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Asymptotic Distribution of 
Eigenvalues of a Constrained 
Translating String 
A new spectral analysis for  the asymptotic locations ofeigenvalues of  a constrained 
translating string is presented. The constraint modeled by a spring-mass-dashpot is 
located at any position along the string. Asymptotic solutions for  the eigenvalues are 
determined from the characteristic equation o f  the coupled system of  contraint and 
string for  all constraint parameters. Damping in the constraint dissipates vibration 
energy in all modes whenever its dimensionless location along the string is an irratio- 
nal number. It is shown that although all eigenvalues have strictly negative real parts, 
an infinite number of  them approach the imaginary axis. The analytical predictions for  
the distribution of  eigenvalues are validated by numerical analyses. 

1 Introduction 
A class of flexible translating elements including textile fi- 

bers, magnetic tapes, transmission belts, band saws, and tram- 
way cables is commonly modeled as an axially moving string 
(Wickert and Mote, 1988). The model of a constrained translat- 
ing string can also describe a bandsaw passing over a guide 
bearing and a magnetic tape traveling over a read-write head. 
Perkins (1990) analyzed the natural frequencies and modes 
of a string translating across a discrete, and uniform, elastic 
foundation. By transfer function formulation, Yang (1992) pre- 
sented an eigenvalue inclusion principle for the translating 
string under nondissipative, pointwise constraints. Character- 
ized by multiple wave scattering, the transient response of con- 
strained translating strings under arbitrary disturbances was de- 
termined by Zhu and Mote (1995). 

Control of vibration of the translating string by a point force 
applied in the domain requires the dimensionless location of it 
to be an irrational number (Yang and Mote, 1991b). A criterion 
for design of a stabilizing controller that ensures that all closed- 
loop eigenvalues lie in the left half-plane was given by Yang 
and Mote (1991a). The distances of the eigenvalues of the 
controlled continuous system from the imaginary axis, espe- 
cially the infinite number of high modes, have not been investi- 
gated. 

In the present study, a new spectral analysis for the con- 
strained translating string is developed. The constraint, repre- 
sented by mass m, stiffness k, and damping c, is located at an 
arbitrary position d along the span. The asymptotic locations of 
all eigenvalues are determined from the characteristic Eq. (23) 
through the use of the Rouch6's Theorem. When m ~ 0 all 
eigenvalues of large modulus approach the imaginary axis. 
When m = 0 and c =~ 0, all eigenvalues remain in the left 
half-plane if d is irrational. However, an infinite number of 
eigenvalues approach the imaginary axis. Hence the system is 
not exponentially stable in any case. The methodology is appli- 
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cable to predicting the closed-loop eigenvalues for the controller 
designs in Yang and Mote (1991a). 

2 Model and Eigenvalue Problem 
As shown schematically in Fig. 1, a string of tension P and 

mass per unit length p is traveling at a subcritical speed V (V 
< P ~ )  between two supports separated by L. A flexible 
constraint with mass M, stiffness K, and damping constant C 
is located at a distance D (0 < D < L) from the left end. The 
interaction force between the string and constraint is R (T) .  The 
string is subjected to gravitational force pg and a distributed 
external force F ( X ,  T) .  The transverse displacements of the 
string and the mass M, relative to the horizontal X-axis, are 
U(X,  T)  and Z ( T ) ,  respectively. 

The string transverse displacement U(X,  T )  is small and 
planar. The friction force between the string and the constraint 
is negligible compared to the tension. Introduce the following 
dimensionless variables: 

x = X / L  u = U/L  z = Z / L  d = D / L  

v = V ( p / P )  1/2 t = T (P /pLZ)  1/2 

m = M / p L  k =  K L / P  c = C/(Pp)I /2  

w = pgL /P  f =  F L / P  r = R / P .  l )  

The equation governing transverse motion of the translating 
string is 

u , (x ,  t) + 2vux,(x, t) + (v 2 - 1)uxx(x, t) 

= r ( t ) 6 ( x  - d) + f ( x ,  t) - w (2) 

with the boundary conditions 

u(0, t) = u(1, t) = 0. (3) 

The equation of motion for the flexible constraint is 

- r ( t )  + k[zo + z* - z(t)]  - c~(t)  - mw = m&'(t) (4) 

where z ( t )  = u(d,  t) ,  z* is the equilibrium displacement of 
the constraint mass to be determined, and z0 is the compression 
of the spring at equilibrium. 

The equilibrium displacement of the string u*(x)  and static 
preload r* are derived from the equilibrium balance following 
( 2 ) - ( 4 ) :  
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Fig. 1 Schemat ic  of  a constrained translating string 

(v 2 - 1)u*. (x)  = r * 5 ( x  - d )  + f * ( x )  - w (5) 

u * ( 0 )  = u * ( 1 )  = 0 ( 6 )  

r*  = kzo - m w  z*  = u * ( d )  (7) 

where f *(x) is the equilibrium component o f . / (x ,  t). Substitu- 
tion of  u ( x ,  t)  = u * ( x )  + a ( x ,  t ) ,  z ( t )  = z *  + g(t) ,  r ( t )  = 
r* + ~(t), a n d f ( x ,  t) = f * ( x )  + f ( x ,  t) into ( 2 ) - ( 4 ) ,  and 
use of (5) - (6) ,  yield the equations describing small amplitude 
motions of the string and constraint around the equilibrium: 

t~,(x,  t) + 2 v G , ( x ,  t)  + (v 2 - 1 ) a s ( x ,  t) 

= f f ( t ) 5 ( x  - d )  + f ( x ,  t) (8) 

a(0,  t) = a(1,  t) = 0 (9) 

7( t )  = - k f ( t )  - c ~ ( t )  - mz~'(t), Z ( t )  = a ( d ,  t ) .  (10) 

The natural frequencies and vibration modes of the con- 
strained translating string around its equilibrium are derived 
from ( 8 ) - ( 1 0 ) .  By setting f ( x ,  t) = 0 in (8) ,  assuming a 
separable solution 

t ~ ( x , t )  = U ( x ) e  ×'= ~ U t ( x ) e ~ ' '  0 < x < d  (11)  
[ U2(x )e  xt, d < x <  1 

where U ( x )  and k are, in general, complex, and substituting 
(11) into ( 8 ) - ( 1 0 ) ,  yields 

XZG(x) + 2vXU~(x )  + (v 2 - l ) U ' ; ( x )  = O, 

0 < x < d  (12a) 

X2Uz(x) + 2vXU~(x )  + (v 2 - l ) U ~ ( x )  = 0, 

d < x <  1 (12b) 

U, (0)  = 0 U f f l )  = 0. (13) 

Because u ( x ,  t) is continuous at x = d, we have 

U , ( d )  = U2(d)  (14) 

By (11) u , (x ,  t)  and u . ( x ,  t) are also continuous at x = d. 
Integration of (8) from x = d -  to x = d + and use of ( 1 0 ) -  
( 11 ) gives 

(v 2 -  1 ) [ U ~ ( d ) -  US(d)] 

+ [ink 2 + ck + k J U ~ ( d )  = 0. (15)  

The eigenvalue problem (12a) - ( 15 ) leads to the characteris- 
uc equation 

(rnk ~ + ck + k) sinh 1 h ~ d v 2  sinh k(1 - d)  
1 -_7 vT 

X 
+ k s i n h - - =  0 (16) 

1 - v  2 
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whose roots are the complex eigenvalues k = ~ + coi, where 
/.z and co are real and i = ~[Z-~. They appear in complex conjugate 
pairs, k±,, = #,, _+ co~i (n = 1, 2, 3 . . . .  ), where the positive co,,, 
arranged in ascending order of magnitude, gives the sequence of 
the dimensionless natural frequencies of the system. Temporal 
variation of the vibration amplitude for mode n is described by 
,u,,, whose positive and negative values indicate the rate of 
amplitude growth and decay, respectively. For c = 0, eigenval- 
ues are imaginary and (16) reduces to 

cod co( 1 - d) 
( k -  mco 2) sin 1 - ~ s i n  1 - v - - - - - - ~ -  

co 
+ cosin - 0 .  (17) 

1 - v 2 

The special case of m = 0 in (17) returns the characteristic 
equation for a translating string guided by a single spring (Per- 
kins, 1990). If in addition, k = 0 in (17),  the positive roots of 
(17) recover the natural frequencies of the classical moving 
threadline, wn = nTr(l - v 2) (n = 1, 2, 3 . . . .  ) (Sack, 1954). 

The complex eigenfunction Un(x)  corresponding to the com- 
plex eigenvalue X~ is obtained from ( 1 2 a ) -  (15) as follows: 

U,,(x) = e x'x/(t-v) - e -x'/(t+~), 0 < x < d (18a)  

k,,d 
sinh - -  

U,,(x) = - e  -~'"~-°2) 1 - v z 
k,,(1 - d )  

sinh - -  
1 - v  2 

× (e x°*/(l-°) - e2~"/(1-~2)e-X"x/(l+~)), d < x < 1. (18b) 

Hence, the general solution t~(x, t) describing free response can 
be obtained by superposition of the separable form (11 ) for 
each eigensolution {hn ,  Un(x)} SO determined: 

a ( x ,  t)  = Y~ (A~U,,(x)e x'' + A_, ,U_, ,(x)e x- ' ' )  (19) 
n=l 

where the eigenfunction associated with the eigenvalue k_. = 
k. is U _ . ( x )  = U,,(x) by (18a,  b) ,  with the overbar denoting 
complex conjugation. Because ~7(x, t) is real, A_,, = A. with 
A,, determined from initial conditions. 

3 S p e c t r a l  A n a l y s i s  

The solutions to (16) are symmetric with respect to the center 
of  the string d = ½. For c ~ 0 and subcritical transport speed v 
< 1, Re k = # -< 0. The system is asymptotically stable, i.e., 
~,, < 0 for all n E N, only when d is irrational. This can be 
shown by substituting k = coi into (16) to give 

wd w(1 - d) 
( k - m w  2) s i n ~ s i n  1 - v  - - - - - - T -  + co sin 1 - v 2 

cod co(1 - d) 
- - s i n - -  = 0 .  (20) + ic w sin 1 - v 2 1 - v 2 

Separating the real and imaginary parts, we obtain for c ~ O: 

Transactions of the ASME 

Downloaded 01 Mar 2008 to 128.220.254.4. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



co cod 
sin - sin - 0 or 

1 - 1 )  2 1 - -  V 2 

co - sin co(1 - d )  
sin 1 - 1) 2 1 - v - - - - - - ~  - 0. (21 )  

H e n c e / z  = 0 if  and only  if  d = p / q ,  w h e r e  p ,  q E N and 0 -< 
p -< q.  For  p = 0 and p = q the const ra in t  locat ion coinc ides  
wi th  one  or  the o ther  support .  The  o ther  discrete  locat ions d = 
p / q  w i t h p  = 1, 2 . . . . .  q - 1 g ive  the q - 1 nodal  points  o f  
m o d e  q o f  the classical  mov ing  threadline.  To provide  damp i ng  
to all the vibrat ion modes ,  d ~ p / q  for  all q and 0 < p < q in 
ag reemen t  wi th  Yang and Mote  (1991b) .  For  a rational d = p!  
q with  p and q co-pr ime,  the imaginary  e igenvalues  are nqTr( 1 
- u2)i (n  = 1, 2, 3 . . . .  ) by ( 2 1 ) .  

In t roduct ion o f  the n e w  variables  

X 1 - v  2 c 
h* - m *  = m - -  c*  = -  

1 - v  2 2 2 

k 
k* - (22 )  

2 (1  - v 2) 

into (16)  and dele t ion o f  the asterisks in the notat ion yields  

(mX 2 + ck + k ) [ e  x - e O-2a)x - e - ( l  2a)x + e x] 

+ X[e x -  e -x] = 0 .  (23 )  

1 I 3.1 S p e c t r u m  f o r  d = ~. W h e n  d = ~ two branches  o f  
the solut ion to (23 )  result: 

mk 2 + ck  + k - X 
e x = 1; e x =  . ( 24a ,  b )  

m X  2 ÷ CX ÷ k + X 

The  e igenvalues  o f  the first branch,  k,, = 2n(1  - l j 2 ) i  (n  = 1, 
2, 3 . . . .  ) by  (22 )  and ( 2 4 a ) ,  are the e v e n - n u m b e r e d  m o d e s  o f  
a classical  m ov ing  threadline.  The  e igenvalues  o f  the second  
b ranch  are obta ined f rom (24b)  for the fo l lowing  cases:  

Case I: m ~- o. Equat ion  (24b)  is wri t ten in the fo rm 

2 1  
e x - 1 + - - -  + o(Ixl% = o. (25 )  

m k  

The  zeros  o f e  x = 1 are a,, = 2nTri (n  = 1, 2, 3 . . . .  ). The  
zeros  o f  (25 )  for  X o f  large modulus  are asymptot ic  to o ,  
fo l lowing  the theo rem o f  Rouch6  (Car r ie r  et  al., 1983) :  

Rouchd's Theorem: Let  f ( z )  and g(z )  be  analytic  inside 
a n d o n  C,  with Ig(z) t  < If(z) l  on C. T h e n f ( z )  a n d f ( z )  + 
g(z)  have  the same number  o f  zeros  ins ide  C. 

In the present  case,  l e t f ( k )  = e x - 1 and g ( k )  = ( 2 / m ) ( 1 /  
x) + o ( I x l - 2 ) .  A disk C,, cen te red  at or,, is defined:  X = or,, + 
(e/Io, , I )e  ~°, where  0 -< 0 _~ 27r. On C, ,  we  have 

] f (X)l  = le (<~ ' lw° - I I  = i @ . l e  '° + O(Icr,,I -2) 

E 
- - -  + O(Icr,,] -2) ( 2 6 )  

Io,,I 

where  the Taylor  expans ion  has been  used in ( 2 6 ) .  Because  
IX[ - I~,] - ( e / l ~ , , I ) ,  we  have  

1 1 
- -  -<  ( 2 7 )  

Io,,I 

Take e > 0, such that 

2 1 e 
- -  < - -  • ( 2 8 )  
m Io,,[ - e Io,,I 

Io,,I 

That  is, ( 2 / m ) l o , , I  < elo, ,I  - e2 / [0 , , I .  So if  e > 2/m,  there  
exists  N > 0, such that for  n -> N,  (28)  is satisfied. H e n c e  by 
( 2 7 ) ,  ( 2 / m ) / ( 1 / l k ] )  < ~ / I o . I .  Take No -> N,  such that for n 
->No,  

1 -2) 
Ig (X) l  = ~ + O([Xl  

2 1 

m IXl 
- - - -  ÷ O ( [ X [  -2 )  < I f ( X ) l  ( 2 9 )  

on C,,. By  RouchE ' s  Theorem,  there  exists  one solut ion k,, to 
(25 )  ins ide  C,, f o r n  -> No, i.e., IX,, - 05,] < e / ]o , , ] .  H e n c e  by 
re turning to the fo rmer  var iables  in ( 2 2 ) ,  the e igenvalues  o f  
the s econd  branch  are 

k , , = ( 1 - v 2 ) a , , +  0 ( 1 ) = 2 n T r ( 1 - v 2 ) i +  O ( 1 ) .  (30 )  

Each  e igenva lue  X,, o f  the  s econd  branch in (30 )  is asymptot ic  
to one  on the first branch,  2nTr(1 - v2)i. H e n c e  e igenvalues  
o f  h igh m o d e s  exist  in c lose ly  located pairs  near  the imaginary  
axis. They  are independen t  o f  the cons t ra in t  parameters ,  m,  c,  
and k, to the first order.  

Case H: m = 0 and c ~ 1. Equat ion  ( 2 4 b )  becomes  

c - 1 2k 1 
e x = - -  + - -  (31 )  

c +  1 1 + c ( 1  + c ) k + k  

The  solut ions to e x = (c  - 1 ) / ( c  + 1) are 

c - 1  
0 ,  = l n - -  + 2n~ri, for  c > 1 ( 3 2 a )  

e + l  

1 - - C  
= - -  + ( 2 n -  1)Tri, for  c < 1 (32b)  or,, In 1 + c 

for n = l, 2, 3 . . . . .  Hence  by (22 )  the exact  e igenvalues  o f  
the s econd  branch  for k = 0 are kn = (1 - v2)cr,,. By  use o f  
the R ouch6 ' s  T h e o r e m  and (22 )  s imilar  to Case  I, the e igenval -  
ues o f  the second  branch  for  k ~ 0 are 

c - 2  
hn = (1 - v  2) 1 n -  

c + 2  

for c > 2, ( 3 3 a )  

2 - - C  
k,, = (1 - v  2 ) l n - -  

2 + c  
+ ( 2 n - 1 ) T r ( 1 - v 2 ) i +  O ( ¼ ) ,  

for  c < 2. (33b)  

They  are i ndependen t  o f  k to the first order.  In ei ther  case  #,, 
= REX,, = ( t  - v 2) In 1(2 - c ) / ( 2  + c)l ÷ O ( 1 / n ) .  H e n c e  
the decay  rates for h igh  m o d e s  are near ly constant .  

Case l lh  m = 0 and c = 1. Equat ion  (24b)  reduces  to 

(2k  + k)e  × = k (34 )  

and k ~ 0, e ~x = k/]2X + k]. Hence  ReX = In (k/12k + kl ) ,  
and # = ReX ---~ -c~ as Ixl --, ~ .  Reduc ing  k increases  the 
damp i ng  rates for all the m o d e s  on the second  branch.  ReX 
- ~  in (34 )  y ie lds  2Xe ~ = k. H e n c e  (34 )  is asymptot ic  to 
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k 
ReX + In Ixl = I n ± .  (35)  

2 

The asymptotic locations of the eigenvalues of (35)  can be 
obtained. Let X = [hi e ~°, 

ReX 1 k in I k l 
c o s O = - - =  In , 0 ,  as IX ~ o ~ .  (36)  

Ixl Ixl 2 Ixl  

Hence 0 ~ ( r r /2 )  as [hi --~ o~. Also, 

eiim a = & e - R e  x = Ixl = e _ , 0 .  ( 3 7 )  

2X X 

Hence by (22) ,  (35) ,  and (37)  the asymptotic elgenvalues of 
the second branch are given by 

co,, = ImX, = ( 1 -  v 2 ) ( 2 n r r  - ~ )  (38a )  

# ,  = ReX, = (1 - v  2) In 
4(1  - v 2) 

- ( 1 - v 2 )  l n ( 2 n r r - ~ ) .  ( 38b )  

By (38a)  co,, is independent  of  k to the first order. 
For k = 0 there are no finite solutions to e ~ = 0. Hence there 

are no eigenvalues corresponding to (34) .  ReX = -oo in this 
case implies that all the modes of the second branch are com- 
pletely dissipated by damping after a finite time. 

3.2 S p e c t r u m  for  m ~ 0 a n d  a r b i t r a r y  d.  Equation (23)  
is written in the form 

e2X --  e2aX _ e2(l d)X + 1 X(e 2x - 1) (39)  
m k  2 + cX + k "  

If ReX --+ -oo as ]X] --+ 0% (39)  yields a contradiction, 1 = 0. 
Hence there exists A > 0, such that - A  < ReX -< 0. Therefore 
e x and e -x are bounded. As IX] ~ 0% we have from (23) :  

(e 'Ix - e - a X ) ( e  (t-'~)x - e (I-,J)x) 

X(e x - e-h)  
- ~ 0 .  ( 4 0 )  

m k  2 + cX + k 

Hence either e 2~x ~ 1 or e 2~ d)x ~ 1 as IXl ~ ~ .  In either 
case ReX --, 0 as I xl - ,  ~.  For irrational d,  though ReM < 0 
for all n,  all eigenvalues approach the imaginary axis as I k l 
c~. Hence the system is asymptotically, but not exponentially, 
stable. 

D e t e r m i n a t i o n  o f  E igenva lues .  By (23)  we have 

1 2x 
(e 2 J a -  l ) ( e  2~l~d)x- l )  + ~ ( e  - 1) 

+ O ( I X 1 - 2 )  = O. (41 )  

L e t f ( X )  = (e 2Jx - 1 ) (e  2(1 d ) x _  1 ) a n d  g ( X )  = (1 /mX) (e  2x 
- 1 ) + O(  I X1-2).  The roots o f  e 2dx = 1 are ~ ,  = nrr i /d .  Def ine 
C,, around cry: X = or,, + (e / l c r~ l )e i ° ,  where 0 -< 0 ~ 27r. For  
any X on C,,, using the Taylor expansion we have 

le  2 a x -  II  = le 2'~(<~'1)''°- i I  

6 - 2 )  
= 2 d - ~ -  + O(]cr,,] (42)  

[ e2(, ,~)x _ 11 = [ ec2":r/d)ie 2(l-d)(e/la'il)e'° -- i I 

= le ( ~ ' ' ' " ) ' -  I I  + O(1~.1- ' )  

le zx - 11 = le ( 2 ~ ' ) ' -  I I  + O(1~, , I - ' ) .  

Hence on Cn, 

If(X)l  = le 2 a x -  llle z ( ' - a ~ x -  11 

C ]e(2mr/d)i • 2)  = 2 d  i-~,,] - 11 + O(Icr,,I 

(43)  

1 1 
Ig (X) l  le ~2"~'~)'- 11 + o(Ic~, l -Z).  ( 44 )  

m Io,1 

For irrational d, [ e (2"~/~°~ - 1 [ ~e 0. For rational d = p / q ,  with 
p and q co-prime, [ e <2"~m~ - 11 = 0 only when  p divides n. 
In this case (43)  and (44)  become 

[e 2('-a~x - 1[ - 2(1  - d ) e  + o (1~ .1_2)  

2E 
le  2x - 11 = ~ + O(1~,,1-2) (45)  

I c~,,I 

I,f(x)l 4 d ( 1  - d ) e  2 + O(l~r,,[_3) 

Io,,I = 

2E 

t g ( h ) l  m'~r,  ' ~ 1  I + O ( l a " [ - 3 ) "  (46)  

Choose c > 1 / [ 2 d ( 1  - d ) m ] ,  then for either (44)  or (46)  
there exists N > 0 such that when  n >- N, Ig(X)l < If(X)l 
on C,,. By R o u c h t ' s  Theorem, there is one solution k,, to (41)  
inside C, for n ~ N, i.e., IX,, - cr, I < e/l~rnl.  Hence by (22)  
one branch of eigenvalues is 

X,, = 7 (1 - v2) i  + 0 . (47a )  

Similarly the roots of e 2 ( t - a ) x  --  1 = 0 are or,, = n r r i / ( 1  - 

d) .  Following the same analysis, the other branch of eigenvalues 
is 

k,, = 1 - d (1 - va) i  + 0 . (47b)  

For d = ½ the two branches  of  eigenvalues are both of the form 
2nrr(1 - v2) i  + O ( 1 / n ) ,  consistent with Section 3.1. 

3.3 S p e c t r u m  for  m = 0 a n d  A r b i t r a r y  d.  Because of 
symmetry of the spectrum with respect to d = ½, we consider 
d < ½. Because k = 0 is not an eigenvalue, (23)  becomes 

( c  + 1 + ~)eZX-- ( c  +--~)e 2(l-d)x 

-- (C q- --~) e2dx + c - l + -k- = (48)  

For c ~e 1 the roots of (48)  
those of the characteristic 
(Bel lman and Cooke, 1963) : 

(c + l ) e  2x - ce 2(l-~t)x - ce 2uh + c - 1 = 0. (49)  

For c = 1 and k =~ 0 (48)  is written as 

2eZ(~-,~)x- e2(~ 2d)k__ 1 

k [e 2ax + e2(l-a)x _ e 2 ( I - 2 d ) X  1] = 0. (50)  + ~  

For c = 1 and k = 0 (48)  becomes 

of large modulus are asymptotic to 
equation corresponding to k = 0 
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2 e  2x = e 2(I-d}x + e 2Jx. (51)  

If ReX --* -c~ as Ik I --* ~ ,  (48)  implies c = 1. For c = 1 
and k = 0, we have by (51)  

2 = e2(d-t~x(1 + e 2( l -2d)h)  (52)  

Reh ~ -c~ in (52)  leads to a contradiction, 2 = c~. Hence there 
exists A > 0, such that - A  < Rek _< 0. For c = 1 and k ~ 0, 
Rek ~ -oo in (50)  yields 1 = ke  2dx/k. Hence, e -2dRex = 

I k l / k .  A branch of eigenvalues of (50)  of large modulus is 
asymptotic to 

ReX + ~ In I xl -- ! In k, (53)  
2 d  2 d  

which is similar in form to (35)  for the case d = ½. Let ~ = 
Ixl e i°, we have 

ReX 1 In Jkl 1 I n k  
cos 0 . . . .  + 

Ixl 2 d  Ixl 2 d  Ixl 
~" 0', 

as Ixl ~ o~. ( 5 4 )  

Hence 0 ~ 7r/2 as I x l  ~ ~.  Further, 

e_i2a~mx = _k e2aR~X ---- - - ~k  = eiO. ( 5 5 )  
k IXl 

Hence by (22)  and ( 5 3 ) - ( 5 5 )  the asymptotic locations of the 
eigenvalues on (53)  are 

c~,, = Imh,  1 - v 2 (  2 )  = 2-d 2nTr - (56a )  

#,, = REX,, 

1 - v 2 _[, .  , 
2 d  2(1  - v 2) 2 d  

All other branches of eigenvalues of (50)  must  satisfy - A  < 
ReX _~ 0 for some constant  A > 0. They are determined next. 

C a s e  I: R a t i o n a l  d .  Let d = p / q  with p and q co-prime, 
and 2p  < q. Equations (49)  and (51)  reduce, respectively, to 
the polynomial  equations 

( C  + 1 ) Z  q - -  CZ q-p  - -  CZ p + C --  1 = 0 (57)  

2z  q - Z q--p - z p = 0 (58)  

where z = e (2/q)x.  Because there are no finite solutions for X 
corresponding to the root z = 0, (58)  reduces to 

2zq-p  - -  Z q 2p _ _  1 = 0. (59)  

There are at most  q and q - p distinct roots for (57)  and (59)  
respectively. By (22)  the branch of eigenvalues corresponding 
to the root z~ of (57)  or (59)  is 

q 
X~ = ~ (1 - v2)[ ln  Iz, I + i (a rg  zz + 27rn)], 

n = 1 , 2 , 3  . . . . .  (60)  

Each branch of  eigenvalues in (60)  lies on a straight line parallel 
to the imaginary axis and hence represents a constant rate of 
damping. Because z = I is a root of (57)  or (59) ,  the corre- 
sponding branch of eigenvalues is imaginary: nqvr (  1 - v 2 ) i  ( n  
= 1, 2, 3 . . . .  ) by (22) ,  in agreement  with (21) .  Note that (60)  
is the exact solution to (48)  when k = 0. 

In addition to the branch of eigenvalues given by (56a ,  b ) ,  
we show that all other eigenvalues of  (50)  are asymptotic to 
those of (51)  determined by (59)  and (60) .  Let 

f ( k )  = 2e  2~1 a~x_ e2(l 2d~×_ 1 

k [e 2dk e-2(~ d)X e2~ 2a~a 1] g ( k )  = ~ + -- -- . (6 l )  

Equation (50)  becomes f ( k )  + g (h )  = 0. Each branch of zeros, 
~r,, o f f ( h )  = 0 satisfies 

e 2e' /q = z,, 2z,~ -I' = Z~ --2p + 1. (62)  

Define C,, around a,, by )t = ~r,, + (1/ ] IG, , I )d  °, where 0 -< 0 
-< 27r. For any h on C,,, by using the Taylor expansion and 
(62)  we obtain 

2(1 - d) ] 
I f (X)l  = 2z~-" 1 + ~ - ~  e i° 

I 2(1 - 2d) 1 ) ~) - z~ -2p 1 + ~ 1 ~ ,  ~ e i° - l + O(Icr,, I 

1 
- - - - 7 ,  12dz,'~ -2"  + 2(1  - d ) l  + O(1~,,I - ' )  

Vla,,I 
(63)  

k 
- Iz, ," - z U ' l  + o ( 1 ~ , , I - 3 ' 2 ) .  (64) 

Because there are only a finite number  of zeros z,,, 12dz~ 2I, + 
2(1  - d)l  and Iz,/ '  - z~ I'1 are bounded. It can be further 
shown that 12dz~ 2p + 2(1 - d) l  ~ 0 in (63) .  Hence r g ( h ) l  
< If(X)I on C,, for sufficiently large I~,,I. By Rouch6 's  Theo- 
rem there is one solution h,, to (50)  inside C,, such that IN,, - 

~r,,I < t/]l~r,,I. On the other hand, if  (50)  has a branch of 
zeros kl other than those of X,,, let F (X)  = f ( k )  + g ( k )  and 
G ( h )  = - g ( k ) .  Because - A  < ReX -~ 0, e -2aRcx is bounded. 
Following the same approach we can show that I G ( h ) l  < 
I F ( h ) t  on a disk Ct around kz for sufficiently large I htl. Hence 

F ( h )  + G ( h )  = f ( h )  also has another branch of zeros around 
kt, which is impossible. Therefore eigenvalues of (50)  of large 
modulus are asymptotic to those given by (59) ,  (60)  and (56a ,  
b ) .  Note that (56a ,  b)  apply for both rational and  irrational d. 

C a s e  II: I r r a t i o n a l  d .  For irrational d all eigenvalues lie 
strictly within the left half-plane and the system is asymptoti- 
cally stable. We will show that there are an infinite number  of 
eigenvalues arbitrarily close to the imaginary axis, hence the 
system is not exponential ly stable. 

By Theorem 185 of Hardy and Wright  (1979) ,  every irratio- 
nal number  0 < d < 1 can be approximated by an infinite 
number  of rational fractions p / q such that I P / q - dl  < 1 / q 2 .  
Hence we assume d = p,,/q,,  + bn /q~  (n  = 1, 2, 3 . . . .  ), where 
Pn and q,, are co-prime positive integers arranged in the as- 
cending order of magni tude of  q,,, and ]bn ] < 1. Let 

f ( h )  = (c + 1)e  zx - ce  2ll-(p,/q,,)xl - -  ce2(p,/q,, ~x + c - 1 (65)  

g(X)  = k e2 x _ _k e2(~_~l~x _ k e2~  + _k 
h h h k 

+ c e 2 ( I - P , , / q , , ) x ( 1  - -  e 2(b,,/d)x) 

+ c e 2 ( p " / q " ) X ( l  - -  e 2 ( b " / q ~ X ) .  ( 6 6 )  

Equation (48)  becomes f ( k )  + g ( k )  = 0. B e c a u s e f ( k )  = 0 
has zeros ~r,, = lq,,Tri, where l is any posit ive integer, we define 
C, around or, by k = or,, + (1 / l~ , , I ) e  ~°, where 0 -< 0 ~- 27r. 
For any h on C , ,  using the Taylor  expansion we have 
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Fig. 2 Distribution of the first 50 eigenvalues for m = 0, d = ~, v = 0.1,  
and c = 2. (a )  N u m e r i c a l  ( " + " )  and asymptotic ("×")  solutions for k = 

2; ( b )  numerical solutions for k = 2 ( " + " )  a n d  k = 0 ( " × " ) .  

I f ( x ) l  : I (c  + 1)e (z/l°''l)e'°- c e  <t-p'''q'')(211°'l)`'° 

--  c e  (p'/q')(211a'l)ei° q- c - -  11 

= , 2  e , O +  O( io .  1_=) 
la , , I  

2 
- + O(Io-, , I  -z )  (67)  

I~,,I 

k [eZX _ e2(1_,) ~ _ eZ,t ~ + 1] 
X 

: ~ [ e  ( 2 1 t ° ' l ) e i °  - -  e [ l - ( p " / q ' ) ] ( 2 / l ° ' l ) e i °  X e - 2 ( b " l q ~ ) [ a " + ( l / l a ' l ) e i ° ]  

k 

-- e(P"/q")(2/l~r"l)eiOe2(b"/q~)[°"+(llla"l)eiOl 4- l] 

= - _ 1 - 2 - -  + + 0 ( 1 ~ . 1  
q~ / ~ 

= O ( I G . 1 - 3 )  

ce2[l-(P"/q")]x(  1 - -  e-2(b"/q~)X)+ ce2(p"lq")X( l - -  e 2(b'lq~)x) 

= c[-27r2b'12+~, O(]crn l -Z) ]  

(68)  

+ c[27rzb"12+~, o ( l ~ l - z ) ] = o ( [ ~ . l - 2 ) .  (69)  

Hence I g ( X ) l  = O(1~.1  -~) < I f ( X ) l  on  C. ,  By  Rouchd's 
Theorem,  there exists one solution Xn to (48)  inside C,, that is 
IX,, - cr, I < 1/[a,,I = 1/lq,,Tr. Because there are an infinite 
number  of distinct q, ,  qn --* co as n --* co. Therefore ReXn --* Recr, 
= 0 as n --* co. As noted, an = lq,,Tri ( l  = 1, 2, 3 . . . .  ) correspond 
to the infinite number  of eigenvalues on the imaginary axis 
when d is approximated by the rational fraction pn/q,. As n --* 
co, p,/q,, --, d and a ,  (1 = 1, 2, 3 . . . .  ) approach those correspond- 
ing to the irrational d. 

4 Examples and Discussions 
Eigenvalues for different cases are calculated numerically from 

(16)  and compared with the analytical solutions in Section 3. 
In the first example m = 0, d = ½, v = 0.1, and c = 1. When  

k = 0 the locations of the first 50 eigenvalues agree with the 
exact solutions in (24a )  and (32b) .  One branch of  eigenvalues 

lies on the imaginary axis: 2nTr(1 - vZ)i = 6.22ni  (n = 1, 2, 
3 . . . .  ). They correspond to the even-numbered modes with 
nodal  points at d = ½. The other branch of eigenvalues given 
by (1 - vZ)[ln (2 - c ) / ( 2  + c) + (2n  - 1)Tri] = - 1 . 0 9  + 
3 .11(2n  - 1) i  (n = 1, 2, 3 . . . .  ) corresponds to the odd- 
numbered  modes. These eigenvalues have a constant  real part 
# = -1 .09 .  When  k = 2 the branch of eigenvalues on the 
imaginary axis remains unchanged,  while the other branch is 
quickly asymptotic to that for k = 0 (not  shown here) ,  in 
agreement  with (33b) .  

In the example shown in Fig. 2, c = 2 and all other parameters 
remain the same as those in the previous example. The first 50 
eigenvalues for k = 2 separate along two branches.  The first 
branch lies on the imaginary axis as in the previous case. Loca- 
tions of the eigenvalues on the second branch agree with the 
asymptotic solution in (38a ,  b ) .  Unlike any other damping 
constant  c which would yield a nearly constant  decay rate, 
rates of decay of  the eigenvalues on the second branch increase 
monotonically.  Hence c = 2 is optimal damping in this sense. 
When k = 0 as shown in Fig. 2, the second branch disappears 
and all eigenvalues lie on the imaginary axis, as predicted in 
Case III of Section 3.1. 

The distribution of the first 50 eigenvalues for m = v = d = 
0.1, k = 2, and c = 1 is shown in Fig. 3. The eigenvalues on 
the imaginary axis are 10nvr(1 - v2)i = 31.1ni (n = 1, 2 . . . . .  
5) ,  as predicted by (21) .  In addition there is a sequence of 
eigenvalues asymptotic to each eigenvalue on the imaginary 
axis, in agreement  with (47a ) .  Hence introduction of a small 
inertia m alters the behavior  of the spectrum significantly. For 
m = 0.5 and other parameters unchanged (not  shown here) ,  
the eigenvalues approach the imaginary axis faster and all k,, 
for n > 10 are located close to the imaginary axis. 

For m = k = 0, d = 1, v = 0.1, and c = 1, the first 50 
eigenvalues shown in Fig. 4 are in agreement  with the exact 
solutions in (57)  and (60) .  The roots of (57)  are 1, -5 .523 ,  
and - 0 . 0 5 7 2  + 0.7748i. By (60)  the resulting four branches 
of eigenvalues are: 12.44ni,  - 1 . 1 8  + 6 .22(2n  + 1) i ,  - 0 . 5 0  
+ (3.26 + 12.44n)i ,  and - 0 . 5 0  + (9.18 + 12.44n)i  (n = 1, 
2 . . . .  ). They are distributed along three # = constant lines 
because the last two branches are both located on # = - 0 . 5 0 .  
When  k = 2 with other parameters unchanged,  eigenvalues of 
high modes are asymptotic to those corresponding to k = 0, as 
predicted by (49) .  

In Fig. 5 are shown the first 50 eigenvalues for c = 2 and 
other parameters same as those in Fig. 4. The roots of  (58)  
are 1 and - 0 . 2 5  +_ 0.6614i. The corresponding branches of 
eigenvalues for k = 0: 12.44ni,  - 0 . 6 8 6  + (3.83 + 12.44n)i ,  
and - 0 . 6 8 6  + (8.61 + 12.44n)i  (n = 1, 2, 3 . . . .  ) by (60)  are 
distributed along two lines # = 0 a n d / z  = -0 .686 ,  as shown 
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Fig. 3 Distribution of the first 50 eigenvalues for m = v = d = 0.1,  k = 
2, a n d  c = 1 
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Fig.5 Distribution ofthe first 5O eigenvalues for c = 2 and other parame- 
ters same as those in Fig. 4. (a) Numerical ( " + " )  and asymptotic ( " x " )  
solutions for k = 2; (b) numerical solutions for k = 2 ( " + " )  and k = 0 
( " x " ) .  

in Fig. 5. When k = 2, the branch of eigenvalues on the imagi- 
nary axis is unchanged, and the other branch is asymptotic to 
that con'esponding to k = 0, as expected. In addition to those 
two branches, there is a branch of eigenvalues shown in Fig. 
5 (a)  with increasing rates of decay 1/.z t, as predicted by (56a,  
b).  

5 Conclusions 
1 When c :~ 0 the constrained translating string is asymptot- 

ically stable if  and only if d is irrational. However, even for 

irrational d, there are an infinite number of eigenvalues ap- 
proaching the imaginary axis. Hence the system is not exponen- 
tially stable. If d = p/q is rational, where p and q are co-prime, 
the branch of eigenvalues on the imaginary axis is given by 
nqTr(1 - 1~2)i (r l  = 1, 2 . . . .  ). 

2 When m e: 0 and c and k are arbitrary, eigenvalues of 
the high modes are asymptotic to (nTr/d)(1 - v 2 ) i  and [nTr/ 
(1 - d ) ] (1  - v2)i (n = 1, 2 . . . .  ). The asymptotic behavior 
of the eigenvalues for sufficiently high modes is independent 
of m, c, and k. 

3 For d = p/q, m = k = 0, and c =~ 2, the exact solutions 
for the eigenvalnes are given by (57) and (60).  All eigenvalues 
are distributed along the imaginary axis and along at most q - 
1 lines of constant # = Reh in the left half-plane. The distribu- 
tion of  the eigenvalues for nonzero k is asymptotic to that corre- 
sponding to k = 0. Hence the asymptotic locations of the eigen- 
values are independent of  k. 

4 c = 2 is a special damping constant when m = 0. If d 
is rational, the exact eigenvalues for k = 0 are given by (58) 
and (60) .  They are distributed along the imaginary axis and 
along a maximum number of  q - p - 1 lines of  constant # 
= ReX in the left half-plane. The vibration corresponding to 
the other p branches of eigenvalues is dissipated by damping 
in finite time. When k :x 0, in addition to the branch of eigen- 
values in (56a,  b) which has monotonically increasing decay 
rates, all other eigenvalues are asymptotic to those correspond- 
ing to k = 0. 
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