Chapter 2
Semi-tensor Product of Matrices

Abstract Starting from bilinear functions we show anvalternative way, of calculat-
ing bilinear mapping than using matrix form, and then extend this néw:*product” to
multi-linear case. This new product leads to the définition of general left semi-tensor
product (STP) of matrices, which is a generalization of conventional matrix prod-
uct. Then certain basic properties of STP have been revealed."Roughly speaking,
all the major properties of conventional matrix pfoduct remdin true for this gener-
alized product. In the light of swap matrix, certain pseuddé-commutative properties
of STP are obtained, which shows one of the advantages of STP over the conven-
tional matrix product. Finallysthe bi-lingarity property of the STP of two vectors is
investigated.

2.1 Multilinear Function

Definition 2.1. Let V;,i=0.14%-- , k be vector spaces. A mapping f : Vi X Vo X --- X
Vi — Vp is called a k-linear mapping, if

f(le"' 7aXl+ﬁYl7 7Xk) :af(Xh'" 7Xi7"' 7Xk>+bf(X17 7Y[7"' an)a

XjEVj, j:1,~~-,k; Y, eV, (X,ﬁER-
@2.1)

When Vy = R, it is called a k-linear function.

Let f: R™ x R” — R be a bilinear function. Assume
f(5;;175){):,u'l,j7 lzla'm9.}:1aan

Then we can arrange D = {y; j|i =1,---,m; j=1,--- ,n} into a matrix as
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22 2 Semi-tensor Product of Matrices

Hir 12 -+ Hig
o1 Moo --- Hop
My=| . ,
M1 Um2 -+ Hinn
which is called the structure matrix of f. Now for any X = (x1,---,x,)? and ¥ =

(1, ,yn) T, (Precisely, X = Y | x;8},, etc.) we have
m n
FEY) =YY pijxy;. (2.2)
i=1j=1
Using structure matrix, we have a matrix expression of (2.2) as

X, Y)=x"My. 2.3)

It was mentioned in Chapter | that to deal with the multi-lin€ar,funetions, say
3-linear functions, the cubic matrices have beengproposedby.[1, 4]. Certain product
rules between cubic matrices and conventiondl matrices have also been developed.
It has some successful applications [5]. But they aredather complicated. Moreover,
this approach can hardly be extended to higher-dimensional, data. An attempt of
using matrix to deal with higher-dimensional'data is so-€alled multi-edge matrix,
proposed by Zhang [6]. Because of the complexity, it can also hardly be used.

Alternatively, we may arrange D intod@ row, vector by € (i, j;m,n) as

Vf = (,U]] Hio <« Hin - M1 - ﬂmn) = Vr(Mf)~
Note that if we split Vy into m equal-size,blocks as
V= [V1 Vy oo Vm]

then the data in V| hasthefirst index i = 1, in V; has the first index i = 2 and so on.
Then it is clear that

FX,Y) = (fw) Y. 2.4)
i—1

Here we may consider Y} | x;V; as the “product” of V; with X.
The advantage of the “product” is it can easily be extended to higher-order case.
For instance, consider f: R™ x R" x R’ — R. Let
l'l’i7j1k ::f(éiim&'{?stk)? = 17 ,m, j: 1 1, k= la )L

Then we arrange {y; j«} into a row vector V; under the order of id(i, j,k;m,n,t).
Let X € R™, Y € R", and Z € R’. We still split V; into m equal-size blocks as

Ve = [V1 Vy -eo Vm],
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then
Viy = “’Ligll Hig12 “ - Wigle Hign1 - 'uiom].

which is the data of the first index i = ip. Using the new product, we have
m
ViX =Y Vixi.
i=1

You now can see that x; has been multiplied to the proper segment of data. Contin-
uing this procedure, we split VX into n blocks as

VfX - [U17U27" : aUn]
Then you can see that we have, using new product,
n
ViXY =Y Ujy;.
j=1

Now y; has been multiplied to the proper segmént of data too. Finally, we split VXY
as
VeXY = [VVth7 .- 7VVt]

Using new product, we have
t
VXYZ= Y Wiz
k=1
Again, z; is multipliéd to the proper segment of data, and finally we have
ViXYZ = f(X,Y,Z). (2.5)

Based on this obseryation, we give the following rigorous definition for this “new
product”:

Definition 2.2. 1. Let X € R™ be a row and ¥ € R™ be a column. The we split X
into myequal-size blocks as (X1 X2 ... X™), such that X’ e R",i=1,--- ,m, and
definethe left STP of X and Y, denoted by X x Y, as

XxY:=Y X'y e R (2.6)

m
i=1

2. Let X € R™be arow and Y € R™ be a column. The we define the left STP of X
and Y as

xxY:=[r"xx"]" ern. 2.7)

Using matrix product to express a bilinear function as in (2.3) is very convenient.
Unfortunately, it can hardly be used for multi-linear functions. The advantage of
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(2.4) is that the data are arranged as vectors, and the product can be realized by a
sequence of products between two vectors. Then it can easily be extended to 3-linear
case as in (2.5), as well as to general multi-linear mapping.

Consider a function f: R™ x R" x --- x R™ — R. Denote

i i i . .
“il,i2,~'7ik :f(snll*snéa aani)7 lj = 17 7nj7 J= ]a 7k'

Denote by X; = (x],- - ,xﬁ_/.)T €RY, j=1,2,--- k. Then
. \- 1.2 k
f(le... 7Xk) = Z Z “ilai27“'7ik'xi1xiz“.'xik'
=1 =1
Arrange
D= {.uil,iz.,w,ik :f(5;1]17 ,6,1/;() | l] - la ol i= 13 7k}

into a row vector Vy in the order of id(iy, iz, - ,ighn1,n2, % ,ng). Then'it is easy to
see that

FX, X)) = ((- (Ve &K x Xg) X -+ X)) (2.8)

Remark 2.1. 1. From (2.8) one sees that the 1left STP can&earch for each factor vec-
tor its corresponding indix automatically: Hence itfis very convenient in dealing
with multi-dimensional data.

2. Itis clear from the discussion of niulti-linear mapping that the “multiplier dimen-
sion” requirement fortwio factor matrices is particularly important. Through this
book we are maifily focused on thisyparticular case, rather than considering the
product of two arbitrary matrices.

Example 2.1. 1. Let X =[1324]and Y = [2 — 1]7. Then
XXY=[13]x2+[24]x(-1)=[02].

2. LetX=[12—1]andY =[21 —10 —21]. Then

2 -1 -2 2
XxY=1x {I}Jer[O}JF(])X{I}_{O}
3.Recall Example 1.6. The volume tensor is defined as

vi=(X,YxZ), X,Y,ZeR.

Then
‘L1111:<531,531><631>:0; [.1112:<631,531><532>:0;~-

Finally, we have the vector form of {y;j |, j,k=1,2,3} as

V,=[0000010—-1000—-1000100010—-100000].
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Now assume X = (1,1,—1)7, ¥ = (2,1,-2)7, Z = (—1,0,—2)7. Then we have

(Vo x X) % ¥) x Z)

V(X,Y,Y) = (
:(([Ofl —11011 —10]xY)xZ)
(-
=3.

10 —1]xZ

2.2 Left Semi-tensor Product of Matrices

LetA € Myxnand B € M pxy.

(i) If n = p, A and B are said to be of “equal dimension”.

(i) If n =1tp or nt = p (where t € Z,, then A and B are said to be, of “multiplier
dimension”. If n = tp, we denote it by A >, B, andlifyut,.= p we denote it by
A<, B.

(iii) Otherwise, we say A and B are of arbitrary dimension.

We use Row(A) (Col(A)) for the setof rows (¢olumns) of A, and Row;(A)
(Col;(A)) the ith row (column) of A.

Definition 2.3. Let A € .#),,», and B € #,x 4, andhA and B are of multiplier dimen-
sion. Then the left STP of A and B is defined.as

Row; (A) x Col; (B}, Row1(A) x Colp(B) --- Row;(A) x Col,(B)
A B Row, (A) x€eli (B) " Row, (A) x Coly(B) --- Rowa(A) x Col,(B)
Xb = ?

Rowp,(A) 'l>< Col; (B) Row,,(A) x Coly(B) --- Row,,(A) x Coly(B)
(2.9)

Example 2.2. Let
12-12
X=1(01 2 3], Y:[llg].
33 11

Then

2)—(—12)2(12)+3(-12)
1)—(23) 2(01)+3(23)
3)—(11) 2(33)+3(11)

[2 0 ~110
=|-2-256 11
12 2 909

[(1
XxY=| (0
L (3

Remark 2.2. Let A € Mipxn and B € . 4. It follows from the definition that when
n = p we have
A X B=AB.
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That is, when the conventional matrix product is defined the left STP of A and
B coincides with their conventional product. This fact shows that the left STP is
a generalization of conventional matrix product. Because of this fact, the symbol
“K” may be omitted. We can always consider AB as A X B, when A and B meet
the equal-dimension requirement, the product becomes conventional matrix product
automatically. In the sequel, unless we want to emphasize the product is left STP,

the symbol “x” is mostly omitted.

In Chapter 1, in addition to conventional matrix product, some other matriXyprod-
ucts have been introduced, which contain Kronecker product, Hadamard product,
and Khatri-Rao product. One sees from there that all the different matrix prodaets
satisfy two fundamental properties: associative law and distributive law. These two
properties may be considered as fundamental requirements for a matrix product{
Without them, the fundamental matrix algebraic structure will be destroyedsSotwe
have to show that the left STP also satisfies these two laws. First, we give a lemma.

Lemma 2.1. Given A € My, and B € My q, where nipror p|n. Thei

Row(A) X B
AxXB = :
Rows(A) x B (2.10)

= [Ax Col (B) . AxColy(B)].

Proof. According to the definitionyd straightforward computation, starting from the
first (second) form of«2.10) by expanding B column by column (expanding A row
by row), (2.9) follows immediately. O

Theorem 2.1. Assume the dimensions of the matrices involved in the following
equations (2.11) and (2.12) meet the requirement such that the X is well defined.
Then we have

1. (Distributive Law)

Fx (aG+bH) =aF x G=bF x H, @11
(aF £bG)x H=aF x H£bGx H, a,b€R. ’
2. (Associative Law)
(FXG)XxH=Fx(GxH). (2.12)

Proof. Equation (2.11) can be proved by a straightforward computation. We leave
to the reader to check it. In the following we prove (2.12).

First of all, we have to show that if ', G and H have feasible dimensions for
(F x G) x H the dimensions are also feasible for F x (G x H).

Case 1: F = G and G = H. So the dimensions of ', G and H can be assumed as
m X np, p X qr and r X s respectively.
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Now the dimension of F X G is m X ngr. It is good for (F x G) x H. On the other
hand the dimension of G X H is p X gs. It is good for F x (G x H).

Case 2: F < G and G < H. So the dimensions of F, G and H can be assumed as
m X n, np X g and rq X s respectively.

Now the dimension of F X G is mp X q. It is good for (F x G) x H. On the other
hand the dimension of G x H is npr x s. It is good for F x (G x H).

Case 3: F < G and G = H. So the dimensions of ', G and H can be assumed as
m X n, np X qr and r X s respectively.

Now the dimension of F x G is mp X gr. It is good for (F x G) x H. On the other
hand the dimension of G x H is np x gs. It is good for F x (G x H).

Case 4: F = G and G < H. So the dimensions of ', G and H can be assuméd as
mx np, p X q and rq x s respectively.

Now the dimension of F X G is m x nq. To make it feasiblefor (F X G) x H, wé
need

Case 4.1: (F x G) = H, i.e., n = n'r. It is good for Fax(G x H);

Case 4.2: (F x G) < H, i.e.,r =nr' Itis good for Fx (G xH);

The dimension of G x H is pr x s. To make itffeasible for, (F x G) x H, we need

Case4.3: F = (GXx H), i.e., n=n'r. It is good for (F x G)x H,

Case 4.4: F < (Gx H), i.e., r = nr. Itd8 good for{(F x G) X H;

Next, we prove the associativity. We have to prove it casedy case. But Case 1-3
are similar, we prove only Case 1. .. F> G and G > H.

Let Fyxnp, Gpxgr and Hy s be given.'Based on Lemima 2.1 we can, without loss
of generality, assume m = 1 and s = 1. Split F,as

11'«‘:[F1’...7Fp]7

where F;, i = 1,--- 4p are 1 x n blocks. Then
1 1 1 1
gll . glq e grl oo grq
FxG= (B F)x| :
gll)l e glqu e gfl e gfq
p ) p ) p ) p )
= <.21Eg1117 ) _Z]Egllqa Tty _Z]Eglrla Ty Z]Egi‘q> .
= = 1= =

Then we have

hy
(FxG)xH=(FxG)x | :
I 2.13)
r.p . r p .
_ ( 5 ¥ Fglhy o X zFig;qh,»).
=1ist =1ist

On the other hand
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811 81g " 81 g)]’q hy

s < |
r r
Y glihi o ¥ glhy
=1 =1
- P - P
Zgﬂhj"' Zgthj
= =1

Then
Fx(GxH)=(F, - ,F,)x (GxH)

rp . r p .
:<ZZE%W~wZZE%M»
==t =11

which is the same as equation (2.12)

Since Case 4.1-4.4 are similar, we prove Case 4.1 only.
Let Fuxnpr» Gpxq and Hy,x s be given. We also assume m=— 1 and s = 1. Split F/

as
F:(Fllu"'>Flr7"'7Fp1a"'anr)a
where each Fjj,i=1,---,p, j=1,--¢r are 1 X'rblocks.
811 -+ 8lg
G=] : o HE (hyy, by, chgt,o hg)T
8pl 7 8py

A careful computation shows that

(FXG)xH=Fx(GxH)=Y
i=1j=

Y ) Fjgadu-

1k=1

In‘the,above proof, we leave some cases for the reader to verify.
Before exploring more properties of left STP, we give an example, which may
provide a ¢convincing reason for this generalization of matrix product.

Example2.3. Let X,Y,Z,W € R”". Then

A= XYT)(2ZWT) € Myrn

is a well defined matrix. Noticing that the matrix product is associative and Y7 Z is
a scalar, we can do the following computation:

A=xYTzwT =x(¥TzywT = (vT2)xwT =vT (zx)w'.

(2.14)
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Now we meet a puzzle: What is expression ZX in (2.14)? The puzzle shows that
the conventional matrix product has a “bug”. Because illegal item can be reached
through legal procedure.

Since the conventional matrix product can be considered as a special case of
left STP of matrices, we may ignore the conventional product and consider all the
products involved in this example is the left STP. Then we leave for the reader to
verify that

A=YTx (ZxX)xWT. (2.15)

2.3 Fundamental Properties
This section provides fundamental properties of left STP. For statement ease, we
simply call it the STP. Through this book the default STP isthe left,.STP.

Proposition 2.1. /. Let X € R" and Y € R" bé two column vectors. Then X X Y is
well defined. Moreover,

XxY =Xef. (2.16)

2. Let w € R™ and ¢ € R" be two row vectors. Thend X o is well defined. More-
over,

WXO=0R0. .17
Proof. Both equalities can be verified byydirect computations. a

This proposition is simple but'useful. It converts Kronecker product of vectors
into STP. We give some examples to show how to use it.

Example 2.4. 1. If X is a row vector or a column vector, then

X=X xXx-xX
N———
k

is always well defined.
2. Recall/the tensor formula (1.44) in Chapter 1. Using (2.16) and (2.17), we have

X, Xe, O, @) = @ X - X O MX) X -+ x Xy (2.18)
¥

The advantage of (2.18) over (1.44) is, (2.18) involves only one matrix product,
and since the STP has associative property, no parentheses are necessary any
more. Later on, you can see that in the form of (2.18), a tensor will be much
easier manipulated.

3.Let X € R", Y € RY be two columns and A € .#yyxn, B € M pxq be two given
matrices. Then
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(AX) x (BY) = (A®B)(X x Y). (2.19)

In general let X; € R" and A; € Mjp;xn;» i =1,--- k. Then

| (AX:) = (@j.;lAi) (xﬁ;lxi). (2.20)
Particularly,
Ax)f= A -®A | x Q.
N———
k

4. Let w € R", 6 € R? be two rows and A € #,xn, B €
trices. Then

be given m

(wA) x (0B) = (0 X 0)( (2.22)
In general let @; € R™ be rows and A; € .4,
(2.23)
Particularly,
(2.24)

The verificatio
The following
Proposition 2.2. Assu (or A <, B). Decompose A and B into blocks as

All L. Als Bll ... gl
‘ A'rl A.rs éﬂ ést

BYT Vi, j,k (correspondingly, A* <, B¥I | /i, j.k), then

Cll . Clt
AxB= , (2.25)

C.rl C:rt

where

Cl = ZS:Aik x BN
k=1
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Proof. Using the definition, a careful calculation leads to the result. O
Next, we consider the power of a matrix A.

Definition 2.4. Assume A € .#,,,, where either m|n or n|m. Then A" is inductively
defined as

Al=A
{A"“:Akle, k=1,2,---. (2:26)

It is easy to see that A* is well defined. Moreover, if m = nt, then Ak e ///t
and if mt = n, then A* € 4, .

In the following remark we briefly discuss the dimension of the STPof matrices
It is easy to verify the facts in the following remark.

knxno

Remark 2.3. 1. The dimension of the STP of matrices can'beseasily obtained by the
common fact elimination of the second index of the leading matrix with the first
index of the following matrix. For instance

Apxgr X Brxs X Cygrx) = (Ax B)pxqs X Cdsrxi = (AXBx C)ptxl-

In the first equality 7 is canceled andyin the'second equality gs is canceled. This
way is obviously the generalization of the conventional matrix product. For in-
stance, A, xsBsxg = (AB) pgg. It can b€ comsidered as s has been canceled.

2. Unlike conventional multiplication; even if both A x B and B x C are well defined,
A X Bx C = (A x B)xg€,;may not be defined. For instance, a counter example is
A € M3,4, B € MpSz and C € My (A general version of STP will be introduced
in Chapter 4, where the STP is defined for arbitrary factor matrices.)

3.IfA >y B (A <B)and B ~,|C (B <, C), then A x B -y C (Correspondingly,
AXB =y C). Henee if Ay <Ag < -+ <Agor Ay = Ay = -+ = A, then x5 A; is
well defined.

4. Let p > 2 be an integer. Define a set of matrices as

MP = Ui’jeZJr%p[Xp‘/.

Then it is easy to see that x : .#Z7 x AP — A7 is always well defined and
closed. When the p-valued logic is considered (p = 2 is the standard logic), the
matrices met there are of this form.

Propesition 2.3. Assume A X B is well defined, then
(AxB)T =BT x AT, (2.27)

Proof. Assume X is arow, Y is a column and X x Y is well defined, then a straight-
forward computation shows that

Xwy=[rTxx"". (2.28)
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Now consider A x B. By definition, the (i, j)th block of A x B is
Row;(A) x Col;(B).
Meanwhile, the (j,i)th block of BT x AT is
Row; (BT) x Col;(AT) = [Col,;(B)]" & [Row;(4)]".

According to (2.28),
T
[Col;(B)]T x [Row,-(A)]T} = Row;(A) x Col(B).

That is, the transpose of (i, j)th block A x B is the (j, i)th bloékief BTxAT. @

The following proposition shows that the STP of two matrices can easily be re-
alized by using conventional product plus Kroneckergproduet:

Proposition 2.4. 1. IfA >~; B, then
AXxB=A(BR1I). (2.29)
2. If A <; B, then
AXB={(A®L)B: (2.30)
Proof. We prove (2.29) only. The proof of (2.30)is similar. Say, B € .#,»4. Then
B® I, Coly (B) ® I; €oly(B) ®1; --- Coly(B)®1; ].

Using this form and the Proposition 2.2, we can, without lose of generality, assume
A is arow and B is a column. Then a straightforward computation verifies the equal-
ities. a

Proposition 2.4 is of particular importance. Many properties can easily be ob-
tained via (2.29) and (2.30). In fact, it can be considered as an alternative definition
of left STP of matrices.

Proposition 2.5. Assume A and B are square matrices and both A x B and B x A are
well defined, then

DA x Band B x A have the same characteristic functions.
2.

tr(A x B) = tr(B x A). (2.31)
3. If at least one of A and B is invertible, then
AXB~BKXA, (2.32)

where ““ ~ " stands for the similarity of two matrices.
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4. If both A and B are upper triangular (lower triangular, diagonal, orthogonal),
then A X B is also upper triangular (lower triangular, diagonal, orthogonal).
5. Assume both A and B are invertible and A x B is well defined, then

AxB)'=B""xa" (2.33)

6. If A <; B, then
det(A x B) = [det(A)]" det(B). (2.34)

IfA ~; B, then
det(A x B) = det(A)[det(B)]". (2.35)

Proof. Using (2.29) and (2.30) to convert the STP into conventional product plus
Kronecker product, then the above properties can bepeasily obtaingd via known
properties of either conventional or Kronecker products: As an example)ywe show
item 5: Assume A <; B, then

AxB) '=@ABeL) =Bl A4 =B )NAM=B"xA".
O

The STP of a matrix with an identity mattix has some special properties. Roughly
speaking, if the size of I is larger thandhe sizeiof matrix M (comparing the column
number of the first factor with the £ow number of the second factor), then it will
enlarge M, otherwise, it’keeps M unchanged.

Proposition 2.6. L. Let M € My ypn. Then

MxI,=M. (2.36)

2. Let M € Myysn. Then
M Iy =M1, (2.37)

3. Let M\ M pmsen Then
I,x M =M. (2.38)

4. LetM € M,y Then
Lmx M =1, M. (2.39)

Proof. All the equations follow from Proposition 2.4 immediately. a
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2.4 Swapping Product Factors

One major inferior of matrix product to scalar product is that it is not commutative.
Using swap matrix etc., the STP can change the order of its factors in certain sense.
We call these properties the pseudo-commutativity. It is very useful in applications.
The following proposition is a re-statement of Corollary 2?.

Proposition 2.7. 1. Let X € R™ and Y € R" be two column vectors. Then
Wi XY =YX. (2.40)
2. Let ® € R™ and o € R" be two row vectors. Then
woW, , =ocw. (2.47)

Equations (2.40) and (2.41) may tell you why W, spis,called a'swap matrix.
Later on, you will see that (2.40) and (2.41) are extremely useful, because they are
used to overcome the non-commutative shortagé of the matrix product.

The following is a generalization of Propgsition 2.7

Proposition 2.8. 1. Let X; € R", i = 1,--- ke k«column vectors. Then we can use
swap matrix to swap the factors Xj with X,y in the product in [><;{:1X,'.

{Inyﬁ A W ) ®IH];7+1”J} XXX (2.42)
=X XX X Xev2 - Xy

2. Similarly, let w; € R", i =1,---  kbek row vectors. Then we have
O - [[H.’}mn‘i W) ®IH’]-;11 n_,} (2.43)

=@ O W1 Wy Wy 2 - .

Proof. We prove (2.42) only. The proof of (2.43) is similar.

LHS — {Intjll n; ®W[n,,n,+1] ®1Hk +1”/}

Jj=t
X [(Xl o 'Xt*l) ®XtXt+l & (Xt+2 o Xk)]

- |:IH1/11nj x (X .”Xt_l)} ® [W["t-,”wrl] XXtXH’l]

D |l % (Ko X

J=t+
= X1 X-1) @ (X1 X) ® (Xig2 - Xi)
= (X1 X—1) X (X1 X)) X (Xpg2---Xi) = RHS.
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In fact, the swap matrix can also be used to exchange the order of blocks in a ma-
trix. The following is a further generalization of Proposition 2.7, or a generalization
of Proposition 2.8.

Proposition 2.9. . Assume a matrix A is split as a block-row as
A= [Alla‘” aAlny e 7Am1) et -,Amn] )

where each block has the same size. Moreover, the blocks are ordered by.multi-
index id(i, j;m,n). Then

AW[mm] = [Alla' o 7Aml [ 7A1na e 7Amn]a (244)

in which the blocks are ordered by multi-index id(j,i;n,m).
2. Let T
B:[BlTla"'vBle“'»BT ..’BT]

mly” mn

be a block-column, in which the equal-size blo¢ks are ordered by the multi-index
id(i, j;m,n). Then

T
Wi B =B} . By Blnr - \Mb] (2.45)
in which the blocks are ordered by multi-indexid(j, isin,m).

We leave the proof to the reader.
In the following we consider theSwap of matrices with vectors. we need some
auxiliary properties.

Lemma 2.2. 1. Let Z be a t-dimensionabrow vector and A € My, x,. Then
ZWpgA = AZW), ) = AR Z. (2.46)
2. Let Y be a t-dimensional column vector and A € My xn. Then
AW )Y =W YA =ARY. (2.47)

Proof. 1. UsingEquation (1.60) in Exercise 1, a direct computation shows that
t
ZWi = Y, 2jIn® (8))T = 1n ® Z. (2.48)
j=1

Using Proposition 2.4, we have
ZWppgA = (InRZ) A= (lnRZ) (AR L) =ARZ.
Similarly, we have

AZW g =AL, ®Z) = (AR L) (1, RZ) =ARZ.
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2. Starting from (2.46), we replace A by AT and replace Z by Y7, and then take
transpose on both sides. Noting that W[Eq " = Winm)> (2.47) follows immediately.

O
Lemma 2.3. Let A € Mypxn and X € Myxgy. Then
V.(AX) =Ax V,(X); (2.49)
and
Ve(AX) = (I, ®A) Ve(X). (2.50)
We leave the proves of (2.49) and (2.50) to the reader.
The following lemma is very useful.
Lemma 2.4. Let A € M,yxn. Then
Wing X AX Wy = lpRA. (2.51)
Proof. Let X € Myx4. According to (2.49) we have
Vi (AX) = A x Vi (X) <A XWg Ve (X) (2.52)
Multiplying both sides of (2.52) by W, 4] yields
Ve (AX) = (Wil < A X Wg ) )Ve(X). (2.53)

Comparing (2.50) with'(2.53) and'taking into consideration that the entries of X
are arbitrary, it is clear that (2.51) is true: a

Now we are ready to present the following result, which may be considered as
the pseudo-commutativity between matrices and vectors.

Proposition 2.10. Given A€ 4y,

1. Let ® € R! be a row vector. Then
A0 = W), AW}, ) = O RA). (2.54)
2. Let Z €lR! be a column vector. Then
ZA =Wy nAW,; nZ = (L ® A)Z. (2.55)
3. Let X € R™ be a column vector. Then
XTA =[v,(A)]"x. (2.56)
4. LetY € R" be a column vector. Then

AY =YTV.(A). (2.57)
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5. Let X € R™ be a column vector and ® € R" be a row vector. Then
X0 = wW[m,n]X' (2.58)

Proof. Right multiplying both sides of the first equality of (2.46) by Wit s and using
the fact that W[;Jl] = Wy, yield the first equality of (2.54). From this first equality
and using (2.51), we have the second equality.

Similarly, left multiplying both sides of the first equality of (2.47) by W, ;1 yields
the first equality of (2.55). Applying (2.51) to the first equality yields«he second
equality.

We leave the proves of (2.56), (2.57), and (2.58) to the reader.

Note that W}y ; = W|; ;) = I;. Then (2.58) is an immediate consequénce of (2.54)
or (2.55).

The following result “swaps” two factors of a Kronecker product.
Proposition 2.11. Let A € #,,x,, and B € M ;. Then
AR B =W, X BX W, KA = (Iz2 B) XA, (2.59)

Proof. Denoting A" := Row;(A), i =1,--- ;mpadd B/ := Réw;(B), j=1,---,s, a
straightforward computation shows

FanBl alnBl_ Bl x Al
anB® --- (11,,32 B2 x Al
anB* -~ay,Bf B x Al
ARB= : = : . (2.60)
amiB' -+ au,B' Bl x A™
@mB* - au,B? B? x A™
| am B® -+ aynB’ | | B¥ x A™ |

Applying (2.46) to each row of B yields
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[B' x A
B! x A2
1 :
3222 B! x A™
BX W, XA = . = : . (2.61)
‘ B x Al
S
AQB B x A2
B x A" |

Comparing (2.60) with (2.61), one sees easily that the blocks of

{Bl D(Ajll: 1’ , S5 ]: 1’
are arranged in (2.61) by the order of id(i, j;s,m) and
of id(j,i;m,s). Using Proposition 2.9, the first

Applying (2.51) to the first equality of (2. i ity is obtained. 0O

We give an example for this.

Example 2.5. Assume

thenm=n=2,s

010000|° "= |0100]"
000100 0001
000001
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W[32] X B X VV[ZZ] X A

(b1 b1 0 0O
by by 0 O
_|b3ibx 0 O 9 [6111 a12]
|0 0 byb2 a1 ax
0 0 by by
_0 0 b31 b3y

ai1byy anbia anbyy annbiz
ai1byy arbas anbay ainbx
_ |anb31 anbsy ainbsy anbs —A®B
az1biy az1b1a axnbiy axnbin '
az1ba1 az1ban axnbsy axnbxn
| a21b31 a21b32 axnbs axnbs

Finally, we show some factorization properties of thélswap. matrix. Iater on, you
will see that they are useful in data order manipulation.

Proposition 2.12. Consider Wiy, ).

1. When n is a composite number, Wy, ;) €an be factorized as
Wip.gr) = (g @ Wip) (Wip g &) = (B&W(p g Wiy, 21y)- (2.62)
2. When m is a composite number, Wi, g can be factorized as
Wipg.r) = (Wigg@l) [y @Wig ) = Wig ) @ 1) (Ig @ Wiy ). (2.63)
Proof. We prove (2.62) only. Let X; € R?, X; € R?, and X3 € R". Then
Wip a1 X1 X2 X3 = X5 X3X].

Meanwhile,
(Wipg @1:)X1X2X3 = X2 X1 X3,

and
(Iq Q ‘/V[PJ])(W[P#I] RI)X1 X0 X3 = (Iq X W[p,r] )Xo X1 X3 = X0 X3X;.

That is,
Wip.anX1X2Xs = (Ig @ Wy, 1) (Wp.g) @ 1) X1 Xa X5

SinceXy, X and X3 are arbitrarily chosen, the above equation shows the first equal-
ity in'(2.62). Exchanging ¢ and r yields the second equality of (2.62).
The proof of (2.63) is similar. a
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2.5 Semi-tensor Product as Bilinear Mapping

When the STP is applied to two vectors, then it becomes a bilinear mapping. This
mapping has particular importance in further applications. This section is devoted
to explore this.

Definition 2.5. Let E, F, G be 3 vector spaces. A mapping ¢ : E X F — G is called
a bilinear mapping, if

O (aX) +0X2,Y) = ad(X1,Y)+bo(X>,Y);
(Z)(X,CYl +dY2) = C¢(X,Y1)+d¢(X,Y2)7

(2.64)
where a,b,c,d e R, X, X1,X, € E,Y,Y1,Y, €F.
Let {e1, - ,e,} and {f1, -, fn} be bases of E and F respectively. Denote by
ti,j:¢(ei7fj)7 1§l§m,1§]§n,

and let
T = Span{f;,; } C G.

Then T is the smallest subspace containing im(¢). Assume
{1] 1 <i<mypl < j<uil}

are linearly independent, then they form a basis of 7. Arrange them into a matrix
form by using multi-indexvid(i, j;m, r) as

Br = (tl]aIIZa"' Y SUTRRRY ) PR atmn)-
Let
m n
X=) xe.cE. Y=) y;feF.
i=1 j=1
Then
m n T T
¢(XaY) — lezyj(p(ehfj) :Bt(xh'" 7xm) X ()’17“' O/n) .
=1 j=1
Simply eXpress a vector by its coefficients as X ~ (x;,---,x,)" etc. Then we have

¢ “EXF — T is described as
0(X,Y) =B xX Y. (2.65)

Note that im(¢) # T'. Particularly, we would like to emphasize that im(¢) is not a
vector space. For instance, assume E = F = R? with their canonical basis {3, , 87 }.
Then ‘

Lij=8x8, ij=1.2.
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Note that {#; ;|i = 1,2, j = 1,2} are linearly independent, and
T =Span{t;;li=1,2, j=1,2} =R*
Then it is easy to verify that
im(¢) = {z€R*| 214 =223} .
Particularly, we use the STP as a mapping x : R” x R" — R, defined in a
natural way as in (2.65). Denote by Z = X x ¥ € R™" and label the entries of Z by

id(i, j;m,n). Then the image is

lm(l><> = {Z: (Z“?"' »&lny """ aZmn)T‘Zi,ij,q :ZiAqu,p}-

(D)

constrained equations, which are

That is, there are

ZipZiq = Zigljps 1 SIGE) <md< p#q<n.

Definition 2.6. Let £ and F be two finite dimensionalsvector spaces. A bilinear
mapping ® : E X F — T, where T D im(®), is called a universal mapping, if for
any bilinear mapping ¢ : E xF — H,_there exists a unique mapping f: T — H,
such that the graph 2.1 is commutative. That is,

=7 oc.
EXF H
[0
®
f

Fig. 2.1 Universal Bilinear Mapping

Proposition 2.13. The STP x : E x F — T is a universal bilinear mapping, there T
is the space generated by the image of X.

Proof. Let ¢ : E X F — H be a bilinear mapping. Then
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O(X,Y)=MyXY, X€EE,Y€F

where My is the structure matrix of ¢. Define f: T — H as a linear mapping Z
MyZ, Then ¢ = f o x. The uniqueness of f comes from the fact that the structure

matrix of a bilinear mapping is unique.

a

In the following we prove a property concerning about the STP as a bilinear

mapping.
Proposition 2.14. Let X1,--- , Xy € E, Y1,--- , Yy € F, and

k
X,' X Y, =0.
i—1
1. IfYy,--- Yy are linearly independent, then X1 = --- = X; = 0.
2. If X1, , Xy are linearly independent, then Y| = - £ =¥p=.0.
Proof. 1. Denote
Xi=(x}, - x" =1,k
Then
k
Y &Y
k i=1
Y XixYi= =0
i=1 k
Y. A,

The conclusion follows.

k k
Y Y X =W, Y Xix Y, =0.
i=1 i=1

The above conclusion implies this one.

Werefer to [3],for a completed description of multi-linear mappings.

Exercise 2

1. Let f: Vi x V3 x - -+ x Vi — Vj be a multi-linear mapping. Denote by (¢, - e/, )

the basis of V;, i =0, 1,--- ,k.

(2.66)

ni

(i) Give the matrix expression of f. That is, find a matrix My, which is called the

structure matrix of f, such that

Xo=f(X1, X)) =My x5 | X;, X;€Vi,i=0,1,-- k.
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(ii) Let (&},--- &, ) be another basis of V;, satisfying
Al |, =01,k

Find the structure matrix of f under the new basis.
2. Prove the following alternative expression of swap matrix.

Winn) = [8,} X &L 8Tl Sk T 6,:’1’]. (2.67)

w

Complete the proof of Theorem 2.1.

Prove equations (2.19)-(2.24).

5. Let X € V. Define a mapping, which reduce the covariant order, of a“tensor by
one, denoted by ix : J — Tsr’l, and defined as [2]

»

ix(0)=oX, ;- ) ocF. (2.68)
Prove that the structure matrix of ix (®)4$
M) = Mp¥éX. (2.69)
6. Let o € V*. Amapping i : T, — T, is defined\ds
is{w)f=0o(-- 50y ). (2.70)
Prove that the stru€ture matrix ofig(®) is
M, () = 0 % Mo. 2.71)
7. Let n be a multi-linear mapping:
NeELVixVax - x VW),
where dim(V;) = n;, dim(W) = ng. Given X € V;, we define a mapping
() :L(Vi XX VigW) = L(Vi X -V, X Vi X+ X VisW)
as

l%(n)(Yh >Yk71) = n(Yl7 7Yt—17XaY}7”' akal)a

VY, €V, i<t;Y; €Vigq, i >t. (2.72)

Denote by My and M the structure matrices of 17 and { = iy (1) respectively.
Then

M; :Mn X (In1+...+n171 ®X) (2.73)
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12.

14.

15.
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. Prove the Proposition 2.5.

. Prove Equations (2.49) and (2.49).
10.
11.

Prove Equations (2.56), (2.57), and (2.58).
Let 6 € S be a kth-order permutation. n =ny X --- X ng, n; > 1. Define an n X n

matrix Wy as follows: Label its columns by k indices iy,--- ,i; in the order of
id(iy,- - ,ig;ny, -+ i), and label its rows by k indices ji,- -, ji in the order of
id(jo,,* » joy3Mays -+ Mg, )- Then set its entry at iy - - -ix column and j; - - jx row
as

wi1,~--7ik_ 1; il:j]a"'-,ik:jk
Jadk 0, otherwise.

Call the matrix W, the permutation matrix of .

a. Given column vectors X; € R",i=1,---  k, prove that

WeXi Xk = Xo, - Xop (2.74)
b. Given row vectors @; € R%,i=1,---  k, pfove that

) W= O, - D, . (2.75)
Let 0 = 0;,0;_1---01 € S;,. Then

Wo = Wo,We, | -- Wi (2.76)

Prove it.

. Assume n; =ny = ng=12, o0 =(1,2,3) € 8Ss.

a. Construct the'permutation matrix W.
b. Let 01 = (12), 62 = (13). Then ¢ = 0,06;. Construct the swap matrices W,
and W, . Then check that
Wo = W, W, -

Consider sets of vectors as X; € R", ¥;; € R, Zijx € R*, Wi € R'. Assume
{X;|1 <i< a} are linearly independent, {Y;; |1 <i< a;1 < j < B} are linearly
independent, {Z;jx |1 <i<a;1 < j<B;1 <k <y} are also linearly indepen-
dent. Moreover,

o o Y
Y Y Y Xi¥ZiaWij = 0.
i—1i=1 j=1k=1
Then
Wi =0, 1<i<ol<j<B;1<k<y.
Prove it.

Let X be a square matrix and p(x) a polynomial. Moreover, the polynomial p(x)
is expressed as p(x) = g(x)x+ po.

a. Prove that
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Vi (p(X)) = q(X)V:(X) + poV:(I). (2.77)
b. Give the column stacking form expression of (2.77).

16. Let A <, B. Prove that
rank(AB) < min(¢ x rank(A), rank(B)).
Similarly, let A >; B. Prove that

rank(AB) < min(rank(A),7 x rank(B)).
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