Chapter 4
Right and General Semi-tensor Products

In the previous two chapters the left STP has been discussed. A natural question is:
can we define the right STP? If yes, what is its relationship with left STP? Secondly,
the left STP has only been defined over two factor matrices satisfying the multiplier
dimension case. Another natural question is:Can we define the STP for two arbitrary
matrices? This chapter is devoted to the right STP and both left and right STPs on
arbitrary matrices.

4.1 Right STP

First, we recall the Kronecker product of matrices. Recall the Proposition 1.4, which
says that assume A € .#,x, and B € A px 4, then

ARB=(A®L,)(I,2B). 4.1

According to Proposition 2.4, the left semi-tensor product has an alternative def-
inition as
ARIL)B, A<;B,
AXB= (Al) ! 4.2)
AB®IL), A= B.

Compared to (4.1), (4.2) seems to be obtained by “only making a left identity
matrix matching”. This is also a reason for calling it the semi-tensor product.

Now assume two matrices satisfy the requirement of multiplier dimension, then
it is very natural that we can also make a right identity matrix matching. Hence the
following definition is very natural.

Definition 4.1. Given two matrices A and B. Assume either A <; B or A ; B. Then
the right STP of A and B, denoted by A x B, is defined as
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80 4 Right and General Semi-tensor Products

awpo JE@AB A< B,
A(L, ®B), A= B.

(4.3)

Many properties of right semi-tensor product are paralleled to its left counterpart.

We state the following properties, and leave the proves to the reader.

Proposition 4.1. The right STP has the following properties.

1. (Associative Law):
(AXB)XxC=Ax(BxC),

2. (Distributive Law):

(A+B)xC=AXC+BxC, Cx(A+B)=CxA+CxB.

3. Let X and Y be two column vectors. Then
XxY =Y®X.
Let X and Y be two row vectors. Then
XXY=XR®Y.
4. Assume A X B is defined. Then
(A% B)T =BT xAT.
5. If M € My pni then
Mxl, =M,
IfM € Myxn, then
M 1, =1, 0 M;
IfM € M s, then
I, x M = M;
If M€ My, then

Ipm XM =1, QM.

44)

4.5)

(4.6)

.7

(4.8)

(4.9)

(4.10)

.11

4.12)

Proposition 4.2. Assume A and B are two square matrices with proper dimensions

such that A x B is well defined. Then

1. A X B and B x A have the same characteristic functions.
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2.
tr(A x B) = tr(BxA). (4.13)

3. If both A and B are orthogonal matrices (upper triangular matrices, lower trian-
gular matrices, or diagonal matrices), then so is A X B.

4. If either A or B is (or both are) invertible , then A X B ~ B x A.

5. If both A and B are invertible, then

(AxB)'=B"1xA"l (4.14)

6. If A <; B, then
det(A x B) = [det(A)]' det(B); (4.15)

IfA >; B, then
det(A x B) = det(A)[det(B)]'. (4.16)

Recall that in Chapter 2 we define the left semi-tensor product in two steps: First,
we define the left STP of two vectors in Definition2.2, and then use it to define the
STP to two matrices and in the Definition 2.3. Can the right STP also been defined
in this way? We first consider the vector case.

Definition 4.2. Let X = (x;4+*- ,x;) beda row vector and ¥ = (yy,---,y,)T be a col-
umn vector.

Case 1: If s =t x n, where n € N, then we define
XxY:=(X'Y X% --- X'Y) €R", (4.17)

where X = (X' X2.... X'), X' eR", i=1,--- 1.
Case 2: If t = s x n, where n € N, then we define

Xy!
Xy?
XxY:=| . | eR". (4.18)

Xy”"

It is‘easy to verify that when both X and Y are vectors, Definition 4.2 coincides
with Definition 4.1. Unfortunately, Definition 4.2 can not be extended to the right
STP of matrices.

In fact, the row-column multiplication rule is a particular case of the block mul-

tiplication rule, as demonstrated in Proposition 2.2. The following example shows
that the right STP does not satisfy the block multiplication rule.

Example 4.1. Let A = (ay,a,a3,a4), B = (b1,b3)T. Then by definition
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AXB= (Cl]bl +apby , azb; —|—a4b2). 4.19)

If we split A and B into blocks as A = (A1 Ay) and B = (B; B»)T, then according
to the block multiplication rule, we have

Al XB1+Ayx By = (a1 ag) X (bl) + (a3 a4) Pl (bz) = (a1b1 +azby axb; +a4b2).
(4.20)

(4.20) differs from (4.19), which means (4.20) is incorrect.

Though both left STP and right STP are the generalization of conventional matrix
product, but in most cases the left STP is more useful than the right STP. One of the
reasons is that the right STP does not satisfy block multiplication rule. Another
basic reason is the left STP has very clear physical meaning in representing multi-
dimensional data. We, therefore, consider the left STP as default STP.

The following proposition shows how to convert one STP to the other.

Proposition 4.3. Given A € Myxn and B € Mpxq. If A ~; B, then

AXB=AXWyqxBxX W, (4.21)
Conversely,
AXB=AXWjpxBxWg,. (4.22)
If A <, B, then
AXB =Wy xAxW; , xB. (4.23)
Conversely,
AXB=W; ) xAXW, 1 XB. (4.24)

Proof. We prove (4.21) only. The proves of (4.22)—(4.24) are similar. Using (3.47),

we have
AXxB=A(l,®B) :AW[W] (B®I,)W[t7q]
=AKX W/[p,t] X B X W[z,q]‘

O

Particularly, when the STP of vectors are considered we have the following corol-
lary.

Corollary 4.1. 1. Let X be a row vector of dimension np and 'Y a column vector of
dimension p. Then

X XY = (XW,,) xY. (4.25)

Conversely,
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X XY = (XW,,) %Y. (4.26)
2. Let a row dim(X) = p and a column dim(Y) = pn. Then
X XY =Xx (W,,Y). (4.27)
Conversely,
X XY =Xx (W,,Y). (4.28)

Proof. According to 4.3, (4.25)—(4.28) are the particular cases of (4.21)—(4.24) re-
spectively. a

We can also reveal the physical meaning of right STP through the multi-dimensional
mappings. The right STP can also search the hierarchy structure of data, or find

CLINNTS

the “pointer”, “pointer to pointer” etc. Let ¢ : R” x - X R” = RS be a multilinear
—————

N
mapping. For each basis of R” denoted by {e,-+ , e, } and abasis of R* denoted by
{di,---,d;}, assume

s
G(e,-] 3 €iys ,e,-S) = Z alk],---,isdk
k=1

then the structure matrix of My is defined as

1 | 1
g1 O 0 Oy

2 2 2
0411 Q.1 0 O

(4.29)

n n
11 Qg G

n
al n---nn

For Xi,---,X; € R”, express each X; by its coefficient vector, that is, if X; =
27:1 x'ej, then its vector form is X; = (x, - ,x.)T. Then we have

(X1, Xs) =M X X1 X Xog X -+ X Xg = Mg X X X Xp—y X - xXj. (4.30)

In applications, the right STP is sometimes convenient. Corresponding to (2.49)
and (2.50), we have the following conclusions.

Proposition 4.4. Assume A € Mypxn, X € Muxq Y € Mpxm, then the stack forms
of theproducts are

Vo(YA) = (I, o ANV, (Y) = AT % V,(Y); (4.31)
Ve(AX) = (I, @ A)Vo(X) = A % V. (X); (4.32)

Proof. To prove (4.31), we use Table 3.1 to get that
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V,(YA) = V. (ATYT)
= (I, @ AT) V.(Y") (I, o AT) V,(Y)
= AT V(7).

As for (4.32), Using Table 3.3 and the equality (2.51), we have

VC(A ) = VV[myq]Vr(AX) = W[m,q] XA X Vr(X)
= W[mﬂ] X A X ‘/V[q,p] X VC(X)
= (I; ®A) x V.(B) =A% V.(B).

O

Using Proposition 4.4, we can deduce some formulas for the product of three
matrices.

Proposition 4.5.

V,(ABC) = (ARCMV,(B); (4.33)
V.(ABC) = (€T @ A)V.(B). (4.34)

Proof. Using (2.49) and (4.30), we have

V,(ABC) = (A®1,)V,(BC) = (A= ,)(I,  C")V,(B)
= (A®C"V,(B).

This proves (4.33).
Using (2.50) and (4.30), we have

VC(ABC) = (Iq ®A)VC(BC) = (Iq ®A)(CT ®In)VC(B)
= (CT®A)V,.(B).

This proves (4.34). O
The following proposition is an immediate consequence of the definition.
Proposition 4.6. Assume A € My, and B € Mysn. Then
tr(AB) = VY (A)V,(B) = VI (B)V.(A) =VI(B)V,(A) =V (A)V.(B). (4.35)
Combining Proposition 4.6 with (4.33) and (4.34) yields

Proposition 4.7. Let A, B,C, D are of proper dimensions such that the conventional
matrix product of ABCD is well defined and is a square matrix. Then

tr(ABCD) = VY(A)(Bo DTV, (C) = vI(C) (BT 2 D)V, (A). (4.36)
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Finally, we give two propositions, which are convenient when we convert a ma-
trix polynomial into a polynomial of its entries.

First we define the power of right semi-tensor product: Let A € .#},,x,,, and n|m
or m|n. Then A x A is well defined, and hence the power of right-tensor product can
also be defined as

A*F=AxAX---xA.

k

Note that as a convention, we define

A =AxAx--XA.
————
k
Hence for the power of right-tensor product the symbol x on the power should not
be omitted. It is obvious that when A is a square matrix.the powers of both the left

and the right semi-tensor products are the same.
Now we are ready to state the propositions.

Proposition 4.8. Let Z € .#,,. Then

ZF = (F*YxViZ), k>1, (4.37)

where
E = (I V2 (In)).x Wiy (4.38)
Proof. We prove (4.37) by mathematical induction. Using (3.56), we have
Z=m(l,) x Vo(Z).

Let F = n5(I,). Using (6.47) and (3.52), it is easy to see that F has the form as
in (4.38). Note that F € .#,,,,,34 it follows that F** € M, »i1. Next, we assume
(4.37) holds for k. Then using (2.55), we have

ZM = Zx ZF = F x V.(Z) x F** x V¥(Z)
=Fx (Lp®@F*f) xV,(2) x VX(Z)
= (F(hp 2 F™) x VA (2)
_ F><1(k+1) X Vck+1(Z).

O

Proposition 4.9. Let Z € #,,. Then
V(5 = (B0 Vi), k=2, (439)
Vo) =Wy (D) W) MvE@), k=2, (4.40)

where
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E =12V} (Iy).
Proof. First, we prove (4.39). For k = 1, we have
Vi(2%) = Zx V,(Z) = FV(2)V,(Z) = FW,, V}(Z) = EV}(Z).
Now we assume (4.39) is true for k, Then from (2.38) we have
V(2K = Zx V(ZK) = Ex V,(Z) x E**=1D w VE(Z)
- (E (I ®E”("*1)))  V,(Z) x VK(Z)
_ (Exk) x VI (Z).

This proves (4.39).
Note that

VE(Z) = (W @ @ W, )VE(Z) = (W) VE(Z).
—_———
k

Left multiplying W}, to both sides of (4.39) yields (4:40). ad

4.2 Semi-tensor Product of Arbitrary Matrices

This section considers the left and right semi-tensor products for two arbitrary ma-
trices. For statement€ase, we call them the general semi-tensor product of matrices.

Let a,b € Z' | Denote the least common multiplier of a and b by lcm{a, b}.

Definition 4.3. Let A € #,yp, BE€ Mg and o = lem{n, p}.
1. The general left STP of A and B is defined as as

AxB=(Axle)(Bolx). (4.41)

2. The general right STP of A and B is defined as

AxB=(la 9 A)(la 2 B). (4.42)

Note that when n = p the general left (right) STP of matrices becomes the con-
ventional matrix product.

If nVp=nornVp=p, then the general left (right) STP of matrices becomes
the previously defined left (right) STP. Unless otherwise stated, through this book
the STP is defined for multiplier dimensional case except this section.

The reason that we did not pay much attention to the general STP is that unlike
the multiplier dimensional case, we could not find the reasonable physical explana-
tion for the general STP and did not find meaningful applications so far.
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In the following we consider some basic properties of general left (right) STP.

Proposition 4.10. The general left (right) STP satisfies

1. (Distributive Law)

(A+B)xC=(AxC)+(Bx(C), (4.43)
(A+B)xC=(AxC)+(BxC), (4.44)
Cx(A+B)=(CxA)+(CxB), (4.45)
Cx(A+B)=(CxA)+(CxB) (4.46)

2. (Associative Law)
(AxB)xC=Ax (BxC), (4.47)
(AXB)xC=Ax(BxC). (4.48)

Proof. Distributive law is easily verifiable. We prove the associative law.
Let A € Muxn, B € Mpxq, C € My, Wefirst show that both sides of (4.47)—
(4.48) can be expressed as

(AR 1) (AR ) (ART,). (4.49)
This equality is obtained from the equality that
(ARL,)(BRL,) R = (AR Ly s) (BRI ).

From the definition of the general semi-tensor product one sees that no matter
what is the order the product is executed, we finally need to find the smallest natural
numbers o, f3, ¥, such that

{a”:ﬁp (4.50)
Bg = vs.

If we can show that the smallest solution of (4.50) is unique, the conclusion follows.
Since ong = ysp, we can assume lem{ng,sp} = h. Then

sp n
a=p=l, y=pl

It follows that
usn _ sn

P=0 T
Now the smallest u satisfying ¢ = (h/u) is the least common multiplier of ng,
sp and sn. Define
c=nqgAspAsn,

then we have that the both sides of (4.47) and (4.48) equal to (4.44). Moreover,
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sn ng
c c T

O

Almost all the major properties of the conventional matrix product remain true

for generalized left (right) semi-tensor product of matrices. We list the major prop-
erties as follows:

Proposition 4.11. .

(AxB)T =BT x AT,
(AxB)T =BT x AT, 40
2. If M € Muxpn, then
MxI, =M
{M:;Mj (4.52)
n — )
If M € M ppmxn, then
Inyx M =M
{I’" :M_M’ (4.53)
- —M.

In the following items, A'and B areitwo square matrices.
. AX Band BXA (A x B and B X‘A) have the same characteristic function.

|9¥)

tr(A x B) = tr(B x A), (4.54)
X = X . '

5. If both A and B are orthogonal matrices (upper triangular matrices, down trian-
gular matrices, or diagonal matrices), then so is A X B (A X B).

. If at least one of A and B is invertible, then AXx B~ BXA(AXB~BXxA).

7:1f both A and B are invertible, then

=)

AxB) '=B"lxA™!
(A {4 e (4.55)
(AxB)"' =B 1xA"L,
8. The determinant of the product satisfies
det(A x B) = [det(A)] * [det(B)] 7, 456
det(A x B) = [det(A)] 7 [det(B)] 7, '

where o0 = lem{n, p}.

The following property is for general left STP only.
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Proposition 4.12. Let A € My, and B € M xq. Then
C=AxB=(CY), i=1,--,m, j=1,--.q, (4.57)
where N '
CY =A"xB;.
Here A" =Row;(A) and Bj = Col;(B).

Note that (4.57) can also be considered as the definition of generaldeft STP. In
equal dimensional case, C" is a number, in multiplier case it is a vector, and_.in
general case it is a block.

Remark 4.1. As a convention, for any two matrices A € #,x, and B € M pxq, the
default matrix product is assumed to be the left STP. That is,

AB=AxB. (4.58)

when n = p, it is the conventional matrix product; when nV p=max{n, p}, it is the
left STP defined in Chapter 2; and otherwise, it is the‘general left STP. Under this
convention, the symbol x is usually omitted; unless we would like to emphasize it
is STP.

The reader may be convinced by the discussion. so far that the concept of con-
ventional matrix product can be replaced by the left STP.

Let A € My, We can define thepower of general left STP of A as

Al =A,
AL — AxAk k> 1.

Similarly, we can also define the power of general left STP of A as

AT =4,
AMKED — A AR k>,

To consider the dimension of A* (or A*K), let lem{m,n} = t. Set m = mot and
n = not, then mg and ng are co-prime. It is easy to prove by mathematical induction
that A* € .2, s o, (A" € AL,

Kook )
mktxn Sexnbt

Exercise 4

1. Prove (4.6) and (4.7).
2. Prove (4.8).
3. Prove (4.10)-(4.12).
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<1
M

where X;, i = 1,--- ,n are n X n matrices. Assume b € R”, the quadratic form of
X is defined as [1]

4. In cubic matrix theory, let

b X1b
b'Xb:=|
b X,b
Prove that it can be expressed as

b™Xb=b" x (Xb) = (bT x X)b.

5. Give the matrix-vector expression of V,.(AX) using the right semi-tensor product.
6. Consider
GL(R) :=U;’_{GL(n,R).

Define an equivalence on GL(R) as
A~A®IL, keN.
Denote the equivalent class of A by [A]. Consider the quotient set
G:=GL[R)/ ~={[A]|A € GLR)}.
Define the product over G as
[A] x [B] :=[Ax B].

a. Prove that (G, x).is a group.
b. Let

Define Go := O(R)/ ~. Prove that Gy is a subgroup of G.
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