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1 Introduction

A class of flexible translating elements including textile fi-
bers, magnetic tapes, transmission belts, band saws, and tram-
way cables is commonly modeled as an axially moving string
(Wickert and Mote, 1988). The model of a constrained translat-
ing string can also describe a bandsaw passing over a guide
bearing and a magnetic tape traveling over a read-write head.
Perkins (1990) analyzed the natural frequencies and modes
of a string translating across a discrete, and uniform, elastic
foundation. By transfer function formulation, Yang (1992) pre-
sented an eigenvalue inclusion principle for the translating
string under nondissipative, pointwise constraints. Character-
ized by multiple wave scattering, the transient response of con-
strained translating strings under arbitrary disturbances was de-
termined by Zhu and Mote (1995).

Control of vibration of the translating string by a point force
applied in the domain requires the dimensionless location of it
to be an irrational number ( Yang and Mote, 1991b). A criterion
for design of a stabilizing controller that ensures that all closed-
loop eigenvalues lie in the left half-plane was given by Yang
and Mote (1991a). The distances of the eigenvalues of the
controlled continuous system from the imaginary axis, espe-
cially the infinite number of high modes, have not been investi-
gated.

In the present study, a new spectral analysis for the con-
strained translating string is developed. The constraint, repre-
sented by mass m, stiffness k, and damping c, is located at an
arbitrary position d along the span. The asymptotic locations of
all eigenvalues are determined from the characteristic Eq. (23)
through the use of the Rouché’s Theorem. When m = 0 all
eigenvalues of large modulus approach the imaginary axis.
When m = 0 and ¢ # 0, all eigenvalues remain in the left
half-plane if d is irrational. However, an infinite number of
eigenvalues approach the imaginary axis. Hence the system is
not exponentially stable in any case. The methodology is appli-
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nal number. It is shown that although all eigenvalues have strictly negative real parts,
an infinite number of them approach the imaginary axis. The analytical predictions for
the distribution of eigenvalues are validated by numerical analyses.

cable to predicting the closed-loop eigenvalues for the controller
designs in Yang and Mote (1991a).

2 Model and Eigenvalue Problem

As shown schematically in Fig. 1, a string of tension P and
mass per unit length p is traveling at a subcritical speed V (V
< yP/p) between two supports separated by L. A flexible
constraint with mass M, stiffness K, and damping constant C
is located at a distance D (0 < D < L) from the left end. The
interaction force between the string and constraint is R(7). The
string is subjected to gravitational force pg and a distributed
external force F(X, T). The transverse displacements of the
string and the mass M, relative to the horizontal X-axis, are
U(X, T) and Z(T), respectively.

The string transverse displacement U(X, T') is small and
planar. The friction force between the string and the constraint
is negligible compared to the tension. Introduce the following
dimensionless variables:

x=X/L u=UIL z=2Z/L d=DI/L
v=V(p/PY'"? t=T(PlpL*)'"

m=M/pL k=KL/IP c= Ci(Pp)'?
w = pglL/P f=FLIP

r=R/P. (H

The equation governing transverse motion of the translating
string is

(X, 1) + 2 (x, 1) + (02 = Dug(x, 1)
=r(1)6(x —d) + f(x,t) —w
with the boundary conditions

u(0, 1) = u(l,t) = 0.

(2)

(3)
The equation of motion for the flexible constraint is ’
—r(t) + k[zo + 2* — z2()] — c2(t) — mw = mZ(t) (4)

where z(t) = u(d, 1), z* is the equilibrium displacement of
the constraint mass to be determined, and z, is the compression
of the spring at equilibrium.

The equilibrium displacement of the string u#*(x) and static
preload r* are derived from the equilibrium balance following

(2)-(4):
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Fig. 1 Schematic of a constrained translating string

W~ Dukx) =r¥é(x — d) + f*x) —w (5)
u*(0) =u*(1)=0 (6)
r¥ =kzo — mw z* = u*(d) (7

where f *#(x) is the equilibrium component of f( x, ). Substitu-
tion of u(x, t) = u*(x) + d(x, 1), z(2) = z* + £(2), r(#) =
r¥ 4+ F(t), and f(x,t) = f¥x) + f(x, t)into (2)—(4), and
use of (5)—(6), yield the equations describing small amplitude
motions of the string and constraint around the equilibrium:

IZ,;(X, t) + 2vl’7x1(-xv t) + (U2 - l)ﬁxx(xs t)

=K 0)6(x ~d) + f(x, 1) (8)
40, ) =a(l, ) =0 9)
F(t) = —kz(t) — cZ(t) — mZ(t), () =a(d,t). (10)

The natural frequencies and vibration modes of the con-
strained translating string around its equilibrium are derived
from (8)-(10). By setting f(x, ) = 0 in (8), assuming a
separable solution
Ulx)e, 0<x<d

dlx, t) = Ux)eM = {Ug(x)e“,

(1)
d<x<1 =

where U(x) and \ are, in general, complex, and substituting
(11) into (8)—(10), yields

N2 (x) + 200U (x) + (v* — DU(x) = 0,
O0<x<d (12a)
NUs(x) + 20NUS(x) + (v> — 1)U4(x) = 0,

, d<x<1 (12b)
U0)=0 U(1)=0 (13)

Because u(x, t) is continuous at x = d, we have
Ui(d) = Uy(d) (14)

By (11) u,(x, t) and u,(x, t) are also continuous at x = d.
Integration of (8) from x = d~ to x = d* and use of (10)—
(11) gives
(v* ~ DU(d) — Ui(d)]

+ [mA* + o\ + k]U(d) = 0. (15)

The eigenvalue problem (12a) — (15) leads to the characteris-
tic equation

(mA2 + ¢\ + k) sinh _ sinh ML= f)
1 —v 1 -
Y
+)\s1nh1“ - =0 (16)
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whose roots are the complex eigenvalues A = y + wi, where
wand w are real and i = /— 1. They appear in complex conjugate
pairs, Ay, = w, = wyi (1 =1, 2,3, ...), where the positive w,,
arranged in ascending order of magnitude, gives the sequence of
the dimensionless natural frequencies of the system. Temporal
variation of the vibration amplitude for mode » is described by
1y, Whose positive and negative values indicate the rate of
amplitude growth and decay, respectively. For ¢ = 0, eigenval-
ues are imaginary and (16) reduces to
wd . w(l —d)
n

k — mw?) sin si
( ) 1~ v? 1 —v?

;=0 (17)

. w
+Ws1nl =0,

The special case of m = 0 in (17) returns the characteristic
equation for a translating string guided by a single spring (Per-
kins, 1990). If in addition, £ = O in (17), the positive roots of
(17) recover the natural frequencies of the classical moving
threadline, w, = an(l —v®) (n =1, 2, 3, ...) (Sack, 1954).
The complex eigenfunction U, (x) corresponding to the com-
plex eigenvalue A, is obtained from (12a)—(15) as follows:

Uy(x) = M=) — =M g =y < g (18a)
N,
sinh ——
U x) = —e ™0~ =~
oM —d
sinh M= d)

— —u2)y "
X (e)\,,x/(l v) e2)\,,/(1 v )e )\,,,\/(l—w))’ d < x < 1 (1819)

Hence, the general solution #(x, t) describing free response can
be obtained by superposition of the separable form (11) for
each eigensolution {A,, U,(x)} so determined:

A(x, 1) = X (AU (x)e™ + AU_,(x)e")
n=1
where the eigenfunction associated with the eigenvalue A, =
N\, is U_,(x) = U,(x) by (18a, b), with the overbar denoting
complex conjugation. Because #(x, ¢) is real, A_, = A, with
A, determined from initial conditions.

(19)

3 Spectral Analysis

The solutions to (16) are symmetric with respect to the center
of the string d = 4. For ¢ # 0 and subcritical transport speed v
< 1, Re A = y = 0. The system is asymptotically stable, i.e.,
U, < 0 for all n € N, only when d is irrational. This can be
shown by substituting A = wi into (16) to give
(k — mw?) sin lwd sin w(l g) + w sin .

- ? 1 -~

Wdzsinw(l—;j)=0.
- v 1 -v

— p?

+ ic w sin (20)

Separating the real and imaginary parts, we obtain for ¢ # 0O:
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w . wd
sm1~v2=sm —v2:0 or
. 1-d
sin 5 fvz = sin wi -U2)=O. 21

Hence p = 0 if and only if d = p/g, where p, g € Nand 0 <
p = gq. For p = 0 and p = g the constraint location coincides
with one or the other support. The other discrete locations d =
plgwithp=1,2,..., g — 1 give the ¢ — 1 nodal points of
mode g of the classical moving threadline. To provide damping
to all the vibration modes, d # p/g for all g and 0 < p < g in
agreement with Yang and Mote (1991b). For a rational d = p/
g with p and g co-prime, the imaginary eigenvalues are ngw(1
—vHi(n=1,2,3,..)by(21).
Introduction of the new variables

N* =

m* = m _<
I -2 2 2

B k
T 201 = vd)

*

(22)

into (16) and deletion of the asterisks in the notation yields
(mAZ + C)\ + k)[eh _ e(l—-211)>\ __ e-—(172d))\ + e*)\]
+ Mer~-e M =0, (23)

3.1 Spectrum for d = ;. When d = 3 two branches of

the solution to (23) result:
v MAHeN+ k=)
MmN+ eN+ k+ N

et =1, (24a, b)
The eigenvalues of the first branch, \, = 2a(1 — v?)i (n = 1,
2,3,...) by (22) and (24a), are the even-numbered modes of
a classical moving threadline. The eigenvalues of the second
branch are obtained from (244) for the following cases:

Case I: m # 0. Equation (24b) is written in the form
A 2 1 -2
et~ 14+ ——+4+ O(Ar = 0. (25)
m\
The zeros of e* = 1 are o, = 2ami (n = 1,2, 3, ...). The

zeros of (25) for N\ of large modulus are asymptotic to o,
following the theorem of Rouché (Carrier et al., 1983):

Rouché’s Theorem: Let f(z) and g(z) be analytic inside
and on C, with [ g(z)| < |f(z)| on C. Then f(z) and f(z) +
g(z) have the same number of zeros inside C.

In the present case, let f(A) = e* — 1 and g(\) = (2/m)(1/
A) + O(IN| 7). A disk C, centered at o, is defined: \ = o, +
(e/|a,])e?, where 0 < 6 = 2x. On C,, we have

lf()\)l — |e(E/I0n“3'8 _ ll _ _lf_leiﬁ + 0(|0_"I~-2)

==+ 0(jo, ™ (26)

la]
where the Taylor expansion has been used in (26). Because
|)\| = |Unl - (€/|0n|), we have

1 1

€

lo| -
|o,]

Take ¢ > 0, such that
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2 1 €
_———.<—_
m

. (28)
€ |U"|

lo,] —
lo,]

That is, (2/m)|o,| < €|o,| — €*/|o,|. So if € > 2/m, there
exists N > 0, such that for n = N, (28) is satisfied. Hence by
(27), (2/m)/(1/|\]) < €/|o,|. Take Ny = N, such that for n

= N,
21
e = ‘—— + ()
mA
2 1 _
=—=—+ O(NH < |FOV] (29)
m |\|

on C,. By Rouché’s Theorem, there exists one solution A, to
(25) inside C, for n = Ny, i.e., [N, — 0,| < €/|o,|. Hence by
returning to the former variables in (22), the eigenvalues of
the second branch are

A= (1 —vHo, + O<-1—> =2nm(l —v¥)i+ 0<l> . (30)
n n

Each eigenvalue \, of the second branch in (30) is asymptotic
to one on the first branch, 2nm(1 — v?)i, Hence eigenvalues
of high modes exist in closely located pairs near the imaginary
axis. They are independent of the constraint parameters, m, c,
and k, to the first order.

Case II: m = 0 and ¢ # 1. Equation (24b) becomes

e}‘=c_1+ 2k 1 . (31)
c+1 1+c(l+cN+k

The solutions to e* = (¢ — 1)/(¢ + 1) are

-1
=In = & onmi, for ¢ > 1 (32a)
c+1
on=In—S 4 2n - 1ymi, for c<1 (32b)
c
forn = 1, 2,3, .... Hence by (22) the exact eigenvalues of

the second branch for &k = 0 are A, = (1 — v¥)g,. By use of
the Rouché’s Theorem and (22) similar to Case I, the eigenval-
ues of the second branch for k + 0 are

)\,,=(1—v2)lnc—2+2n7r(l—vz)i+0<—1—>,
c+ 2 n
for ¢> 2, (33a)
2—c

M= (1 —-v*1In +(2n—1)7r(1—v2)i+0<l),
2+c n

for ¢ < 2. (33b)

They are independent of k to the first order. In either case p,
=Re\, = (1 = 1) 1In [(2 — )/ (2 + ¢)| + O(1/n). Hence
the decay rates for high modes are nearly constant.

Case lIl: m = 0 and ¢ = 1. Equation (24b) reduces to

(2N + k)e* =k (34)

and k =+ 0, e®* = k/|2\ + k|. Hence Re\ = In (k/[2\ + k),
and u = ReN > — as |\| » «. Reducing & increases the
damping rates for all the modes on the second branch. Rex —
—o in (34) yields 2Ae* = k. Hence (34) is asymptotic to
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k

Re\ + In |A] =ln5. (35)

The asymptotic locations of the eigenvalues of (35) can be
obtained. Let A = |\]| e,

cos0=Be—)\=L nk—l—n—l—MﬂO, as  |A| = . (36)
INDOINM 2 N
Hence 0 — (w/2) as || = «. Also,
. N )
e;[mx - _k_efRe)\ — _|_|: e‘xﬁ‘ (37)

PAN A

Hence by (22), (35), and (37) the asymptotic eigenvalues of
the second branch are given by

w, = Im\, = (1 — v2)<2n7r - g) (38a)

, k
e = Reh, = (1 —v )ln4————~(l 5
—(1 -} <2n7r - g-) . (38h)

By (38a) w, is independent of k to the first order.

For k = 0 there are no finite solutions to ¢* = 0. Hence there
are no eigenvalues corresponding to (34). ReA = — in this
case implies that all the modes of the second branch are com-
pletely dissipated by damping after a finite time.

3.2 Spectrum for m + 0 and arbitraryd. Equation (23)
is written in the form

Ae? — 1)
mA + Ntk

23 2d\

e p2h _ p2-dN 4 | = (39)

If Reh = —c0 as |A| = o, (39) yields a contradiction, 1 = 0.
Hence there exists A > 0, such that —A < Rek = 0. Therefore
e* and e " are bounded. As |A] = ®, we have from (23):

(ed/\ _ e*d)\)(e(l—d)x - e*(l—d))\)

__M——)O

40
mA?+ ot k (40)

Hence either e*™ = 1 or ¢*'"* = 1 as |\| = &, In either
case Reh — 0 as {\| — . For irrational d, though Re\, < 0
for all n, all eigenvalues approach the imaginary axis as |\| —
o, Hence the system is asymptotically, but not exponentially,

stable.
Determination of Eigenvalues. By (23) we have

1

(eZLD\ _ ])(62(1~d))\ _ 1) 4 (82)\ _ 1)
mA
+ O(|A72) = 0. (41)
Let f(A) = (2™ — 1)(e2** — 1) and g(N) = (1/m\)(e®

— 1) + O(|\| ?). The roots of ¢*™* = 1 are o, = nmil/d. Define
C, around o,: A = g, + (¢/|o,|)e?, where 0 = 8 = 2. For
any A on C,, using the Taylor expansion we have

L2 — 1| = |e2d(/lonbe” _ ¢
6 —
=247 5+ 0(al™) (42)
n
p21I=dr _ 1| - |e(ZIm/d)ieZ(l——tl)(5/|g-,,|)g"ﬁ _ 1|

— |e(2n7r/d)i -

1| + 0(lea|™)
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le? — 1] = [e®™O7 — 1| + O(lo,|™"). (43)
Hence on C,, '
IFOO] = 2™ — 1fe2 " — 1]
= 2d —— | @™ — 1] + O(lo,| )
IU"
1 1 (2nm/d)i —2
lgM)| == le® =1 + 0(o,™®. (44)
m |a,|
For irrational d, | ¢®™/®" — 1| # 0. For rational d = p/q, with
(2nmid)i _

p and g co-prime, |e 1| = 0 only when p divides n.
In this case (43) and (44) become

e gy = 22D 6,13
{o,]
2¢e B
le™ — 1] = 2+ 0(lou| ) (45)
[o,]
_ 2
ool =240 =D b4,
[o,]
2e 3
e = —=— + 0(lou| ™). (46)
o]

Choose ¢ > 1/[2d(1 — d)m], then for either (44) or (46)
there exists N > 0 such that when n = N, [ g(\)| < |f(M)]
on C,. By Rouché’s Theorem, there is one solution \, to (41)
inside C, forn = N, i.e., |\, — 0, < €/|0,|. Hence by (22)
one branch of eigenvalues is

N o= 21— )i+ 0<1> . (47a)
d n

Similarly the roots of e?'"** — 1 = 0 are 0, = nmwi/(1 —

d). Following the same analysis, the other branch of eigenvalues
is

nT o 1
1_d(l v)t+0<n>. (47b)

For d = 3 the two branches of eigenvalues are both of the form
2nm(l — v?)i + O(1/n), consistent with Section 3.1.

3.3 Spectrum for m = 0 and Arbitrary d. Because of
symmetry of the spectrum with respect to d = 3, we consider
d < §. Because A = 0 is not an eigenvalue, (23) becomes

c+1+k e — c+l<- e*mdn
A A
—<c+ﬁ>e2‘”‘+c~l+kzo. (48)
A A

For ¢ # 1 the roots of (48) of large modulus are asymptotic to
those of the characteristic equation corresponding to k = 0
(Bellman and Cooke, 1963):

(c + e — ce® " r —ce? 4 ¢ —1=0. (49)
For ¢ = 1 and k = 0 (48) is written as
2N _ 20128 _
+ _/f [e—2d>\ + 2= 201720 _ 11=0. (50)

A
For ¢ = | and k = 0 (48) becomes
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262)\ — 62(l~d))\ + eZd)\ (51)

If ReA > —o as |\| = o, (48) implies ¢ = 1. For ¢ = 1
and k =_O, we have by (51)

2 _ eZ(d—l)}\(l + e2(l—2(l))\) (52)

Rel = —x in (52) leads to a contradiction, 2 = o, Hence there
exists A > 0, such that —A < Rex < 0. Forc =1 and k # 0,
ReAx — — in (50) yields 1 = ke 2"*/\. Hence, ¢ 2% =
[N|/k. A branch of eigenvalues of (50) of large modulus is
asymptotic to

Re)\+—~l 7\=—lk 53
24 n |\ 2g (53)
which is similar in form to (35) for the case d = }. Let A =
[\|e?, we have
cosg _RA__ LW 1wk
[N 2d N 2d |\
as |A| > . (54)
Hence # = w/2 as |\| — . Further,
e*iZdlm)\ — é eZ(IRe)\ — l - eiH. (55)
k IN

Hence by (22) and (53)—(55) the asymptotic locations of the
eigenvalues on (53) are

2
w, = Im\, = 1 —v 2nm — T
2d 2

(56a)

Hn = Re)\n

1 —v? k 1
In —In—
2d 2(1 — v?) 2d

o —%H . (56b)

All other branches of eigenvalues of (50) must satisfy —A <
ReM = O for some constant A > 0. They are determined next.

Case I: Rational d. Let d = p/q with p and ¢ co-prime,
and 2p < g. Equations (49) and (51) reduce, respectively, to
the polynomial equations

(c+ 1Dz —¢cz? —czP+¢c—1=0

279 — 74P — 2P = ()

(57)
(58)

where z = ¢¥?*, Because there are no finite solutions for A

corresponding to the root z = 0, (58) reduces to

27977 — ¥ — 1 =0, (59)

There are at most g and ¢ — p distinct roots for (57) and (59)
respectively. By (22) the branch of eigenvalues corresponding
to the root z; of (57) or (59) is

A, = g (1 = v)[In |z| + i(arg 7 + 27n)],

n=1273,.... (60)

Each branch of eigenvalues in (60) lies on a straight line parallel
to the imaginary axis and hence represents a constant rate of
damping. Because z = 1 is a root of (57) or (59), the corre-
sponding branch of eigenvalues is imaginary: ngr(1 — v?)i (n
=1,2,3,...) by (22), in agreement with (21). Note that (60)
is the exact solution to (48) when k = 0.

In addition to the branch of eigenvalues given by (56a, b),
we show that all other eigenvalues of (50) are asymptotic to
those of (51) determined by (59) and (60). Let

Journal of Applied Mechanics

20-208 _

f()\) — 262(1711))\__ e

—2d\ + €~2(I711))\ 2(1-2d)N 1}

—e (61)

g(\) = % Le

Equation (50) becomes f(\) + g(\) = 0. Each branch of zeros,
o, of f(N) = 0 satisfies

¥l = 7, 270V = 47 4 ], (62)
Define C, around o, by A = o, + (1/v¥]0,|)e’?, where 0 < 4
= 2m. For any X\ on C,, by using the Taylor expansion and
(62) we obtain

. 2(1 — d) ,.H]
M| o= (2700 1+
|f( )| Z |: m €
- zﬁ‘z”[l + ﬂ—j—é—%e”’} -1+ 0(i0n|)71)‘
J_ [2dz87% + 2(1 — d)] + O(|o,|™")  (63)
k —p a—n G—2p —1/2
|g(}\)| = X ZIII+ZI{I~ZIII 1_1+0(I0r1‘ )

k -p -p =
= z." = zi™"| + O(la,| ).

| III

(64)

Because there are only a finite number of zeros z,, |2dz? " +
2(1 — d)| and |z, — z¢?| are bounded. It can be further
shown that {2dz{ % + 2(1 — d)| = 0in (63). Hence | g()\)|
< |f(\)| on C, for sufficiently large |o,|. By Rouché’s Theo-
rem there is one solution \, to (50) inside C, such that |\, —
o,| < 1/¥|o,|. On the other hand, if (50) has a branch of
zeros A, other than those of A, let F(A\) = f(A) + g(\) and
G(N) = —g(\). Because —A < Re\ = 0, e 2R i5 bounded.
Following the same approach we can show that |G(\)| <
| F(\)] on a disk C, around A, for sufficiently large |\,|. Hence
F(\) + G(N) = f(\) also has another branch of zeros around
\;, which is impossible. Therefore eigenvalues of (50) of large
modulus are asymptotic to those given by (59), (60) and (564,
b). Note that (56a, b) apply for both rational -and irrational 4.

Case II:  Irrational d. For irrational d all eigenvalues lie
strictly within the left half-plane and the system is asymptoti-
cally stable. We will show that there are an infinite number of
eigenvalues arbitrarily close to the imaginary axis, hence the
system is not exponentially stable.

By Theorem 185 of Hardy and Wright (1979), every irratio-
nal number 0 < d < 1| can be approximated by an infinite
number of rational fractions p/qg such that |p/q — d| < 1/4°.
Hence we assume d = p,/q, + b,/g2(n =1,2,3,...), where
p. and g, are co-prime positive integers arranged in the as-
cending order of magnitude of ¢, and |b,| < 1. Let

FOO = (¢ + 1)e? — ce?1=0/aN — ce2@/ah 4 o~ 1 (65)
g(x) — _I_(_el}\ _ E eZ(lAtI))\ _ 56211)\ + E
A A A A
+ ce2(|vl)“/q”)>\(l . 072(1)“/!/'2'))\)
+ cedlman(] eZ(b,./qﬁ)A). (66)

Equation (48) becomes f(\) + g(\) = 0. Because f(\) = 0
has zeros o, = Ig,mi, where [ is any positive integer, we define
C, around o, by N = o, + (1/]|c,|)e’?, where 0 = @ = 2.
For any A on C,, using the Taylor expansion we have

SEPTEMBER 1997, Vol. 64 / 617

Downloaded 01 Mar 2008 to 128.220.254.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



160 : : : . -
140

%
*
| %
*
¥
120F %
)*;K
100t %
*
*
¥

3  8of )*(a)
*
60 **
*
40( X

201 *

o . , .
B -5 -4 -3 -2 -

18

© | KK K K K K XK XK K I N K KK M KK KM KK XK KK X
(=

Fig. 2 Distribution of the first 50 eigenvalues form = 0, d = %, v =101,
and ¢ = 2. (a) Numerical (‘+") and asymptotic (‘") solutions for k =
2; (b) numerical solutions for k = 2 (“+”) and k = 0 (“X”).

CIFN)] = (e + l)e(zlla,.\)e‘” — cellmpan@lonDe?
— cemlm@labe? 4 o |
2
= e + 0(la,| ™)
lou]
2 -2
=—+ O(I(jn| ) (67)
ol

L;[ezx _ U= _ p2dn 1]

- k [e(zuanl)e“’ — U= uta1@lonhe® o o =2bulaiilant (Llaule?]

— epalan@laalie®  2(bnlai)lowr (lanDe?) 4 1]

272,
_k [4b"“|’2’ (1 -2 f—")e“’ gy 0(|an|‘3)}

Ao an lo)?

= 0(lou|™)

ce?I= PN (| — g 2blaNy o o2pilaN (] — g2(nlaDNy

(68)

2
:c|:—27r2%+0(|0,,|_2)]
Tp
Zb,,lz -2 -2
+c| 27 U—+O(|cr,,| )| = 0lo.l™%). (69)

n

Hence |g(\)| = O(la,|™) < [f(\)] on C,. By Rouché’s
Theorem, there exists one solution \, to (48) inside C,, that is
I\, — 0. < 1/{o,| = 1/lg,7. Because there are an infinite
number of distinct g,, g, — ® as n — o Therefore Re\, = Reo,
=0asn—. Asnoted, o, = lg,mi (I = 1,2, 3,...) correspond
to the infinite number of eigenvalues on the imaginary axis
when d is approximated by the rational fraction p,./q,. As n —
o, polg.~dand o, (I =1,2,3,...)approach those correspond-
ing to the irrational 4.

4 Examples and Discussions

Eigenvalues for different cases are calculated numerically from
(16) and compared with the analytical solutions in Section 3.

In the first example m = 0, d = 3, v = 0.1, and ¢ = 1. When
k = 0 the locations of the first 50 eigenvalues agree with the
exact solutions in (24a) and (325). One branch of eigenvalues
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lies on the imaginary axis: 2nm(1 — v?)i = 6.22ni (n = 1, 2,
3, ...). They correspond to the even-numbered modes with
nodal points at d = §. The other branch of eigenvalues given
by (1 —v){In (2 — ¢)/(2 + ¢) + (2n — D)7i] = —1.09 +
3.11(2n — 1)i (n = 1, 2, 3, ...) corresponds to the odd-
numbered modes. These eigenvalues have a constant real part
u = —1.09. When k = 2 the branch of eigenvalues on the
imaginary axis remains unchanged, while the other branch is
quickly asymptotic to that for k = O (not shown here), in
agreement with (33b).

In the example shown in Fig. 2, ¢ = 2 and all other parameters
remain the same as those in the previous example. The first 50
eigenvalues for k = 2 separate along two branches. The first
branch lies on the imaginary axis as in the previous case. Loca-
tions of the eigenvalues on the second branch agree with the
asymptotic solution in (38a, b). Unlike any other damping
constant ¢ which would yield a nearly constant decay rate,
rates of decay of the eigenvalues on the second branch increase
monotonically. Hence ¢ = 2 is optimal damping in this sense.
When k = 0 as shown in Fig. 2, the second branch disappears
and all eigenvalues lie on the imaginary axis, as predicted in
Case III of Section 3.1.

The distribution of the first 50 eigenvalues form =v =d =
0.1, k = 2, and ¢ = 1 is shown in Fig. 3. The eigenvalues on
the imaginary axis are 10n7(1 - v*)i = 3L1lni(n=1,2,...,
5), as predicted by (21). In addition there is a sequence of
eigenvalues asymptotic to each eigenvalue on the imaginary
axis, in agreement with (47a). Hence introduction of a small
inertia m alters the behavior of the spectrum significantly. For
m = 0.5 and other parameters unchanged (not shown here),
the eigenvalues approach the imaginary axis faster and all A,
for n > 10 are located close to the imaginary axis.

Form =k =0,d =3 v =01, and ¢ = 1, the first 50
eigenvalues shown in Fig. 4 are in agreement with the exact
solutions in (57) and (60). The roots of (57) are 1, —5.523,
and —0.0572 * 0.7748i. By (60) the resulting four branches
of eigenvalues are: 12.44ni, —1.18 + 6.22(2n + 1)i, —0.50
+ (3.26 + 12.44n)i, and —0.50 + (9.18 + 12.44n)i (n = 1,
2, ...). They are distributed along three p = constant lines
because the last two branches are both located on p = —0.50.
When & = 2 with other parameters unchanged, eigenvalues of
high modes are asymptotic to those corresponding to k = 0, as
predicted by (49).

In Fig. 5 are shown the first 50 eigenvalues for ¢ = 2 and
other parameters same as those in Fig. 4. The roots of (58)
are 1 and —0.25 * 0.6614;. The corresponding branches of
eigenvalues for k = 0: 12.44ni, —0.686 + (3.83 + 12.44n)i,
and —0.686 + (8.61 + 12.44n)i (n = 1,2, 3,...) by (60) are
distributed along two lines x = 0 and p = —0.686, as shown

:
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Fig. 3 Distribution of the first 50 eigenvalues form = v =d = 0.1,k =
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in Fig. 5. When k = 2, the branch of eigenvalues on the imagi-
nary axis is unchanged, and the other branch is asymptotic to
that corresponding to k = 0, as expected. In addition to those
two branches, there is a branch of eigenvalues shown in Fig.
5(a) with increasing rates of decay |u|, as predicted by (56a,
b).

5 Conclusions

1 When ¢ # 0 the constrained translating string is asymptot-
ically stable if and only if d is irrational. However, even for

Journal of Applied Mechanics

irrational d, there are an infinite number of eigenvalues ap-
proaching the imaginary axis. Hence the system is not exponen-
tially stable. If d = p/q is rational, where p and g are co-prime,
the branch of eigenvalues on the imaginary axis is given by
ngr(l —vdi(n=1,2,..).

2 When m + 0 and ¢ and k are arbitrary, eigenvalues of
the high modes are asymptotic to (n7/d)(1 — v?®)i and [nn/
(1 = dI(1 —v%i(n=1,2,...). The asymptotic behavior
of the eigenvalues for sufficiently high modes is independent
of m, ¢, and k.

3 Ford=plgq,m =1k =0,and ¢ # 2, the exact solutions
for the eigenvalues are given by (57) and (60). All eigenvalues
are distributed along the imaginary axis and along at most g —
1 lines of constant 4 = Re\ in the left half-plane. The distribu-
tion of the eigenvalues for nonzero & is asymptotic to that corre-
sponding to k = 0. Hence the asymptotic locations of the eigen-
values are independent of k.

4 ¢ = 2 is a special damping constant when m = 0. If d
is rational, the exact eigenvalues for £ = 0 are given by (58)
and (60). They are distributed along the imaginary axis and
along a maximum number of g — p — 1 lines of constant u
= ReA in the left half-plane. The vibration corresponding to
the other p branches of eigenvalues is dissipated by damping
in finite time. When k # 0, in addition to the branch of eigen-
values in (56a, b) which has monotonically increasing decay
rates, all other eigenvalues are asymptotic to those correspond-
ingtok = 0.
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