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1. Introduction

Motivated by increasing demand for the high speed performance, reduced
weight, and low energy consumption of robot systems, much effort has been
concentrated on the modelling and control of flexible manipulators in the
past two decades ([2]). Many technical methods such as the HUM method
in [6], the Lyapunov techniques in [3], or the frequency domain multiplier
method in [1], to name just a few, have been developed to suppress the
vibration of flexible structures.

It is well known from beam theory that when the transverse section can-
not be neglected, the rotational inertia of the manipulator has the significant
effects on its vibration behaviors, especially for the “higher order” modal fre-
quencies of beam-like structure ([15]). On the other hand, in order to achieve
high speed and precision end-point positioning of the flexible manipulator,
the boundary control is one of the practical useful designs for suppression of
vibration of the beam in productions and space applications.

In this paper, a one-link flexible manipulator with rotational inertia and
transverse section are considered, which is usually referred to as a Rayleigh
beam. The beam is rotated by a motor in a horizontal plane at the hinged
end. It is assumed that the beam is a uniform rectangular transverse section
fixed on a hub with rotational inertia ĨH of the motor which is rotated in
the horizontal plane (no gravity effects) as shown in Figure 1 in ([15]), where
“OR” is the fixed reference line, and “OX” is the tangent line attached to
the hub. It is also assumed that the initial neutral longitudinal axis of the
arm coincides with the x−axis.

Let the beam be of length � with a transverse section of inertia moment I
and area A and let EI be the Young’s modulus, ρm the uniform mass density
per unit length. Let θ(t) be the angular rotation of the motor at time t and
w(x, t) be the flexible displacement of the longitudinal axis of the arm at
position x and time t. Suppose the deformation w(x, t) is small and the
pure bending rotation of the beam is neglected. Moreover, the elongation of
the longitudinal axis is assumed to be negligible.

Define a variable v(x, t) as

v(x, t) := w(x, t) + xθ(t). (1.1)

Then the dynamic motion equation for the one-link flexible manipulator with
rotational inertia can be modelled by the following Rayleigh beam equation
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Figure 1. The vibration control of a one-link flexible manipulator

([15]): 
ρmvtt(x, t) − ρmS̃vttxx(x, t)

+EIvxxxx(x, t) = 0, 0 < x < �, t > 0,

v(0, t) = 0, EIvxx(0, t) − ĨHvxtt(0, t) + ũ(t) = 0,

vxx(�, t) = 0, EIvxxx(�, t) − ρmS̃vxtt(�, t) = 0,

(1.2)

where ũ(t), applied at the root of the beam, is the torque developed by the
motor and S̃ = I/A > 0 is the parameter that characterizes the effect of
rotational inertia.

For brevity in notation, we make the following transformation:
y(x, t) = v

(
�x,

√
ρm�4

EI
t
)
, IH =

ĨH

ρm�3
,

u(t) =
�2

EI
ũ
(√

ρm�4

EI
t
)
, S =

S̃

�2
.

(1.3)

Then y satisfies
ytt(x, t) − Syttxx(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,

y(0, t) = 0, yxx(0, t) − IHyxtt(0, t) + u(t) = 0,

yxx(1, t) = 0, yxxx(1, t) − Syxtt(1, t) = 0.

(1.4)

Design a feedback controller:

u(t) = kyxxt(0, t) − αyxt(0, t) − βyx(0, t), (1.5)
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where k, α are nonnegative feedback gains, β > 0. All of them can be tuned
in practise. For instance, in [10], the simple direct strain feedback control is
adopted to control the motion of the motor so that θ̈(t) = wxxt(0, t). Such
an objective is easily achieved by direct feedback of the bending moment
wxx(0, t) which can be measured by cementing strain gauge foils at the root
end of the arm. For interested readers, we refer to [10] for the practical
implementability of the feedback law (1.5). By this controller, the closed-
loop system becomes

ytt(x, t) − Syttxx(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,

y(0, t) = 0,

yxx(0, t) − IHyxtt(0, t) + kyxxt(0, t) − αyxt(0, t) − βyx(0, t) = 0,

yxx(1, t) = 0, yxxx(1, t) − Syxtt(1, t) = 0.

(1.6)

Integrating the first equation of system (1.6) over [x, 1] with respect to the
spatial variable yields its weak form:

∫ 1

x
ytt(ξ, t)dξ + Syttx(x, t) − yxxx(x, t) = 0,

y(0, t) = 0,
yxx(0, t) − IHyxtt(0, t) + kyxxt(0, t) − αyxt(0, t) − βyx(0, t) = 0,
yxx(1, t) = 0.

(1.7)

The problem formulated above gives rise to two questions: a) how to show
the well posedness or C0-semigroup generation for the system (1.7) due to the
failure of dissipativity? We know that, in this case, it is almost impossible to
apply the traditional Hille-Yosida theorem ([12]) to check the C0-semigroup
generation because it is hard to find the n-th power of the resolvent operator;
b) does the spectrum of the system determine the stability of the system?
In this article, we shall answer these hard questions by virtue of the Riesz
basis approach. In Section 2, the system (1.7) is formulated as an evolution
equation in the energy state Hilbert space and then the asymptotics of the
eigenvalues are developed. Section 3 is devoted to the estimate of the resol-
vent which will lead to the completeness of the root subspace. The approach
used in this part is the Green’s function approach which avoids the estimate
for the eigenfunctions as was done in previous works (see, e.g., [5]). The
Riesz basis property, C0-semigroup generation, and stability are presented
in Section 4.
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2. Well posedness and asymptotics of eigenvalues

We begin by expressing the system (1.7) as an evolution equation in the
energy Hilbert space. Define an unbounded linear operator A in L2(0, 1) by Af(x) = Sf ′(x) +

∫ 1

x
f(τ)dτ, ∀ f ∈ D(A),

D(A) = {f ∈ H1(0, 1) : f(0) = 0}.
(2.1)

Denote two Hilbert spaces with inner product induced norms by

V := {f ∈ H1(0, 1) : f(0) = 0}, ‖f‖2
V :=

∫ 1

0

(
|f(x)|2 + S|f ′(x)|2

)
dx

and

W := {f ∈ H2(0, 1) : f(0) = 0}, ‖f‖2
W := β|f ′(0)|2 +

∫ 1

0
|f ′′(x)|2dx.

Lemma 2.1. A has a continuous inverse in L2(0, 1) and is given by

A−1g(x) = −

∫ 1

0
g(τ) sinh

√
1
S

(1 − τ)dτ

S cosh
√

1
S

sinh

√
1
S

x

+
1
S

∫ x

0
g(τ) cosh

√
1
S

(x − τ)dτ, ∀ g ∈ L2(0, 1).

(2.2)

Proof. Consider first that g ∈ H1(0, 1), and solve for Af = g, which gives

Sf ′(x) +
∫ 1

x
f(τ)dτ = g(x), f(0) = 0.

Since g ∈ H1(0, 1), this equation is equivalent to

f ′′(x) − 1
S

f(x) =
1
S

g′(x), f(0) = 0, Sf ′(1) = g(1),

and solving this yields

f(x) = c sinh

√
1
S

x +
1√
S

∫ x

0
g′(τ) sinh

√
1
S

(x − τ)dτ

=
[
c − 1√

S
g(0)

]
sinh

√
1
S

x +
1
S

∫ x

0
g(τ) cosh

√
1
S

(x − τ)dτ,

(2.3)
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where c is a constant determined by the condition Sf ′(1) = g(1). To find it,
we differentiate f and let x = 1 to yield

Sf ′(1) =
√

S
[
c− 1√

S
g(0)

]
cosh

√
1
S

+
1√
S

∫ 1

0
g(τ) sinh

√
1
S

(1− τ)dτ + g(1)

and so

c − 1√
S

g(0) = −

∫ 1

0
g(τ) sinh

√
1
S

(1 − τ)dτ

S cosh
√

1
S

.

Substituting it back into (2.3) gives (2.2), and the general result on L2(0, 1)
follows from a density argument. �

Lemma 2.2. For any ϕ ∈ L2(0, 1) and g ∈ V , we have

〈A−1ϕ, g〉V =
∫ 1

0
ϕ(x)g′(x)dx.

Proof. Denote ψ := A−1ϕ. Then

〈A−1ϕ, g〉V = 〈ψ, g〉V =
∫ 1

0
ψ(x)g(x)dx + S

∫ 1

0
ψ′(x)g′(x)dx

=
∫ 1

0
ψ(x)g(x)dx +

∫ 1

0
(Aψ)(x)g′(x)dx −

∫ 1

0

∫ 1

x
ψ(τ)dτg′(x)dx

=
∫ 1

0
ψ(x)g(x)dx +

∫ 1

0
ϕ(x)g′(x)dx −

∫ 1

0

∫ 1

x
ψ(τ)dτg′(x)dx

=
∫ 1

0
ϕ(x)g′(x)dx.

This gives the desired result. �
With the operator A at hand, the closed-loop system (1.7), and equiva-

lently (1.6), can be written
ytt = A−1yxxx,

y(0, t) = 0,
yxx(0, t) − IHyxtt(0, t) + kyxxt(0, t) − αyxt(0, t) − βyx(0, t) = 0,
yxx(1, t) = 0.

(2.4)
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We can further pose the system (2.4) in the energy state space H := W ×
V × C with the inner product induced norm:

‖(φ, ψ, η)‖2
H := ‖φ‖2

W + ‖ψ‖2
V +

1
IH

|η|2, ∀ (φ, ψ, η) ∈ H,

by defining another unbounded linear operator A : D(A) (⊂ H) → H:

A

 φ
ψ
η

�

:=

 ψ
A−1φ′′′

φ′′(0) − βφ′(0)

�

, ∀

 φ
ψ
η

�

∈ D(A) (2.5)

with

D(A) :=
{

(φ, ψ, η) ∈ (H3 × H2 × C) ∩H :

φ′′(1) = 0, η = IHψ′(0) − kφ′′(0) + αφ′(0)
}

. (2.6)

Then system (2.4) is equivalent to an evolution equation in H,

dY (t)
dt

= AY (t), Y (0) = Y0 ∈ H (2.7)

with Y (t) :=
(
y(·, t), yt(·, t), IHyxt(0, t) − kyxx(0, t) + αyx(0, t)

)
.

Lemma 2.3. Let A be defined by (2.5) and (2.6). Then A is densely defined
and A−1 exists and is compact on H. Hence, the spectrum σ(A) consists
entirely of isolated eigenvalues only.

Proof. For any (f, g, c) ∈ H, we solve the equation

A

 φ
ψ
η

�

=

 f
g
c

�

and come up with ψ(x) = f(x), A−1φ′′′(x) = g(x), φ(0) = 0, φ′′(1) = 1, and
φ′′(0) − βφ′(0) = c. Hence,

φ(x) =
∫ x

0

∫ τ

0

∫ ξ

0
(Ag)(ζ)dζdξdτ +

1
2
φ′′(0)x2 + φ′(0)x

with

φ′′(0) = 1 −
∫ 1

0
(Ag)(ζ)dζ, φ′(0) =

1
β

(
φ′′(0) − c

)
.

Therefore, A−1 exists and is bounded. In light of the Sobolev embedding
theorem, A−1 is compact and the proof is completed. �
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Since every λ ∈ σ(A) is an eigenvalue, λ ∈ σ(A) if and only if there exists
a nontrivial function φ satisfying

λ2φ(x) − Sλ2φ′′(x) + φ(4)(x) = 0, 0 < x < 1,

φ(0) = 0, (1 + kλ)φ′′(0) − IHλ2φ′(0) − αλφ′(0) − βφ′(0) = 0,

φ′′(1) = 0, φ′′′(1) − Sλ2φ′(1) = 0
(2.8)

where and henceforth primes above symbols representing functions denotes
differentiation with respect to the spatial variable x.

Lemma 2.4. If
α − βk > 0, (2.9)

then Reλ < 0 for all λ ∈ σ(A).

Proof. Without loss of generality, we may consider the case that 1+kλ 
= 0.
Multiply the first equation of (2.8) by φ, the conjugate of φ, and integrate
over [0, 1] with respect to x, to give

λ2

∫ 1

0

[
|φ(x)|2 + S|φ′(x)|2

]
dx +

∫ 1

0
|φ′′(x)|2dx +

IHλ2 + αλ + β

1 + kλ
|φ′(0)|2 = 0.

(2.10)
Set λ = Reλ + iImλ. Then we have

[(Reλ)2 − (Imλ)2]
∫ 1

0
[|φ(x)|2 + S|φ′(x)|2]dx +

∫ 1

0
|φ′′(x)|2dx (2.11)

+
[(Reλ)2 − (Imλ)2]IH + β + αk|λ|2 + (Reλ)(kIH |λ|2 + α + βk)

|1 + kλ|2 |φ′(0)|2 = 0

and

2(Reλ)(Imλ)
∫ 1

0

[
|φ(x)|2 + S|φ′(x)|2

]
dx

+
2(Reλ)(Imλ)IH + (Imλ)(kIH |λ|2 + α − βk)

|1 + kλ|2 |φ′(0)|2 = 0.

(2.12)

If Imλ = 0, Reλ < 0 follows from (2.11). Otherwise when Imλ 
= 0, Reλ < 0
follows from (2.12) and the assumption that α − βk > 0. �

Throughout this article, we adopt the convention that when we mention
the feedback gains, we always mean that (2.9) holds true. For convenience,
let

γ :=
1√
S

, ρ :=
√

Sλ, (2.13)
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and change (2.8) into
φ(4)(x) = ρ2

[
φ′′(x) − γ2φ(x)

]
, 0 < x < 1,

U4(φ) = φ(0) = 0,

U3(φ) = (1 + kγρ)φ′′(0) − IHγ2ρ2φ′(0) − αγρφ′(0) − βφ′(0) = 0,

U2(φ) = φ′′(1) = 0, U1(φ) = φ′′′(1) − ρ2φ′(1) = 0.

(2.14)
Now we are in a position to find asymptotics of “higher” frequencies of

the system (2.14). Due to Lemma 2.4 and the fact that the eigenvalues are
symmetric about the real axis, we consider only those λ which are in the
left-half complex plane:

S :=
{
z ∈ C :

π

2
≤ arg z ≤ π

}
. (2.15)

For S, define square roots of −1

ω1 := ei π
2 = i, ω2 := ei 3

2
π = −i, (2.16)

so that
Re(ρω1) ≤ Re(ρω2), ∀ ρ ∈ S. (2.17)

Lemma 2.5. For ρ ∈ S with |ρ| sufficiently large, the equation

φ(4)(x) = ρ2
[
φ′′(x) − γ2φ(x)

]
(2.18)

has four linearly independent fundamental solutions φs(x, ρ) (s = 1, 2, 3, 4)

φs(x, ρ) = hs(x) + hs1(x)ρ−2 + O(ρ−4), s = 1, 2 (2.19)

and
φ3(x, ρ) = eρx

[
1 − 1

2
γ2xρ−1 +

1
8
γ4x2ρ−2 + O(ρ−3)

]
, (2.20)

φ4(x, ρ) = e−ρx
[
1 +

1
2
γ2xρ−1 +

1
8
γ4x2ρ−2 + O(ρ−3)

]
, (2.21)

where and henceforth O(ρ−m) denotes the term satisfying

lim
|ρ|→∞

|ρmO(ρ−m)| < ∞.

Here {
h1(x) = eγx, h11(x) = 1

2γ3xeγx,
h2(x) = e−γx, h21(x) = −1

2γ3xe−γx,
(2.22)

where hs(x) and hs1(x) have the following properties (s = 1, 2)

h′′
s1(x) − r2hs1(x) = r4hs(x).
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Moreover,
D1 := h′

1(1)h′
2(0) − h′

2(1)h′
1(0) = −γ2(eγ − e−γ) = −2γ2 sinh γ,

D2 := h′
1(1)h′′

2(1) − h′
2(1)h′′

1(1) = 2γ3,

D3 := h′
1(1) − h′

2(1) = γeγ + γe−γ = 2γ cosh γ.

(2.23)

Proof. This follows directly from Theorem 3 of [14] (or see [16]). �
Set [a]3 := a + O(ρ−3). Substitution of (2.19)-(2.21) into the boundary

conditions in (2.14), we obtain immediately the following Lemma 2.6.

Lemma 2.6. Let Ui, i = 1, 2, 3, 4 be defined as in (2.14). Then

U1(φs) = φ′′′
s (1, ρ) − ρ2φ′

s(1, ρ)

=


−ρ2

[
h′

s(1) + (h′
s1(1) − h′′′

s (1))ρ−2 + O(ρ−4)
]
, s = 1, 2,

ρ3eρ
[
−γ2ρ−2 + O(ρ−3)

]
, s = 3,

ρ3e−ρ
[
γ2ρ−2 + O(ρ−3)

]
, s = 4,

: =


−ρ2

[
h′

s(1) + (h′
s1(1) − h′′′

s (1))ρ−2
]
3
, s = 1, 2,

ρ3eρ
[
−γ2ρ−2

]
3
, s = 3,

ρ3e−ρ
[
γ2ρ−2

]
3
, s = 4;

(2.24)

U2(φs)=φ′′
s(1, ρ)=


h′′

s(1) + h′′
s1(1)ρ−2 + O(ρ−4), s = 1, 2,

ρ2eρ[1 − 1
2γ2ρ−1 + (1

8γ4 − γ2)ρ−2 + O(ρ−3)], s = 3,

ρ2e−ρ[1 + 1
2γ2ρ−1 + (1

8γ4 − γ2)ρ−2 + O(ρ−3)], s = 4,

: =


[
h′′

s(1) + h′′
s1(1)ρ−2

]
3
, s = 1, 2,

ρ2eρ
[
1 − 1

2γ2ρ−1 + E0ρ
−2

]
3
, s = 3,

ρ2e−ρ
[
1 + 1

2γ2ρ−1 + E0ρ
−2

]
3
, s = 4;

(2.25)

U3(φs) = (1 + kγρ)φ′′
s(0, ρ) − (IHγ2ρ2 + αγρ + β)φ′

s(0, ρ)

=


ρ2

[
−IHγ2h′

s(0) + (kγh′′
s(0) − αγh′

s(0)) ρ−1

+ (h′′
s(0) − IHγ2h′

s1(0) − βh′
s(0))ρ−2 + O(ρ−3)

]
, s = 1, 2,

ρ3
[
kγ + (−1)sIHγ2 + (1 + (−1)sαγ)ρ−1

+
(
(−1)s−1 1

2IHγ4 − kγ3
)
ρ−2 + O(ρ−3)

]
, s = 3, 4,

: =

{
ρ2

[
− IHγ2h′

s(0) + γDs+3ρ
−1 + Esρ

−2
]
3
, s = 1, 2,

ρ3
[
Es + Es+2ρ

−1 + Es+4ρ
−2

]
3
, s = 3, 4;

(2.26)
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U4(φs) = φs(0, ρ) = 1 + O(ρ−3) := [1]3, s = 1, 2, 3, 4, (2.27)

where

D4 := kh′′
1(0) − αh′

1(0) = kγ2 − αγ, D5 := kh′′
2(0) − αh′

2(0) = kγ2 + αγ,

E0 := (
1
8
γ4 − γ2), E1 := h′′

1(0) − IHγ2h′
11(0) − βh′

1(0) = γ2 − 1
2
IHγ5 − βγ,

E2 := h′′
2(0) − IHγ2h′

21(0) − βh′
2(0) = γ2 +

1
2
IHγ5 + βγ, E3 := kγ − IHγ2,

E4 := kγ + IHγ2, E5 := 1 − αγ, E6 := 1 + αγ,

E7 :=
1
2
IHγ4 − kγ3, E8 := −1

2
IHγ4 − kγ3. (2.28)

Obviously, 0 
= λ ∈ σ(A) if and only if the characteristic determinant
∆(ρ) = 0, where

∆(ρ) :=

∣∣∣∣∣∣∣∣
U4(φ1) U4(φ2) U4(φ3) U4(φ4)
U3(φ1) U3(φ2) U3(φ3) U3(φ4)
U2(φ1) U2(φ2) U2(φ3) U2(φ4)
U1(φ1) U1(φ2) U1(φ3) U1(φ4)

∣∣∣∣∣∣∣∣ . (2.29)

Now substitute (2.24)-(2.27) into the characteristic determinant, to obtain

∆(ρ) =

∣∣∣∣∣∣∣∣∣
[1]3

ρ2[−IHγ2h′
1(0) + γD4ρ

−1 + E1ρ
−2]3

[h′′
1(1) + h′′

11(1)ρ−2]3

−ρ2[h′
1(1) + (h′

11(1) − h′′′
1 (1))ρ−2]3

[1]3
ρ2[−IHγ2h′

2(0) + γD5ρ
−1 + E2ρ

−2]3

[h′′
2(1) + h′′

21(1)ρ−2]3

−ρ2[h′
2(1) + (h′

21(1) − h′′′
2 (1))ρ−2]3

[1]3
ρ3

[
E3 + E5ρ

−1 + E7ρ
−2

]
3

ρ2eρ[1 − 1
2γ2ρ−1 + E0ρ

−2]3

ρ3eρ[−γ2ρ−2]3
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[1]3
ρ3

[
E4 + E6ρ

−1 + E8ρ
−2

]
3

ρ2e−ρ[1 + 1
2γ2ρ−1 + E0ρ

−2]3

ρ3eρ[−γ2ρ−2]3

∣∣∣∣∣∣∣∣∣∣
= ρ7

{
D3

[
E3e

−ρ − E4e
ρ
]
+ ρ−1

[
D6e

−ρ − D7e
ρ
]

+ ρ−2
[
E9e

−ρ + E10 + E11e
ρ
]
+ O(ρ−3)

}
,

where

D6 := D3

(1
2
γ3(k − IHγ) + (1 − αγ)

)
+ IHγ2D1,

D7 := D3

(
(1 + αγ) − 1

2
γ3(k + IHγ)

)
+ IHγ2D1,

E9 := D3(E3E0 + E7 +
1
2
γ2E5) −

1
2
γ2(D1 + D3)E3 +

1
2
IHD1γ

4 − kγ3D3 − αD1γ,

E10 := 4IHγ3,

E11 := D3(−E3E0 − E7 +
1
2
γ2E5 + IHγ4 − 2IHγ2E0 + αγ3)

+
1
2
γ2(D1 + D3)E4 +

1
2
IHD1γ

4 + kγ3D3 + αD1γ. (2.30)

With these preparations, we come to the proof of the asymptotic behavior
of the eigenvalues.

Theorem 2.1. In sector S, the characteristic determinant ∆(ρ) of the eigen-
value problem (2.14) has an asymptotic expansion

∆(ρ) = ρ7
{

2γ2(cosh γ)
[
(k − γIH)e−ρ − (k + γIH)eρ

]
+ ρ−1

[
D6e

−ρ − D7e
ρ
]

+ ρ−2
[
E9e

−ρ + E10 + E11e
ρ
]
+ O(ρ−3)

}
, (2.31)

where D6, D7, E9, E10 and E11 are given by (2.30) respectively. Moreover, if
k 
= γIH , then the eigenvalues {λn, λn} of the eigenvalue problem (2.8) have
the following asymptotic expansion

λn =
1
2
γξ + nγπi +

γD8
1
2ξ + nπi

+ γ
D9 + D10 + D11e

1
2
ξ+nπi

(1
2ξ + nπi)2

+O(n−3) (2.32)
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as n → ∞. Here, n ∈ N, γ := 1√
S

is given in (2.13), and

ξ :=


ln

k − γIH

k + γIH
, k > γIH ,

ln
γIH − k

k + γIH
+ πi, k < γIH ,

(2.33)

D8 :=
1
2
γ2 +

IH − kα

k2 − γ2I2
H

− γ3I2
H sinh γ

cosh γ(k2 − γ2I2
H)

,

D9 := − 1
4γ2D2

3

( D2
6

(k − γIH)2
− D2

7

(k + γIH)2
)
,

D10 :=
1

2γD3

( E9

k − γIH
+

E11

k + γIH

)
,

D11 :=
1

2γD3

E10

k − γIH

(2.34)

with D6, D7, E9, E10, E11 being given in (2.30).

It is clear from Theorem 2.1 that when k 
= γIH ,

Re{λn, λn} =
1
2
γReξ +

γD8

|12ξ + nπi|2
1
2
Reξ (2.35)

+ γ

(
D9 + D10 + D11e

(1/2)ξ(−1)n
)(

1
4(Reξ)2 − n2π2

)
|12ξ + nπi|4

+ O(n−3)

and hence

Re{λn, λn} → 1
2
γReξ =

1
2
γ ln

∣∣∣k − γIH

k + γIH

∣∣∣ as n → ∞. (2.36)

For the case that k = γIH , it follows from (2.31) that there are at most
finitely many eigenvalues because in this case ∆(ρ) is an analytic function
and ∆(ρ) 
= 0 for |ρ| sufficiently large.
Proof of Theorem 2.1. It follows from (2.31) that ρ satisfies (in sector S)

γD3

[
(k − γIH)e−ρ − (k + γIH)eρ

]
+ ρ−1

[
D6e

−ρ − D7e
ρ
]

+ρ−2
[
E9e

−ρ + E10 + E11e
ρ
]

+ O(ρ−3) = 0,
(2.37)

which leads to [
(k − γIH)e−ρ − (k + γIH)eρ

]
+ O(ρ−1) = 0. (2.38)
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Since the equation

(k − γIH)e−ρ − (k + γIH)eρ = 0

has solutions

ρ̃n =
1
2
ξ + nπi, n ∈ N (2.39)

with ξ defined in (2.33), we can apply Rouché’s theorem to (2.38) to conclude
that

ρn = ρ̃n + αn =
1
2
ξ + nπi + O(n−1), αn = O(n−1) (2.40)

for sufficiently large positive integers n. Substituting ρ = ρn into (2.37) and
using the fact that (k − γIH)e−ρ̃n = (k + γIH)eρ̃n , we get

γD3

[
e−αn − eαn

]
+ ρ−1

n

[ D6

k − γIH
e−αn − D7

k + γIH
eαn

]
+ρ−2

n

[ E9

k − γIH
e−αn +

E10

k − γIH
eρ̃n +

E11

k + γIH
eαn

]
+ O(ρ−3

n ) = 0.

Expanding the exponential functions above in terms of Taylor series, we
obtain

αn =
1

2ρ̃nγD3

( D6

k − γIH
− D7

k + γIH

)
− 1

4ρ̃2
nγ2D2

3

( D2
6

(k − γIH)2
− D2

7

(k + γIH)2
)

+
1

2ρ̃2
nγD3

( E9

k − γIH
+

E10

k − γIH
eρ̃n +

E11

k + γIH

)
+ O(n−3).

Since

1
2γD3

( D7

k − γIH
− D8

k + γIH

)
=

1
2
γ2 +

IH − kα

k2 − γ2I2
H

− γ3I2
H sinh γ

cosh γ(k2 − γ2I2
H)

= D8,

we have

ρn =
1
2
ξ + nπi +

D8
1
2ξ + nπi

+
D9 + D10 + D11e

1
2
ξ+nπi

(1
2ξ + nπi)2

+ O(n−3). (2.41)

This proves the required result because (2.13) says that λn = γρn. �

Theorem 2.2. Assume k 
= γIH . Let σ(A) = {λn, λn} be the eigenvalues
of A and let λn = γρn with λn and ρn being given by (2.32) and (2.41) re-
spectively. Then the corresponding eigenfunctions {(φn, λnφn, ηn), (φn, λnφn,
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ηn)} have the following asymptotics:
λnφ′

n(x) = γ(1 + e2γ)eρnx + γ(1 + e2γ)eρneρn(1−x) + O(n−1),

φ′′
n(x) = (1 + e2γ)eρnx − (1 + e2γ)eρneρn(1−x) + O(n−1),

ηn = O(n−1)

(2.42)

for sufficiently large positive integers n. Moreover, (φn, λnφn, ηn) are ap-
proximately normalized in H in the sense that there exist positive constants
c1, c2 independent of n such that

c1 ≤ ‖φ′′
n‖L2(0,1), ‖λnφ′

n‖L2(0,1), |ηn| ≤ c2 (2.43)

for all integers n.

Proof. We only need show the first two equalities of (2.42) because if they
are valid, then

ηn = IHλnφ′
n(0) − kφ′′

n(0) + O(n−1)

= (1 + e2γ)eρn

[
(k + IHγ)eρn − (k − γIH)e−ρn

]
+ O(n−1) = O(n−1).

In the last step, we used (2.38).
From (2.14), Lemma 2.6, and linear algebra theory, we have the eigen-

function φ corresponding to the eigenvalue λ = γρ given by

φ(x, ρ) = eγρ−4

∣∣∣∣∣∣∣∣
U4(φ1) U4(φ2) U4(φ3) U4(φ4)eρ

U2(φ1) U2(φ2) U2(φ3) U2(φ4)eρ

U1(φ1) U1(φ2) U1(φ3) U1(φ4)eρ

φ1(x, ρ) φ2(x, ρ) φ3(x, ρ) φ4(x, ρ)eρ

∣∣∣∣∣∣∣∣
= eγ

∣∣∣∣∣∣∣∣
1 1 1 eρ

0 0 eρ 1
−γeγ γe−γ 0 0
eγx e−γx eρx eρ(1−x)

∣∣∣∣∣∣∣∣ + O(ρ−1)

= γ

∣∣∣∣∣∣∣∣
1 eγ 1 eρ

0 0 eρ 1
−eγ 1 0 0
eγx eγ(1−x) eρx eρ(1−x)

∣∣∣∣∣∣∣∣ + O(ρ−1).

By (2.38), it follows that

γ−1φ(x, ρ) = −
[
1 − k − γIH

k + γIH

]
eγx −

[
1 − k − γIH

k + γIH

]
eγeγ(1−x)
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+(1 + e2γ)eρx − (1 + e2γ)eρeρ(1−x) + O(ρ−1). (2.44)

Similarly, by

ρ−1φ′(x, ρ) = eγ+ρ

∣∣∣∣∣∣∣∣
1 1 1 1
0 0 eρ e−ρ

−γeγ γe−γ 0 0
0 0 eρx −e−ρx

∣∣∣∣∣∣∣∣ + O(ρ−1)

and

ρ−2φ′′(x, ρ) = eγ+ρ

∣∣∣∣∣∣∣∣
1 1 1 1
0 0 eρ e−ρ

−γeγ γe−γ 0 0
0 0 eρx e−ρx

∣∣∣∣∣∣∣∣ + O(ρ−1),

we can obtain

ρ−1(1 + e2γ)−1γ−1φ′(x, ρ) = eρx + eρeρ(1−x) + O(ρ−1) (2.45)

and

ρ−2(1 + e2γ)−1γ−1φ′′(x, ρ) = eρx − eρeρ(1−x) + O(ρ−1). (2.46)

Expression (2.42) then follows from (2.44)-(2.46) by setting

φn(x) = ρ−2
n γ−1φ(x, ρn)

in (2.44), (2.45), and (2.46), respectively. Finally, in order to prove (2.43),
we notice (2.41), to obtain

‖eρnx‖2
L2(0,1) =

1
|ξ|(e

|ξ|−1)+O(n−1), ‖eρn(1−x)‖2
L2(0,1) =

1
|ξ|(e

|ξ|−1)+O(n−1).

These together with (2.42) yield (2.43). �
To end this section, we remark that the same process can be carried over

to A∗, the adjoint operator of A, which is given by

A∗

f
g
z

�

=


−g + 1

IH
[k − α

β ][βf ′(0) − f ′′(0)]x

−A−1f ′′′

βf ′(0) − f ′′(0)


�

, ∀

f
g
z

�

∈ D(A∗),

D(A∗) :=
{

(f, g, z) ∈ (H3 × H2 × C) ∩H : f ′′(1) = 0,

z = IHg′(0) − k[βf ′(0) − f ′′(0)]
}

.

(2.47)
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First, since A is a discrete operator, so is A∗ ([4], page 2354). Second, since
the eigenvalues of A are symmetric about the real axis, A∗ will have the
same eigenvalues as A ([9], page 26) with the same algebraic multiplicity
([4], page 2354). Finally, the exact same proof as in Theorem 2.2 will yield
the counterpart of Theorem 2.2 for A∗.

Theorem 2.3. Assume k 
= γIH . Let σ(A∗)= {λn, λn} be the eigenvalues of
A∗, let λn = γρn with λn and ρn being given by (2.32) and (2.41) respectively.
Then the corresponding eigenfunctions {(ψn, λnψn, ξn), (ψn, λnψn, ξn)} have
the following asymptotics:

λnψ′
n(x) = γ(1 + e2γ)eρnx + γ(1 + e2γ)eρneρn(1−x) + O(1),

ψ′′
n(x) = (1 + e2γ)eρnx − (1 + e2γ)eρneρn(1−x) + O(n−1),

ξn = O(n−1)

(2.48)

for sufficiently large positive integers n. Moreover, (ψn, λnψn, ξn) are ap-
proximately normalized in H. �

3. Completeness of the root subspace

Theorem 3.1. Suppose k 
= γIH . Let A be defined as in (2.5) and (2.6)
and {λn, n ∈ J} be a numeration of all eigenvalues of A, where J is a subset
of all integers. Let δ > 0. Then there exists a constant M > 0 such that for
any λ ∈ ρ(A) with |λ − λn| > δ for all n ∈ J, it holds that

‖R(λ,A)‖ ≤ M
(
1 + |λ|3

)
(3.1)

where M is independent of λ.

Proof. Let λ ∈ ρ(A) and (f, g, c) ∈ H. We solve the resolvent equation

(λI −A)

 φ
ψ
η

�

=

 f
g
c

�

,

which is the same as{
λφ − ψ = f, λψ − A−1φ′′′ = g, η = IHψ′(0) − kφ′′(0) + αφ′(0),

λη −
[
φ′′(0) − βφ′(0)

]
= c,

to obtain ψ = λφ − f with φ satisfying{
A−1φ′′′ = λ2φ − λf − g,

φ′′(0) − λ2IHφ′(0) + λkφ′′(0) − λαφ′(0) − βφ′(0) + λIHf ′(0) + c = 0
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or 
φ(4)(x) − Sλ2φ′′(x) + λ2φ(x) = F (x, λ),
φ(0) = 0,

φ′′(0) − λ2IHφ′(0) + λkφ′′(0) − λαφ′(0) − βφ′(0) = F1(λ),
φ′′(1) = 0, φ′′′(1) − Sλ2φ′(1) = F2(λ)

(3.2)

where  F (x, λ) := −Sλf ′′(x) − Sg′′(x) + λf(x) + g(x),
F1(λ) := −λIHf ′(0) − c,
F2(λ) := −Sλf ′(1) − Sg′(1).

(3.3)

Set
Φ(x, λ) := φ(x) + Ψ(x, λ) (3.4)

where

Ψ(x, λ) :=
C∗

1 (x, λ)
C∗(λ)

F1(λ) +
C∗

2 (x, λ)
C∗(λ)

F2(λ), (3.5)
C∗(λ) := (Sλ2 + 2)(λ2IH + λα + β) + Sλ2(2 + 2λk),
C∗

1 (x, λ) := (Sλ2 + 2)x − Sλ2x2(1 − 1
3x),

C∗
2 (x, λ) := (2 + 2λk)x + (λ2IH + λα + β)x2(1 − 1

3x).
(3.6)

We may assume without loss of generality that C∗(λ) 
= 0. Then, Φ(x, λ)
satisfies

Φ(4)(x, λ)−Sλ2Φ′′(x, λ)+λ2Φ(x, λ)=F (x, λ)−Sλ2Ψ′′(x, λ)+λ2Ψ(x, λ),
Φ(0, λ) = 0,

Φ′′(0, λ) − λ2IHΦ′(0, λ) + λkΦ′′(0, λ) − λαΦ′(0, λ) − βΦ′(0, λ) = 0,

Φ′′(1, λ) = 0, Φ′′′(1, λ) − Sλ2Φ′(1, λ) = 0.

(3.7)
Instead of φj(x), we use φj(x, λ), j = 1, 2, 3, 4, to denote the fundamental
solutions of the first equation of (2.8) relative to λ. Then every solution
Φ(x, λ) of (3.7) can be represented as (see, e.g., Theorem 2 of [11], page 31)

Φ(x, λ) =
∫ 1

0
G(x, ξ, λ)

[
F (ξ, λ) − Sλ2Ψ′′(ξ, λ) + λ2Ψ(ξ, λ)

]
dξ. (3.8)

Hence in light of (3.4) and (3.8), the solution of (3.2) can be represented as

φ(x) =
∫ 1

0
G(x, ξ, λ)

[
F (ξ, λ)− Sλ2Ψ′′(ξ, λ) + λ2Ψ(ξ, λ)

]
dξ −Ψ(x, λ) (3.9)
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where G(x, ξ, λ) is the Green’s function:

G(x, ξ, λ) :=
1

∆(λ)
H(x, ξ, λ)

with

H(x, ξ, λ) :=

∣∣∣∣∣∣∣∣∣∣
φ1(x, λ) φ2(x, λ) φ3(x, λ) φ4(x, λ) η(x, ξ, λ)
U1(φ1) U1(φ2) U1(φ3) U1(φ4) U1(η)
U2(φ1) U2(φ2) U2(φ3) U2(φ4) U2(η)
U3(φ1) U3(φ2) U3(φ3) U3(φ4) U3(η)
U4(φ1) U4(φ2) U4(φ3) U4(φ4) U4(η)

∣∣∣∣∣∣∣∣∣∣
, (3.10)

η(x, ξ, λ) :=
1
2
sign(x − ξ)

4∑
j=1

φj(x, λ)ψj(ξ, λ) (3.11)

where ψj(x, λ) := Wj(x,λ)
W (x,λ) , W (x, λ) is the Wronskian determinant deter-

mined by φi (i = 1, 2, 3, 4), and Wj(x, λ) is the cofactor determinant of φj

in W (x, λ).
We may assume without loss of generality that λ = γρ with ρ ∈ S. Then

substituting (2.19)-(2.21) and (2.24)-(2.27) into (3.10) and (3.11), respec-
tively, we have, for λ ∈ ρ(A) with |λ| large enough, that there exists a
constant M independent of x, ξ ∈ [0, 1] so that

|H(x, ξ, λ)| ≤ M |λ|7e|ρ|,
∣∣∣ ∂

∂x
H(x, ξ, λ)

∣∣∣ ≤ M |λ|8e|ρ|,∣∣∣ ∂2

∂x2
H(x, ξ, λ)

∣∣∣ ≤ M |λ|9e|ρ|.
(3.12)

Since k 
= γIH , this together with the assumption that |λ − λn| ≥ δ for all
n ∈ J and (2.31) gives

|G(x, ξ, λ)| ≤ M1,
∣∣∣ ∂

∂x
G(x, ξ, λ)

∣∣∣ ≤ M1|λ|,
∣∣∣ ∂2

∂x2
G(x, ξ, λ)

∣∣∣ ≤ M1|λ2|, (3.13)

where M1 is some constant independent of x, ξ ∈ [0.1]. These will in turn
yield estimates for φ(x) and its derivatives

|φ(j)(x)|

≤
∫ 1

0

∣∣∣ ∂j

∂xj
G(x, ξ.λ)

(
F (ξ, λ) − Sλ2Ψ′′(ξ, λ) + λ2Ψ(ξ, λ)

) ∣∣∣dξ + |Ψ(j)(x, λ)|

≤ M1|λj |
∫ 1

0

∣∣∣F (ξ, λ) − Sλ2Ψ′′(ξ, λ) + λ2Ψ(ξ, λ)
∣∣∣dξ + |Ψ(j)(x, λ)|,
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j = 0, 1, 2, 3. Combining all these estimates, we obtain eventually that

‖(φ, ψ, η)‖2 =β|φ′(0)|2 +
∫ 1

0
|φ′′(x)|2dx +

∫ 1

0
|ψ(x)|2 + S|ψ′(x)|2dx +

1
IH

|η|2

= β|φ′(0)|2 +
∫ 1

0
|φ′′(x)|2dx +

∫ 1

0

[
|λφ(x) − f(x)|2

+ S|λφ′(x) − f ′(x)|2
]
dx +

1
IH

|λIHφ′(0) − f ′(0) − kφ′′(0)|2

≤ M2
2 |λ6|

[
‖f‖2

W + ‖g‖2
V +

1
IH

|c|2
]
, (3.14)

where M2 is some constant independent of λ. Therefore, ‖R(λ,A)‖ ≤ M2(1+
|λ|3). �

Recall that a nonzero Y ∈ H is called a generalized eigenvector of A,
corresponding to an eigenvalue λ (with finite algebraic multiplicity) of A,
if there is a positive integer n such that (λ − A)nY = 0. Let Sp(A) be
the root subspace of A that is a closed subspace spanned by all generalized
eigenfunctions of A. A sequence in H is said to be complete in H, if its
linear span is dense in H.

Corollary 3.1. Under the hypotheses of Theorem 3.1, for sufficiently large
n, each eigenvalue λn of A is algebraically simple.

Proof. From (3.9), the multiplicity of each λ ∈ σ(A) with sufficiently large
modulus, as a pole of R(λ,A), is less than or equal to the multiplicity of λ
as a zero of the entire function ∆(ρ) with respect to ρ. On the other hand,
it is a routine exercise to verify that λ is geometrically simple. Since, from
(2.38), all zeros of ∆(ρ) = 0 with large moduli are simple, the result then
follows from the general formula: ma ≤ p ·mg (see e.g. [7], page 148), where
p denotes the order of the pole of the resolvent operator and ma, mg denote
the algebraic and geometric multiplicities respectively. �

Theorem 3.2. Suppose k 
= γIH . Let A be defined as in (2.5) and (2.6).
Then the root subspaces of both A and A∗ are complete in H; that is, Sp(A) =
Sp(A∗) = H.

Proof. We prove Sp(A) = H only because the proof for the other part
is similar. From Lemma 5 on page 2355 of [4], the following orthogonal
decomposition holds:

H = σ∞(A∗) ⊕ Sp(A)
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where σ∞(A∗) consists of those Y ∈ H such that R(λ,A∗)Y is an analytic
function of λ in the whole complex plane. Hence Sp(A) = H if and only
if σ∞(A∗) = {0}. Now suppose that Y ∈ σ∞(A∗). Since R(λ,A∗)Y is an
analytic function of λ, it is analytic as a function of ρ. By the maximum
modulus principle (or the Phragmén-Lindelöf theorem) of analytic functions
and the fact that ‖R(λ,A∗)‖ = ‖R(λ,A)‖, it follows from Theorem 3.1 that

‖R(λ,A∗)Y ‖ ≤ M(1 + |λ|3)‖Y ‖, ∀ λ ∈ C,

for some constant M > 0. By Theorem 1 on page 3 of [8], we conclude that
R(λ,A∗)Y is a polynomial in λ of degree less or equal to 3; i.e.,

R(λ,A∗)Y = Y0 + λY1 + λ2Y2 + λ3Y3 for some Y0, Y1, Y2, Y3 ∈ H.

Thus, for all λ ∈ C,

Y = (λ −A∗)(Y0 + λY1 + λ2Y2 + λ3Y3)

= −A∗Y0 + λ(Y0 − A∗Y1) + λ2(Y1 − A∗Y2) + λ3(Y2 − A∗Y3) + λ4Y3.

Comparing the coefficients of λj , we see that Y0 = Y1 = Y2 = Y3 = 0, proving
the result. �

4. Riesz basis generation and stability

Let us recall that a sequence in a Hilbert space H is called minimal if each
element of this sequence lies outside the closed linear span of the remaining
elements. Two sequences {ei} and {e∗i } are said to be biorthogonal in H if

〈ei, e
∗
j 〉 = δij =

{
1, i = j,
0, i 
= j

for every i and j. It is well known that for a given sequence {ei} a biorthog-
onal sequence {e∗i } exists if and only if {ei} is minimal, and {e∗i } is uniquely
determined if and only if {ei} is complete. A sequence {ei}∞i=1 is called a
Bessel sequence in H if for any x ∈ H, the series {〈x, ei〉}∞i=1 ∈ �2.

A sequence {ei}∞i=1 is called a basis for H if any element x ∈ H has a
unique representation

x =
∞∑
i=1

aiei (4.1)

and the convergence of the series is in the norm of H. A sequence {ei}∞i=1
with biorthogonal sequence {e∗i }∞i=1 is called a Riesz basis for H if {ei}∞i=1
is an approximately normalized basis of H and the series in (4.1) converges
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unconditionally in the norm of H. An equivalent definition of Riesz basis is
that {ei}∞i=1 satisfies the following two conditions ([17], page 27):

a) both {ei}∞i=1 and {e∗i }∞i=1 are complete in H; and
b) both {ei}∞i=1 and {e∗i }∞i=1 are Bessel sequences in H.

It is also well known that {ei}∞i=1 is a Riesz basis for H if and only if its
biorthogonal sequence {e∗i }∞i=1 is a Riesz basis for H.

In a Hilbert space, the most important bases are orthonormal bases. The
second most important ones are Riesz bases, which are bases that are equiv-
alent to some orthonormal bases ([17]).

In order to establish the Riesz basis property of the root subspace of A,
we need the following Lemma 3.2 of [13].

Lemma 4.1. Suppose that a sequence {µn} has asymptotics

µn = α0(n + iβ0 lnn) + O(1), α0 
= 0, n = 1, 2, 3, · · · (4.2)

where β0 is a real number and supn≥1 Reµn < ∞. Then the sequence
{eµnx}∞n=1 is a Bessel sequence in L2(0, 1).

Lemma 4.2. Let ρn be given by (2.40). Then {eρnx}∞n=1 is a Bessel sequence
in L2(0, 1).

Proof. If we set µn = ρn, then we can take β0 = 0 and α0 = πi. The result
then follows from (2.33) and Lemma 4.1 directly. �

By Theorem 2.1 and the assumption that k 
= γIH , we may assume with-
out loss of generality that σ(A) = σ(A∗) = {λn, λn}∞n=1. Corollary 3.1
and Theorem 2.1 tell us that there exists an integer N > 0 such that all
λn, λn, n ≥ N , are algebraically simple. Furthermore, for n ≤ N assume
that the algebraic multiplicity of each λn is mn. We say that Φn,1 is the
highest-order generalized eigenvector of A if

(A− λn)mnΦn,1 = 0 but (A− λn)mn−1Φn,1 
= 0.

Then the other lower-order linearly independent generalized eigenvectors
associated with λn can be found through Φn,j = (A − λn)j−1Φn,1, j =
2, 3, · · · , mn. Assume Φn is an eigenfunction of A corresponding to λn with
n ≥ N . Then

{
{{Φn,j}mn

j=1}n<N ∪{Φn}n≥N

}
∪{their conjugates} are all lin-

early independent generalized eigenfunctions of A. Let
{
{Ψn,j}mn

j=1

}
n<N

∪
{Ψn}n≥N be the bi-orthogonal sequence of

{
{Φn,j}mn

j=1

}
n<N

∪ {Φn}n≥N .
Then

{
{{Ψn,j}mn

j=1}n<N ∪{Ψn}n≥N

}
∪{their conjugates} are all linearly in-

dependent generalized eigenfunctions of A∗. It is well known that these two
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sequences are minimal in H and, from Theorem 3.2, they are also complete
in H. We now come to the main result of this paper.

Theorem 4.1. Assume k 
= γIH . Then the generalized eigenfunctions of A
form a Riesz basis for H.

Proof. From the discussion above and the definition of a Riesz basis, it
suffices to show that both {Φn}n≥N and {Ψn}n≥N are Bessel sequences in
H. Since 1 ≤ ‖Φn‖‖Ψn‖ ≤ M for some constant M independent of n ([17],
page 19), we may assume without loss of generality that Φn = (φn, λnφn, ηn)
given by (2.42) and Ψn = (ψn, λnψn, ξn) given by (2.48) for all n ≥ N . Then
it follows from Lemma 4.2 and the expansions of (2.42) and (2.48) that
all sequences {φ′′

n}∞n=N , {λnφ′
n}∞n=N , and {ψ′′

n}∞n=N , {λnψ′
n}∞n=N are Bessel

sequences in L2(0, 1), and {ηn}∞n=N and {ξn}∞n=N are Bessel sequences in C.
So {Φn}n≥N and {Ψn}n≥N are also Bessel sequences in H and the result
follows. �
Corollary 4.1. Suppose k 
= γIH . Let A be defined as in (2.5) and (2.6).
Then A generates a C0-semigroup eAt on H and the spectrum-determined
growth condition holds true for the semigroup eAt; that is to say, s(A) =
ω(A), where s(A) is the spectral bound of A and ω(A) is the growth order
of eAt : ω(A) = inf

{
ω : there exists M > 1 such that ‖eAt‖ ≤ Meωt for all

t ≥ 0
}
.

Proof. This is the direct consequence of Theorem 4.1 and Corollary 3.1. �
Corollary 4.2. Assume that α > βk > 0, k 
= γIH . Let A be defined
as in (2.5) and (2.6). Then the system (2.7) is exponentially stable; i.e.,
there exist constants M, ω > 0 such that any mild solution ([12]) Y (t) to the
equation (2.7) with initial value Y0 ∈ H satisfies

‖Y (t)‖ ≤ Me−ωt‖Y0‖.
Proof. From Lemma 2.4, Reλ < 0 for all λ ∈ σ(A). This together with
the assumption and Theorem 2.1 gives that s(A) < 0. The result then
follows from the spectrum-determined growth condition claimed by Corollary
4.1. �
Corollary 4.3. Assume that k = 0, α > 0, and β > 0. Let A be defined as in
(2.5) and (2.6). Then the system (2.7) is not exponentially stable but asymp-
totically stable and for any given integer m ≥ 1 the following polynomial
decay holds true

‖eAtY0‖ ≤ C
‖A2mY0‖

tm
, ∀ t > 0, Y0 ∈ D

(
A2m

)
(4.3)
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for some constant C > 0 depending on m.

Proof. By (2.35), it follows that ξ = πi and

Re{λn, λn} = −γ
D9 + D10

(n + 1
2)2π2

+ O(n−3). (4.4)

So the system is not exponentially stable. A straightforward computation
shows that D9 + D10 > 0. On the other hand, Theorem 2.1 tells us that

λn = (n +
1
2
)γπi + O(n−1). (4.5)

By Corollary 3.1, we may suppose without loss of generality that σ(A) =
{λn, λn}∞n=1. Corollary 3.1 and Theorem 2.1 tell us that there exists an in-
teger N > 0 such that all λn, λn, n > N , are algebraically simple. Fur-
thermore, for n ≤ N assume that the algebraic multiplicity of each λn

is mn. Let Φn,1 be the highest-order generalized eigenvector of A and
other lower-order linearly independent generalized eigenvectors associated
with λn can be found through Φn,j = (A − λn)j−1Φn,1, j = 2, 3, · · · , mn.
Assume Φn is a normalized eigenfunction of A corresponding to λn with
n > N (i.e., ‖Φn‖ = 1). Denote by Φn,j , j = 1, 2, · · · , mn the generalized
eigenfunctions relative to λn with n ≤ N and Φn the normalized gener-
alized eigenfunction relative to λn with n > N . Then by Theorem 4.1,{
{{Φn,j}mn

j=1}n≤N ∪{Φn}n>N

}
∪

{
{{Φn,j}mn

j=1}n≤N ∪{Φn}n>N

}
forms a Riesz

basis for H. Hence for any initial value Y0 of equation (2.7), we can expand
Y0 in terms of eigenpairs of A as follows

Y0 =
N∑

n=1

mn∑
j=1

an,jΦn,j +
∞∑

n=N+1

anΦn +
N∑

n=1

mn∑
j=1

bn,jΦn,j +
∞∑

n=N+1

bnΦn (4.6)

where an, an,j , bn, bn,j are constants. Therefore,

Y (t) = eAtY0 =
N∑

n=1

eλnt
mn∑
j=1

an,j

mn∑
i=1

(A− λn)i−1ti−1

(i − 1)!
Φn,j +

∞∑
n=N+1

aneλntΦn

+
N∑

n=1

eλnt
mn∑
j=1

bn,j

mn∑
i=1

(A− λn)i−1ti−1

(i − 1)!
Φn,j +

∞∑
n=N+1

bneλntΦn. (4.7)

Let

fn(t) = t2me
−2γ

D9 + D10 + (−1)n+1D11

(n + 1
2)2π2

t + O(n−3)t
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where O(n−3) is the same as in (4.4). Then it is easily seen that fn(0) =
fn(+∞) = 0 and fn(t) attains its unique maximum at

t =
m(n + 1

2)2π2

γ(D9 + D10 + (−1)n+1D11)
+ O(n−1);

that is to say,

sup
t≥0

fn(t) ≤
[ m(n + 1

2)2π2

γ(D9 + D10 + (−1)n+1D11)
+ O(n−1)

]2m
.

By (2.32), it follows that

sup
t≥0

fn(t) ≤ C1|λn|4m (4.8)

for some constant C1 > 0 independent of n. By (4.4)-(4.8), there exist
positive constants ω, C2, C3 such that for all t > 0

‖Y (t)‖2 ≤ C2e
−ωt

N∑
n=1

mn∑
j=1

[|an,j |2 + |bn,j |2] + C2

∞∑
n=N+1

[|an|2 + |bn|2]
fn(t)
t2m

≤ C2e
−ωt

N∑
n=1

mn∑
j=1

[|an,j |2 + |bn,j |2] + C1C2

∞∑
n=N+1

[|an|2 + |bn|2]
|λn|4m

t2m

≤ C2
3

‖A2mY0‖2

t2m
. (4.9)

Therefore,

‖eAtY0‖ ≤ C3
‖A2mY0‖

tm
, ∀ t > 0, Y0 ∈ D(A2m).

This is (4.3). �
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