Chapter 6
Mix-valued Logic

In this chapter we first introduce the normal form of logic and k-valued logic. Using
the normal form a generalized new logic, called the mix-valued logic, is proposed.
Then the properties of general logical mappings are explored. Some applications are
briefly introduced.

6.1 Normal Form of Logical Operators

Consider the set of r-ary logical operators (i.e., logical functions). Since there are r
arguments and each argument can take 2 different values, so an r-ary logical oper-
ator is a mapping from a set of cardinality 2" to a set of cardinality 2. Hence, there
are 22 different operators.

When r = 0, there are two nullary (0-ary) operators, which are f =0 and f = 1.
Where r = 1 there are 4 unary (l-ary) operators, which are f(x) = x, f(x) = -,
and the two nullary operators as its particular cases. When r = 2, there are 16 binary
(2-ary) operators, which are listed in Table 5.6, including 4 unary operators as its
particular cases. When r = 3 we have 22’ = 256 ternary (3-ary) operators, and so
on.

If we need all of these different forms to express all possible logical functions, it
will be a terrible mess. Hence a natural question is: Is it possible to find a finite set
of operators, which can be used to describe all the operators?

Definition 6.1. A set of logical operators is said to be an adequate set, if any operator
can be expressed as a combination of them.

Proposition 6.1 ([2]). The pairs {—, A}, {—,V} are adequate sets.

In fact {—,A,V} is a commonly used adequate set. From Proposition 6.1 it is
clear that {—, A, V} is an adequate set. Conversely, if {—,A,V} is an adequate set,
then using De Morgan’s law, Proposition 6.1 is clear.
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120 6 Mix-valued Logic

It is easy to see that all the binary operators can be constructed from {—, A, V}.
(We leave the verification to the reader as an exercise.) Then how about r-ary op-
erators when r > 3. Verifying all of them is impossible. But the following theorem
solves this problem.

Theorem 6.1. Assume f(x1,---,x,) is an r-ary operator with its structure matrix
My € 50, r > 2. Split My into two equal-size blocks as

My = [B1,Bs].
Then
Fler, ) = (A filxa, - ,x0)) V(2 A fa(xo,v00x0)) 6.1)
where fi(x2,--- ,xy) has B; as its structure matrix, i = 1,2.

Proof. First, we prove

f(-xl-,"' 7-xr) = (-xl /\f(lax27"' ,x,))V(—'xl /\f(oax2>"' 7xr))~ (62)

RHS = (1 /\f(l,xz,-'- ,Xr))\/(O/\f(O,XZ,"' ﬂ'xr))
= f(1,x2,-++,x) VO
:f<1ax27"' 7xr) :LHSa

ifx1 = 0,

RHS = (0N f(1,x0,--,%)) V(LA f(0,x2,++ ,x,))
= 0\/f(0,x2,-~ 7-xr)
:f(07x27"' 7xr) :LHS7

thus (6.2) follows.
Denote by fi(x2,---,x,) = f(Lx2,-- ,x), fa(x2, - ,x) = f(0,x2,- -+ ,x,), it is
easy to see where f;(x2,--- ,x,) has B; as its structure matrix. O

Using Theorem 6.1, an r-ary operator can be expressed by {—,A,V} and two
(r —1)-ary operators. Continuing this process, it can be expressed by {—,A,V} and
some unary operators. We call such a form the normal form of logical operators. In
fact, this normal form is called the disjunctive normal form [2].

Next, we consider the k-valued logic. Similar to k = 2 case, it is easy to see that
there are kX r-ary logical operators. Particularly, there are k trivial nullary operators.
We consider unary operators. There are k* unary operators. We name some of them
[1] (The operators are defined in their scalar values)

(i) Negation

~P:=1-P 6.3)



6.1 Normal Form of Logical Operators
Its structure matrix is
M, = Olk k—1 --- 1]

(i1) Rotator ¢ is defined as

P— -, P#0
Ok(P) == k=17 ’
K(P) {1, P=0.

Its structure matrix, M, , is
Myp=6&[23 - k1].
For instance, we have
M,3=083231], Mys=203[2341].

(iii) i-confirmor, V;, i =1,---,k, are defined as

k=i . D

Vik( ) = I, P= ﬁv (equwalentlyp — 6]2)
7 0, otherwise.

Its structure matrix (using same notation)

Vik=06lk---k1k---kl, i=12- k.
i—1 k—i

For instance, we have
Va3 =08[313], Voa=00l[4144], Via=04414].
(iv) Conjunction
PAQ:=min{P,Q}.
Its structure matrix is (to save space let n = 3)
M.3=03[123223333].
(v) Disjunction
PV Q:=max{P,Q}.
Its structure matrix is (n = 3)

My3=8[111122123].
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122 6 Mix-valued Logic

In fact, we did not name all and the above set of operators are also not enough to
construct all the unary operators. For statement ease, we use a general notation for
all unary operators.

Definition 6.2. Let iy,--- iy € {1,2,--- ,k}. The operator @, j,.... ;, is a unary oper-
ator, defined by (in vector form)

Diinerin (§) =8, =1, k. (6.15)

If iy = s, which means when x = &, then @, j, ... ;, (§) = ;. That is, x is invari-
ant with respect to this operator. In this case, we replace i by *, which makes the
operators more clear.

Example 6.1. Using the general expression, we have
% = Dk —1,-,15
Ok = D23, k15
Vik=k ... kik,--- k-
i—1 k—i

Next, we consider whether there is an expression of k-valued logical function
similar to Theorem 6.1. In fact, we have the following.

Theorem 6.2. Assume f(x1,--- ,x,) is an r-ary k-valued operator with its structure
matrix My € Lyxir, v > 2. Split My into k equal-size parts as

Mf - [B15327"' 7Bk]-
Then

Flrx) = (Vig@) A fi(es+x0)) V (Var(xi) A falxa, - ,xp) - (6.16)
Viek(x1) A fi(#2, -+, x2)) ’

where fi(x,--- ,x,) has B; as its structure matrix, i = 1,2+ k.

Proof. Similar to the proof of Theorem 6.1, we only need to prove

k—i
f(xla"' »xr) = \/5'{:1 <Vi,k/\f(k_]ax2a“' ,)Cr)) (617)
If x; = H,
i k—j k—j
RHS:v{:l1 <0/\f(ﬁ,x2,... ,x,)) % (1 Af(ﬁ,xz,... ,x,)> v

k—j
Vi (OAf(ﬁvx%'“ ,xr)>

ke
=1(;

7]7}(:27' o 7xr) :LHS,
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thus Theorem 6.2 follows. ad

Denote by % the set of unary k-valued operators. That is,

Ue={ iy | 1 < ij < ks =1, k}.

Then it is easy to see the following corollary.
Corollary 6.1. For k-valued logic, the set %, U{V}U{A} is an adequate set.

We use the following example to depict this.
Example 6.2. Assume k = 3 and

fl,y)=03[321223312)xy.

Find the logical expression of f(x,y).
It is easy to calculate that

Fxy) = (Vigx) Ao1(y) V (Va3(0) A o2 () V(Va3(x) Aos(y)),

where
o1(y) = @321 (») =~

6.2 Mix-valued Logic

Assume we have a set of logical variables xp,x1,- - ,x,, where
i€y, ki>2, i=0,1,---,n (6.18)

The mix-valued logic considers the operators over logical variables which belong
to.different logical regions. Precisely,

Definition 6.3.'Let x;, i = 0,1,--- ,n be as in (6.18). An n-ary mix-valued logical
operator (function) f is a mapping f : D, X -+ X Dk, — D,-

First, set k = [],_ nk;, we consider unary mix-valued logical operators, which
are mappings from % to %j,. Similar to (6.15), we define

OB =80 j=1, k. (6.19)

i1502,0 ik

Now the set

1502505k

%ko — {®k0

1§ijgk0,j=1,---,k}
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is the set of all unary logical operators from Z to %,.
Particularly, we consider the identifiers:

5L, x=8§/
VA (x) = ¢ ko k 6.20
ik (x) { 8:(?, otherwise. (6.20)

In general form, we have

k
Vj?k = kg, ko,1.ko, -+ ko'
—_—— ——

j—1 k—j
For notational compactness, when there is no possible confusion we simply denote

) 1 ;.
Vi(8)) ;:{8’“ = (6.21)

8,f , mboxotherwise.

In (??) the operator V; can be considered as a general operator from Ay to Ay, where
ko can either the same as k or different from k.

Next, we deduce the (disjunctive) normal form for mix-valued logical functions.
Assume f(xj,---,x,) is a mix-valued logical function as defined in Definition 6.3.
Using truth table, it is easy to construct the structure matrix of f as

My € Lo k-
Split M into k1 equal blocks as
My = [B1B; - Bkl}.

Then we have the following result, which is parallel to Theorem 6.1 for standard
logic, and Theorem 6.2 for k-valued logic.

Theorem 6.3. Let f(xy,--+ ,x,) be the mix-valued function defined in Definition 6.3.
Then f(x1,+ ,x,) can be expressed as

Fle, - x) = (Vilx) A filxz, - x0)) V(Va(x) A fa(xz, o 0 x0)) Ve

v(vkl (X1) A fiey (x2, -+ ,xn)), (6.22)

where fi(x2, -+ ,x,) has B; as its structure matrix, i = 1,--- ,kj.

Using Theorem 6.3 repetitively, we finally can get the (disjunctive) normal form
of mix-valued logical operators.

Corollary 6.2. Let f(x1,---,x,) be the mix-valued function defined in Definition
6.3. Split My into k/k, equal-size blocks

Mf = [Bl By .- Bk/k”L

denote
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Bj =8 [i]. 5, i 1.
Then f(x1,--- ,x,) can be expressed as
k k; Ky
SOy o) = vj}:l \/JZ:I "'\/j,,,I:l (Vi (1) AV, (x2) A=+
] (6.23)
A A2y ).
1255l

where J = :.’;f((ji—l) Z;}Hkp)ﬂLjnfl-

Remark 6.1. 1. (6.23) is called the (disjunctive) normal form of f(xj,-:- ,x,). Both
(6.1) (for conventional logic) and (6.16) (for k-valued logic) can be considered
as its special cases.

2. The set

ko
{20, =1, n} U{vie O fiGH
is adequate for the set of operators ¢ : %, X -«+ X Dy, — Y,

Example 6.3. A mix-valued logical function f : %, x Z3x %, — 95 has its structure

matrix as
My=683312312123311].

Find its logical expression.
It is easy to calculate that

f(xl,xz,)@,) = (Al (xl) /\Al(xz) /\@371()63)) V (Al(xl) /\Az(Xz) N @%,3()63)) V
(A] (1) AA3(x2) A @%72()63)) vV (Az(xl) ANAL(x2) A @?,2()63)) vV
(Az(xl) /\Ag()Q) N @%’3()63)) V (Ag(xl) ANA3(x2) A @?71 <X3)) .

6.3 General Logical Mappings

Letx; € Dy, i=1,---,nandz; € Zs;, j=1,--- ,m.Setk=[T ki ands:H’j”:lsj.
Assume a logical mapping

F: H Dy — f[ I, (6.24)
=1 j=1

is determined by

21 = fi(xi,- - ,x)

2= folxr, -, xn) 6.25)

Zm :fm(xla' o 7)6,,).
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In vector form, we set x = X' jx; € A and z = X' z; € A, and denote by M; :=
My, € Z,« the structure matrices of f;. Then in vector form (6.25) becomes

21 =M1x

70 = Mox
(6.26)

Zm = Mpyx.

We look for the structure matrices of F. We need some preparations.
Define a matrix, called the dummy matrix, as

Dpg =101, (6.27)
Then, via a straightforward computation, we have

Proposition 6.2. Let x € A, and y € A,. Then

Dp.qu =Y
’ (6.28)
Dy pWip gy = x.

Using (6.28), we can add some fabricated variables into a logical expression.
Next, we define a matrix, called the order-reducing matrix, as

Mk .= diag(§}, 82, ,80). (6.29)

Then it is easy to prove the following
Proposition 6.3. Let x € A. Then

x? = Mkx. (6.30)

Using (6.30), we can reduce the power of a logical variable to 1. That is,
N
X = (M,) x. (6.31)

Now we are ready to provide the structure matrix of F.

Theorem 6.4. Consider a mapping, F, defined by (6.24) and (6.25). There is a
unique matrix Mp € %, called the structure matrix of F, such that

Z= Mfpx. (6.32)
Proof. Multiplying both sides of (6.26) yields

z = MxMx---M,x
= M (I @ Mp)x*Msx - - My x
= Ml (Ik ®M2) ce (Ikm—l ®Mm)xm

= Ml (Ik ®M2) e (Ikmfl ®Mm) (Mf)

m—1
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Hence
m—1
Mp =M (I, @ My) - (Ins & M,y) (Mf) . (6.33)

To see MF is a logical matrix, it comes from the following easily verifiable claim
that “the product of two logical matrices is a logical matrix”.

To see My is unique, assume there is another such structure matrix, called M},
and the i-th columns of these two matrices are different. That is, Col;(Mp) #
Col;(M},). Choose x;, i = 1,--- ,n such that x = &/. Then we have z =F(x) equals
to Col; (M) or Col;(M}) by using Mg or M}, respectively. This is absurd. O

In fact, Equation (6.33) may be considered as a formula to calculate the structure
matrix of a mix-valued logical mapping. But the following property may provide a
more convenient way for numerical calculation.

Letxi € Dy i= 1,0, yp € D, p=1,-+-,m, 2g €%y, g =1,---,r. Set
k=TI kioos =TI 1 sp. t = [Tg_1tg.- Assume F : T[L Z, — T2y %, and
G:[TL, %, — H(;:l 9, have their structure matrices Mr € Zx and Mg € £}«
respectively. The product mapping

n m r
r=FxG:[[% = 112,112,
i=1 p=1 g=1
is defined as
w(x) =F(x) x G(x).

Proposition 6.4. Assume (x) = F(x) x G(x) and the structure matrices of F and
G are My € Ly and Mg € £« . Denote the structure matrix of © by My € Ly«
Then

M, = Mr x Mg, (6.34)
where “*” is the Khatri-Rao product. That is
Coly(Myz) = Colg(Mp)Colg(Mg), o=1,2,-- k.
Proof. Let x = §*. Then we have
F(x) = Colg(MF); G(x) = Colg(Mg); and m(x) = Coly(My).
The conclusion follows. a

Using this proposition to all the components, we have the following corollary.

Corollary 6.3. Consider a mapping, F, defined by (6.24) and (6.25). Assume the
structure matrices of fi, i = 1,--- ;m are M;. Then the structure matrix Mp of F can
be calculated by

MF :Ml*Mz*on*Mm. (635)
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Example 6.4. Assume x1,x3,21,22 € 9, x2,23 € 93, and the mapping F : (x,x2,x3) —
(z1,22,23) is decided by

21 =x1 A (®%,1,2x2)
= (@%7171x2) V3 (6.36)
3= @:1;’3()0 > x3).

(6.36) can be converted to algebraic form

a=6[1222u&212xn
2=8[1112]62,1,1]x0xn (6.37)
3= 03[1,3]82[1 2 2 1]x;x3.

Consider z;, we have

1222]x16:[2 1 2)[13 ]x3x2
(1222 x152[2 1 2] [13 I3]W[372]XQX3

8|
&
5[1222x,8422112244 33 44)xpx3
&

[

|

1222](h®8221122443344])xxx3
822112222222 2xpxxs.

Similar calculation yields

4= 8[22112222222 2x0x
22=0[12111112111 1]xjxx3
3= 8313131331313 1xxaxs.

Using (6.33) or Corollary 6.3, we can get
Mp=012[71213799109797].

Next, we consider how to convert Mr to the logical expression of F. Assume F
is defined by (6.24) with its structure matrix Mg € 2. For this, we firstly define
a set of logical matrices S; € ,,%jxs, called the retrievers.

S1=8[1 - 122515 (6.38)
s/s1 s/s1 s/s1
S9=8,[1 - L-osp syl Loisy s (6.39)
5/5152 s/s182 s/5152 s/5182
: (6.40)
Sp= 8, [12 sy 1200 5], (6.41)

We have the following result.
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Proposition 6.5. Assume zj € I, j =1,2,--- ,n, denote by s =[Ij_,s;, let z =
x"_12j, then

zj=8jz, j=12,---,n (6.42)
Proof. Since §; has szzl s; equal-size blocks, if z; = 65, we have

Siz=S8jz1"""2j-12jZj+1"" " Zn
=8 [1 o1 202 sy e si]zjzen
J J1ZjZjH+1" " 2n
s/TTi—ysi s/ Tlj— si S/H,jzlsi
:5sj[p"'p]zj+1"'zn
N
S/H,lesi
—§P — ..
6S/' Z/‘

By Corollary 6.3 and Proposition 6.5, we have
Corollary 6.4. The structure matrices M; of f; in (6.25) can be retrieved as follows:
M;=8SMp, j=12,--.n. (6.43)

Using Corollary 6.4 we can get the structure matrix M; which has xq,x,- -+ ,x,
as its variables. But in usual, some variables may not affect the value of the f;, we
call these variables the fabricated variables. For removing these variables, we have
the following:

Proposition 6.6. Consider system (6.26). For arbitrary 1 < j <n, split MiW

[ IT) ) )
into k;j equal-size blocks as
MWt k)
= {Blkl(MiW[kjﬂ;l] kp]),Blkg(MiW[kﬁHg;l] kp]% -+, Blky; (MiW[kj,H;:] kp]) .

If all the blocks are the same, then x is a fabricated variable. Moreover, the equation
of z; can be replaced by

Zi:Mi/xl"'xjflijrl"'Xna (644)

where
M| = Blk; (M; =MW,

1
i1, 0.
[k T kp) K

W[k,-,n;;;ﬁ kp )

Proof. Note that
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Zi =Mixy - Xjo1XjXjy1 o Xn

=MW

k; ijllkp]xjxl X1 X1 X
=

if x; does not affect z;, then z; is invariant whatever the value of x; is. Then we can
simply set x; = 8,{1]_ to simplify the expression. a
We give an example to depict this.

Example 6.5. Assume the structure matrix of a logical mapping with xq,x3,21,22 €
2, and X2,23 € Dy is

Mp=20812[71213799109797].
Then using Corollary 6.4, we have

My =S Mp=6[221122222222]
My=SMp=8[121111121111]
Ms=S:Mp=8[131313313131].

Net, consider M, it is easy to verify that

M =8[221122]2222272]
MWy =6,[22221122]22272]
MW g =8[212222]212222].

We conclude that z; depends on x; and x, only. Then z; can be simplified as
71 = 62[2 1222 2]x1XQ.
Similarly, we can remove the dummy variables from other equations. We have

271 =0[212222x1x;
2=06[121111]xx3
3= 53[1 33 1]X1X3.

which is same to (6.37).
Using Theorem 6.3 we finally have

21 =x1 A (23 ,%2)
2= A12,3(x2) AX3 \/A2273(x2) \/A3273(x2) = (@%,1,1352) VX3
2= (3200 A 215 (00) ) v (A3, 01) A 23,1 (1)) = 2 51 < x).
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6.4 Some Applications

6.4.1 Rules in Fuzzy Control

As one of the most successful intelligent control technologies, fuzzy control has
attracted much attention from control community, and it has been used widely in
industries. It is a suitable tool for a variety of challenging control engineering prob-
lems. As pointed out in [3] “In the fuzzy control design methodology, we ask this
operator to write down a set of rules on how to control the process, then we incorpo-
rate these into a fuzzy controller that emulates the decision-making process of the
human.”

Rules play a key role in Fuzzy control. We describe this through the following
example.

Fig. 6.1 An inverted pendulum

Example 6.6. Fig. 6.1 depicts an inverted pendulum. Denote by e the error, which is
the angle leaving from the vertical position (with left side as positive value), é is the
time derivative of e.

Quantizing the error, change-in-error and the force (control) into 5 levels as:
positive-large (denoted by 2), positive-small (denoted by 1), zero (denoted by 0),
negative-small (denoted by —1), and negative-large (denoted by —2). The control
rules are presented as expert’s linguistic description of how to perform the control.
Say,

e If error is zero and change-in-error is zero Then force is zero
e If error is zero and change-in-error is positive-small Then force is negative small
® -

Then the linguistic statements form a set of control rules, which are listed in
Table 6.1[3].

Simply identifying —2 ~ 81, =1 ~ 62,0~ &2, 1 ~ 8¢, and 2 ~ &7, we can see
that u(e, é) : D5 x D5 — Ps is a logical function. Its algebraic form is

u=M,e(e), (6.45)

where the structure matrix of u can be easily calculated as



132 6 Mix-valued Logic

Table 6.1 Rule Table for the Inverted Pendulum

e\u\e|—-2|—1{ 0| 1]2

-2 12(2|2|1{0

-1 12[{2]|1]|0(-1

0 |2]|1]0(-1]|-2

1 110 |=-1]-2|-2

2 0 [—1|-2|-2{-2
M,=05[5554355432543214321132111]. (6.46)

In general, for a control system the controls may depend ‘on several variables
which can take different numbers of discrete numbers, hence as u considered as
logical functions, they are in general mix-valued logical functions. But to the au-
thors’ surprisal, most application examples in reference books the control functions
are k-valued ones. A possible reason for this is the k-valued logical functions have
corresponding circuit realization.

We consider another example.

Y1

Ui

3

Fig. 6.2 Output-feedback control system

Example 6.7. Given a control system X as depicted in Fig. 6.2, which has two inputs
u1, up, and three outputs y;, i = 1,2, 3. Assume the controls can take values as:

up: 1,0, —1;
u:2,1,0, —1, =2;
and the outputs are classified as

y1 : high, low;

y2 : high, middle, low;

y3 : very high, high, middle, low, very low;

We simply let u; € 23 and uy € Ps. Similarly, we have y; € %, y, € &3, and
y3 € 95 Consider the output feedback controls, which means the controls depend
on outputs. Then the control becomes a mapping

T DXDyX D5 — Dy X Ds.
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‘We need 30 statements to describe the control rules as, for instance,:

“If y; is hight and y, is hight and y3 is very high, then u; = 1, and up =2.”

Denote by u = u; X up andy = M?: 1Yi- Then u can be described as a mix-valued
logical mapping, determined by its structure matrix M, as

u=™M,y, (6.47)

where M, € Z5.30. As M, is given, the mix-valued logical expressions for u;,
i = 1,2 can also be constructed. For example, assume

M,=065[6789966666111212121212344666661112121212]:

Then the logical expressions can be obtained as

uy = ®§71y1) Ay2
uy = ®451,1,2W> Vy3).

6.4.2 Strategy of Dynamic Games

As another applications of mix-valued logic, we consider the strategies of infinitely
repeated game, which is a kind of dynamic games. This problem will be discussed
in detail later, here we give an example to depict it.

Example 6.8. In a game assume there are two players: P; and P». P; has 2 possible
actions §1 = {0,060}, and P,. P, has 3 possible actions S» = { By, B2, B3 }. Assume
the game is infinitely repeated, and the strategies of each players at time ¢ + 1 depend
on the strategies of the players at time 7. Denote by x(¢) and y(z) the strategies of P,
and P, at time ¢ respectively, then we have

{x(H— 1) = fi(x(1),y(z)) (6.48)

y(t+1) = fo(x(2),y(1)).
To use vector expression, we identify

o ~ 6217 o ~ 8
Bi ~ 61, [32~532, B3:333.
Then x(7) € A, and y(z) € A3, and we can find the structure matrices M| € % ¢

and M, € L of f1 and f, respectively, such that (6.48) can be expressed as

{x(H— 1) = Myx(t) x (1) (6.49)

Y(t+1) = Mox(t) x y(1).

Furthermore, setting z(t) = x(¢) x y(¢), we have
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Z(t+1) = Lz(1), (6.50)

where L =M x M) € L.
To a numerical expression, we assume

L=58]135246).

Then we have
M, =M, =?

and
S1 ==

(Please complete this example.)

Exercise 6

1. Use {—, A, V} to express the 16 binary operators.
2. Use Proposition 6.1 to prove that {—, —} is an adequate set.
3. A mix-valued logical function f : % X P53 X @» — 2, is defined as

fx1,x2,x3) = [x1 /\@%ZI(xz)] 5 x3.

Calculate the structure matrix of f.
4. A mix-valued logical function f : 2, x 3 — 25 has the structure matrix as

M;=&[132221].

Find its logical expression.
5. A mix-valued logical mapping F' is defined by

{Zl = fi(x1,x2,x3)

22 = fo(x1,x2,x3),

where x1,x3,21 € & and x»,70 € 5. Let 7 = 2122 and x = x;x>x3. Then the struc-
ture matrix of F is
Mp=8[135246246135].

Find the logical expressions of fi and f5.
6. Prove Proposition 6.2.
7. Prove Proposition 6.4.
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