
(ix) (DeMorgan’s Law)
—=(AAB)=(-A)V(-B); —(AVB)=(-A)A(=B).
(x) Assume A < B. Then
AANB=B; AVB=A.
(xi) Assume A < B and C < D. Then
ANCL<BAD; AVC<BVD.

(xii) Assume A < B. Then

7.2 Boolean Operators
Definition 7.3. Consider Z;. We define two Boolean operators as
(i) (Boolean Addition)
a+gB=aVvp, a,pc .
(1) (Boolean Product)

axgf:=anB, a,pcD.

139

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

Note that we also use the following notations for multi-addition and multi-

product.
gl 10i=0+30+z - +3z0;

n
H O =01 Xz02 Xz Xp 0.
B i=1

Next, we define the Boolean addition and product for matrices.



140 7

Fuzzy Set and Fuzzy Logic

Definition 7.4. 1. Let & € % and A = (a; ;) € $~,.,,- Then

mxn*

axgA=Axgo = (aNa). (7.21)
2. LetA = (a;) € Bhx, and B = (b; ;) € B, ,. Then
AxgB:=C=(cij) € By (7.22)
where
Cijzzﬂz:laikxﬂbkﬁ lzlaamajzlap
3. Let A = (a; ) € By, and B = (b; j) € B, .. Then
ail XgB annxXgB -+ iy Xz B
a1 XgB aypn xXgB - ay XzB .
ARgB:=| . € Bpng- (7.23)
am1 Xz B amy Xz B -+ ayn Xz B
4. LetA € B, . Then
Atz — A o A =1,2,- . (7.24)
5.LetA = (a,-’j) € %ll;xn, B= (b,"j) € ‘%IL;X(I'
(i) If n = pt, then
AXgB:=A X@(B@g[t). (7.25)
@1ii)If nt = p, then
AXgzB:= (A®gg1t) X g B. (7.26)

B=c %

nxs*

.Let A =€ %

mxs»

AxgB .= [Coh (A) x 4 Col; (B) Cola(A) X 5 Coly(B) ---

The following examples are used to depict these.

Example 7.2. 1. Let

. B

{0.2 0.4} o

0 0204
0.6 0.8

[0.6 0.8 1

Then

Coly(A) x 5 Cols(B)] .
(7.27)

0 0.8
02 1
0.4 0.7
0.60.3
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s

0.40.4 0.4
AxgB= {0.6 0.8 0.8}
0 0202 0 0204

020202040404/

A®2B=110 0204 0 0204]°
0.6 0.6 0.6 0.6 0.8 0.8
02 0 04 0
0020 04
A%2h =106 008 0 |’
0 0.6 0 0.8
0.4 0.4
0.40.3
AxzC= 10407
0.6 0.6
0.4 0.4 0.4 0.4
20 _ . ky <
A= {0.6 o.s}’ W {0.6 o.s}’ k23
2. Let
0.20.3 0.3 0.2
A= {0.7 0.9} P X {o.s] A~ {0.8} p a=04
Then
020.3 0.2 03] [03
oA vz (X AL)s04 [0.7 0.9} X2 {0.5} =04 [0.5} - {0.4] '
3. Let
1 0.40.6
A= {g'i 8‘2 008} . B=0.3090.2
" 0 107
Then
0203 0
0203 0
003 0
A*2B= 1040406
0.30.5 0.2
0 0.50.7

The following properties are easily verifiable.

Proposition 7.2. Let R, S, T be k-valued BM with proper dimensions such that the
following products are well defined. Then

1.

Rxgzl=1xXg4R=R. (7.28)
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2.
Rx20=0x%2R=0. (7.29)
3.
RU™M2 = RN 5 gy R (7.30)
4. Assume S < T. Then
RxzS<RxgzT. (7.31)
5.
(Rx2S8)xgT =Rxz(SxgT). (7.32)
6. (Distributive Law)
(i)
Rxz(SVT)=(RxzS)V(Rx%S). (7.33)
(ii)
(SVT)xzR=(SxzR)V(SxzR). (7.34)
(iii)
Rxz(SAT)=(RxzS)N(RxzS). (7.35)
(iv)
(SAT)X2R=(SxgR)AN(SxzR). (7.36)
7.
(Rx58)" =8T x4R". (7.37)

7.3 Fuzzy Sets

Definition 7.5. Consider an objective set E, called a universe. A set A is called a
fuzzy set over E if for each e € E there is a membership degree s (e) = o, € D If
E={ey, - ,e,}is afinite set and py(e;) = o4, i =1, ,n, then A can be expressed
as

A=ay/ei+op/er+---+ay/ey. (7.38)
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The set of fuzzy sets over universe E is denoted by .% (E).

Consider a set E, its power set, denoted by Z?(E), is the set of all subsets of E.
That is,
P(E)={S|SCE}.

Consider C € #(E). C can also be considered as a special fuzzy set, with

(0)=4" ecC
Hele) = 0, otherwise.

Moreover, p € E can be considered as a special power set, which have

up(e)={l’ ‘o’

0, otherwise.
Under this understanding we have
EC P(E)C Z(E). (7.39)
To distinguish C € & (E) with fuzzy sets, we call C a crisp set.
Remark 7.1. 1. Consider I = [0, 1), we define a topology as
T ={{0,r)0<r<1}.

Then it is obvious that (7,.7") is a topological space, denote it by ..

2. Consider the universe E and E with discrete topology is denoted by &'.

3. Consider the topological product space & x .#. Then a set A € % (E) is a fuzzy
set, iff A is an open set in this topological space. (Here we use a trivial identity
ta(e) ~ [0, pa(e)).)

4. If E has its own topology, then we may consider a fuzzy set as a subset in the
topological product space E x .#. Then an open set is a fuzzy set, but not every
fuzzy set is an open set.

Definition 7.6. Let A and B be two fuzzy sets on E.

1.A=0,if
Hale) =0, Ve€kE.

2.A=E,if
[J,A(e):l, VecE.

3. A C B, if and only if
ta(e) < pp(e), VecE.
4. ANB is defined by

tans(e) = pale) Aug(e),Ve € E.
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5. AUB is defined by

taus(e) = pa(e) Vug(e), VeckE.

6. A is defined by
Hacle) = ~pale), Veck.

Definition 7.7. Assume the universe |E| < o and a fuzzy set A on E is as in (7.:38).
Then the vector form of A, denoted by X4, is defined as

Xy= (oo o) € B~ . (7.40)
Let P = (pij), Q = (¢ij) € Mmxn. Then P < Q means
pij<qij, i=1,mj=1,--,n
When |E| < oo, according to the Definition7.6, we have that

Proposition 7.3. Let A and B be two fuzzy sets on E.

1.A=0,iff
X4 =0.
22A=Eiff
X4 =1.
3. A CB, if and only if
Xy < Xp.
4.
Xanp = X4 N Xp. (7.41)
5.
Xaup = X4 V Xp. (7.42)
6.
Xy = =Xy, (7.43)

Remark 7.2. Using Proposition 7.3 and the properties of logical operators, we can
calculate the vector of any logical expressions. For instance,

X(AQB)C = (XA /\XB) = (—|XA) \% (—|XB) = Xjc V Xpe. (7.44)
X(AUB)(‘ = (XA \/XB) = (—|XA) N (—|XB) = Xpc N Xpe. (7.45)

Example 7.3. 1. Let E = {x1,x2,x3,X4,Xs5}.
(i) A=0.1/x1+0.3/x,+1/x5 € Z(E). Then
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X, =1[0.103001]7.
(i)B = {x2,x4,x5} € Z(E). Then
Xg=[01011]".

(iiif =x3 € E. Then
Xc=[00100]".

2. Let E = {x1,x2,x3} and there are three fuzzy sets

Ay =0/x14+0.25/x2+0.75/x3;
Ay 20.5/Xl+0.75/X2+0/X3;
Az = 1/x1 +0.5/X2+0/)C3.

Then we can choose k = 5 and find their corresponding vector form as:

0 0.5 1
X1 :XAI = 10.25 ) X2 :XA2 = 10.75 5 X3 :XA3 = 10.5
0.75 0 0

Consider S =A; UA; UA3. Then

1
Xs=X;VXp VX3 = |0.75] .
_0.75_

Equivalently, S = 1/x; +0.75/x2+0.75/x3. Consider T = A; N Az NA3. Then

0
Xr=X1A\Xp,ANX3={0.25
0

Equivalently, T = 0/x; +0.25/x2 + 0/x3.

Throughout this chapter we assume

A1l The fuzzy sets, in which we are interested, is finite.
A2 The number of membership degrees for each fuzzy set is finite.

Theorem 7.1. Under assumptions Al and A2, the domain can be equivalent to a
finite partition.

Proof. Assume the domain is E and the fuzzy sets concerned are Ay, --- , A, and the
number of membership degrees for A; is k; < oo, i =1,--- ,s. Define
El = eeEu(e):j_] J=1, ki i=1,-,s
j- Aj ki 1 ) ) s Ky ) 3.
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Using E;'-, we define a set of subsets of E as

Eji .. =E} NE;N---NE}, ji=1, kii=1s.
Then {Ej, ... j;|ji=1,-++ ki i=1,--- s} is a partition of E. That is
1.
U U2 Y B =
=1 Y= Y B s = B5
2.
Ejly”'ajsmEj’I,---,j§:®7 (.]177]3)7&(]/177]/;)

Now it is clear that when considering the fuzzy sets Ay, --- ,-As, we do not need
to distinguish two points within a E;, ... ;.. Hence we can consider E;, ... j; as “one
element” in the domain E provided Ej, ... ; #0 (If E}, ... ;, = 0, we can just ignore
it.). Then

E= {Eh,--sz|Ej1f"7j.v F0; ji,c s js =1, 7k}
can be treated as a finite set. O
We give an example to depict this.

Example 7.4. Let E be the set of human age. It could be [0, ). Say, we are concern-
ing two fuzzy sets: A: One is old. B: One is rational. Assume

=

x <20
20 <x <40
40 <x< 60
x> 60

pa(x) =

=10 W=

=

x<10

10<x< 14
14<x<18

18 <x <25, orx>80
25<x< 80

pp(x) =

=R = e

Then the universe can be partitioned as
E ={En,En,E13,E14, Ex, Es5,E3s5,Eqs5,Ea4}

where
Ey =[0,10); Epp=[10,14); Ey3 = [14,18);
E14 = [18,20); Exq = [20,25); Eps = [20,40);
E35 = [40760), E45 = [60, 80), E44 = [80700)

We conclude that when only A, B and the fuzzy sets generated by them are con-
cerned, E can be considered a finite set with 9 elements.

Based on Theorem 7.1 we, hereafter, assume
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A3 The domain of any fuzzy set is a finite set, i.e., |E| < .

Then for each fuzzy set A we have X4 € Z}/.
Note that when k = 2 we have a “complement rule” as

Xv-=X=1, XA-X=0. (7.46)

When k > 2 (7.46) is not true.

7.4 Mappings over Fuzzy Sets

First, we consider the decomposition of a fuzzy set.

Definition 7.8. Let & € Z., and A be a fuzzy set. Then the ¢-truncated set of A is
defined as

Aq = {e|ua(e) = aj,

which is a crisp set.

Note that let X4 be the vector expression of A: Then the components of X4, can

be determined as
Aa_ )0 <o
I, A>a.

1

The following decomposition theorem can be proved by a straightforward verifi-
cation.

Theorem 7.2 (Decomposition Theorem). Let A be a fuzzy set. Then
Xy = Vaea, aXy,- (7.47)

Next, we consider how to extend a mapping f : E — F to the fuzzy sets
f: F(E)— F(F). Recall the including relation (7.39). We first extend it to
f:PE)— P(F).

Definition 7.9. Let E and F be two arbitrary sets, and a mapping f : E — F is given.
1. f can naturally be extended to f : Z(E) — L (F) as

£ ={f(x)|xeS}e 2(F), Sec P(E). (7.48)
2. f 1 P(F)— P(E) is defined as
FUT) = {x|fx) €T}, Te€P(F). (7.49)
Next, we extend f to #(E) — F(F)

Definition 7.10. Assume f : E — F is given.
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1. Then f can be extended to .7 (E) — % (F) as follows:
Viep tphal), A€ F(E)
() = {0 < ff?(y) - (7.50)
2. The inverse f~! : .7 (F) — .Z(E) is defined as
Hp1(p) (x) = up(f(x)). (7.51)

Assume E = {ey,e2,--- ey} and F ={d|,ds, -+ ,dy},and f : E — F is defined
by
f(el):d],a 12177}’1, lg]lgm

Identifying e; with its vector form as e; ~ X, = 8,i=1,---,nand dj~Xq, = 5,{.,,
j=1,--- ,m, we have

F(x) =Mypx = 8ulj1 jo ==+ Jnlx, (7.52)

where My is called the structure matrix of f.

Example 7.5. Let E = {1,2,3,4,5}, F = {0,1,2}. and f : E — F is defined by
f(x) = x*(mod 3). Then it is easy tofigure out that

My = 8[2,3,1,2,3]. (7.53)
Using (7.52), let x = 4 ~ 8. Then
Flo) =Myt =83 1.

Theorem 7.3. Assume |[E| =n and |F| =mand f: E — F has its structure matrix
My € ZLyxn. Then

1.

X;a)=Mpx 35Xy, VA€ Z(E). (7.54)

X/ 1) =Mf xzXp, VBeZF(F). (7.55)

Proof. 1. Assume y = 8,,. If f~1(y) = 0, then Row; x (M) = 0. Then it is not
difficult to see that
Xfa) = VaeeXa(x).
Then (7.54) follows from the definition of the Boolean product of k-valued ma-

trices.
2. Letx = §!. Then f(x) = Row;(My). Say, f(x) = &3 Then

Ha(f(x)) = Col;(Xg) = f(x)" X5.
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Hence we have (7.55).

Example 7.6. Consider the mapping defined in Example 7.5.

I.Let A=0.3/140.8/24+1/44+0.5/4 ¢ Z(E). Then X4 = (0.3 0.80 1 O.S)T.
Hence,
Xra) =My x5Xg

0.3
0.8 0
= &[23123)xz |0 | =1
1 0.5
0.5

It follows that f(A) = 1/1+40.5/2.
2. Let B=0.2/0+0.8/1+0.4/2 € Z(F). Then X3 = (0.20.8 0.4)”. Hence,

Xf’l(B) = M} X 2 Xp

010 0.8
000 0.2 0
=1100| Xz (08| =10.2|.
010 0.4 0.8

001 0.4

It follows that f~!(B) =0.8/1+0.2/3+0.8/4 +0.4/5.

Corollary 7.1. Let f : E = F, where |E| =n and |F| = m.

1. If f is one-to-one, then
2. If f is one-to-one and onto, then
Xf(f’l(B)) =X, Be€ y(F) (7.57)

Proof: 1. Assume the structure matrix of f is My = 8,[iy ip --- i,]. Since f is one-
to-one, then'when p # ¢ we have i, # i,. It follows that

Xpo1(seay) = MfMpXa = 1,Xa = Xa.
2. Since f is one-to-one and onto, it is easy to see that MT = M;l. Hence
_ T _
Xf(ffl(B)) = MfoXB *XB.
y =& If f71(y) =0, then Row; (M) = 0. Then it is not difficult to see that

Xpa) = VaeeXa(x).
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It is easy to prove the following properties.

Proposition 7.4. (i)

fA)=0=A=0. (7.58)

(ii)
ACB= f(A) C f(B). (7.59)

If f is one-to-one, A is also correct.

(iii)
F(Ureadn) =Upea f (Az). (7.60)

(iv)
F(Maeadn) CMaeaf(Az). (7.61)

If f is one-to-one, then “C” can be replaced by “="

(v)

fY0) =o. (7.62)
(vi) If f is onto, then

f'(B)=0=B=0. (7.63)

(vii)
By CBy= f'(B)) C f\(By). (7.64)

(viii)
SN (UneaBa) = Ureaf " (B2)- (7.65)

(ix)
SN (N2eaBa) = Maeas ™" (B1). (7.66)

(x)

c

B =3 (7.67)
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7.5 Fuzzy Logic

Throughout this section we assume the universe E = {ej, ez, - ,e,} is unique for
all fuzzy objects.

Definition 7.11. 1. A fuzzy proposition a is a fuzzy set. Precisely, a € % (E) is an
element.

2. A fuzzy logical variable x is a variable which takes values from .% (E).

3. A fuzzy logical function is an expression with some fuzzy propositions and fuzzy
variables connected by (fuzzy) logical operators.

Remark 7.3. 1. Traditionally, the logical operators allowed in a fuzzy logical func-
tion are {—, A, V}. But we assume A2 (refer to Section 3), then any logical
operators are allowed.

2. In this section we consider only the k-valued (fuzzy) logic: The results obtained
can easily be extended to mix-valued (fuzzy) logic.

Assume a, x,x1,- -+ ,Xm, and f(xy,- - ,x,) are fuzzy proposition, fuzzy variables,
and fuzzy logical function respectively. Moreover, assume for any § € .% (E)

Hg(e)é@k, eckE.

Then for a fixed eg € E the U, (eo), t(eo) ty(€o) i=1,---,m, and us(eo) are sim-
ply the k-valued proposition (or constant), k-valued logical variables, and k-valued
logical functions. So as |E| = n is assumed, they are n-dimensional k-valued propo-
sition, n-dimensional k-valued logical variables, and n-dimensional k-valued logical
function.

Then we have the following result.

Proposition 7.5. Let X', --- | X" be a set of fuzzy logical variables, and a fuzzy log-
ical function f(X',-+-,X™) has its structure matrix as M ' € ZLixkr. Denote the
vector form of the j th component of X' by x;, and in vector form xlj € Ag. Then

n

fi=Mpxiag X, =1, (7.68)
We give an example to depict this.

Example 7.7. Assume the universe is E = {ej,e2,e3,es} andk =3.X,Y,Z € Z(E).
A fuzzy logical function f is defined as

fX,Y,2)=(XNY)+ Z. (7.69)
Then we have the algebraic form of (A.2) as
fX,Y,Z) =MsXYZ, (7.70)

where the structure matrix of f is
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My=M,3M.3=0[123222321222222321321321321]
Precisely speaking, (7.70) means
fX,Y,Z)(e) =MsX(e)Y(e)Z(e), ecE.

Now assume the vector form of X, Y, and Z are respectively as

0.5 0 0.5
0 0.5 1
1 0.5

Then 26362 ol
fler) =Mpxiy1z1 = M;6565 65 = 035

fler) = Mpxayrzo = My 875583 = 83
fle3) = Myx3yszs = My 8383 83 = 83;
f(es) = Mypxyysza = My 8] 8385 = 83.
We conclude that ,
fX.Y.2) = o(.)s
0.5

Exercise 7

1. (to be completed).
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