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Spectral analysis of a wave equation with Kelvin-Voigt damping
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A vibrating system with some kind of internal damping represents a distributed or passive control. In this article, a wave
equation with clamped boundary conditions and internal Kelvin-Voigt damping is considered. It is shown that the spectrum
of the system operator is composed of two parts: point spectrum and continuous spectrum. The point spectrum consists of
isolated eigenvalues of finite algebraic multiplicity, and the continuous spectrum that is identical to the essential spectrum
is an interval on the left real axis. The asymptotic behavior of eigenvalues is presented.
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1 Introduction

Owing to huge applications of smart materials in modern technology, there has been an abundance of literature on the study
of elastic systems with viscoelastic damping ( [1]). When a smart material is patched in an elastic structure, the Young’s
modulus, the mass density and the damping coefficients are changed accordingly. Practically, two types of viscoelastic
damping are usually used. One is the Botzmann damping and another is the Kelvin-Voigt damping. These kinds of damping,
on the one hand, make the distributed control practically realizable, and on the other hand, bring some new mathematical
challenges that attract increasing research interests. For the controllability of this kind of systems, we refer to [14]. The
stability can be found in [4, 15–17]. Very recently, an interesting Riesz basis property was developed for such a system
in [13]. However, for these works aforementioned, only partial solutions to the distribution of the vibration frequencies
were presented. This is an unfortunate situation since it has been shown for many other elastic systems in [9, 10, 18, 21]
that for a vibrating system, the vibration frequencies could determine all dynamic behaviors of the system. The reason
for this situation occurs is that for a viscoelastic system, the resolvent of system operator is not compact anymore, which
is sharp contrast with that discussed in [9, 10, 18, 21]. Nevertheless, a viscoelastic system with constant coefficients still
shows the valid of Riesz basis property due to the fact that the continuous spectrum is the limit set of point spectrum [11].
But for the viscoelastic systems with variable coefficients, situations are quite different even in one-dimensional cases.
In [20], the asymptotic behavior for a one-dimensional wave equation with local Kelvin-Voigt damping was developed.
In [22], the essential spectrum of a system operator arising in viscoelastic system with local Kelvin-Voigt damping was
analyzed. In [12], the spectrum of a general second order system was discussed. In this paper, we study a one-dimensional
wave equation with clamped boundary condition and internal Kelvin-Voigt damping. It is shown that the spectrum of
this system operator is composed of two parts: point spectrum and continuous spectrum. The point spectrum consists of
isolated eigenvalues of finite algebraic multiplicity, and the continuous spectrum that is identical to the essential spectrum
is an interval on the left real axis under the analyticity assumption of coefficients. The asymptotic behavior of eigenvalues
is also presented.

This paper is organized as follows. In next section, Sect. 2, we formulate the problem into an abstract evolution equation
in the state space. Sect. 3 is devoted to the analysis of continuous spectrum. The asymptotic expression for eigenvalues is
presented in Sect. 4.
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2 System operator setup

Consider a one-dimensional wave equation with Kelvin-Voigt damping and clamped boundary conditions:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ(x)ytt(x, t) − (a(x)yx(x, t) + b(x)yxt(x, t))
′ = 0, 0 < x < 1, t > 0,

y(0, t) = y(1, t) = 0,

y(x, 0) = y0(x), yt(x, 0) = y1(x),

(2.1)

where the continuous function b(·) ≥ 0 is the damping function, and the continuous functions ρ(·), a(·) > 0 are system
parameter functions in spacial variable. Hereafter, we use prime “′” to represent the derivative with respect to x. The system
energy is given by

E(t) =
1
2

∫ 1

0

[
a(x)|yx(x, t)|2 + ρ(x)|yt(x, t)|2

]
dx. (2.2)

For any positive continuous function ρ, set L2
ρ = L2(0, 1) with norm ‖f‖2

L2
ρ

=
∫ 1

0 ρ(x)|f(x)|2dx and V = H1
0 (0, 1),

the first order Sobolev space with zero boundary values. We consider the system (2.1) in the energy state Hilbert space
H = V × L2

ρ with the inner product:

〈(f1, g1), (f2, g2)〉 =
∫ 1

0

[a(x)f ′
1(x)f ′

2(x) + ρ(x)g1(x)g2(x)]dx, ∀ (fi, gi) ∈ H, i = 1, 2. (2.3)

Define the system operator A : D(A)(⊂ H) → H as
⎧
⎪⎨

⎪⎩

A(f, g) =
(

g,
1
ρ

(af ′ + bg′)′
)

,

D(A) =
{
(f, g) ∈ H1

0 (0, 1) ×H1
0 (0, 1)| af ′ + bg′ ∈ H1(0, 1)

}
.

(2.4)

Then (2.1) can be formulated into an abstract evolution equation in H:

d
dt
Y (t) = AY (t), Y (0) = Y0, (2.5)

where Y (t) = (y(·, t), yt(·, t)) is the state variable and Y0 = (y0(·), y1(·)) is the initial value.
The following Lemma 2.1 is straightforward.

Lemma 2.1. Let A be defined by (2.4). Then its adjoint A∗ has the following form:
⎧
⎪⎨

⎪⎩

A∗(f, g) =
(

−g, − 1
ρ

(af ′ − bg′)′
)

,

D(A∗) =
{
(f, g) ∈ V × V | af ′ − bg′ ∈ H1(0, 1)

}
.

(2.6)

Proposition 2.2. Let A and A∗ be given by (2.4) and (2.6), respectively. Then A and A∗ are dissipative, and hence A
generates a C0-semigroup of contractions on H.

P r o o f. For any (f, g) ∈ D(A), we have

〈A(f, g), (f, g)〉 =
〈

(g,
1
ρ

(af ′ + bg′)′), (f, g)
〉

=
∫ 1

0

[
a(x)g′(x)f ′(x) + (a(x)f ′(x) + b(x)g′(x))′g(x)

]
dx

=
∫ 1

0

[
a(x)g′(x)f ′(x) − a(x)f ′(x)g′(x)

]
dx−

∫ 1

0

b(x)|g′(x)|2dx,

and hence

Re〈A(f, g), (f, g)〉 = −
∫ 1

0

b(x)|g′(x)|2dx ≤ 0.
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Similarly for any (u, v) ∈ D(A∗),

〈A∗(u, v), (u, v)〉 =
〈

(−v,− 1
ρ

(au′ − bv′)′), (u, v)
〉

=
∫ 1

0

[
−a(x)v′(x)u′(x) − (a(x)u′(x) − b(x)v′(x))′v(x)

]
dx

=
∫ 1

0

[
−a(x)v′(x)u′(x) + a(x)u′(x)v′(x)

]
dx−

∫ 1

0

b(x)|v′(x)|2dx,

and hence

Re〈A∗(u, v), (u, v)〉 = −
∫ 1

0

b(x)|v′(x)|2dx ≤ 0.

Therefore, both A and A∗ are dissipative. By the Lumer-Phillips Theorem, A generates a C0-semigroup of contractions on
H.

3 Continuous spectrum of the system operator

In this section, we consider the spectrum of A. First, let us formulate the eigenvalue problem. Suppose A(f, g) = λ(f, g)
with (f, g) ∈ D(A) and (f, g) �= 0. Then g = λf and f ∈ H1

0 (0, 1) satisfies
⎧
⎨

⎩

((a(x) + λb(x))f ′(x))′ = λ2ρ(x)f(x),

f(0) = f(1) = 0.
(3.1)

The Theorem 3.1 following shows that the set σr(A) of residual spectrum of A is empty.

Theorem 3.1. σr(A) = ∅.
P r o o f. Since λ ∈ σr(A) if and only if λ ∈ σp(A∗), it suffices to show that σp(A) = σp(A∗). Suppose A∗(f, g) =

λ(f, g) for some (f, g) ∈ D(A∗) and (f, g) �= 0. Then g = −λf and f satisfies
⎧
⎨

⎩

(a(x)f ′(x) + λb(x)f ′(x))′ = λ2ρ(x)f(x),

f(0) = f(1) = 0.
(3.2)

It is seen that (3.2) is the same with (3.1). Hence, λ ∈ σp(A∗) if and only if λ ∈ σp(A). Since the eigenvalues of A∗ are
symmetric with real axis, we have σr(A) = ∅.

Proposition 3.2. Let A be defined by (2.4). Then 0 ∈ ρ(A) and A−1 is given by

A−1

⎛

⎝
f

g

⎞

⎠ (x) =

⎛

⎜
⎜
⎝

g1(x) −
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)

]

f(x)

⎞

⎟
⎟
⎠ , (3.3)

where

g1(x) =
∫ x

0

1
a(τ)

[∫ τ

0

ρ(s)g(s)ds
]

dτ, a1(x) =
∫ x

0

1
a(τ)

dτ. (3.4)

P r o o f. Let (f, g) ∈ H. By A(φ, ψ) = (f, g), we have

ψ = f,
1
ρ

(aφ′ + bψ′)′ = g. (3.5)

These together with the boundary conditions show that
⎧
⎨

⎩

(a(x)φ′(x) + b(x)f ′(x))′ = ρ(x)g(x),

φ(0) = φ(1) = 0.
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A direct computation gives

φ(x) = g1(x) −
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ + C1a1(x),

where g1(x), a1(x) are given by (3.4), and C1 satisfies

C1 =
[
aφ′ + bf ′] (0).

Using the boundary condition φ(1) = 0, it gives

C1 =
1

a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)

]

.

Therefore

φ(x) = g1(x) −
∫ x

0

b(τ)
a(τ)

f ′(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f ′(τ)dτ − g1(1)

]

.

This together with (3.5) gives (3.3). The proof is complete.

The following Definition 3.3 comes from [8, p. 373].

Definition 3.3. Let T be a closed linear operator in a Hilbert space. The set of complex numbers λ is called the essential
spectrum of T , and is denoted by σess(T ), if one of the following three conditions is satisfied:

(i). R(λI − T ), the range of λI − T , is not closed.
(ii). dimN (λI − T ) = ∞, here N (λI − T ) denotes the null space of λI − T .
(iii). dim(R(λI −T ))⊥ = ∞, here (R(λI −T ))⊥ is the orthogonal complement space of range R(λI −T ) of λI −T .

Notice that if T is densely defined, then (iii) of Definition 3.3 can be replaced by dimN (λI − T ∗) = ∞.
The following Proposition 3.4 is a direct consequence of Corollary 4.4 of ( [8, p.378].

Proposition 3.4. Let T be a closed linear operator in a Hilbert space and G a compact operator. Then

σess(T ) = σess(T +G).

Now we go back to our problem. Define a bounded linear operator D : V → L2
a by

(Df)(x) = f ′(x), ∀ f ∈ V = H1
0 (0, 1). (3.6)

The following Lemma 3.5 is straightforward.

Lemma 3.5. Let D be defined by (3.6). Then the following assertions hold:
(i) For any φ ∈ V , ‖Dφ‖L2

a
= ‖φ‖V .

(ii) The range of D,

R(D) =

{

f ∈ L2
a

∣
∣
∣

〈

f(·), 1
a(·)

〉

L2
a

= 0

}

(3.7)

is a closed subspace of L2
a.

(iii) D−1 is a bounded linear operator from R(D) onto V given by

D−1f(x) =
∫ x

0

f(τ)dτ, ∀ f ∈ R(D). (3.8)

Let H1 = R(D) × L2
ρ with the same inner product defined by (2.3). Define the linear operator T : H → H1 by

T (φ, ψ) = (Dφ, ψ) = (φ′, ψ), ∀ (φ, ψ) ∈ H. (3.9)

Then, it is easy to see that

T −1(f, g) = (D−1f, g), ∀ (f, g) ∈ H1
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and

‖T (φ, ψ)‖2
H1

=
∫ 1

0

[
a(x)|φ′(x)|2 + ρ(x)|ψ(x)|2

]
dx = ‖(φ, ψ)‖2

H, ∀ (φ, ψ) ∈ H.

Define a linear operator Ã : D(Ã)(⊂ H1) → H1 by

Ã = T AT −1. (3.10)

Then Ã is explicitly given by

⎧
⎪⎨

⎪⎩

Ã(φ, ψ) =
(

ψ′,
1
ρ

(aφ+ bψ′)′
)

,

D(Ã) =
{
(φ, ψ) ∈ R(D) ×H1

0 (0, 1)| aφ+ bψ′ ∈ H1(0, 1)
}
.

(3.11)

By (3.10), we have Lemma 3.6 following.

Lemma 3.6. σ(A) = σ(Ã).

Proposition 3.7. Let Ã be defined by (3.11). Then Ã−1 exists and has the following expression:

Ã−1

⎛

⎝
f

g

⎞

⎠ = P

⎛

⎝
f

g

⎞

⎠+ Q

⎛

⎝
f

g

⎞

⎠ , ∀ (f, g) ∈ H1, (3.12)

where P and Q are bounded operators on H1 and have the following expressions, respectively: for each (f, g) ∈ H1,

P

⎛

⎝
f

g

⎞

⎠ (x) =

⎛

⎜
⎜
⎜
⎝

1
a(x)

∫ x

0

ρ(s)g(s)ds− g1(1)
a1(1)

1
a(x)

∫ x

0

f(τ)dτ

⎞

⎟
⎟
⎟
⎠

(3.13)

and

Q

⎛

⎝
f

g

⎞

⎠ (x) =

⎛

⎜
⎜
⎝

− b(x)
a(x)

f(x) +
1

a1(1)
1

a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

0

⎞

⎟
⎟
⎠ . (3.14)

Moreover,
(i) P is compact and skew-adjoint on H1;
(ii) Q is self-adjoint on H1, and its essential spectrum is given by

σess(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (3.15)

P r o o f. Since Ã = T AT −1, Ã−1 exists and Ã−1 = T A−1T −1. For any (f, g) ∈ H1,

Ã−1

(
f

g

)

(x) = T A−1T −1

(
f

g

)

(x) = T A−1

⎛

⎝

∫ x

0

f(τ)dτ

g(x)

⎞

⎠

= T

⎛

⎜
⎜
⎜
⎝

g1(x) −
∫ x

0

b(τ)
a(τ)

f(τ)dτ +
a1(x)
a1(1)

[∫ 1

0

b(τ)
a(τ)

f(τ)dτ − g1(1)

]

∫ x

0

f(τ)dτ

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
a(x)

∫ x

0

ρ(s)g(s)ds− b(x)
a(x)

f(x) +
1

a1(1)
1

a(x)

[∫ 1

0

b(τ)
a(τ)

f(τ)dτ − g1(1)

]

∫ x

0

f(τ)dτ

⎞

⎟
⎟
⎟
⎠
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= P

⎛

⎝
f

g

⎞

⎠ (x) + Q
(
f

g

)

(x),

where P and Q are defined by (3.13) and (3.14), respectively.
Notice that when b(·) ≡ 0, A is skew-adjoint and is of compact resolvent. So is for Ã when b(·) ≡ 0, and in this case,

Ã−1 = P . Hence, P is compact and skew-adjoint on H1. (i) is thus proved.
Next we prove (ii). We first prove that Q is self-adjoint. Actually, for any (f, g), (u, v) ∈ H1, by (3.7), f, u ∈ R(D),

∫ 1

0

f(x)dx =
∫ 1

0

u(x)dx = 0,

and hence

〈Q(f, g), (u, v)〉H1 =
∫ 1

0

a(x)

[

− b(x)
a(x)

f(x) +
1

a1(1)
1

a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

]

u(x)dx

= −
∫ 1

0

b(x)f(x)u(x)dx

= 〈(f, g),Q(u, v)〉H1 ,

which shows that Q is self-adjoint on H1.
Now we show

σ(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (3.16)

Let λ ∈ C. For any (u, v) ∈ H1, consider the equation

(λI −Q)(f, g) = (u, v),

which is equivalent to λg(x) = v(x) and f satisfies

λf(x) +
b(x)
a(x)

f(x) − 1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ = u(x). (3.17)

Since 〈u(·), 1
a(·) 〉L2

a
= 0, if (3.17) admits a solution, integrating both sides of (3.17) over [0, 1] shows that it must have

〈λf(·), 1
a(·) 〉L2

a
= 0.

When λ �= 0 and λ+
b(x)
a(x)

�= 0 for any x ∈ [0, 1], g(x) = λ−1v(x) and it follows from (3.17) that

f(x) =
a(x)

λa(x) + b(x)

[

u(x) +
1

a1(1)
1

a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

]

. (3.18)

A direct computation gives

∫ 1

0

b(τ)
a(τ)

f(τ)dτ =
1
λ
a1(1)

(∫ 1

0

1
λa(τ) + b(τ)

dτ

)−1 ∫ 1

0

b(τ)u(τ)
λa(τ) + b(τ)

dτ.

Hence,

f(x) =
1

λa(x) + b(x)

⎡

⎣a(x)u(x) +
1
λ

∫ 1

0

b(τ)u(τ)
λa(τ) + b(τ)

dτ

(∫ 1

0

1
λa(τ) + b(τ)

dτ

)−1
⎤

⎦ . (3.19)

So (f, g) ∈ H1. Therefore λ ∈ ρ(Q), which implies that

σ(Q) = C\ρ(Q) ⊆ {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}. (3.20)
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Moreover, when λ = 0, since for each (f, g) ∈ H1,

⎡

⎣(λI −Q)

⎛

⎝
f

g

⎞

⎠

⎤

⎦ (x) =

⎛

⎜
⎜
⎝

λa(x) + b(x)
a(x)

f(x) − 1
a1(1)

1
a(x)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

λg(x)

⎞

⎟
⎟
⎠ , (3.21)

it has {0} × L2
ρ ⊂ N (Q). Hence dimN (Q) = ∞ and by Definition 3.3,

0 ∈ σess(Q). (3.22)

If λ �= 0 and λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1], we claim that R(λI −Q) �= H1. In fact, define

Eλ = {x ∈ [0, 1]|λa(x) + b(x) = 0}.

If the measure of Eλ is nonzero and (3.17) admits a solution, it must have

u(x) = C/a(x) in Eλ for some constant C.

Obviously, such a function cannot represent all functions of R(D) on Eλ, that is R(λI − Q) �= H1. Now suppose that
the measure of Eλ is zero and (3.17) has solution f ∈ R(D) for any u ∈ R(D). Then f must be of the form (3.18). Take
special u ∈ R(D) in (3.18) as following

u(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
3
√
x− ξ

, x ∈ E1,

−1
1 − mes(E1)

∫

E1

1
3
√
x− ξ

dx, x ∈ [0, 1]\E1,

where E1 ⊂ [0, 1] is a given small closed interval containing ξ, and mes(E1) is the measure of E1, 0 < mes(E1) < 1.
Obviously, for this special u, there exists a closed intervalE2 ⊂ E1, ξ ∈ E2, such that the corresponding solution f satisfies

∣
∣
∣
∣
∣
a(x)u(x) +

1
a1(1)

∫ 1

0

b(τ)
a(τ)

f(τ)dτ

∣
∣
∣
∣
∣
> 1, x ∈ E2,

and hence by (3.18),
∥
∥
∥
∥

1
λa+ b

∥
∥
∥
∥

L2(E2)

≤ ‖f‖L2(E2) <∞,

which means that 1
λa+b ∈ L2(E2). This fact together with (3.18) shows that

aũ

λa+ b
∈ L2(E2), ∀ ũ ∈ L2(E2).

Define the multiplication operator F : L2(E2) → L2(E2) by

(F ũ)(x) =
a(x)

λa(x) + b(x)
ũ(x), ∀ ũ ∈ L2(E2). (3.23)

Then F is a closed operator on L2(E2). In fact, for any sequence {ũn} ⊂ L2(E2), if

‖ũn − ũ‖L2(E2) → 0, ‖F ũn − û‖L2(E2) → 0,

for some ũ, û ∈ L2(E2), then there exist subsequences {ũnk
} and {F ũnk

} converge to ũ and û almost everywhere for
x ∈ E2, respectively. Therefore, by definition (3.23), we have

(F ũ)(x) =
a(x)

λa(x) + b(x)
ũ(x) = û(x), x ∈ E2 a.e..
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Hence F is closed on L2(E2). By the closed graph theorem, F is bounded on L2(E2), which implies that

a

λa+ b
∈ L∞(E2).

This contradicts to λa(ξ) + b(ξ) = 0 and continuity of a, b. Hence R(λI −Q) �= H1. Therefore

{λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]} ⊆ σ(Q). (3.24)

Combining (3.20), (3.22) and (3.24) gives (3.16).
Finally, we show (3.15). Since σess(Q) ⊆ σ(Q), we only need to show that σ(Q) ⊆ σess(Q). Let

m = min
0≤x≤1

{λ| λa(x) + b(x) = 0} , M = max
0≤x≤1

{λ| λa(x) + b(x) = 0}.

By (3.16) and (3.22), it suffices to show that [m,M ] ⊂ σess(Q). There are two cases:
Case I: m = M . In this case, b(x)/a(x) = −m is a constant. It follows from (3.21) that

(mI −Q)(f, g) = (0,mg).

Hence,

R(D) × {0} ⊂ N (mI −Q),

which means, by Definition 3.3, that

λ = m ∈ σess(Q).

Case II: m < M . In this case, λ can be taken as any point of interval [m,M ] by the continuity of b(x)/a(x). So by (3.16),
[m,M ] ⊆ σ(Q). Since Q is self-adjoint, [m,M ] ⊆ σess(Q) follows from Theorem 5 of [6, p.1395] which says that for
a self-adjoint operator, all non-isolated spectrum must be essential spectrum (note that in [6], the essential spectrum of a
closed operator is defined as only those that (i) of our Definition 3.1 is satisfied).

With these preparations, we could summarize the properties of σess(A) as Theorem 3.8 following.

Theorem 3.8. Let A be defined by (2.4). Then the following assertions hold.
(i) The essential spectrum of operator A is given by

σess(A) = {λ ∈ C | a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}. (3.25)

(ii) σ(A)\σess(A) consists of at most countable isolated eigenvalues of finite algebraic multiplicity.

P r o o f. Suppose (i) is valid. Then σ(A)\σess(A) is an open connected subset of C\σess(A), (ii) is then a direct
consequence of Theorem 2.1 of [8, p.373]. So only proof of (i) is needed. Since Ã−1 = P +Q and P is compact, it follows
that

σess(Ã−1) = σess(Q) = {0} ∪ {λ ∈ C | λa(ξ) + b(ξ) = 0 for some ξ ∈ [0, 1]}.

Since λ ∈ σess(Ã−1) if and only if λ−1 ∈ σess(Ã), we have

σess(Ã) = {λ ∈ C | a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

The desired result then follows directly through the relation (3.10).

Next, we consider the continuous spectrum for the system (2.1).

Lemma 3.9. Let A be defined by (2.4) and the following conditions are satisfied:
⎧
⎪⎨

⎪⎩

a(x), b(x) and ρ(x) are analytic in [0, 1];

for any λ ∈ R,
(x − ξ)2

a(x) + λb(x)
is analytic in a neighboorhood of any ξ ∈ [0, 1].

(3.26)

Then the set of the continuous spectrum σc(A) of A satisfies

σc(A) = σess(A) = {λ ∈ C| a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 90, No. 4 (2010) / www.zamm-journal.org 331

P r o o f. Suppose that a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1], λ ∈ R. If λ ∈ σp(A), then there exists a nonzero
f ∈ H1

0 (0, 1) satisfying the characteristic equation (3.1). The proof will be accomplished if we can show that f ≡ 0
because σr(A) = ∅ claimed by Theorem 3.1. This will be divided into three steps:

Step 1: We claim that in a neighborhood of ξ,

f(x) = Cξ

(

1 +
∞∑

n=1

an(x− ξ)n

)

when ξ is the first order zero point of a+ λb (3.27)

or there exists a r1 > 0 such that

f(x) = Dξ(x− ξ)r1

[

1 +
∞∑

n=1

bn(x− ξ)n

]

when ξ is the second order zero point of a+ λb, (3.28)

where Cξ and Dξ are constants and each series in Eq. (3.27) and (3.28) converges uniformly in a neighborhood of ξ and
defines a function that is analytic at x = ξ.

It follows from (3.26) that ξ is the regular singular point of the first equation in (3.1). Using Theorem 4.4 of [3, p.192],
(3.1) must admit a Frobenius series solution in a neighborhood of ξ. The procedure is as follows. By (3.26), assume that

a(x) + λb(x) = (x − ξ)kϕ(x),

where k = 1 or 2 and ϕ is analytic in [0, 1], ϕ(ξ) �= 0. Thus,

(a(x) + λb(x))′

a(x) + λb(x)
=

k

x− ξ
+
ϕ′(x)
ϕ(x)

.

Let

p0 = lim
x→ξ

(x− ξ)
(a(x) + λb(x))′

a(x) + λb(x)
, q0 = lim

x→ξ
(x − ξ)2

−λ2ρ(x)
a(x) + λb(x)

.

The indicial equation of (3.1) is (see e.g., Theorem 4.4 of [3, p.192])

F (r) = r(r − 1) + p0r + q0 = 0.

A simple calculation shows that p0 = 1, q0 = 0 when ξ is the first order zero point of a+ λb, and p0 = 2, q0 �= 0 while ξ
is the second order zero point of a+ λb.

Since f is required to be continuous, when ξ is the first order zero point of a+ λb, F (r) = 0 has only zero solution and
hence f is of the form (3.27). While ξ is the second order zero point of a+ λb, let r1, r2 be the roots of F (r) = 0:

r1,2 =
−1 ±

√
1 − 4q0

2
.

If r1 is a nonreal number, then Re(r1) = − 1
2 . In this case, f must be identical to zero in a neighborhood of ξ and Dξ = 0

in (3.28). Otherwise, we may suppose r1 > 0 > r2. Since f is continuous in [0, 1], it must be of the form (3.28).

Step 2: We claim that there is a sequence {γn}∞n=1 ⊂ [0, 1], γi �= γj for any i �= j, i, j = 1, 2, · · · , such that f(γn) = 0
for n = 1, 2, · · · , and

lim
n→∞ γn = ξ. (3.29)

To do this, it suffices to show that for any [x1, x2] ⊂ [0, 1], if ξ ∈ [x1, x2] and f(x1) = f(x2) = 0, then there exists a
γ ∈ (x1, x2) such that f(γ) = 0. In fact, if there exists a second order zero point γ of a + λb in (x1, x2), it follows from
Step 1 that

f(γ) = 0.

If there exists no second order zero point of a + λb in (x1, x2), by Step 1, f must be analytic in (x1, x2). By Rolle’s
theorem, it follows that there exits an η ∈ (x1, x2) such that

f ′(η) = 0.
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If ξ = η, then by (3.1) and (a+ λb)(ξ) = 0, it has

f(η) = 0.

In this case, we take γ = η. If ξ �= η, then we have

[(a+ λb)f ′](ξ) = [(a+ λb)f ′](η) = 0.

By using Rolle’s theorem again, there exists a γ between ξ and η such that

[(a+ λb)f ′]′(γ) = 0,

which yields f(γ) = 0 from (3.1).

Step 3: It follows from Step 1 and Step 2 that there is a neighborhood Oξ of ξ such that

f ≡ 0 in Oξ.

Since f is identical to zero in a neighborhood of any regular singular point ξ, f must be identical to zero everywhere by the
uniqueness theorem of the regular ordinary differential equations. The proof is complete.

Theorem 3.10. Let A be defined by (2.4) and a(x), b(x), ρ(x) are analytic in [0, 1]. Then

σc(A) = σess(A) = {λ ∈ C| a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1]}.

P r o o f. Suppose a(ξ) + λb(ξ) = 0 for some ξ ∈ [0, 1] and λ ∈ C. If a ≡ −λb, it is trivially that the solution f of
Eq. (3.1) must be identical to zero. By Lemma 3.9, we may assume that

a(x) + λb(x) = (x − ξ)mϕ(x),

where m > 2 is a positive integer and ϕ is analytic in [0, 1], ϕ(ξ) �= 0. We show that f ≡ 0. This case corresponds the
irregular singular point for Eq. (3.1). The proof will be divided into three steps:

Step 1: We claim that f(ξ) = 0. In fact, we can rewrite (3.1) as

f ′′(x) +
1

x− ξ

[

m+
ϕ′(x)
ϕ(x)

(x− ξ)
]

f ′(x) +
1

(x− ξ)m

−λ2ρ(x)
ϕ(x)

f(x) = 0 (3.30)

with the boundary conditions:

f(0) = f(1) = 0.

By the analyticity of ϕ and ρ, we may assume that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c(x) =
1

x− ξ

[

m+
ϕ′(x)
ϕ(x)

(x− ξ)
]

=
1

x− ξ

[

m+
∞∑

i=1

hi(x− ξ)i

]

,

d(x) =
1

(x− ξ)m

−λ2ρ(x)
ϕ(x)

=
1

(x− ξ)m

[

l0 +
∞∑

i=1

li(x− ξ)i

]

,

where the two series on the right side above are the Taylor series and by assumption l0 �= 0. We only need to discuss the
case of x ≥ ξ since the case of x ≤ ξ can be treated similarly. Let x− ξ = t2. Then (3.30) is equivalent to

y′′(t) + C(t)y′(t) +D(t)y(t) = 0, (3.31)

where

C(t) = 2tc(ξ + t2) − 1
t

=
2m− 1

t
+ 2[h1t+ h2t

3 + · · · + hnt
2n+1 + · · · ]

and

D(t) = 4t2d(ξ + t2) =
4

t2m−2
[l0 + l1t

2 + l2t
4 + · · · + lnt

2n + · · · ].

c© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org



ZAMM · Z. Angew. Math. Mech. 90, No. 4 (2010) / www.zamm-journal.org 333

Then f(ξ) = 0 is equivalent to y(0) = 0. We choose k = m− 2 and let

c0 = tk+1C(t) |t=0= 0, d0 = t2k+2D(t) |t=0= 4l0.

Then the solutions of (3.31) are of the form (see, e.g., [5, p.224]).

y(t) = eF (t)Y (t), (3.32)

where

F (t) =
Ak

tk
+
Ak−1

tk−1
+ · · · + A1

t
(3.33)

and

Y (t) =
∞∑

n=0

ant
n+s, a0 �= 0 (3.34)

is a Frobenius series. Substitute (3.32) into (3.31) to obtain the differential equation satisfied by Y :

Y ′′(t) + [C(t) + 2F ′(t)]Y ′(t) +
[
D(t) + C(t)F ′(t) + [F ′(t)]2 + F ′′(t)

]
Y (t) = 0. (3.35)

Choose the constants An, n = 1, 2, · · · , k to eliminate the most singular terms in the coefficient of Y in (3.35) to get, after
a calculation, that

Ak =
c0 ±

√
c20 − 4d0

2k
= ± 2

k

√
−l0 �= 0, Ak−1 = Ak−3 = · · · = 0.

There are two cases:
Case I: l0 > 0. In this case, Re(Ak) = 0. By a simple calculation, we find that Re(An) = 0, n = 1, 2, · · · , k, and by
Eq. (6.53) of [5, p.226],

Re(s) = −−(2m− 1)kAk + k(k + 1)Ak

−2kAk
= −m

2
< 0.

Let

F (t) = iτ(t), Y (t) = ts[u(t) + iv(t)], s = α+ iβ,

where α = −m

2
, β, τ(t), u(t), v(t) ∈ R and u, v are analytic at t = 0, u2(0) + v2(0) �= 0. Then

y(t) = [cos τ(t) + i sin τ(t)]tα[cos(β ln t) + i sin(β ln t)][u(t) + iv(t)]

= tα[cos(τ(t) + β ln t) + i sin(τ(t) + β ln t)][u(t) + iv(t)]

= tα[u(t) cos(τ(t) + β ln t) − v(t) sin(τ(t) + β ln t)]

+ itα[v(t) cos(τ(t) + β ln t) + u(t) sin(τ(t) + β ln t)].

Let z(t) = τ(t) + β ln t. Since Ak �= 0, limt→0+ z(t) = ∞, this together with the continuity of z(t) enables us to easily
show that [u(t) cos z(t) − v(t) sin z(t)] and [v(t) cos z(t) + u(t) sin z(t)] are linearly independent. Therefore the general
solution of (3.31) is of the form

y(t) = tα {b1[u(t) cos z(t) − v(t) sin z(t)] + b2[v(t) cos z(t) + u(t) sin z(t)]} , (3.36)

where b1 and b2 are real constants. Since f(x) is continuous at x = ξ, so is for y(t) at t = 0. Since α < 0, it must have

lim
t→0+

{b1[u(t) cos z(t) − v(t) sin z(t)] + b2[v(t) cos z(t) + u(t) sin z(t)]} = 0. (3.37)

Since limt→0+ z(t) = ∞, one can find two positive sequences {tn1} and {tn2} such that

lim
n1→∞ tn1 = 0, lim

n2→∞ tn2 = 0,
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cos z(tn1) = 1, sin z(tn1) = 0, cos z(tn2) = 0, sin z(tn2) = 1.

This together with (3.37) gives
⎧
⎪⎪⎨

⎪⎪⎩

b1u(0) + b2v(0) = lim
n1→∞[b1u(tn1) + b2v(tn1)] = 0,

−b1v(0) + b2u(0) = lim
n2→∞[−b1v(tn2) + b2u(tn2)] = 0.

Since u2(0) + v2(0) �= 0, it has b1 = b2 = 0. By (3.36),

y(t) ≡ 0. (3.38)

Case II: l0 < 0. In this case, Ak ∈ R. And by the similar calculation as Case I, we have An ∈ R, n = 1, 2, · · · , k and the
general solution of (3.31) is of the form

y(t) = c1eF (t)Y1(t) + c2e−F (t)Y2(t),

where c1 and c2 are constants, F (t) is of the form (3.33), and Yi(t), i = 1, 2 is of the form (3.34). Now, we may assume

without loss of generality that Ak = − 2
k

√
−l0 < 0. Then by the continuity of y and limt→0+ e−F (t)Y2(t) = ∞, it must

have

y(t) = c1eF (t)Y1(t) (3.39)

and hence y(0) = 0.

Step 2: We claim that there is a sequence {γn}∞n=1 ⊂ [0, 1], γi �= γj for any i �= j, i, j = 1, 2, · · · , such that f(γn) = 0
for n = 1, 2, · · · , and

lim
n→∞ γn = ξ. (3.40)

To do this, it suffices to show that for any [x1, x2] ⊂ [0, 1], if ξ ∈ [x1, x2] and f(x1) = f(x2) = 0, then there exists a
γ ∈ (x1, x2) such that f(γ) = 0. In fact, if there exists a zero point γ of a+λb in (x1, x2) whose order is greater than one,
it follows from Step 1 and the proof of Lemma 3.9 that

f(γ) = 0.

Otherwise, by the proof of Lemma 3.9, f is analytic at any first order zero of a + λb in (x1, x2), and ξ = x1 or ξ = x2.
But since the solution y of (3.31) is of (3.38) or (3.39), it is differentiable in a neighborhood of t = 0 except t = 0. So the
solution f of (3.1) is differentiable in a neighborhood of x = ξ except x = ξ. In any case, f is differentiable in (x1, x2).
By Rolle’s theorem, there exits an η ∈ (x1, x2) such that

f ′(η) = 0.

Clearly ξ �= η. Since

[(a+ λb)f ′](ξ) = [(a+ λb)f ′](η) = 0,

using Rolle’s theorem again, there exists a γ between ξ and η such that

[(a+ λb)f ′]′(γ) = 0,

which yields f(γ) = 0 from (3.1).

Step 3: By Step 2, the solution y of (3.31) has infinitely many zero points approaching zero. Since y is of (3.38) or
(3.39), y ≡ 0 in a neighborhood of t = 0. Equivalently, there is a neighborhood Oξ of ξ such that

f ≡ 0 in Oξ.

Since there are at most finite number of singular points ξ, f must be identical to zero everywhere by the uniqueness of the
solution for regular linear ordinary differential equations. The proof is complete.
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If there is no analyticity, Theorem 3.10 is not true anymore. This is suggested by many studies on Sturm-Liouville
problem. The following is an counter-example.

Example 3.11. Let

−p(x) = a(x) + λb(x) = −x1/3.

Then 1/p ∈ L1(0, 1). According to Theorem 0 of [7], there are countable number of positiveμ such that the Sturm-Liouville
problem:

−(p(x)f ′(x))′ = μf(x), x ∈ (0, 1), f(0) = f(1) = 0 (3.41)

admits nonzero absolutely continuous solutions f . Take specially μ > 0 for such a μ. Then we may choose

a(x) =
√
μ+ 2x1/3, b(x) = 1 +

3
√
μ
x1/3, λ = −√

μ, ρ(x) = 1.

Eq. (3.1) is now having a nonzero absolutely continuous solution f . Suppose (pf ′)(0) = c. We show that f ∈ H1
0 (0, 1) or

equivalently f ′ ∈ L2(0, 1), which hence severs as a counter-example. Indeed, set

α =
1
3
, A(x) =

⎛

⎝
0 x−α

−μ 0

⎞

⎠ , y(x) =

⎛

⎝
f(x)

p(x)f ′(x)

⎞

⎠ , y0 = y(0) =

⎛

⎝
0

c

⎞

⎠ .

Then (3.41) is rewritten as

dy

dx
= A(x)y(x).

According to Theorem 1 of [19, Sect. 16], the above equation is equivalent to the following integral equation

y(x) = y0 +
∫ x

0

A(ξ)y(ξ)dξ

for which the solution can be represented uniformly in [0, 1] as

y(x) = lim
n→∞ yn(x),

where

yn+1(x) =

⎛

⎝
fn+1(x)

hn+1(x)

⎞

⎠ = y0 +
∫ x

0

A(ξ)yn(ξ)dξ, n = 0, 1, 2, · · · .

A direct computation shows that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f2n+1(x) = f2n+2(x) =
c

1 − α
x1−α +

n∑

k=1

akx
k+(k+1)(1−α),

h2n(x) = h2n+1(x) = xαf ′
2n+1(x),

n = 1, 2, · · · ,

where

ak =
(−1)kcμk

(1 − α)(2 − α)(3 − 2α)(4 − 2α)(5 − 3α) · · · (2k − kα)(2k + 1 − (k + 1)α)
.

Therefore,

f(x) =
c

1 − α
x1−α +

∞∑

k=1

akx
k+(k+1)(1−α).
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The above series is absolutely uniformly convergent since |f(x)| ≤ |c|/(1 − α) +
∑∞

k=1 |ak| and

lim
k→∞

|ak|
|ak−1|

= lim
k→∞

μ

(2k − kα)(2k + 1 − (k + 1)α)
= 0.

Now,

f ′(x) = cx−α +
∞∑

k=1

ak[2k + 1 − (k + 1)α]xk−1+(k+1)(1−α).

The above series is also absolutely uniformly convergent since
∣
∣
∣
∣
∣

∞∑

k=1

ak[2k + 1 − (k + 1)α]xk−1+(k+1)(1−α)

∣
∣
∣
∣
∣
≤

∞∑

k=1

|ak[2k + 1 − (k + 1)α]|

and

lim
k→∞

|ak[2k + 1 − (k + 1)α]|
|ak−1[2k − 1 − kα]| = lim

k→∞
μ

(2k − kα)(2k − 1 − kα)
= 0.

This shows that f ′(x) = cx−α + g(x) where g is a continuous function. Hence f ′ ∈ L2(0, 1).

4 Asymptotic behavior of eigenvalues

In this section, we consider the asymptotic behavior of eigenvalues for the system (2.1). To do this, we assume further that

a(x), b(x) ∈ C1[0, 1] and a(x), b(x) > 0 for all x ∈ [0, 1]. (4.1)

Suppose that λ is an eigenvalue with large modulus. Then

a(x) + λb(x) �= 0 for any x ∈ [0, 1] (4.2)

and we rewrite the characteristic equation (3.1) as
⎧
⎨

⎩

[a(x) + λb(x)]f ′′(x) + [a′(x) + λb′(x)]f ′(x) = λ2ρ(x)f(x),

f(0) = f(1) = 0.
(4.3)

By (4.3), it is apparently seen that λ must be geometrically simple.
The following Lemma 4.1 is immediate.

Lemma 4.1. Let λ ∈ C. Then as |λ| → ∞, it has

1
a(x) + λb(x)

=
1

λb(x)
· 1

1 + a(x)
λb(x)

=
1

λb(x)
− a(x)
λ2b2(x)

+
a2(x)
λ3b3(x)

+ O(|λ|−4) (4.4)

and

[a(x) + λb(x)]f ′′(x) + [a′(x) + λb′(x)]f ′(x) = λ2ρ(x)f(x) (4.5)

has the following asymptotic expression:

f ′′(x) +
[

1
λb(x)

− a(x)
λ2b2(x)

+
a2(x)
λ3b3(x)

+ O(|λ|−4)
]

[a′(x) + λb′(x)]f ′(x)

−λ
[

1 − a(x)
λb(x)

+
a2(x)
λ2b2(x)

+ O(|λ|−3)
]

ρ2
0(x)f(x) = 0.

(4.6)

where

ρ0(x) =

√
ρ(x)
b(x)

. (4.7)
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In order to find the asymptotic fundamental solutions of (4.6), we introduce the following space-scaling transformation:

φ(z) = f(x), z =
1
h

∫ x

0

ρ0(τ)dτ, h =
∫ 1

0

ρ0(τ)dτ. (4.8)

Under this transformation, (4.6) becomes

φ′′(z) +h
{
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)

[
1

λb(x)
− a(x)
λ2b2(x)

+
a2(x)
λ3b3(x)

+ O(|λ|−4)
]

[a′(x) + λb′(x)]
}

φ′(z)

−λh2

[

1 − a(x)
λb(x)

+
a2(x)
λ2b2(x)

+ O(|λ|−3)
]

φ(z) = 0

(4.9)

with the boundary conditions:

φ(0) = φ(1) = 0. (4.10)

Proposition 4.2. The equation (4.6) with boundary condition (4.3) is equivalent to (4.9) and (4.10). That is, (λ, f),
f �= 0, satisfies (4.6) and boundary conditions (4.3) if and only if (λ, φ), φ �= 0, satisfies (4.9) and (4.10).

Now we consider (4.9) and (4.10). Since the eigenvalues are symmetric about the real axis and Reλ ≤ 0 for any

λ ∈ σ(A), we only consider those eigenvalues λ with
π

2
≤ argλ ≤ π.

Let λ = μ2. Then as
π

2
≤ argλ ≤ π, we consider μ locating on the following sector:

S =
{
μ ∈ C

∣
∣ π

4
≤ argμ ≤ π

2

}
. (4.11)

Lemma 4.3. Suppose λ = μ2 �= 0. Then for z ∈ [0, 1] and μ ∈ S,

eμhz , e−μhz (4.12)

are linearly independent fundamental solutions of

φ′′(z) − μ2h2φ(z) = 0,

and for |μ| large enough, (4.9) has the following asymptotic fundamental solutions:

⎧
⎨

⎩

φ1(z) = eμhz
[
φ10(z) + φ11(z)μ−1 + O(μ−2)

]
,

φ2(z) = e−μhz
[
φ20(z) + φ21(z)μ−1 + O(μ−2)

]
,

(4.13)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ10(z) = φ20(z) = exp
{

− 1
2

∫ z

0

ρ1(x)ρ0(x)dx
}

,

φ11(z) = − 1
2

∫ z

0

exp

{

− 1
2

∫ z−ζ

0

ρ1(x)ρ0(x)dx

}

ρ2(ζ)dζ,

φ21(z) = −φ11(z) =
1
2

∫ z

0

exp

{

− 1
2

∫ z−ζ

0

ρ1(x)ρ0(x)dx

}

ρ2(ζ)dζ

(4.14)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1(x) =
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

,

ρ2(z) =
1
h
φ′′10(z) + h

a(x(z))
b(x(z))

φ10(z) +
(
ρ′0(x(z))
ρ2
0(x(z))

+
1

ρ0(x(z))
b′(x(z))
b(x(z))

)

φ′10(z).
(4.15)
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P r o o f. The first claim is trivial. We only need to show that (4.13) are the asymptotic fundamental solutions of (4.9).
This can be done along the same way of [2] and [19, Sect. 4]. Here we present briefly a simple calculation to (4.13)–(4.15).

Let
⎧
⎨

⎩

φ̃1(z, μ) = eμhz
[
φ10(z) + φ11(z)μ−1

]
,

φ̃2(z, μ) = e−μhz
[
φ20(z) + φ21(z)μ−1

]
,

(4.16)

where φki(z), k = 1, 2, i = 0, 1 are some functions to be determined, and

D(φ) = φ′′(z) − μ2h2

[

1 − a(x)
μ2b(x)

+
a2(x)
μ4b2(x)

+ O(|μ|−6)
]

φ(z)

+ h

{
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)

[
1

μ2b(x)
− a(x)
μ4b2(x)

+
a2(x)
μ6b3(x)

+ O(|μ|−8)
]

[a′(x) + μ2b′(x)]
}

φ′(z).

Substitute φ̃1(z, μ) into D(φ) to yield

e−μhzD(φ̃1(z, μ))

=μ2h2
[
φ10(z) + φ11(z)μ−1

]
+ 2μh

[
φ′10(z) + φ′11(z)μ

−1
]
+
[
φ′′10(z) + φ′′11(z)μ

−1
]

− μ2h2

[

1 − a(x)
μ2b(x)

+
a2(x)
μ4b2(x)

+ O(|μ|−6)
]
[
φ10(z) + φ11(z)μ−1

]

+ h

{
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)

[
1

μ2b(x)
− a(x)
μ4b2(x)

+
a2(x)
μ6b3(x)

+ O(|μ|−8)
]

[a′(x) + μ2b′(x)]
}

×
{
μh
[
φ10(z) + φ11(z)μ−1

]
+
[
φ′10(z) + φ′11(z)μ

−1
] }

=μ
[

2hφ′10(z) + h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ10(z)
]

+
[

2hφ′11(z) + h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ11(z)

+φ′′10(z) + h2 a(x)
b(x)

φ10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ′10(z)
]

+ O(μ−1).

Letting the coefficients of μ1 and μ0 be zero gives

2φ′10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ10(z) = 0

and

2hφ′11(z) + h2

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ11(z)

+ φ′′10(z) + h2 a(x)
b(x)

φ10(z) + h

(
ρ′0(x)
ρ2
0(x)

+
1

ρ0(x)
b′(x)
b(x)

)

φ′10(z) = 0.

Use the conditions φ10(0) = 1 and φ11(0) = 0 to obtain

φ10(z) = exp
{

− 1
2
h

∫ z

0

ρ1(x(τ))dτ
}

and

φ11(z) = − 1
2

∫ z

0

exp

{

− 1
2
h

∫ z−ζ

0

ρ1(x(τ))dτ

}

ρ2(ζ)dζ,
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where ρ1(x) and ρ2(z) are given by (4.15). From (4.8), we have

dz

dx
=

1
h
ρ0(x),

and so

dx

dz
=

h

ρ0(x)
.

Hence

φ10(z) = exp
{

− 1
2

∫ z

0

ρ1(x(τ))ρ0(x(τ))
dx

dτ
dτ

}

= exp
{

− 1
2

∫ z

0

ρ1(x)ρ0(x)dx
}

and

φ11(z) = − 1
2

∫ z

0

exp

{

− 1
2

∫ z−ζ

0

ρ1(x)ρ0(x)dx

}

ρ2(ζ)dζ.

Same arguments also give φ20(z) and φ21(z) as in (4.14) and (4.15). The proof is complete.

Let λ = μ2 with large modulus and μ ∈ S defined by (4.11). Let φ be a solution of (4.9) and (4.10). There are constants
c1 and c2 such that

φ(z) = c1φ1(z) + c2φ2(z), (4.17)

where φ1(z) and φ2(z) are fundamental solutions given by (4.13)–(4.15). By using the boundary conditions of (4.10), we
have

Δ(μ)[c1, c2]� = 0, (4.18)

where

Δ(μ) =

⎡

⎣
1 1

φ1(1) φ2(1)

⎤

⎦ . (4.19)

Hence, φ(z) has a nontrivial solution if and only if det(Δ(μ)) = 0, that is, μ ∈ S satisfies the characteristic equation:

det(Δ(μ)) = φ2(1) − φ1(1) (4.20)

= e−μh
[
φ20(1) + φ21(1)μ−1 + O(μ−2)

]
− eμh

[
φ10(1) + φ11(1)μ−1 + O(μ−2)

]

= φ10(1)
{

e−μh − eμh + k0μ
−1
[
e−μh + eμh

]}
+ O(μ−2)

= 0,

where k0 is a constant satisfying

k0 = −φ11(1)
φ10(1)

=
1
2

∫ 1

0

exp

{

− 1
2

∫ 1−ζ

0

ρ1(x)ρ0(x)dx

}

ρ2(ζ)dζ

exp

{

− 1
2

∫ 1

0

ρ1(x)ρ0(x)dx

} . (4.21)

Lemma 4.4. Let Δ(μ) be given by (4.19). Then the characteristic determinant det(Δ(μ)) has the following asymptotic
expression:

1
φ10(1)

det(Δ(μ)) = e−μh − eμh + k0μ
−1
[
e−μh + eμh

]
+ O(μ−2), (4.22)

where k0 is given by (4.21).
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Theorem 4.5. Let λ = μ2 with large modulus and μ ∈ S defined by (4.11). Then λ, which must be geometrically simple
as indicated in the beginning of the section, has the following asymptotic form:

λn = −n2π2

h2
+ 2

k0

h
+ O(n−1), n = N,N + 1, . . . , (4.23)

where k0 is given by (4.21) and h is given by (4.8).

P r o o f. Since in sector S, det(Δ(μ)) has the asymptotic form given by (4.22), by det(Δ(μ)) = 0, we have

e−μh − eμh + k0μ
−1
[
e−μh + eμh

]
+ O(μ−2) = 0, (4.24)

which can also be rewritten as

1 − e−2μh + O(μ−1) = 0. (4.25)

Since in sector S, the solutions of 1 − e−2μh = 0 are given by

μ̃n =
nπi

h
, n = 0, 1, 2, . . . ,

it follows from Rouché’s theorem that the solutions of Eq. (4.25) have the form of

μn = μ̃n + αn =
nπi

h
+ αn, αn = O(n−1), n = N,N + 1, N + 2, . . . ,

where N is a sufficiently large positive integer. Substitute μn into (4.24) and use the fact that e2μ̃nh = 1 to obtain

1 − e2αnh + k0μ
−1
n

[
1 + e2αnh

]
+ O(μ−2) = 0. (4.26)

Expand the exponential function in (4.26) according to its Taylor series, to give

2αnh = 2k0μ̃
−1
n + O(μ−2

n ).

Hence we obtain that

αn =
k0

h
μ̃−1

n + O(n−2),

and

μn = μ̃n + αn =
nπi

h
+
k0

h
μ̃−1

n + O(n−2), n = N,N + 1, . . . .

Due to λn = μ2
n, we get eventually

λn =
(
nπi

h

)2

+ 2
k0

h
+ O(n−1) = −n2π2

h2
+ 2

k0

h
+ O(n−1), n = N,N + 1, . . . .

Theorem 4.5 is about the asymptotic expression for high eigenfrequencies. To end this section, we indicate that the high
eigenfrequencies are actually real, which is stronger than that claimed by Theorem 1 of [20] under the assumption b > 0.

Proposition 4.6. Suppose b > 0. Let A be defined by (2.4) and

Λ0 = {λ ∈ σ(A)| Imλ �= 0}. (4.27)

Then Λ0 is a bounded set of C. Moreover, there is no spectrum on the imaginary axis and hence Reλ ≤ −α for some α > 0
for all λ ∈ σ(A).
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P r o o f. By Theorems 3.1 and 3.8, Λ0 ⊂ σp(A). For any λ = τ + iω ∈ Λ0, we may take (f, λf), f �= 0 to be an
eigenfunction corresponding to λ. Multiply the first equation of (3.1) by fn and then integrate over [0, 1] with respect to x,
to obtain, after separating real part and imaginary part, that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(τ2 − ω2)
∫ 1

0

ρ(x)|f(x)|2dx+
∫ 1

0

[a(x) + τb(x)]|f ′(x)|2dx = 0,

2τω
∫ 1

0

ρ(x)|f(x)|2dx+ ω

∫ 1

0

b(x)|f ′(x)|2dx = 0,

which is equivalent to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|λ|2
∫ 1

0

ρ(x)|f(x)|2dx =
∫ 1

0

a(x)|f ′(x)|2dx,

−2Reλ
∫ 1

0

ρ(x)|f(x)|2dx =
∫ 1

0

b(x)|f ′(x)|2dx.
(4.28)

Thus Reλ �= 0, and

|λ| ≤ |λ|2
|Reλ| = 2

∫ 1

0

a(x)|f ′(x)|2dx
∫ 1

0

b(x)|f ′(x)|2dx
≤ 2 max

0≤x≤1

a(x)
b(x)

. (4.29)

So Λ0 is a bounded set of C and there is no eigenvalue on the imaginary axis. These together with (i) of Theorem 3.8 show
that Reλ ≤ −α for some α > 0 for all λ ∈ σ(A).

It is noticed that we only get the asymptotic expression for larger eigenvalues. From constant case that both a and b
are constant, there is a sequence of finite eigenvalues that approach to continuous spectrum. However, for variable a, b, it
becomes complicated that needs further investigations.
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