Chapter 1
Multi-dimensional Data

Abstract Roughly speaking, the classical matrix theofysean mainly deal with one-
or two-dimensional data. The main purpose of semi-tensor product'ofmatrices is to
use matrix tools to deal with higher-dimensionaldata. Hence, the multi-dimensional
data become the main objective of this book«This chapter considers how to arrange
a set of higher-dimensional data into a ve¢tor or a matrix. First, the ordered multi-
index is introduced to arrange a set of data‘into &' properly ordered form. Then we
briefly introduce some other matrix preducts, including thé Kronecker Product (also
called the tensor product) of matrices, which is a fundamental tool in this book; the
Hadamard product, which is also used ifi the sequel; etc. Tensor and Nash equilib-
rium are two useful examples for multi-dimensional data. They are introduced in
this chapter and will be.used in the sequel. Symmetric group is another useful tool
and it is also introduced here. Finally, we propose a special matrix, called the swap
matrix. Its certain properties are discussed. It will be used largely to overcome the
non-commutativity of matrix product.

1.1 Multi-dimensional Data

In scientific reseafeh we have to deal with various kinds of data. First, we would like
to clarify what do we mean the dimension of data. A set of data may depend on k
factors. Assume each factor can have n; levels, j = 1,--- k. Then to label a data, we
may need k indices iy, i, - , i, and allow i; runs from 1 to ;. Then we can have a
finiteyset of data as:

D::{di”..,,'k\lgijgnjjzl,---,k}. (11)

Throughout this book only finite sets of data are considered, unless elsewhere stated.
We say that the dimension of D is k, i.e., dim(D) = k. Roughly speaking, the
dimension of a set of data is the number of indices of the data.
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Example 1.1. 1. Consider a vector X € R”. Tt can be expressed as X = (x1,X2, -+ ,X,)7 .

Hence a vector can be considered as a set of one-dimensional data.
2. Consider a matrix A € .#,;x,. It can be expressed as

aiy ap -+ din
A=

aml Am2 *** Amn

Hence in a natural way, a matrix can be considered as a set of two-dimensional
data.

3. Lety = f(x1,x2,-- ,X,) be a function of n variables. To get numetical expre§sion
of f we let x; take values xi1 ,xiz, e ,x?[ . Then we have a set of n-dimensional data
as

Y= {yil,-n,i,, = fOd e X 1< i <mys j=1,74 n}

To arrange a multi-dimensional data, or equivalently, to-decide,the ‘order of a
data, we introduce an ordered multi-index, briefly, multi-index.

Definition 1.1. A set of k-dimensional data (1.1) is¢said to be arranged by the
(ordered) multi-index id(iy,--- ,ix;n1,- - Gmy), if the data are labeled by indices
i,-++,ir, and arranged in the ordemthat dypd , < dyd 4, iff there exists a
1 <r <k, suchthat p; =g;, i < rand p,< gq,.

Example 1.2. Let
D={x 1 <iK2 1<j<3 1<k<4}.
(i) If we arrange it by the multi-index id(i, j, k;2,3,4), we have

[X111,X112,X113,X114,X121,X122,X123,X124,X131 »X132,X133, X134,
X211,X2123%213,X2146 X221, X222, X223, X224, X231 7x232ax233a-x234]'

(ii) If we arrange it by the multi-index id(j,i,k;3,2,4), we have

[x111,x1127x113,x114,x211,xglz,x213,le4,x121 »yX122,X123, X124,
X221 %222,X223,X224,X131,X132,X133,X134, X231 ,)C232,XZ33,)6234].

(iii) If we arrange it by the multi-index id(k, j,i;4,3,2), we have

[xlllalelvxlzl ,X221,X131,X231,X112,X212,X122, X222, X132, X232,
xl137x2]37x123)x2237x1337x2337x114ax2147x1247x2247x134a-x234]'

Assume we have a set of n data, where n = [T*_, n;. Then we can either use a
single index to label the data as

D:[.thz,"',xn], (12)

or use multi-index id(iy,- -+ ,ix;n;, -+ - , 1) to arrange the data as
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D = (X111, X1120 7 5 X Loy s Xy ooy ) (1.3)

Then we need to find formulas to convert the single index to multi-index and vise
versa. In the following we deduce the formulas. For notational ease, we introduce
some notations in the following.

e Leta€Z,beZ;. Asin C-language, the a%b is used for the remaining of a/b.
e Denote by [r] the largest integer, which is less than or equal to 7.

For instance,

100%3 =1, 100%7 =2, (=7)%3=2;

m —2, [-1.25]= 2.

It is easy to see that
a
a= Hbm%b. (1.4)

Next, we give the converting formulasdbetween single index and multi-index of
a set of data. We leave the proves to the readet:

Proposition 1.1. Let D be a set of n = Hle n; data. It'has been labeled by single
index as in (1.2) and by multi-index as in{1.3), An element x € D is labeled by single
index p and multi-index [ - -~ M. That'is, x € Diis expressed as

X=Xp = Xy
Then we have the following converting formulas:

1. Set py.:=p—1,'then (L1, , M) can be calculated inductively by

My = prPomy+ 1,
{  — | Pixt = 1p:%n;+ 1 i—=k—1,---.1 1.5
bj= njyp |’ ‘u']ipfoj ’ J= ) s 1o
2. Conversely, from single index to multi-index we have:
k=1
p= Z(M/’— Dnjpinio---ng+ Uy (1.6)
j=1

The following example shows the conversions.

Example 1.3. A set of data
D= {dladZa' o 7d100}'

1. Given a number p = 35, what is the label of d,, under multi-index id (i1, i2,i3;4,5,5)?
Using (1.5), we have
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p3=p—1=34,

Uz = p3%nz+1=34%5+1=4+1=35,
p2 = [p3/n3] = [34/5] =6,

W =pr%n;+1=6%5+1=1+1=2,
p1=[p2/m]=[6/4] =1,

W =p1%n+1=1%4+1=1+1=2.

Thus the label of p is (2,2,53).

2. Assume the label of d, € D under multi-index id(i1,i2,i3;5,2, 10) is (3,2,8):
What is the single index g?
Using (1.6), we have

g = (1 — Dnanz + (o — Dz + p3 =2-2-10+ 1048 = 58.

1.2 Arrangement of Data

Let D be a k-dimensional data as in (1.1) withwz = Hf:1 n;. Whenk=1,n=n; and
the data can be arranged into a vectof as

Vp = (di,day i, dn) " (1.7)
When k = 2, the data can naturally,be arranged into a matrix as

{du dip -+ dip,
doy dy - doy,

Mp = (1.8)

dnll dn12 dnlnz

Vector and matrix are two major objects for matrix theory or linear algebra.
Roughly speaking, matrix theory is a theory for one- or two-dimensional data. Now
when k¥ >,3, then.what can we do? Let us first consider the case of k = 3. Say, we
have a set of data'D as

D={dijli=1,,pij=1,---,mk=1,-- n}. (1.9)

Then how can we arrange the data? It was proposed by some researchers that the
data are arranged into a cube, which consists of p layers and each layer is an m x n
matrix [1, 7]. Such a compounded matrix is called a cubic matrix (Fig. 1.1). Now a
natural question is: when k£ > 3 what can we do? It seems that this is not a proper
way to arrange the higher-dimensional data.

As we know that a set of higher-dimensional data can easily be stored in a com-
puter memory, where they are not arranged into a cubic or even higher-dimensional
cube. In fact, the data are arranged into a line regardless the dimension of the data.
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dn diz - di

dip1 din 0 diog

dim dim2 T dimn
1

dia1r dr2

do1r dr2 0 din

drm1 A2 e Arann

dpi1  dp12

dp21 dp22 Tt dp2n

|
dpml dme Tt dpmn !

Fig. 1.1 A cubic matrix

Then how the computers to find the hierarchy structure of the data? they use some
marks. Say, in C-language the pointer, pointer to pointer, pointer to pointer to pointer

etc. are used to indicate the ddta structuse.

Motivated by the computer technélogy, we propose to arrange a set of data into
either a vector or a matriX: One may ask that why not just use vector only. It might
be more convenient? In fact, to usetoels developed in matrix theory, both vector

and matrix forms are necessary.

To arrange a set of multi-dimensional data into a vector is rather easy. Formula
(1.6) provides the single index label for each data. We are particularly interested in

arrange the entries of a'matrix into a vector.

Definition 1.2. Consider the matrix Mp in (1.8).

L. Tts row stacking form, denoted by V,.(Mp), is defined as

VV(MD) = (d|17d12a"' adln27d2]ad227"' 7d2n23"'dn117dn127"'

2. Tts¢olumn stacking form, denoted by V,(Mp), is defined as

VC(MD) = (d117d215"' 7dn117d12ad227"' 7dn123"' 5dln27d2n27"'

By definition, it is obvious that for any matrix A

V,(A) =V.(AT); V.(A) =V,(AT).

7dn1n2)T-
(1.10)

7dn1n2)T-
(1.11)

(1.12)
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Next, we consider how to arrange a set of multi-dimensional data into a matrix

form. Let id(iy,- - - ,ix;n1,- - - ,ny) be a multi-index.
{ih"” ’ijp} - {i17"' ’ik}'
Then id (ij, -+ ,ij,;nj,,-+- ,nj,) is called a sub-index of id(i1,- -+ ,ix:n1, -+ k).

Definition 1.3. Let D be a k-dimensional data as in (1.1). Assume there is a partition
of the indices as

{ilai2a"' aik} :{irlairza"' airp}U{iL‘laisz"' 7icq}7

where p > 1, ¢ > 1 and p+ ¢ = k. Then the multi-indexed matrix Mp,corresponding
to this index partition, is defined as follows:

(i) Mp € My, xp,, where n, =17, ny, and ne =[]}, ng,.
(ii) The rows of Mp is labeled by multi-index id (ir1 AN s Uy STy s ,n,],) and
its columns is labeled by multi-index id (ic1 gy eyl s eyt ,ncq).
(iii) the ((a,---,0),(B1,-- ,By))th elementdf Mp is d;, . gawhere i, = o, s =
];"' »P:andicx :ﬁS7S: ], »q.

The set of multi-indexed matricespwhich hdve row and column multi-indexes
as id(i1, i, - ,ipsmi,ma,--- ;mp) and W{iy, i, - ig;misna, - - - ,ny) respectively, is
in A R To emphasize its multi-index structure, it can alternatively be

i= i=
denoted by L///(ml’,,, )% (- s

Example 1.4. Given a4=dimensionalidata
D ={d;jirli=1,2) =12,3k=1,2,3,4,r=1,2}.

1. Partition the index set as {7, j,k,7} = {i, j} U{k, r}, and let the corresponding ma-
trix Mp be row-indexed.bydd(i, j;2,3) and the column-indexed by id(k,r;4,2).
Then we have the matrix as

dun diz dir die diizi disdiag dige
dign1 di212 di221 di222 di231 di232d 1241 di242
di311 diz12 diz21 di32 di3z1 dizzadizar dizg
doi11 da112 dr121 do122 do131 dr13adaiar daian
dx11 daoia daor don dxzi dazadangr daogn
da311 daz1a dazar drzn drazy dazzndazar dazan

Mp € M23)x(42)-

2. Partition the index set as {i, j, k,r} = {i,k} U{j,r}, and let the corresponding ma-
trix Mp be row-indexed by id(i,k;2,4) and the column-indexed by id(j,r;3,2).
Then we have the matrix as
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di111 dinz dioin diziz dian diziz
di121 di122 di221 di222 di321 di3a
di131 di132 d1231 di232 di331 di332
d141 di142 di241 dr242 di3a1 diza2
da111 da112 doo1y do212 daany daziz
dr121 dr122 dao21 doo22 dr3oy dazn
dr131 da132 d231 dr32 dr331 do3zn
| d2141 do142 do2a1 dx42 dp3a1 dozan |

Mp = € Mpayx(32)-

1.3 Matrix Products

In addition to conventional matrix product, there are some othet matrix products.
This section gives a brief survey on their definitions and basic properties without
proves. We refer to many standard references of matrix theory forndetails:

1.3.1 Kronecker Product of Matrices

The Kronecker product of matrices is alse called the tensor product of matrices.
This product is applicable to any two matrices. It will be used from time to time
throughout this book. We refer to [4] for a complete discussion.

Definition 1.4. Let A ={@ijhe M pupand B = [b;;| € .#, 4. The Kronecker product
of A and B is defined as

anbB apB -+ a;B
ayB anB --- ayB
AQB = ( € Mompsng- (1.13)
amB amB -+ amnB
Next, we introduce some basic properties of Kronecker product:

Proposition 1.2. 7. (Associative Law)

A®(BRC)=(A®B)®C. (1.14)

2. (Distributive Law)
(tA+BB)RC=a(ARC)+B(BxC), (1.15)
A®(aB+BC)=a(A®B)+B(A®C), a,BeR. (1.16)

Proposition 1.3. /.

A2B)T =AT 9B, (1.17)
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2. Assume A and B are invertible. Then

(AoB)'=A"'oB L (1.18)

rank(A ® B) = rank(A) rank(B). (1.19)
4. Let A € Myysm and B € My . Then

det(A®B) = (det(A))"(det(B))". (1,20)
tr(A®B) =tr(A) tr(B). (121

The next proposition is very useful.
Proposition 1.4. Let A € M yxn, B € Mpxg, C € Musgnand D € Mys. Then
(A®B)(C® D) = (AC)® (BD). (1.22)
Particularly, we have
A®B=(ARI,){I{®B). (1.23)
The next proposition is about the vector form of matrices.
Proposition 1.5. 1. Let X € R? and ¥ € R" be.two column vectors. Then
Vixy) =y ®X. (1.24)
2. Let A € My p)\B € Mpxq, and C € Myxn. Then

VAABC) = (CT 2 A)V.(B). (1.25)

4:3.2vHadamard Product

Hadamard product of matrices is another useful product in certain problems. It will
also used in the sequel. The reader is referred to [4, 8] for more about it.

Definition 1.5. Let A = [4; j|,B = [b; ;] € Myxn. The Hadamard product of A and
B is defined as

AGOB= [alyjb,"j] € Muxn- (1.26)
Hadamard product has some important properties as

Proposition 1.6. 1. (Commutativity) For any two matrices A,B € My x»n
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A®B=BGA.
2. (Associative Law) Let A,B,C € Myxn. Then
(AOB)©C=A® (BOC).

3. (Distributive Law) Let A,B,C € Myyx,. Then

(aA+PBB)eoC=a(AcC)+B(BC), o,feR.

Proposition 1.7. 1.
AoB)T =AToB".

2. Let A€ MyandE =1,,ie, E=(11--- 1)T. Then

n
A®(EET)=A = (EB") OA.
3. Let X,Y € R" be two column vectors. Then
xxho ) =Xe?)(Xor).

Define
H, = diag(8', ., 87).

Then we have
Proposition 1.8. Let A, B € My, «<n. Then
AGB=H!(A®B)H,.
Proposition 1.9 (Schur’ssTheorem). Let A, B € .#,, be symmetric.

(i) IfA>0and B> 0, then AoB > 0;
(ii)dfA > 0 and B> 0, then Ao B > 0.

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

Proposition 1.10 (Oppenbeim’s Theorem). Let A, B € .#,, be symmetric. IfA >0

and B > 0, then

det(A ®B) > det(A) det(B).

1.3.3 Khatri-Rao Product

We refer to [6] or [8] for details of Khatri-Rao product of matrices.

(1.34)
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Definition 1.6. Let A € .#,,«, and B € .#,,x,. The Khatri-Rao product of A and B
is defined as

AxB = [Col; (A) ® Col (B),Col,(A) ® Coly(B), -+ ,Col,(A) ® Col,(B)]. (1.35)

Proposition 1.11. /. (Associative Law) Let A € Myyxr, B € Myx,, and C € My, .
Then

(AxB)xC=Ax(BxC). (1.36)
2. (Distributive Law) Let A,B € My« and C € My xr. Then

(aA+bB)xC=a(A+xC)+b(B*C), a,beR. (1.37)
C (aA+bB) = a(CxA)+b(C*B), a,beR. (1.38)

The following example is useful in the sequel.

Example 1 .‘5. A matrix A € M, %, is called a logical matrixiif all its columns are of
the form &;,, 1 <i <m. The set of m x r logi€al matrices is denoted by %,
Assume A € %« and B € .%,,. Then

A+BE Lnsr-

Remark 1.1. In addition to conventionalanatrix product, we have introduced Kro-
necker product, Hadamard product, and Khatri=Rao product of matrices. One sees
easily that the associativity and distributivity are two common properties. These
two properties may be‘considered as two fundamental requirements for any matrix
products.

1.4 Tensor

Tensor is a typical multi-linear mapping. This section is a brief introduction. We
refer to [2] for details.

Let V be an n-dimensional vector space with a basis {d,--- ,d,}. Denote by V*
the dual space of V, that is V* is the set of linear functions on V. Let {e;,--- ,e,} C
V.* be a basis of V*, dual to {d,--- ,dy}. That is,

1, i=j
di(d:) =
i) {o, i J.
n
Then X = AZ x;d; € V can be expressed as a column vector X = (xp,--- ,xn)T, and

i=1

n
=Y we; €V*asarow vector ® = (@, ,0).
i—1

=



1.4 Tensor 11
Definition 1.7. 1. Let f: V® — R be an s-linear mapping, and
.f(dflv"' 7diy) = .u'i1i2~-~is7 1 < ip < n, p= 1a' c, 8.

Arrange {lji..i;|1 <ij <mn, j=1,---,s} into a row by using multi-index
id(ijip---is3n, -+ ,n) as

Mp=[Ui11 -+ Wilen = Monen)- (1.39)

My is called the structure matrix of f. By the linearity, it is easy to chieck that for
X, X5 €V

fXi, X)) = Me(X1 ®- - ®X). (1.40)

[ is called a tensor of covariant order s. The set of tensors on V'of .covariantorder
s is denoted by .77~.
2. Let f: (V*)' = R be a t-linear mapping, and

f(ejlv"' vejr):“jljzmj[’ IS jg<n g=k, -t

Arrange {u/1/271|1 < j, <n, g =1,"% 3t} inté a column by using multi-index
1d(]l]2]tan7 ,Yl) as

Mf:[‘ul]ml ull-nn ‘unnn-n}T_ (].4])

M is called the structure matrix of f. By thelinearity, it is easy to check that for
-, 0 € Vv

flor,-50) = (01 - @ @ )My (1.42)

f is called a tensonof contravatiant order ¢. The set of tensors on V of contravari-
ant order 7 is denotediby, 75
3. Let f: V¥ x (V*)! — Rbe an s +t-linear mapping, and

i d e e ) = L2
f(d117 7dlsaejl7 7ejl) = 'uiliz-"is s

Arrange {,uljlllfuj’ﬂ <ip<n,p=1,---.551<j,<n,g=1,-- ,t} into a ma-
triX, whose columns are labeled by multi-index id(ijip - is;n,--- ,n) and rows

are labeled by multi-index id(j; j2- - ji;n,- -+ ,n). Then we have
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Folel 111 11--1 1117
L e B e
Migq Hyred o Hppeq o Haneen
My = (1.43)
11--n ,,11--n 11-n 11--n .
Hipq Hip2 My * Man-n
nn---n nn---n nn---n nn---n
LHIT1 Mt o Byt o Maneen

By the linearity, it is also easy to check that for X;,--- ,X; € V and @, ..# @y V*
f(Xla"' 7X57w17"' 70)!) = (CO] ®®a)t)Mf(X1 ®®XA) (]44)

f is called a tensor of covariant order s and contravariant,order. 2, The set of
tensors on V of covariant order s and contravariant ¢ is denotedyby 7%

In the following we assume contravariant order ¢ =0.
Definition 1.8. A tensor f € .7 is symmetric iffor any i'Z4j

f(Xl,"',Xi,"',Xj"',Xs):f(Xl,"',Xj,"',Xi“',Xs), X, X, €V.
(1.45)

A tensor f € .7 is sky-symmetric if fonany i #

f(le"'7Xi7"'7Xj"'7XS):_f(X17"'an7"' 7Xi"' aXS)v Xla"'aXSGV'
(1.46)

From high scheal algebra weknow that in R? two products were defined: (i)
inner product; (i) eross product. Fix a basis {i,j,k} asi= (1,0,0)7, j = (0,1,0)7,
and k = (0,0,1)7. Let X.= (xy¢%>,x3)7 and Y = (y1,y2,y3)7. The inner product is
defined as

(X,Y) :=x1y1 +x2y2 + x3y3. (1.47)
The cross product, denoted by %, is defined as

ijk
X X Y =det [x1 x2 x3
y1Y2)y3

Example 1.6. 1. The inner product on R? is a tensor of covariant order » = 2. It is
symmetric. (This result is also true for R".)
2. LetX.,Y,Z € R3.
vi=(X,Y X.Z).
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We leave to the reader to check that v is a tensor of covariant order r = 3. It is
sky-symmetric. In fact, v is the volume of the parallelepiped (as X,Y,Z satisfy
the right hand rule, otherwise, it is the negative volume).

1.5 Nash Equilibrium

This section gives a very limited introduction to game theory, including@ strategic
form and Nash equilibrium. We refer to [3] for details.

Assume a game has n players, denoted by Py,-- -, P,, and each player P; canshave
n; > 0 possible actions, called his strategies, denoted by {s%,s%, - ,s;j}. Let

AT N S WY (1°48)

be the payoff of the ith player, which means what the playeri-obtains,{from the game
when P; takes his strategy s,’(f, j=1,--- n. For.compactness, denote by

i . i1 2 . . ;
H”(l7k2""akn ':fl(skpskz’“' ’szn)’ 1 = 1’ NN k] — 17 7nj’ ]= 1’ .
(1.49)

It is reasonable to assume that each player is pursuing his maximum payoff.

Definition 1.9. A set of stratégies {s. &2 --- s} is called a Nash equilibrium, if

14 90%
ir 1 2 i n A ) i n i
> v 1 1.50
SH(su, 85y o8k, a8 2 fse88, < 80 8T, syi=1,---,n.  (1.50)

Nash equilibrium is extremelyimportant because once it is reached, each player
intends to stick onthis strategy forever.

Now let us see how'to find theNash equilibrium. The following procedure comes
from definition directly. Féreach i we can put the data

Di = {1ty b | Ky =1, njs j= 1, n}

into a matrix M;gwhich has id(k;;n;) as its row index and use all other indexes to
label columns, that is, id(ky, -« ,ki—1,kit 1, yKknsR1y - i1, R 1, Ay ) s used
as its column index. Then for each column of M; we can find at least one n-index
(ki,--- k&), which corresponds to the largest value of u'. Denote by K; the set of
n-indexed found from each columns of M;. Then

EN = ﬂ;-?le,'

is the set of Nash equilibriums.
We give some examples to depict this.

Example 1.7. Two suspects are arrested by the police. The police have insufficient
evidence for a conviction, and, having separated the prisoners, visit each of them
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to offer the same deal. If one testifies for the prosecution against the other (defects)
and the other remains silent (cooperates), the defector goes free and the silent ac-
complice receives the full 10-year sentence. If both remain silent, both prisoners are
sentenced to only 1 year in jail for a minor charge. If each betrays the other, each re-
ceives a 5-year sentence. Each prisoner must choose to betray the other or to remain
silent. Each one is assured that the other would not know about the betrayal before
the end of the investigation. How should the prisoners act?
The payoff bi-matrix is given in Table 1.1.

Table 1.1 Payoff of Prisoner’s Dilemma
P\P| C D
C |-1 —1]-100
D |0 —10|-5 -5

Now we have M; and M, as

—1—-10 —1~10

where the underline elements are the column maximal eléments.
Note that in M, the row index is k; and the columi index is k, while in M, the
row index is k> and the columnyindex is'k7, hence we have the K; set as

Ki=f{@21),22} K={(12)22)}
It follows that the set of Nash equilibriumi(s) is
Ey =K1 NK> ={(2,2)},
which means (D, D) is the'only Nash equilibrium.

Example 1.8. Assume a game has three players. Their strategies are: S| = {3% , sé, s% 1,
8y = {58552}, S3 = {s3,53}. And the payoffs are shown in Table 1.2.

Table 1.2 Payoffs

P 57 s%

P\P3 53 53 57 5

st |3 1 2|-12 1|2-13[2 0 -1
ss |2 2 of1t —-12]1 1 2]0 1 2
st |13 —1f[-2 1 —1]0 2 —1]2 4 3

Then we have M;,i =1,2,3 as
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Note the in M; the row index is k; and the column index is Id(kp,k3;2,2), it
follows that

K ={(1,1,1),(2,1,2),(1,2,1),(1,2,2),(3,2,2)}.
In M, the row index is k» and the column index is Id(k;,k3;3,2), it follows that
K, ={(1,1,1),(1,1,2),(2,1,1),(2,2,2),(3,1,1),(3,2,2) }.
In M3 the row index is k3 and the column index is Id (ki , k»; 3,2)3hence
Ky ={(1,1,1),(1,2,1),(2,1,2),(2,2,1),(2,2,2),(3.1,2),(3,2,2) }.
Therefore,

Exn=KiNK)NK; = {(], I, 1),(372,2)}.

That is, (s1,s7,s7) and (s},53,s3) are twoNash equilibriums.

1.6 Symmetric Group

Let S ={1,2,---,k}. Apermutation ¢ on S is a one-to-one mapping from S onto S.
All the permutations‘on S with the product as the combination of two permutations
as their product form a group called the symmetric group on k letters, or kth order
symmetric group, denoted by Sy [3].
We use some numerical examples to depict it. For instance, let k =5. A 6 € S5
may be expressed as
12345

o= ({4444
25143

Let another,permutation T € Ss5 be expressed as

345
P
412

Q
Il
N =
W 4 N

The product on Ss is defined as
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12345
1444 12345
o= 25143 =(1101]

il 32514
32514

An alternative expression of an element in Sy is expressing it as a product of cy-
cles. For instance, we can express 6 = (1253),7=(15234),and 76 = (1354).

Let
123456

p=4+ddddd [ €8s
214563

Then it can be expressed as 4 = (12)(3456).
It is easy to check that the cardinal number |S;| = k!.
A cycle of two elements, such as (a,b) € S, is called,a transposition.

Proposition 1.12. Every permutation can be expressed asya product of transposi-
tions.

Proof. We have only to prove that eachcycle can be expressed as a product of
transpositions. Assume the length ofsa cycle is‘1: we have (r1) = (r1 r2)(r2 r1).
Assume the length of a cycle is greater, than Iy thendwe have (r; ry -+ ry) =
(r1 7e)(r1 ri—1) -+ (r1 12). ad

Note that a permutation ¢ can,have different products of transpositions, but the
number of transpositionstean either,be even or odd, but not both [5]. When the
number of the transpositions is even we,say sgn(c) = 1, otherwise, sgn(c) = —1.

For a ¢ € S; define a matrix M as

Mg =8lo(1)6(2) - o(k)].

Then My can realize the permutation as

Moreover,
sgn(o) = det(My). (1.51)

Note that sometimes to label a set of data the index order and the index arrange
order do not coincide. Say the data are labeled by multi-index (ij,--- i) and the
multi-index may be ordered by id (i1, »ig(k):a(1):** »a(k))- See the follow-
ing example.

Example 1.9. Consider a set of data

D ={dj, iy |11 = 1,2;i2 = 1,2,35i3 = 1,2,3}.
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Let 0 = (1,3,2) € S3. Assume D is required to be arranged in the order of
id(ic(l),i6(2)7i6(3);n6(1),n6(2)7n6(3)). Since (1) =3, 0(2) =1, and 6(3) =2, the
data are arranged in the order of id(i3, i1, i2;3,2,3). Hence we have

din di21 diz1 dony dyoy dazi diin dino dix
do12 dyo dr3y dii3 dioz di3z doiz dyoz do3s

1.7 Swap Matrix

In this section we define a special matrix, called the swap matrix. It is very useful in
overcoming the non-commutativity of the matrix product. Swap matrix, was firstly
introduced in [4], where it is called commutation matrix.

Definition 1.10. A swap matrix W, , € #unxmn 15 constructed in the following
way:

Step 1. Label its columns by index (i, j) infthe order of id(#}/;m,n) and its rows
by index (/,J) in the order of id(J, I; n ).

Step 2. The entry at row (/,J) and column i, j)sdenoted byw ; /) (
as

i.j)» 1s assigned

1 . = i’ and J = j
(I, J) {(), otherwise. ( )

We give some examples to depict swap matrices.

Example 1.10. 1. Consider W) 51 Labeling its columns by (i, ) in the order of
id(i, j;2,3) and'its rows by (Z,J) in the order of id(/,I;3,2). Then the swap ma-
trix can be constructed as

(11) (12) (13) (21) (22) (23)
1 00 00 0] (11)
0 00 1 0 0f (21)
Weo— |0 10 00 0 (12).
23~ 1o 00 0 1 0O (22
0 01 00 0f (13)
0 00 00 1| (23

2. Consider W3 5. Labeling its columns by (i, j) in the order of id(i, j;3,2) and

)

its rows by (7,J) in the order of id(J/,1;2,3). Then the swap matrix can be con-
structed as
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(11) (12) (21) (22) (31) (32)

Wi =

SO OO -

0
0
0
1
0

—_ o O O O

0 0
1 0
0 0
0 0
0 0
0 1

)

0

According to the construction of the swap matrix, the following two propositions
are immediate consequences.

Proposition 1.13. Let A € .#,,x,. Then

)
)

Wi Ve(A) = Ve(A); Wiy Ve(A) = Vi (4D, (1.53)
Proposition 1.14. /. Let X € R" and Y € R" be two column vectors. Then
Wi (X 2Y) =Y R X. (1.54)
2. Let @ € R™ and u € R" be two row vectors. Then
(0 L)Wy mh= U . (1.55)

This proposition has an equivalent statement.

Corollary 1.1. Let D = {x;j |i=1,--- ,ni, j=31,-- - ju} be a set of data. X is a col-
umn vector of the elements of B, labeled by (iyj) and arranged in the order of
id(i, j;m,n), and Y is a.column vector of the elements of D, labeled by (i, j) and
arranged in the ordef of 1d(j,i;n,m). Then

WX =Y; WymY =X. (1.56)

Swap matrix has seme special properties, which follow from its definition imme-
diately.

Proposition 1.15. 1. A swap matrix is an orthogonal matrix. It satisfies

Wi = Wi = Winm)- (1.57)
2. When m = n, (1.55) becomes
Wil = W) = Wi (1.58)
3.
Wit = Win1) = In- (1.59)

m = n is a particularly useful in the sequel. To simplify the notation, we define

W[n] = W[n,n] .
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Exercise 1

—_

Prove the formulas (1.5) and (1.6).

. A k-dimensional data D as in (1.1). Assume there is a partition of the indices as

{i17i27”' 7ik} :{ii’17ir2a"' 7ir[;}U{iC|7i627'” 7ic‘q}7

such that Mp is row-indexed by id (i,] Y PTEEEIN PY PN R ,n,p) and column-
indexed by id (ic; ,icy, -+ ey Meys ey 11y ) -

Find the pth element in V,(Mp) and the pth element in V,.(Mp).

Let Z € £,k Show that there exist unique X € %, and Y €%, such that
Z is the Khatri-Rao product of X and Y. That is,

Z=XxY.

. Let & be an eigenvector of A with respect to the eigenvalue Angye(4),and 1 be

an eigenvector of B with respect to the eigenydlue u €' 6(B). Prove that £ ® 7 is
an eigenvector of AB with respect to the eigenvalue Ay € 6(AB).

Check the v defined in Example 1.6 is afsky-symmietric tensor of covariant order
r=23.

. Consider the game illustrated in Table 1.3.

Table 1.3 Payoffs

P; A B

PP, L R L R
U |0 0 10-5=5>0|-2-20(|-5-50
D |-5-50|1 1 —-5|-5-501(-1-15

a. Find Nash equilibrium of this game.
b. If Player 1 and Player 2 form a coalition, the coalition’s payoff is the sum of
their payoffs, then, do the Nash equilibriums found in a remain equilibriums?

. Prove Spis a group.
. A setof data D is arranged by id (i1, - - ,ix;n1,- - - ,ng ), and under this order a data

d, € D'is the pth element. o € Sy is a known permutation. Find the multi-index
of dg'in the order of id(ig (1), ,i(0(k))sn1,- - ,mg).

. Let'V be an n-dimensional vector space with a basis {d,,-- ,d,}, which has

dual basis {ej,---,e,}. Consider a tensor @ € T, (V). The structure matrix of ®
under these bases is M,. Let {0?17 ‘e ,Jn} be another basis of V, with dual bases
{é1,++,é,}. Moreover,

di di

d, d,
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Find the structure matrix of @ under new bases.
10. Proof the following two alternative expressions of the swap matrix.

In®(8,)"
L2 (83T
Wi = . (1.60)
I (8)"
Wi = [l @83 [0 85 -+ Ly 8] (1.61)
11. LetX € R™, Y € R", Z € R? be columns. Prove the following equations:
YRXRQRZ= Wy ®I)XQYRZ. (1.62)
XRZQY = (In@ W, ) X QY QZ. (1163)

ZRY QX = (Winp) @ In) (I @ Wi ) (Win g Blp) X 2Y D2, (1.64)
12. Let A € Myxn. Prove the following equations.

Ve (AT ) = W[n,m] Ve (A) o
Vr (AT) = W[m,mn] Vr (A) .
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