Chapter 5
Matrix Expression of Logic

Mathematical logic is a discipline of both philosophy and natural science. From
natural science point of view, it is produced by.the efforts of mathematicians to
reveal the essence of mathematical thinking and‘mathematical deductions. The basic
concepts/results can be found in any standard textbooks;e.g., [4].

The purpose of this chapter is to express logical variables, logical operators, and
logical equations into matrix forms by.using semi<tensor product. We first introduce
the matrix expression of logic. Using this form and the semi-tensor product, many
fundamental properties of logic can be discovered. These results are then extended
to the multi-valued logic andvits operations. Finally, we consider some of its appli-
cations, including logical inference.

5.1 Logic and Its Expression

A logical variable means a proposition. Usually, a proposition can either be “true” or
“false”. When the proposition is true, we say that the logical variable takes value “T”
or “17”, and when it is false, the logical variable takes value “F” or “0”. We consider
some simple examples. We refer to any standard textbook on Mathematical Logic,
e.g., [4], for proposition and basic concepts and properties of classical logic.

Example 5.1. Consider the following propositions.

A: A dog has 4 legs;
B: The snow is black;
C: There is another human in universe.

It is obvious that A = 1, B = 0. As for C, it could be either 1 or 0. But C should
be one of them, though we still do not know the answer so far.

In classical logic a logical variable can only take values from {0, 1}. But in real
world a proposition may not be described precisely by only “true” or “false”. For
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92 5 Matrix Expression of Logic

instance, “Mr. Smith is an old man”. If Mr. Smith is 20 years old, the statement is
obviously “False”. If Mr. Smith is 80 years old, the statement is surely “True”. But if
this person is 40 or 50 years old, then what can we say? It seems that we need some
values between 0 (“False”) and 1 (“True”) to describe this statement, and hence
the classical logic is not enough for analyzing such problems. Fuzzy logic allows a
logical variable to take any value from internal [0, 1].

Usually, we use a membership function to describe the value of a fuzzy logical
variable. For instance, we may use the following membership functions to‘describe
the statement x : “Somebody is old”.

0, x <20
0.01(x — 20), 20 < x < 40

f(x) =14 0.2+0.04(x—40), 40 < x < 60 (5.1)
0.8-4+0.01(x—60), 60.<x=280
1, x> 80.

This function is depicted in Fig. 5.1. We refer to [5] for more details about fuzzy
logic. Its applications in fuzzy control systéems can befound in [10]; [8], [9].

fx)
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Fig. 5.1 Membership function of x

In classical logic a logical variable can take only two different values O or 1,
while in fuzzy logic a logical variables can take continuous values between 0 and
1. It is obvious that using continuous values can describe a logical statement more
precise than the classical two value case. But in many cases it may be too diverse
and complicated to consider the continuous logic values. For instance, consider the
statement x : “Mr. Smith is an old man”. It is hard to tell what is the difference
between x = 0.41 and x = 0.42. Hence, a precise value may not have much sense
when it is used to describe a proposition. Then we may consider to quantize the
continuous membership function. For instance, in the age problem, we may classify
different ages into three categories: “young”, “middle aged”, and “old” and use “0”,
“0.5, and “1” for them respectively. A quantized membership function of f(x) in
(5.1) becomes
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0, x<40
g(x)=4¢0.5, 40<x<60 (5.2)
1, x> 60,
which is depicted in Fig. 5.2.
f(x)
1 ——
0.5 —
o 4I0 6I0 X

Fig. 5.2 Quantized membership function of x

In general, a logic, where a logical variable can‘take k different values between 0
and 1 is called the k-valued logic. When k = 2'it is classicallogic, and when k > 2 it
is called a multi-valued logic. Readers who are interested in multi-valued logic may
refer to [3].

Definition 5.1. 1. The domain of (classical) logic is denoted by
2 :={T =1,F =0}. (5.3)

A logical variable x takes value from 2, thatis x € .
2. The domain of k-valued logic is denoted by

k—2 k-3 1
@k._{T_1.,k_].,k_1,---,k_]7F_o}. (5.4)

A k-valued logical variable x takes value from %, that is x € Z;.
3. The domain_of fuzzy logic is denoted by

P :=1[0,1]. (5.5)
A k#valued logical variable x takes value from Z;, that is x € [0, 1].

Next, we define the logical operators.

Definition 5.2. [1] An r-ary (multi-valued, fuzzy) logical operator is a mapping © :
D xDx---xD— D (correspondingly, Dy X Dy X - -+ X Dy — Dy,
| —

r r

DfXDfX“-XDf*)Df).

r
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An r-ary logical operator can also be called a logical function with r arguments.
A classical logical function is also called a Boolean function. Mathematically, they
are the same. But in applications they have a mild difference. Conventionally, “op-
erator” is mostly used for r = 1,2, and the operator has obvious logical meaning,
such as “conjunction”, “disjunction” etc. While, the function is used for more gen-
eral case. Most likely, a logical function is composed of its arguments connected by
operators. You may consider that a logical function is a “compounded function”.

In the rest of this section we consider the classical logic only. We first.introduce
some fundamental operators.

(i) Negation: A unary logical operator, denoted by —. Negation is defined as

0, x=1
—x=1 5.6
* {1, x=0. (56)

(i1) Conjunction: A binary logical operator, denoted by A. Conjunction is-defined as

1 =Jdandy=1
xAy=4 > FZRCY (5.7)
0, otherwise.

(iii) Disjunction: A binary logical operator, denoted by V. Disjunction is defined as

0 = dy=0
iy = 4 O gE=Qandy (5.8)
15 otherwise.

(iv) Conditional: A binary logical operator, denoted by —. Conditional is defined as

. 0, x=1landy=0 (5.9)
by = .
Y 1, otherwise.

(v) Biconditional: A binary logical operator, denoted by <. Biconditional is defined
as

] 5 X = y
X&y= 5.10
Y { 0, otherwise. ( )

A conventional way to depict the values of an operator is using a table, called the
truth table. For instance, for “negation”, we have Table 5.1.

Table 5.1 Truth Table for “negation”

[ =[]

~
0
L
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Similarly, we can have the truth table for “conjunction”, “disjunction”, “condi-
tional”, and “biconditional” etc. respectively as in Table 5.2.

Table 5.2 Truth Table for A, V, —, <>,

XNy

xVylx—ylx<y

Y

x1y

v,
x

y
{1
110
0|1
0[0

1

0
0
0

1

1
1
0

1
0
1
1

xV

1 0
1

1

0

0
0
1

0

1
1
1

1
Ly
0
0
0
1

The truth value of a logical function can easily be obtained from the truth tables
of basic connectives. We use an example to depict this.

Example 5.2. 1. Let p = xV (—y). Then the truth table of x is'shown in Table 5.3.
2. Let g = (x Ay) <> (—z). Then the truth table of y.is shown in Table 5.4.

Table 5.3 Truth Table for p

xy|[wlp =x V()
110 1
1lo| 1 1
ol1{ o 0
olo|1 1

Table 5.4 Truth Table for ¢

x|ylzlxAy|-z|lg=xAy & (=2)
Iftyry 1 0 0
Ifrjof 1 |1 1
1{0|1f 0 | O 1
1{ojof 0 |1 0
Oo[1|1] 0 |0 1
0[1|0] O |1 0
0[0|1] 0 | O 1
0[{0|0] O |1 0

For statement ease, we define the vector truth table of a Boolean function.

Definition 5.3. Let f(x;,---,x;) be a Boolean function. Denote the column of f in
its truth table by V, and call it the vector truth table of f.

Example 5.3. 1. Consider f(x,y) =xV (—y). According to Table 5.3,

Vi=[1101]".
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2. Consider g(x,y,z) = x Ay <> (—z). According to Table 5.4,
Ve=[01101010]".

We introduce some notations:
) ,
o, :=Col;(I,), i=1,--,n.
(i)
A, :=Col(l,), whenn =2, A := A,.
(iii) L € Mypxy is called a logical matrix if Col(L) C A,,. The set of m x n logical
matrices is denoted by .%,x,-
(vi) Let L € Zuxn- Then L can be expressed as
L= [67172 571712 67177 } .
For notational compactness, we denote L briefly as
L= Sm[il i - in}.
To use matrix expression of logic, we identify
T=1~8, F=0~8;
and call it the vector form of logic. Then in vector form an r-ary Boolean function
f becomes a mapping f.: A" — A.
Definition 5.4. Let f(x,-- - ,x,) be an r-ary Boolean function. Ly € %5, is called
the structure matrix of f, if in vector form we have
Fxpsex) =L X x4 (5.11)
Proposition 5.1. Let f(x1,:-+,x,) be an r-ary Boolean function. Then there exists a

unique structure matrix Ly € 25 o such that (5.11) holds.
Proof. Assume the vector truth table of f is V. Construct Ly as follows:

Row; (Ly) := VfT; Row; = —=(Row).

Here we use —Row; for taking negation on every elements of Row;. It follows
from the construction of truth table and the definition of semi-tensor product that
the constructed L satisfies (5.11) and such structure matrix must be unique. O

Using Proposition 5.1, the structure matrices of some fundamental operators are
obtained as

M. :=M,=&[21];

My :=M;=8[1112]; My =M, =&[1222]; (5.12)
M., =M, =8&[1211]; M, :=M, =8&[1221].
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Remark 5.1. 1. Note that the structure matrix of a logical function is unique. In
fact, it is clear from the construction that there is a one-to-one correspondence
between logical functions and the structure matrices. Hence determining a logical
function is equivalent to determining a structure matrix.

2. From Proposition 5.1 one also sees that there is a one-to-one correspondence
between vector truth tables and structure matrices.

In most applications it is not convenient to construct the structure matrix-of a
logical function by using its truth table. We give a method to construct it. To begin
with, we need a tool, called the power-reducing matrix, which is defined as

M, = &,[14]. (5.13)

The following lemma shows the power-reducing matrix can reduce the power of
a logical variable. It can be proved by a straightforward.computation.

Lemma 5.1. Given a logical variable x € A. Then

= M,x: (5.14)
Lemma 5.2. A logical function f(xi,--- ,Xg) can be'expressed in vector form as
Flxr,e e x )= Lol b (5.15)

Proof. First, using the structure matrices of =, A, V, etc., we can express the func-
tion as a product as

S, n) = x5, &, (5.16)

where &; is either a structure of aunary or binary logical operator, or an argument
x;. Assume there are two factors as x;Ms, where x; is an argument and M, is the
structure matrix of operator ¢. Using Theorem 2.10, we can swap two factors as

xiMs = [12 ®Mg]xi.

Using this technique, we can move all the arguments to the rear of the product. Then
use the swap matrix
q

pa_ q,p
X X; = W[qup]xjxi

we can re-arrange the order of arguments into the required order. a
Wegive a simple example to depict this:

Example 5.4. let f(x,y) = (xVy) — (xAy). Then in vector form we have

flx,y) = Mi(xVy)(xAy)
= MiMgxyM_xy
= MMy (14 ® M.)xyxy
= MiMy(I4 ®Mc)xW[2]xy2
= MMy (Ia ® Mc) [l ® W) | X%
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Using Lemmas 5.1 and 5.2, we can give an alternative proof for Proposition 5.1.
In fact, starting from (5.15), we can use (5.14) to reduce the powers of each x; to 1.
After some additional swaps, (5.11) can be obtained.

Example 5.5. (Continuing Example 5.4)

F(xy) = MiMy(Is © M) [ @ Wy | 5252
= MiMy(I4 @ M) [, © Wiy | M, xM,y
= MiMy(Is M) [l @ W) | M, [I, © M, xy

Finally, we conclude that

fxy) = (xVy) = (xAy) = Lxy,

where
L = MiMy (I3 © M) [l @ Wiy | Mo @ My

= &[1221).

5.2 General Structure of Logical Operators

According to Proposition 5.1 and Remark 5.1, the number of r-ary logical functions
is the same as the number of vector truth.tables. It is obvious that if there are r vari-
ables and each variable can only take two possible values, then there are 2" different
value combinations of variables. Moreover, each variable value combination may
correspond to two function values. Hence there are 22" different vector truth tables.
That is, there are 22" different r-ary logical functions.

Remark 5.2. 1. Let s < r. Then an s-ary logical function can be considered as a
special r-ary logieal functiony which is independent of r — s logical variables. In
constructing logical functions this observation should be taken into considera-
tion.

2. Consider k-valued logic. The number of r-ary functions is k.

The following theorem is very useful in recovering the logical form of a logical
function from its structure matrix.

Theorem 5.1. Let f(x;, -+ ,x;) be an r-ary logical function, with structure matrix
Ly € L5sor. Sprit Ly into two equal-size blocks as

Ly=I[Ly L.
Then f(x1,---,xx) can be expressed as
f(xh"' 7-xr) = [X] /\f1<x27"' 7-xr)]\/ [ﬁ(-xl)/\fz(xzv"' 7-xr)]a (5]7)

where f; has L} as its structure matrix, i = 1,2.
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We leave the proof of this theorem to the reader.

Remark 5.3. Using (5.17) repetitively, we finally can express any logical function as
compounded by —, A, and V with logical variables. This fact shows that the logical
operators of ary 1 or 2 are of particular importance.

Next, we consider all the logical operators with ary » =1 or r = 2.

Assume r = 1. In general, we have 4 logical operators, which are listed in-Table
5.5.

Table 5.5 1-ary Operators
P

o
0
T

o3
7
T
T

1
0

o|o| ™9

SIEES

Here “F” is the constant “False” operatot, and “7” is the constant “True” opera-
13 29 3

tor, “—” is the negation, and “=" is the identity operator.
Their structure matrices are as follows.

00 01 10 11

Next, we assume r = 2. In addition to the four operators (A, V, —, <) the fol-
lowing 3 are also commonly used. (Refer to [6].)

(i) EOR (exclusive or), xVy, it is true whenever either x or y, but not both are true;
(ii) NAND (not and), x 1y, defined by x Ty = = (x Ay).
(iii) NOR (not or), x }. y, defined by x | y = =(x V).

In addition to these 7 commonly used operators, we still have 22 —7 =9 other
2-ary operators. We listed these 16 operators in Table 5.6.

Here 63 = F, 07 = T are two constant operators; 65 = —x, 62 =y, 67, = x and
6122 =y are essentially 1-ary operators. The following are some now 2-ary operators.

e EOR (07, exclusive or) (xVy):

xVy==(x<y); (5.19)

e NAND (02, not and) (x 1 y):

xTy==(xAy); (5.20)

e NOR (o7, not or) (x| y):

xly=-(xVy): (5.21)
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Table 5.6 2-ary Operators
x|y|ogloi|os | oy | 0| 02| o | o5

Fll]|="[1]| == V[T
1f1{ojojojo|fo0ofo0j01|0
ojojojojo|r|1yy1ij1
offfjojof1f{1{ofoj|1r]t
oojojrfof1{of1r|o]t
x|y[ 0% |03 |00 | 97 | 075 | 013 97 | O

Ay |—= x|V | T
11y rf1{1y1
1ojojojojo|1r|1f{1j1
offfjojof1f{1{ofo|1r]t
oojojrfof1{of1r|o]t

e NC (07, not conditional) (x —y)

x—y=-(x=y);

e NINVC (0'22, not inverse conditional) (x =" y):

x—y= -0 =x);

e INVC (6123, inverse conditional) x —* y:

x—"y=y—x

(5.22)

(5.23)

(5.24)

The equivalence of (5.24) comes from its definition. The equivalences (5.19) —

(5.23) will be proved later.

For convenience, we use G]i- to represent all the operators, where the superscript
means the ary of the operator, and the subscript j means the order of the operator. It
is interesting that when the order, counting from zero, is converted to binary number,
it is exactly the vector truth table of the operator. Hence the structure matrix of sj.

can easily be constructed.

Example 5.6. Consider —,, which is the negation of the second variable. Its alterna-
tive notation is 0'52. Since 5 =101 = 0101, we have

M., =&2121].

5.3 Fundamental Properties of Logical Operators

According to the structure of truth tables, we have the following conjugate proper-

ties.
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Proposition 5.2. Given an r-ary operator ¢}, its negation operator is Ger’—a—l'
That is,

—0,(P.Q) =0y _, (P.Q). (5.25)
Proof. Since 22 —1 =11 --- 1. Expressing a positive integer a into 2" digital bi-
2r

nary number (adding some zeros in the front if necessary), say, it is

a=ayaz---dyr.

Then [a1,az,--- ,ax]" is the vector truth table of 7. In binary form we have 22" —
l—a=[1-a1),(1—az),---,(1—a,)]. Hence we know that the vector truth table
of ol is(l—ai,1—az,--,1 —a,)". That implies (5.25). O

Remark 5.4. Using Proposition 5.2, we can prove (5.19) = (5.23) immediately.

Definition 5.5. 1. Two logical expressions are said to be logically equivalent, if for
any particulary chosen values of logical variables from & the two structure ma-
trix expressions have the same value. If f(x1,---4%;) and g(x1,- - ,x;) are logi-
cally equivalent, it is denoted as

f(-xla"' ,Xk) @g(xla"' ,Xk).

2. Two logical expressions are said to-be absolutely logically equivalent, if for any
particulary chosen values of logical variables from & the two structure matrix
expressions have the same value. If f(xi,---,x;) and g(x,--- ,x;) are absolutely
logically equivalent, it is denoted as

f(xla"' 7Xk)<5>g()€1,"‘ axk)'

Proposition 5.3. Assume _twodogical expressions f and g have same arguments,
moreover, every arguments appear to f (g) precisely once. Then the logical equiva-
lence of f and g is equivalent to absolutely logically equivalence.

Proof.. Assume f and g are logically equivalent. Recall the proof of Lemma 5.2,
one sees easilythat for x; € I (5.15) remains true. Denote the L in (5.15) for f and
g by Ly'and L, respectively. Now by the assumption, n; = 1,i=1,--- k. It follows
that Ly and L, are the structure matrices of f and g as x; € . Since f and g are
logically equivalent, we have Ly = L,. The conclusion follows. a

Using Proposition 5.3, we can have the following conclusions.

Proposition 5.4. The following are absolutely logically equivalent.
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——x & X (5.26)

(xAY) Az xA(yA2); (5.27)
(xVy)VzezV(yVa); (5.28)
—(xAy) &~V -y, (5.29)
=(xVy) & —xA-y; (5.30)
xX—=y& xVy,; 5.31)
S(x—y) S xAy; (5.32)

X =y oy — g (5.33)
x=>—=2e (xAy) =z (5.34)
Sxey) S x ey (5.35)

Proof. We prove (5.33) only. The proves of others are similar and we leave them to
the reader. According to Proposition 5.3, we have only to prove they are logically
equivalent.

RHS = M;M,yM,x = M;My, (I, ® M,,)yx

= MM, (I, ®M,,)mey.
Since
M;M, (12 X Mn)VV[Z]
01001000
_(1to11}||01| [1000[ {0010
T 10100||10{/0001| 0100
0010|0001
1011
_{0100}‘”’"
(5.33) follows. a

Definition 5.6. An r-ary operator is said to be symmetric if
MsP\ PPy :MGPA(I)P}L@)"'P}L(k)a YA €S;. (5.36)
Recall that Sy is the k-th order symmetric group.

Proposition 5.5. A binary operator, © is symmetric, iff in its vector truth table Vs =
[Sl 52 83 S4]T
§2 = §3.

Proof. Note that the structure matrix of ¢ is

S1 52 S3 S4

MG: 1—S1 1—S21—S3 1—54 ’

Then
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o(x,y) =Mgxy = MsWjyx

_ 51 853 52 S4
T ll=s1 =531 =50 1—s54

op
=Mgyx = 6(y,%).
O

Example 5.7. Consider the binary operators in Table 5.6. According to Proposition
5.5, we have that F, |, V, T, A, <>, V, and T are symmetric, and the others are not.

Proposition 5.6. The followings are logically equivalent:

xVx& (5.37)

XAX <X, (5.38)

YV (xA—x) Sy, (5.39)
YAV ) &y, (5.40)
xAN(yVz) e (xAy)V (xAz2); (5.41)
xV(yAz) & (xVy) A (x Vz), (5.42)
xeye (=AY —x); (5.43)
xeys@AY)VIitxA ). (5.44)

Proof. We prove (5.39) only. Assume y = (8,1~ 38)T, x = (u,1—u)". Then
LHS = MyyMuxM_x

Arriol] & 1000][ u 1f01 u

T looot| [1—slon | [1—u] 10 |1—-u

000 [184] et P

1000 1| [L=6] |p?+pu(l—p)+(1—p)?

) ) Slu(l—pu)]
_[rrro] | st u(l - p)+(1—-p)
- [0001] (1=8)[u(1—p)]

(1=8) [+ p(1—p) +(1—p)?

D[ st(-8u(-p) }
L(1=8)[u? +u(l—p)+ (1 — )7

Since g € 7, we have LHS = (8,1 —68)T =y. O

It is easy to verify that (5.37)-(5.44) are not absolutely logically equivalent.
For instance, consider (5.39), in the above proof taking 4 = 0.5, then LHS =
0.25+0.758
0.75-0.755| 7 V"
The following proposition is very useful. We leave the proof to the reader.

Proposition 5.7 (De Morgan’s Law).
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. =(xAy) = (—x) V (=y). (5.45)
2. =(xVy) = (=x) A (=y). (5.46)

Definition 5.7. 1. A logical expression is called a tautology, if it is always “true”
no matter what values the arguments take.

2. A logical expression is called a contradiction, if it is always “false” no matter
what values the arguments take.

3. Let L; and L, be two logical expressions. If L; — L, is a tautology, then we say
that L; tautologically implicates L,, denoted by L; = L.

Proposition 5.8. L = L, if and only if, when Ly = 622, L = 522.

Proof. (Sufficiency) Assume L, = 621, and L; = { ixa} . Then

1

_1011 o 1 sl
L1—>L2—{0100} [1 a]62_32'

Assume L, = 8?. Then according to the assumption, Lj = 57. Henee

1011
uéb_%mJgg_g

(Necessary) Assume Ly = 622 but L; = 521. Then

1011

Ll%Lz:{omo

}&%—&

which means L; — L is not a tautology.

Note that the physical meaning of Proposition 5.8 is clear: As long as L is “true”,
L, must be “true”.
The following tautological implications can be proved by using Proposition 5.8.

Proposition 5.9. The followings are tautological implications.
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XAy = x; (5.47)

XAy =y; (5.48)

x=xVy; (5.49)

y=xVy; (5.50)

X=X =Y, (5.51)

y=>Xx—=Y; (5.52)

—(x—=y)=x (5.53)
—(x—=y) =y (5.54)

XA (xVy)=y; (5.55)
XN(x—=y)=y; (5.56)

YA (x —=y) = (5.57)
(=N —=2) =227 (5.58)
(XV)ANx=2)A(y—=2)=z (5.59)

Proof. We prove (5.59) only. Using Proposition 5.8, assume the right hand side is

“false”, i.e.,

7= 87. We check the left hand side.

xVY)IA(x—=2)A(y—=2)
= M\MyxyM \M_,xzM_,yz

1000|1110 p q 1000
0111] 0001 |b—p||l—¢q|]|0111

sroal 2 [ o¥og] |+ )

(p+q—pq)(1-p)(1-q)
(p+a=pa)*+(1—p)*(1—q)*+(p+q—pg)(1—p)(1—q)|

We need to check four cases: (i) p =0, =0, (ii)) p=0,g =1, (iii)) p= 1,4 =0, (iv)
p = 1,q = 1. No matter which case was chosen. The result is the same as 622. ad

Finally, we use the structure matrix method to prove some logical equivalences
on “EOR”“NAND”, and “NOR”. The proves are similar, and we leave them to the

reader.

Proposition 5.10. The followings are logical equivalences.
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xVy < yVx; (5.60)
(xVy)Vz < xV(yVz2); (5.61)
xAN(WVz2) & (xAy)V(xAz); (5.62)
xVy e (xA-y)V (mxAy); (5.63)

AVy & a(x o y); (5.64)
xTyeylx (3.65)
xlyeylx (5.66)
xt(y1z)e xV(yAz); (5.67)
(xTy)Tze (xAy)V -z (5.68)
xl (Ol e xA(yVz); (5.69)
xdy)lze (xVy)A-z (5.70)

5.4 Logical System and Logical Deduction

Assume two logical expressions f(xj,--- ,xg)and.g(xy,- -+ ,x) are logically equiv-
alent. That is,

f(xla"' ,xk) @g(xl’... ,xk)-
We can simply use the conventional expression as
f(xl,"' ’xk) =g(x1,"' 7xk)-
So for logical expressions <> is the same as =.
Definition 5.8. A static logical system (briefly, logical system) is expressed as

fl(xl'/x27“' a-xk) =C1,
Fa(xr,x2, - x) = e,

(5.71)
fm(X] s X2y ,Xk) = Cm,
where fi, i = 1,---,m are logical functions, x;, i = 1,--- ,n are logical arguments
(unknowns), and ¢;, i = 1,--- ,m are logical constants. A set of logical constants d;,
i =1,.4-,n, which make
xi=di, i=1,---,n (5.72)

satisfy (5.71), is said to be a solution of the logical system (5.71).

In this section we first consider how to solve the logical system (5.71). Assume
the structure matrix of f; is M;, i = 1,--- ,m. Then in vector form (5.71) can be
expressed as
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My X! xi= 52r',
Mo iy 3= 37 (5.73)
Mol 3= 80
wherer, € A, i=1,--- ,m.
To further simplify (5.73), we need the some preparations.
Proposition 5.11. Assume
o
where My, € Z,xon and M, € £y on. Then
YZ = (MyxM;) X<y x;. (5.75)

(Here x is Khatri-Rao product. We refer to.Chapter 1 for the definition.)

Proof. First of all, using the properties of semi-tensor product and the power-
reducing matrix, we can prove that

YZIMy D(?leiMz D(?:l Xi :Myz I><f:1x,', (576)

where M, € Zpqxon. In fact, usingLemmas 5.1 and 5.2, same computation process
as for structure matrix of a logical function yields M,,.
Assume X! ,xj = 65,. Then Y = Col(M,) and Z = Col,(M.). That is,

Col,(M,.) = Col,(My) x Col,(M.) = Col,(M,) ® Col,(M.).
Now 1 < r < 2" is arbitrary, the conclusion follows. O
Using Proposition 5.11, system (5.73) can be converted into the following form:
My My - My, X3P xj = O3, (5.77)

where
n—1

r=Y (ri—1)2""4r,.

i

Il
-

In other words,
[ri=1rm—1--r,—1]

is the binary form of r — 1. From this observation one sees easily that system (5.73)
is equivalent to

Mx =68}, (5.78)
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where
M=M«Myx---xMy, x=xX/ X

Note that x = x?_,x; € Zon. System (5.78) can be solved immediately.
Proposition 5.12. x = 6%% is the solution of (5.78), if and only if,
Coly (M) = 5. (5.79)

Finally, we need one more tool in solving a logical system. In general, an equa-
tion of f; in system (5.71) may not involve some arguments. Then how to get (5.73)?
For instance, we consider the following system

x1Axy =0
V=1 (5.80)
x3 ¢ x;=1.

To get the component algebraic form (5.73), we have toradd some fabricated
arguments to each equation. We introduce the following dummy matrix.

M, =&[1122]. (5.81)
A straight forward computation shows the following proposition.
Proposition 5.13. In vector form we have
Muxy = X. (5.82)

It is obvious that the dummy matrix can be used to add fabricated arguments to
each equations if necessary. We give an example to depict this.

Example 5.8. Consider system (5.80). To convert it into the form of (5.73), we have
for the first equation that
MC)CNCQ = 522 .

The missing x3 can be plug as
Mcleu)Cz)@, = 522

Equivalently, we have
M, [[2 ®MM]X1X2)C3 = 522

Setting x = x1x2x3, we have
8[12122222)x =85
Similarly, for the second and third equations we have

SHI1111212x=28);
&H[12211221x=24,.
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Next, the system can further be converted into the form (5.78) as
&[12586567)x= 5.

Finally, according to Proposition 5.12, the solutions of system (5.80) are 55’ ~
(1,0,1) and 89 ~ (0,1,0).

Next, we consider the problem of logical inference by solving logical equations.
We refer to [7] for logical deduction in intelligent systems.

Our basic approach technique is to convert the problem into a logical systems
Solving the system provides the solution of the logical problem. We use some simple
examples to demonstrate this.

Example 5.9. A says: “B is a liar”, B says: “C is a liar”, C says: “both A and B are
liars”. Who is the liar?
To solve this problem we define 3 logical variables as

e x: A is honest;
e y: Bis honest;
e z: Cis honest.

Then the three statements can be expressed in logical version as

xXE =y
y & Az (5.83)
4 x A,

Letc = 621. Then equation (5.83) can be converted into an algebraic form as

MexM,y = ¢
MyM,z = c (5.84)
M,zM M, xM,y = c.

It is easy to convert (5.84) into an algebraic equation as
LE=b, where &E=xyz,b=c>=3§,

and
L=68[8,5,2,3,4,1,5,8]

Since.only Colg(L) = b, we have unique solution
£ =5

which implies that
x=0, y=1, z=0.

We conclude that only B is honest.
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Next, we consider the logical minimization. Consider system (5.71) again. As-
sume we have a performance criteria as

J=J(x1, -, xn).
The purpose is to find a best feasible solution x* = (x7,--- ,x;;), such that

J(x* (x).

)= min J
xsatisfing (5.71)
We give an example to depict this.

Example 5.10 ([7]). Consider the following problem: The weather is either sunshine
or rain. We take either the bus or a taxi to go to work. Suppose it is raining. If we
use the bus, we must walk to the bus stop and hence use an umbrella. If we use a
taxi, we do not have to use an umbrella.

We use the variables S (sunshine), R (rain), B (bus), T (taxi), and U (umbrella).
Then we have the following equations:

S+ -R=1
B+ T =1
(RAB)«> U =1.

We may consider two cases: Case 1: R ='1. That is itis rain. Case 2: R = 0.

Suppose that the fare for the bus is$3 and for the taxi is $4, and that we view the
inconvenience of handling an umbrella to be equivalent to a cost of $2. Using vector
form, the cost function becomes

J=3x(8)'B+4x(8)T+2xU.

Case 1:  The component-wise algebraic form of the system becomes

M SM,R = §)
M,BM,T = §)
M,M.RBU = &}
R=8].

The algebraic form is
LE =by, where & =SRBTU, by = 8k,

and

L=[131591111915138 6 4 2 4 2 8 6

57 13 3 17 5 161412101210 16 14]. (5.85)

The solutions are
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815 ~(0,1,1,0,1), 8% ~(0,1,0,1,0).

The optimal solution is
8% ~(0,1,0,1,0).

Case 2:  The component-wise algebraic form of the system becomes

M SM,R = &}
M,BM,T = &}
MM RBU = &,
R=68}

The algebraic form is
LE = by, where & = SRBTU, by=35%,

and L is same as (5.85).
The solutions are

817 ~(1,0,1,0,0);" 8J3 ~ (1,0,0,1,0).

The optimal solution is
833 ~ (1,0,1,0,0).

5.5 Multi-valued Logic

One of the advantages of the matrix expression is that it can easily be extended to
multi-valued logic. Let x be a k-yalued logical variable. That is, x € %. To use the
matrix approach, we identify

i

k—1

~OF i=1,2, .

That is;

k=2 2 1 k—1 k
mwgk, kTN(sk .0~ 8k
Then in'vector form we have x € A;.

1~8,

Definition 5.9. Let x and y be two k-valued logical variables. Define

(i) (Negation)
x=1—x (5.86)

(ii) (Disjunction)
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xVy=max(x,y); (5.87)

(iii) (Conjunction)
XAy =min(x,y). (5.88)

Using vector form, it is easy to calculate the structure matrices of the k-valued
logical operators in Definition 5.9.
For notational ease, we introduce a set of k-dimensional vectors as:

US:(lz...s_ls...s)

Proposition 5.14. [. For k-valued negation, its structure matrix-is

MK =& [kk— 142 1]. (5.89)
When k = 3 we have
001
M¥=1010]. (5.90)
100

2. For k-valued disjunction, its structure matrix is

ME=8,[U Uy --- Uy (5.91)
When k = 3 we have
111100100
Mj=1000011010]. (5.92)

000000001
3. For k-valued conjunction, its structure matrix is
MK =8V Vs - V. (5.93)
When k = 3 we have

100000000
MS: 010110000]. (5.94)
001001111

Definition 5.9 is a natural extension of the corresponding objects in classical
logic. When k = 2 they coincide with objects in classical logic. Next, we consider
“conditional” and “biconditional”. It is not so obvious. There are many different
definitions. In the following we consider the case of k = 3, and give 3 different
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definitions: (i) the type of Kleene-Dienes (KD), (ii) the type of Luekasiewic (L),
(iii) the type of Bochvar (B). They are listed in Table 5.7 (where T =1, U = 0.5,
F=0) [5].

Table 5.7 3-valued Logics

KD L B
Plo|— | «|— <= ¢
T\T| T T | T T |T T
TIU|U Ul U U |U U
T\F|F F | F F | F F
U|\T| T Uu\|T U |U U
vlujluv U | T T |U U
UFIU |U|U |U\|U U
F|T| T F| T F | T E
FlU| T U| T U |U U
F|\F| T T | T T | T T

Since we have already defined the “negation”, “disjunction”, and “‘conjunction”
for k-valued logic. We may use them to define the “conditional” and “biconditional”
as follows.

Definition 5.10. For k-valued logic, we define
(vi) (Conditional)
X—> Yy xVy. (5.95)
(v) (Biconditional)
xoye (x—=y)AQY—=x). (5.96)

Note that (5.95) is fromproperty (5.31) of conventional logic, and (5.96) is from
(5.43). So definition 5.10 is a natural extension of the conventional logic.
Using (5.95), we have
Mlkxy = MsMfoy

Hence the structure matrix of — can be calculated as
M = MM (5.97)
It is.easy to calculate that when k = 3 we have

100100111
M}=1010011000]. (5.98)
001000000

To calculate the structure matrix of biconditional, we need the k-valued power-
reducing matrix. Define the k-valued order reduce matrix as
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5kl 0-.---0
082..-0
MK = “ (5.99)
00 -0
00 --- 515
Then it is easy to prove the following result.
Proposition 5.15. Let x € Ay. Then we have
x? = M*x. (5.100)

Now we are ready to calculate the structure matrix of biconditional. Using (5.96),
we have

Mifxy = MkkayMkyx
= M"MkM"xyM"M"
= MkMkMk K[La ®M"M"]xy X
= MkMkMk w2 © MM W 12,y
= MstMk [z ® MkM il Wi ally?
= M*MAMA [T, M"M e ® Wige 2 ]kaMk
— MMM 1 oMb ®Wk ) MEl 2 My,

Hence we have
M} = MEMGM [lp SMEM] [T Wi g2 1M [T 2 MY). (5.101)
Using this formulas'we can calculate that as k = 3 we have

100000001
MP=1010111010]. (5.102)
001000100

It is easy to check that when k& = 3 Definition 5.10 coincides with type Kleene-
Dienes logic.

Throughout this book we assume the default k-valued logic is defined by Defini-
tions 5.9 and 5.10, unless elsewhere stated.

Next, we consider the k-valued logical system. Recall system (5.71) and assume
the unknowns xi,---,x, € % and the constants ci,---, ¢, € ;. Then (5.71) be-
comes a k-valued logical system. A step by step verification shows that the following
deductions remain true and we can obtain the algebraic form of a k-valued logical
system, which is similar to (5.78):

Mx = 6/:111, (5]03)
where M € L jn. Similar to Proposition 5.12, we have

Proposition 5.16. x = 5,5, is the solution of (5.103), if and only if,
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Colp(M) = Ojm- (5.104)

In the following we give an example to show how to use multi-valued logic to
carry out the logical inference.

Example 5.11. A detective is investigating a murder case. He has the following
clues:

80% for sure that either A or B is the murderer;

if A is the murderer, it is very likely that the murder happened after midnight;

if B’s confession is true, the light at midnight was on;

if B’s confession is false, it is very likely that the murder happened before mid-
night;

e there is an evidence that the light in the room of the murder was off at midnight.

What conclusion he can get?

First, we have to figure out the levels of logical values. Say, “very likely’ is more
possible that “80%”, then we may quantize the logical values into six levels as: “T”,
“very likely”, “80%”, “1-80%”, “very unlikely”’, and “F”. Hence we may consider
the problem as a problem of 6-valued logical inference.

Define the logical variables(unknowns) as

A: A is the murderer;

B: B is the murderer;

M: the murder happened before the midnight;
S: B’s confession is true;

L: the light in the room.was on at midnight.

Then we can convert the statements into logical equations as

AVB =26}
A—-M=§
S—L=¢§ (5.105)
-S> M =&
-L = 6.

‘We may use general method, described in Proposition 5.16, to solve that 6-valued
system. But since this system has certain special form. We may use “substitution”
to solve it. The so called substitution is exactly the same as the one in solving linear
system in high school algebra: We use some equations to solve some unknowns first,
and then substitute the solved unknowns of the other equations by solved values to
solve other unknowns.

First, since ~L = §;, we have

L=238%.

Next, the equation § — L = 561 provides the following matrix equation:

MPSL =MW LS := WS = §;.
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It is easy to calculate that
P =M WL =8[654321].
It follows that § = &¢. Similarly, from =S — M = 7 we have
MSMESM = &2.

M can be solved as
M= 8.

Next, consider A — M = MfAM,?M = 562. Using the properties of semi-tensor
product, we have

MPAMEM = MY (Is © MS)AM = MY (Is © M)W MA := YaA.
Since
W = M (Ig @ M)W M =8[5 54321,
we have that
A=§.
Finally, from AV B = M ;AB = 53 we have

B=§&:

We conclude that, A is “very unlikely” the murder, and 80% that B is the murder.

Exercise 5

Prove Lemma 5.1. Showthat when x € &, formula (5.2) is incorrect.
Prove Theorem 5.1. (Refer to [2])

Prove the other equivalences (except (5.33)) in Proposition 5.4.
Prove the other equivalences (except (5.39) in Proposition 5.6.

Prove the tautological implications (5.47)-(5.58) in Proposition 5.9.
Prove the logical equivalences (5.60)-(5.70) in Proposition 5.10.

a. Prove De Morgan’s Law (Proposition 5.7).

b. Prove the following general De Morgan’s Law:

N B

(X A Axp) = (m) Ve V(). (5.106)
(X Ve Vi) = (mx) A A (). (5.107)

8. Given a logical equation as
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filxrs--,xn) = g1(x1, -+ ,xn)
folxrs,x) = galx1, -+ ,x)

(5.108)
fm(xh' e 7xn) = gm(xh' e -,xn)-
Give a general procedure to solve this equation.
9. Consider the following logical system
X1 = X20X3
X2 = X30X4
(5.109)

Xn—1 = Xp0X1

Xp =X10X).

a. Assume o = A. Solve system (5.109).
b. Assume ¢ = V. Solve system (5.109).
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