Final Examination

Semi-tensor Product of Matrices and Its Applications
 Graduate Course, Shandong University, 2010-2011
 Lecturer: Daizhan Cheng

1. (20%) Let $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)^{T} \in \mathbb{R}^{3}$ be vector of angular velocities of a solid body. Then the matrix

$$
\omega^{\times}:=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

plays an important role in investigating the rotation of a solid body.
(i) Find a matrix M_{ω} such that

$$
\omega^{\times}=M_{\omega} \omega
$$

(ii) Find a matrix $M_{\omega^{2}}$ such that

$$
\left[\omega^{\times}\right]^{2}=M_{\omega^{2}} \omega^{2}
$$

2. (20\%) Given a logical matrix $Z \in \mathcal{L}_{m n \times k}$. Show that there exist unique $X \in \mathcal{L}_{m \times k}$ and unique $X \in \mathcal{L}_{n \times k}$ such that $Z=X * Y$, (where $*$ is the Khatri-Rao Product).
3. (20%) Similar to cross product on \mathbb{R}^{3}, we intend to define a cross product on \mathbb{R}^{4}, satisfying
(i)

$$
\begin{equation*}
\delta_{4}^{1} \times_{c} \delta_{4}^{2}=\delta_{4}^{3} \tag{1}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\delta_{4}^{2} \times_{c} \delta_{4}^{3}=\delta_{4}^{4} \tag{2}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\delta_{4}^{3} \times_{c} \delta_{4}^{4}=\delta_{4}^{1} \tag{3}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
\delta_{4}^{4} \times_{c} \delta_{4}^{1}=\delta_{4}^{2} \tag{4}
\end{equation*}
$$

(a) Is there a skew-symmetric algebra, which satisfies (1)-4]? If so give an example. If not explain why?
(b) Is there a Lie algebra, which satisfies (1)-4)? If so give an example. If not explain why?
4. (20\%) Consider a Boolean network

$$
\left\{\begin{array}{l}
A(t+1)=B(t) \vee C(t) \\
B(t+1)=C(t) \\
C(t+1)=A(t) \leftrightarrow B(t)
\end{array}\right.
$$

(a) Find its fixed point(s).
(b) Find its cycle(s).
5. (20\%) Consider a Boolean control network

$$
\left\{\begin{array}{l}
A(t+1)=\neg B(t) \wedge u(t) \\
B(t+1)=C(t) \vee A(t) \\
C(t+1)=u(t) \rightarrow A(t)
\end{array}\right.
$$

(a) Find the reachable set of point $(1,1,1)$.
(b) Is this system controllable? Is it controllable at any point?

