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BOUNDARY FEEDBACK STABILIZATION OF A THREE-LAYER SANDWICH
BEAM: RIESZ BASIS APPROACH ∗

Jun-Min Wang1, 2, Bao-Zhu Guo2, 3 and Boumediène Chentouf4

Abstract. In this paper, we consider the boundary stabilization of a sandwich beam which consists of
two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a
sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence,
the spectrum-determined growth condition as well as the exponential stability of the closed-loop system
are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as well
as the exact controllability are also addressed.
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1. Introduction and model formulation

The vibration suppression of elastic structures has been studied extensively in many years due to its wide
range of applications. One widely used technique is to make use of laminated members such as beams which
consist of a compliant middle layer sandwiched between two stiff layers. The advantage of such a structure is to
make the compliant layer create relatively large shear deformation to promote the dissipation of the vibrational
energy of the system. In [5, 8], several constrained three-layer sandwich beam models are developed based
on the assumptions that the middle layer resists shear but no bending, and the thickness is assumed to be
sufficiently small so that the mass may be neglected or included in the outer layers. The out layers are the usual
Euler-Bernoulli beams. For the damped model, it was indicated in [5] that the system can have an analytic
semigroup solution, and the optimal damping parameter is also derived in terms of the material parameters of
the structure. When the damping is included in the middle layer so that the shear motions are resisted by a
force proportional to the rate of shear, by the multiplier method, it is shown in [9], under some natural boundary
conditions, that the system associates with an analytic semigroup and the vibrational energy is exponentially
decay.
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In this paper, we shall focus on the following cantilevered laminated beam{
mwtt(x, t) +Awxxxx(x, t) −Bγsx(x, t) = 0, 0 < x < 1, t > 0,

Cγs(x, t) − sxx(x, t) +Bwxxx(x, t) = 0, 0 < x < 1, t > 0
(1.1)

with boundary conditions{
w(0, t) = 0, wx(0, t) = 0, s(0, t) = 0,

wxx(1, t) = 0, sx(1, t) = 0, Awxxx(1, t) −Bγs(1, t) = u(t)

where w(x, t) stands for the transverse displacement at time t and longitudinal spatial variable x and s(x, t) is
the proportion to the shear in the middle layer. The constant m > 0 is the density of the beam, A,B,C > 0 the
stiff constants, γ > 0 the stiffness of the middle layer, and u(t) ∈ L2

loc(0,∞) is the boundary damping control
force. The initial conditions prescribed for the system are

w(x, 0) = w0(x), wt(x, 0) = w1(x). (1.2)

The conservative model (u = 0) of (1.1) is developed in [5], and is shown that the system admits a C0-semigroup
solution. However, in this model, the vibrational energy is a constant. To suppress the vibration, a control
must be present in the system. In present paper, the control is imposed at the boundary x = 1 due to its easy
implementation in engineering practice. For mathematical modelling process and the other physical background
of the system, we refer to [5] for more details.

Suppose the output of the system (1.1) is y(t) = wt(1, t). We propose the boundary output feedback control
u(t) = ky(t) where k is the positive constant feedback gain. Then the boundary conditions of (1.1) become{

w(0, t) = 0, wx(0, t) = 0, s(0, t) = 0,

wxx(1, t) = 0, sx(1, t) = 0, Awxxx(1, t) −Bγs(1, t) = kwt(1, t).
(1.3)

Let us introduce a second order differential operator T by ([5]){
T ϕ = ϕ′′,

D(T ) = {ϕ ∈ H2(0, 1) | ϕ(0) = ϕ′(1) = 0}.
(1.4)

One can check that T is densely defined and negative definite in L2(0, 1). Set α := Cγ > 0. Then, it is easily
verified that (α− T )−1 exists and is compact on L2(0, 1). Now, let

J = −I + α(α − T )−1 (1.5)

where I is the identity operator on L2(0, 1). Obviously, J is a non-positive bounded operator on L2(0, 1) and

Jϕ = (α− T )−1T ϕ, ∀ϕ ∈ D(T ).

With the operator J at hand, the closed-loop laminated beam system (1.1)–(1.3) can be rewritten as s(x, t) =
−B(α− T )−1wxxx(x, t) with w satisfying⎧⎪⎪⎨⎪⎪⎩

mwtt(x, t) +Awxxxx(x, t) +B2γ(Jwx)x(x, t) = 0,

w(0, t) = wx(0, t) = wxx(1, t) = 0,

Awxxx(1, t) +B2γJwx(1, t) = kwt(1, t).

(1.6)
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The total energy of the system (1.6) is given by

E(t) =
1
2

∫ 1

0

mw2
t (x, t) +Aw2

xx(x, t) − [B2γJwx(x, t)]wx(x, t)dx. (1.7)

One of the purposes of present paper is to show that the energy decay rate of the system (1.6) is determined
by its spectrum. To do this, we need an asymptotic behavior of the eigenpairs. However, compared with the
single beam equations studied before (e.g. [6]), a big obstacle in the computation of the eigenvalue for the
system (1.6) consists of solving of a system of ordinary differential equations (see (2.7)). In order to get the
eigenvalue distribution, there are two ways: one way is to substitute one equation into another in system (2.7)
which will make the computation much more complicated, and another way is to treat it as a matrix operator
pencil motivated by the works in [15, 16]. In this paper, the second approach is adopted in investigation.

The main contribution of this paper are: a) to show that a set of generalized eigenfunctions of the closed
loop system (1.6) forms a Riesz basis for the state space; b) to get the spectrum-determined growth condition,
a hard problem in infinite-dimensional systems; c) to obtain the exponential stability of the system; d) to
conclude the exact controllability and observability of the system. For the last point, many papers contribute
to the exact controllability by nonharmonic analysis approach, see e.g. [1, 13, 14], name just a few.

Now let us briefly outline the content of this paper. In the next section, the well-posed of the system will be
established. Asymptotic expansion of the eigenfrequencies will be given in Section 3. Section 4 is devoted to
the asymptotic expansion of the corresponding eigenfunctions. In Section 5, we obtain a more profound result,
namely, the existence of a sequence of generalized eigenfunctions, which forms a Riesz basis for the state space.
Consequently, the spectrum-determined growth condition and the exponential stability are concluded. Finally,
as a consequence of the asymptotic expansion of eigenpairs and exponential stability of the system, we conclude
the exact controllability and observability in the last section.

2. Well-posedness of the system

We begin by formulating the problem (1.6) on the energy state Hilbert space H:

H := H2
w(0, 1) × L2(0, 1), H2

w(0, 1) := {ϕ ∈ H2(0, 1) | ϕ(0) = ϕ′(0) = 0} (2.1)

where and henceforth the primes above symbols representing functions denote differentiation with respect to
spatial variable x. Due to energy function (1.7), it is natural to define the following inner product induced
norm ‖ · ‖ on H as

‖(w, z)‖2 :=
∫ 1

0

m|z(x)|2 +A|w′′(x)|2 −B2γ(Jw′(x))w′(x)dx, ∀(w, z) ∈ H (2.2)

which makes sense because J is negative on L2(0, 1). Next, define a linear operator A : D(A)(⊂ H) → H by

A(w, z) :=
(
z,− 1

m
[Aw′′′ +B2γ(Jw′)]′

)
, ∀(w, z) ∈ D(A) (2.3)

where

D(A) :=

{
(w, z) ∈ H

∣∣∣∣∣ w
′ ∈ D(T ), z ∈ H2

w(0, 1), Aw′′′ +B2γ(Jw′) ∈ H1(0, 1),

w′′(1) = 0, Aw′′′(1) +B2γ(Jw′)(1) = kz(1)

}
. (2.4)

Set Y (t) := (w(·, t), wt(·, t)). Then the system (1.6) can be written as an evolution equation in H:⎧⎨⎩
d
dt
Y (t) = AY (t), t > 0,

Y (0) := (w(·, 0), wt(·, 0)).
(2.5)
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Theorem 2.1. Let A be the operator defined by (2.3) and (2.4). Then A is dissipative in H. In addition,
A−1 exists and is compact on H. Therefore, A generates a C0-semigroup of contractions eAt on H and the
spectrum σ(A) consists of isolated eigenvalues only.

Proof. Since J is negative on L2 and

〈A(w, z), (w, z)〉H =
〈(

z,− 1
m

[
Aw′′′ +B2γ(Jw′)

]′)
, (w, z)

〉
H

= −
〈[
Aw′′′ +B2γ(Jw′)

]′
, z

〉
L2

+A 〈z′′, w′′〉L2 −B2γ 〈J z′, w′〉L2

= −
[
Aw′′′(x) +B2γ(Jw′)(x)

]
z(x)

∣∣∣1
0

+Aw′′(x)z′(x)
∣∣∣1
0

−〈Aw′′, z′′〉L2 +B2γ 〈Jw′, z′〉L2 +A 〈z′′, w′′〉L2 −B2γ 〈J z′, w′〉L2

= −k|z(1)|2 − 〈Aw′′, z′′〉L2 +B2γ 〈Jw′, z′〉L2 +A 〈z′′, w′′〉L2 −B2γ 〈J z′, w′〉L2 ,

it follows that

Re〈A(w, z), (w, z)〉H = −k|z(1)|2 ≤ 0.

Hence A is dissipative. We accomplish the proof by showing that 0 ∈ ρ(A) because from Theorem 4.6 of
[12], if A−1 exists, A must be densely defined in H. Therefore, the Lumer-Phillips theorem can be applied to
conclude that A generates a C0-semigroup of contractions on H.

To do so, given G := (g1, g2) ∈ H, we seek F := (f1, f2) ∈ D(A) such that

AF = G,

from which we obtain that f2(x) = g1(x) with f1 satisfying[
Af ′′′

1 +B2γ(J f ′
1)
]′(x) = −mg2(x). (2.6)

The above is equivalent to

[A+B2γ(α− T )−1]f ′′′
1 (x) = −m2

∫ x

1

g2(τ)dτ + kg1(1) =: φ(x) ∈ L2(0, 1).

So,

f ′′′
1 (x) = [A−1 −B2γ(α+A−1B2γ − T )−1]φ(x) := ψ(x) ∈ L2(0, 1).

Solve the above equation, to obtain

f1(x) =
∫ x

1

(x− τ)2

2
ψ(τ)dτ − x

∫ 1

0

τψ(τ)dτ +
∫ 1

0

τ2

2
ψ(τ)dτ.

Therefore, there is a unique solution f1(x) to (2.6), which in return implies that A−1 exists. Finally, by
the Sobolev embedding theorem, we see from above expression that A−1 is compact on H and hence the
spectrum σ(A) consists of isolated eigenvalues only [10]. �

Let us formulate the eigenvalue problem for A. If λ ∈ σ(A) and Yλ := (w, z) is a corresponding eigenfunction,
then it is routine to verify that z = λw and w satisfies the following characteristic equation with supplement
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variable s: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

mλ2w(x) +Aw(4)(x) −Bγs′(x) = 0,

Cγs(x) − s′′(x) +Bw′′′(x) = 0,

w(0) = 0, w′(0) = 0, s(0) = 0,

w′′(1) = 0, s′(1) = 0,

Aw′′′(1) −Bγs(1) = kλw(1).

(2.7)

For brevity in notation, from now on, we set

r1 := 4

√
m

A
, d1 :=

B

A
γ, d2 := B, d2

3 := Cγ, k̃ :=
k

A
· (2.8)

(2.7) then becomes ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r41λ
2w(x) + w(4)(x) − d1s

′(x) = 0,

s′′(x) − d2w
′′′(x) − d2

3s(x) = 0,

w(0) = 0, w′(0) = 0, s(0) = 0,

w′′(1) = 0, s′(1) = 0,

w′′′(1) − d1s(1) = k̃λw(1).

(2.9)

Clearly, (2.9) is a system of two ordinary differential equations. In order to solve this equation, one natural
way is to solve s from the second equation in (2.9) and substitute it into the first one. However, this makes the
problem quite complicated. To overcome this difficulty, we shall use the matrix operator pencil method. Let

w1 := w, w2 := w′, w3 := w′′, w4 := w′′′, s1 := s, s2 := s′ (2.10)

and
Φ := [w1, w2, w3, w4, s1, s2]� (2.11)

where the superscript “
” stands for the transpose; then (2.9) becomes{
TD(x, λ)Φ(x) := Φ′(x) +M(λ)Φ(x) = 0,

TR(λ)Φ := W 0(λ)Φ(0) +W 1(λ)Φ(1) = 0
(2.12)

where

W 0(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , W
1(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

−k̃λ 0 0 1 −d1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (2.13)

and
M(λ) := M0 + λ2M2, (2.14)

M0 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 −d1

0 0 0 0 0 −1
0 0 0 −d2 −d2

3 0

⎤⎥⎥⎥⎥⎥⎥⎦ , M2 :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
r41 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

The following result is a direct consequence of the above arguments.
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Theorem 2.2. λ ∈ σ(A) if and only if (2.12) possesses a nonzero solution Φ(x).

3. Asymptotic behavior of eigenfrequencies

In this section, we seek an asymptotic expansion of the eigenvalues of A. This would be accomplished
by expanding the characteristic determinant with asymptotic expression of the fundamental matrix solution
of (2.12). The technique used here is the modified standard one due to Birkhoff and Langer [2] (see also [15] or
[16]). A key step is to finding an invertible matrix transformation which is very powerful and useful in solving
coupled PDE problems.

Due to Theorem 2.1 and the fact that the eigenvalues are symmetric about the real axis, we consider only
those λ which are located in the second quadrant of the complex plane:

λ := iρ2, ρ ∈ S :=
{
ρ ∈ C | 0 ≤ arg ρ ≤ π

4

}
.

Note that for any ρ ∈ S, we have

Re(−ρ) ≤ Re(iρ) ≤ Re(−iρ) ≤ Re(ρ),

and ⎧⎪⎨⎪⎩Re(−ρ) = −|ρ| cos(arg ρ) ≤ −
√

2
2

|ρ| < 0,

Re(iρ) = −|ρ| sin(arg ρ) ≤ 0.

As we have mentioned in the beginning of this section, a key step to solving the eigenvalue problem (2.12) is to
find an invertible matrix in ρ ∈ S of the following:

P (ρ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ r1ρ r1ρ 0 0

r21ρ
2 −r21ρ2 ir21ρ

2 −ir21ρ2 0 0

r31ρ
3 r31ρ

3 −r31ρ3 −r31ρ3 0 0

r41ρ
4 −r41ρ4 −ir41ρ4 ir41ρ

4 0 0

0 0 0 0 ρ3 0

d2r
3
1ρ

3 d2r
3
1ρ

3 −d2r
3
1ρ

3 −d2r
3
1ρ

3 0 ρ3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.1)

So the matrix P (ρ) is a polynomial of degree 4 in ρ. Such a trick of finding the matrix P (ρ) is inspired by [16].
Now for any ρ �= 0, a direct computation shows that

P (ρ)−1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4r1ρ

1
4r2

1ρ2
1

4r3
1ρ3

1
4r4

1ρ4 0 0
1

4r1ρ − 1
4r2

1ρ2
1

4r3
1ρ3 − 1

4r4
1ρ4 0 0

1
4r1ρ −i 1

4r2
1ρ2 − 1

4r3
1ρ3 i 1

4r4
1ρ4 0 0

1
4r1ρ i 1

4r2
1ρ2 − 1

4r3
1ρ3 −i 1

4r4
1ρ4 0 0

0 0 0 0 ρ−3 0

0 0 −d2ρ
−3 0 0 ρ−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.2)

Define
Ψ(x) := P−1(ρ)Φ(x) (3.3)
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and T̂D(x, ρ) := P (ρ)−1TD(x, iρ2)P (ρ). Then we have

T̂D(x, ρ)Ψ(x) = Ψ′(x) − M̂(ρ)Ψ(x) = 0 (3.4)

where

M̂(ρ) := −P (ρ)−1M(iρ2)P (ρ) = −P (ρ)−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0

−r41ρ4 0 0 0 0 −d1

0 0 0 0 0 −1
0 0 0 −d2 −d2

3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
P (ρ)

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
4 − 1

4r1ρ − 1
4r2

1ρ2 − 1
4r3

1ρ3 0 − d1
4r4

1ρ4

1
4 − 1

4r1ρ
1

4r2
1ρ2 − 1

4r3
1ρ3 0 d1

4r4
1ρ4

−i 14 − 1
4r1ρ i 1

4r2
1ρ2

1
4r3

1ρ3 0 −i d1
4r4

1ρ4

i 14 − 1
4r1ρ −i 1

4r2
1ρ2

1
4r3

1ρ3 0 i d1
4r4

1ρ4

0 0 0 0 0 −ρ−3

0 0 0 0 −d2
3ρ

−3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
P (ρ)

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r1ρ− d1d2
4r1ρ − d1d2

4r1ρ
d1d2
4r1ρ

d1d2
4r1ρ 0 − d1

4r4
1ρ

d1d2
4r1ρ r1ρ+ d1d2

4r1ρ − d1d2
4r1ρ − d1d2

4r1ρ 0 d1
4r4

1ρ

−id1d2
4r1ρ −id1d2

4r1ρ −ir1ρ+ id1d2
4r1ρ id1d2

4r1ρ 0 −i d1
4r4

1ρ

id1d2
4r1ρ id1d2

4r1ρ −id1d2
4r1ρ ir1ρ− id1d2

4r1ρ 0 i d1
4r4

1ρ

−d2r
3
1 −d2r

3
1 d2r

3
1 d2r

3
1 0 −1

0 0 0 0 −d2
3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is seen from above that M̂(ρ) can be written as

M̂(ρ) := ρM̂1 + M̂0 + ρ−1M̂−1 (3.5)

where

M̂1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1 0 0 0 0 0
0 −r1 0 0 0 0
0 0 ir1 0 0 0
0 0 0 −ir1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M̂0 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

d2r
3
1 d2r

3
1 −d2r

3
1 −d2r

3
1 0 1

0 0 0 0 d2
3 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)
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and

M̂−1 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1d2
4r1

d1d2
4r1

− d1d2
4r1

− d1d2
4r1

0 d1
4r4

1

− d1d2
4r1

− d1d2
4r1

d1d2
4r1

d1d2
4r1

0 − d1
4r4

1

id1d2
4r1

id1d2
4r1

−id1d2
4r1

−id1d2
4r1

0 i d1
4r4

1

−id1d2
4r1

−id1d2
4r1

id1d2
4r1

id1d2
4r1

0 −i d1
4r4

1

0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.7)

Based on these transformations, we are now in a position to find an asymptotic expansion for the fundamental
matrix solution of the system (3.4) with respect to ρ ∈ S.

Theorem 3.1. Let 0 �= ρ ∈ S, and let M̂(ρ) be given by (3.5). For x ∈ [0, 1], set

E(x, ρ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

er1ρx 0 0 0 0 0
0 e−r1ρx 0 0 0 0
0 0 eir1ρx 0 0 0
0 0 0 e−ir1ρx 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Then there exists a fundamental matrix solution Ψ̂(x, ρ) for system (3.4), and for large enough |ρ|,

Ψ̂(x, ρ) :=

(
Ψ̂0(x) +

Ψ̂1(x)
ρ

+
Ψ̂2(x)
ρ2

+
Θ̃(x, ρ)
ρ3

)
E(·, ρ) (3.9)

where

Ψ̂0(x) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 ed3x e−d3x

0 0 0 0 d3ed3x −d3e−d3x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.10)

Ψ̂1(x) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1d2
4r1

x 0 0 0 0 0

0 − d1d2
4r1

x 0 0 0 0

0 0 −id1d2
4r1

x 0 0 0

0 0 0 id1d2
4r1

x 0 0

d2r
2
1 −d2r

2
1 id2r

2
1 −id2r

2
1 ed3x e−d3x

0 0 0 0 d3ed3x −d3e−d3x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.11)

and all Ψ̂2, Θ̃(x, ρ) and Θ̃x(x, ρ) are uniformly bounded in x ∈ [0, 1] for all sufficiently larger |ρ|.

Proof. By (3.4) and (3.5), the Assumption 2.1 of [15] on page 134 is satisfied and hence Theorem 2.2 of [15]
on p. 135 can be directly applied (see also [2]) to our problem, that is to say, a fundamental matrix solution
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of (3.4) is of the following form

Ψ̂(x, ρ) =
(
Ψ̂0(x) + ρ−1Ψ̂1(x) + ρ−2Ψ̂2(x) + ρ−3Θ̃(x, ρ)

)
E(x, ρ).

Since M̂1 given by (3.6) is a diagonal matrix, it follows that E(x, ρ) given by (3.8) is a fundamental matrix
solution to the equation (3.4) involving only the leading order terms, in other words,

E′(x, ρ) = ρM̂1E(x, ρ).

Next, computing Ψ̂′(x, ρ) and M̂(ρ)Ψ̂(x, ρ) yields

Ψ̂′(x, ρ) =
(
Ψ̂′

0(x) + ρ−1Ψ̂′
1(x) + ρ−2Ψ̂′

2(x) + ρ−3Θ̃x(x, ρ)
)
E(x, ρ)

+ρ
(
Ψ̂0(x) + ρ−1Ψ̂1(x) + ρ−2Ψ̂2(x) + ρ−3Θ̃(x, ρ)

)
M̂1E(x, ρ)

and

M̂(ρ)Ψ̂(x, ρ) =
(
ρM̂1 + M̂0 + ρ−1M̂−1

)(
Ψ̂0(x) + ρ−1Ψ̂1(x) + ρ−2Ψ̂2(x) + ρ−3Θ̃(x, ρ)

)
E(x, ρ).

Inserting the last two equations in (3.4) and equating the corresponding coefficients of ρi, i = 1, 0,−1, it follows

Ψ̂0(x)M̂1 − M̂1Ψ̂0(x) = 0, (3.12)

Ψ̂′
0(x) − M̂0Ψ̂0(x) + Ψ̂1(x)M̂1 − M̂1Ψ̂1(x) = 0, (3.13)

Ψ̂′
1(x) − M̂0Ψ̂1(x) − M̂−1Ψ̂0(x) + Ψ̂2(x)M̂1 − M̂1Ψ̂2(x) = 0. (3.14)

It remains to show that the leading order term Ψ̂0(·) and the second order term Ψ̂1(·) are given by (3.10)
and (3.11), respectively. Let us denote c[s]ij (x) the (i, j)-entry of the matrix Ψ̂s(x) with i, j = 1, 2, . . . , 6; s = 0, 1.

Since M̂1 is diagonal, it follows from (3.12) that the entries c[0]ij (x) of the matrix function Ψ̂0 satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c
[0]
ij (x) = 0, if i �= j, 1 ≤ i, j ≤ 4,

c
[0]
ij (x) = 0, if i = 5, 6, 1 ≤ j ≤ 4,

c
[0]
ij (x) = 0, if j = 5, 6, 1 ≤ i ≤ 4,

and the entries c[0]ii (x) (i = 1, 2, . . . , 6), c[0]56(x) and c[0]65(x) can be found through (3.13) that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c
[0]
ii

′
(x) = 0, i = 1, 2, 3, 4,

c
[0]
55

′
(x) = c

[0]
65(x), c

[0]
56

′
(x) = c

[0]
66(x),

c
[0]
65

′
(x) = d2

3c
[0]
55(x), c

[0]
66

′
(x) = d2

3c
[0]
56(x).

(3.15)
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Hence (3.10) follows in terms of the initial date Ψ̂0(0) = I. Similarly, all entries of Ψ̂1(x), namely,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

c
[1]
ij (x) = 0, 1 ≤ i, j ≤ 4, i �= j,

c
[1]
ij (x) = 0, 1 ≤ i ≤ 4, j = 5, 6,

c
[1]
ij (x) = 0, 1 ≤ j ≤ 4, i = 6,

c
[1]
51(x) = d2r

2
1 , c

[1]
52(x) = −d2r

2
1 , c

[1]
53(x) = id2r

2
1 , c

[1]
54(x) = −id2r

2
1

can be obtained from (3.13) except c[1]ii (x) (i = 1, 2, . . . , 6), c[1]56(x) and c
[1]
65(x), which, in turn, can be found

from (3.14). These lead us to

⎧⎪⎨⎪⎩
c
[1]
11

′
(x) =

d1d2

4r1
, c

[1]
22

′
(x) = −d1d2

4r1
, c

[1]
33

′
(x) = −id1d2

4r1
, c

[1]
44

′
(x) = i

d1d2

4r1
,

c
[1]
55

′
(x) = c

[1]
65(x), c

[1]
65

′
(x) = d2

3c
[1]
55(x), c

[1]
56

′
(x) = c

[1]
66(x), c

[1]
66

′
(x) = d2

3c
[1]
56(x).

Thus (3.11) is concluded. The proof is complete. �

By virtue of transformation (3.3), we have immediately the following result which shows the relationship
between (2.12) and (3.4).

Corollary 3.1. Let 0 �= ρ ∈ S, and let Ψ̂(x, ρ) given by (3.9) be a fundamental matrix solution to the sys-
tem (3.4). Then

Φ̂(x, ρ) := P (ρ)Ψ̂(x, ρ) (3.16)

is a fundamental matrix solution to the first equation of (2.12) with respect to x.

We are now ready to estimate asymptotically the distribution of eigenvalues of A in the sector S. From (2.12),
λ = iρ2 ∈ σ(A) if and only if it is a zero of the characteristic determinant ∆(ρ):

∆(ρ) := det
(
TR(iρ2)Φ̂

)
, ρ ∈ S (3.17)

where the operator TR is defined in (2.12) and Φ̂ is the fundamental matrix solution given by (3.16) [15]. Since

TR(iρ2)Φ̂ = W 0(iρ2)P (ρ)Ψ̂(0, ρ) +W 1(iρ2)P (ρ)Ψ̂(1, ρ), (3.18)

it follows from (2.13) and (3.1) that

W 0(iρ2)P (ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ r1ρ r1ρ 0 0
r21ρ

2 −r21ρ2 ir21ρ
2 −ir21ρ2 0 0

0 0 0 0 ρ3 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

W 1(iρ2)P (ρ) = ρ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
r31 r31 −r31 −r31 0 0
d2r

3
1 d2r

3
1 −d2r

3
1 −d2r

3
1 0 1

r1(r31ρ− ik̃) −r1(ik̃ + r31ρ) −ir1(k̃ + r31ρ) ir1(r31ρ− k̃) −d1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Once again for brevity in notations, we set

[a]2 := a+ O(ρ−2).

Since E(0, ρ) = I, a direct computation gives

W 0(iρ2)P (ρ)Ψ̂(0, ρ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ r1ρ r1ρ 0 0
r21ρ

2 −r21ρ2 ir21ρ
2 −ir21ρ2 0 0

d2r
2
1ρ

2 −d2r
2
1ρ

2 id2r
2
1ρ

2 −id2r
2
1ρ

2 ρ3(1 + ρ−1) ρ3(1 + ρ−1)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−2)

and

W 1(iρ2)P (ρ)Ψ̂(1, ρ) = ρ3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

r−1
1 (1 + d1d2

4r1ρ )E1 −r−1
1 (1 − d1d2

4r1ρ )E2 −ir−1
1 (1 − id1d2

4r1ρ )E3

r−1
1 d2

(
1 + d1d2

4r1ρ

)
E1 −r−1

1 d2

(
1 − d1d2

4r1ρ

)
E2 −ir−1

1 d2

(
1 − id1d2

4r1ρ

)
E3

ρ
[
1 + 1

ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
E1 ρ

[
1 − 1

ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
E2 ρ

[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3

0 0 0
0 0 0
0 0 0

ir−1
1

(
1 + id1d2

4r1ρ

)
E4 0 0

id2r
−1
1

(
1 + id1d2

4r1ρ

)
E4 d3ed3(1 + ρ−1) −d3e−d3(1 + ρ−1)

ρ
[
1 + i 1ρ

(
i k̃
r3
1

+ d1d2
4r1

)]
2
E4 −d1ed3(1 + ρ−1) −d1e−d3(1 + ρ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−2)

where

E1 := r41e
r1ρ, E2 := −r41e−r1ρ, E3 := −ir41eir1ρ, E4 := ir41e

−ir1ρ. (3.19)
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Thus

TR(iρ2)Φ̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ r1ρ

r21ρ
2 −r21ρ2 ir21ρ

2

d2r
2
1ρ

2 −d2r
2
1ρ

2 id2r
2
1ρ

2

r−1
1

(
1 + d1d2

4r1ρ

)
ρ3E1 −r−1

1

(
1 − d1d2

4r1ρ

)
ρ3E2 −ir−1

1

(
1 − id1d2

4r1ρ

)
ρ3E3

r−1
1 d2

(
1 + d1d2

4r1ρ

)
ρ3E1 −r−1

1 d2

(
1 − d1d2

4r1ρ

)
ρ3E2 −ir−1

1 d2

(
1 − id1d2

4r1ρ

)
ρ3E3[

1 + 1
ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
ρ4E1

[
1 − 1

ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
ρ4E2

[
1 − i 1ρ

(
i k̃
r3
1

+ d1d2
4r1

)]
2
ρ4E3

r1ρ 0 0

−ir21ρ2 0 0

−id2r
2
1ρ

2 ρ3(1 + ρ−1) ρ3(1 + ρ−1)

ir−1
1

(
1 + id1d2

4r1ρ

)
ρ3E4 0 0

id2r
−1
1

(
1 + id1d2

4r1ρ

)
ρ3E4 d3ρ

3ed3(1 + ρ−1) −d3ρ
3e−d3(1 + ρ−1)[

1 + iρ−1
(
i k̃

r3
1

+ d1d2
4r1

)]
2
ρ4E4 −d1ρ

3ed3(1 + ρ−1) −d1ρ
3e−d3(1 + ρ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−2).

Therefore

∆(ρ) = det(TR(iρ2)Φ̂)

= d2
2r

3
1ρ

16 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1

1 −1 i

ρ−1 −ρ−1 iρ−1(
1 + d1d2

4r1ρ

)
E1

(
−1 + d1d2

4r1ρ

)
E2

(
−i− d1d2

4r1ρ

)
E3(

1 + d1d2
4r1ρ

)
E1

(
−1 + d1d2

4r1ρ

)
E2

(
−i− d1d2

4r1ρ

)
E3[

1 + 1
ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
E1

[
1 − 1

ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2
E2

[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3

1 0 0

−i 0 0

−iρ−1 1
d2r2

1
(1 + ρ−1) 1

d2r2
1
(1 + ρ−1)(

i− d1d2
4r1ρ

)
E4 0 0(

i− d1d2
4r1ρ

)
E4

d3
d2
r1ed3(1 + ρ−1) − d3

d2
r1e−d3(1 + ρ−1)[

1 + iρ−1
(
i k̃

r3
1

+ d1d2
4r1

)]
2
E4 −d1ρ

−1ed3(1 + ρ−1) −d1ρ
−1e−d3(1 + ρ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= 2d2
2r

3
1ρ

16E1 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

0 −1 i

0 −ρ−1 iρ−1(
1 + d1d2

4r1ρ

)
0

(
−i− d1d2

4r1ρ

)
E3

0 0 0[
1 + 1

ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2

0
[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3

1 0 0

−i 0 0

−iρ−1 1
d2r2

1
(1 + ρ−1) 0(

i− d1d2
4r1ρ

)
E4 0 0

0 d3
d2
r1ed3(1 + ρ−1) − d3

d2
r1 cosh(d3)(1 + ρ−1)[

1 + iρ−1
(
i k̃

r3
1

+ d1d2
4r1

)]
2
E4 −d1ρ

−1ed3(1 + ρ−1) d1 sinh(d3)ρ−1(1 + ρ−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −2d2
2r

3
1ρ

16E1 det

[
1

d2r2
1
(1 + ρ−1) 0

d3
d2
r1ed3(1 + ρ−1) − d3

d2
r1 cosh(d3)(1 + ρ−1)

]

× det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1

0 −1 i −i(
1 + d1d2

4r1ρ

)
0

(
−i− d1d2

4r1ρ

)
E3

(
i− d1d2

4r1ρ

)
E4[

1 + 1
ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2

0
[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3

[
1 + iρ−1

(
i k̃
r3
1

+ d1d2
4r1

)]
2
E4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −2r21ρ

16d3 cosh(d3)E1(1 + 2ρ−1)

× det

⎡⎢⎢⎢⎢⎣
0 1 + i 1 − i(

1 + d1d2
4r1ρ

) (
−i− d1d2

4r1ρ

)
E3

(
i− d1d2

4r1ρ

)
E4[

1 + 1
ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2

[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3

[
1 + iρ−1

(
i k̃
r3
1

+ d1d2
4r1

)]
2
E4

⎤⎥⎥⎥⎥⎦
= −2(1 − i)r21ρ

16d3 cosh(d3)E1(1 + 2ρ−1)

× det

⎡⎢⎣
(
1 + d1d2

4r1ρ

) (
−i− d1d2

4r1ρ

)
E3 +

(
1 + id1d2

4r1ρ

)
E4[

1 + 1
ρ

(
d1d2
4r1

− i k̃
r3
1

)]
2

[
1 − i 1ρ

(
i k̃

r3
1

+ d1d2
4r1

)]
2
E3 +

[
−i+ 1

ρ

(
i k̃
r3
1

+ d1d2
4r1

)]
2
E4

⎤⎥⎦
= −2(1 − i)r21ρ

16d3 cosh(d3)E1(1 + 2ρ−1)

×
{[

1 + i+

(
d1d2

2r1
− i(1 + i)

k̃

r31

)
1
ρ

]
2

E3 +

[
−(i+ 1) −

(
i
d1d2

2r1
− 2i

k̃

r31

)
1
ρ

]
2

E4

}
.
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Hence

(−22d3 cosh(d3)r21ρ
16E1)−1∆(ρ) =

[
1 +

(
−i k̃
r31

+ 2 + (1 − i)
d1d2

4r1

)
1
ρ

]
E3

−
[
1 +

(
−i(1 − i)

k̃

r31
+ 2 + (i+ 1)

d1d2

4r1

)
1
ρ

]
E4 + O(ρ−2) (3.20)

where E1, E3 and E4 are given by (3.19). With these preparations, we come to the proof of the asymptotic
behavior of the eigenvalues.

Theorem 3.2. Let ∆(ρ) be the characteristic determinant in the sector S of the system (2.12) with λ = iρ2.
Then the following asymptotic expansion holds:

∆(ρ) = i22d3 cosh(d3)r101 ρ
16er1ρ

{[
1 +

(
−i k̃
r31

+ 2 + (1 − i)
d1d2

4r1

)
1
ρ

]
eir1ρ

+

[
1 +

(
−i(1 − i)

k̃

r31
+ 2 + (i+ 1)

d1d2

4r1

)
1
ρ

]
e−ir1ρ + O(ρ−2)

}
(3.21)

where r1, d1, d2, d3 and k̃ are given by (2.8), respectively. Moreover, the eigenvalues {λn, λn} of the sys-
tem (2.12) have the following asymptotic expansion

λn = − k̃

r41
+ i

d1d2

2r21
+ i

(1
2 + n)2π2

r21
+ O(n−1) as n→ ∞ (3.22)

where n are positive integers. Therefore

Re{λn, λn} → − k̃

r41
= − k

m
as n→ ∞. (3.23)

Proof. Obviously, (3.21) is a direct consequence of (3.20). Using now (3.21), it follows that ρ ∈ S satisfies[
1 −

(
i
k̃

r31
− 2 − (1 − i)

d1d2

4r1

)
1
ρ

]
eir1ρ +

[
1 −

(
(1 + i)

k̃

r31
− 2 − (i+ 1)

d1d2

4r1

)
1
ρ

]
e−ir1ρ + O(ρ−2) = 0 (3.24)

which can also be rewritten as
eir1ρ + e−ir1ρ + O(ρ−1) = 0. (3.25)

Since in the first quadrant, the solutions of the equation

eir1ρ + e−ir1ρ = 0

are given by

ρ̃n =
1
2 + n

r1
π, n = 0, 1, 2, . . . ,

it follows from the Rouché’s theorem that the solutions to equation (3.25) have the form of

ρn = ρ̃n + αn =
1
r1

(
1
2

+ n

)
π + αn, αn = O(n−1), n = N,N + 1, . . . , (3.26)
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where N is a sufficiently large positive integer. Substitute ρn into (3.24) and use the fact that eir1ρ̃n = −e−ir1ρ̃n ,
to obtain[

1 −
(
i
k̃

r31
− 2 − (1 − i)

d1d2

4r1

)
1
ρn

]
eir1αn −

[
1 −

(
(1 + i)

k̃

r31
− 2 − (i+ 1)

d1d2

4r1

)
1
ρn

]
e−ir1αn + O(ρ−2

n ) = 0.

Expand the exponential function according to its Taylor series, to give

αn =
1

2(1
2 + n)π

[
i
k̃

r31
+
d1d2

2r1

]
+ O(n−2).

Substituting above into (3.26) produces

ρn =
1
r1

(
1
2

+ n

)
π +

1
2(1

2 + n)π

[
i
k̃

r31
+
d1d2

2r1

]
+ O(n−2) as n→ ∞. (3.27)

Since λn = iρ2
n, we get eventually

λn = − k̃

r41
+ i

d1d2

2r21
+ i

(1
2 + n)2π2

r21
+ O(n−1) as n→ ∞.

The proof is complete. �

4. Asymptotic behavior of eigenfunctions

Theorem 4.1. Let σ(A) = {λn, λn} be the eigenvalues of A and let λ = iρ2 with λn and ρn being given
by (3.22) and (3.27) respectively. Then the corresponding eigenfunctions {(wn, λnwn), (wn, λnwn)} have the
following asymptotics: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′′
n(x) = e−ir1ρn(x+1) + (1 + i)e−ir1ρne−r1ρnx

+ieir1ρn(x−1) − (i− 1)er1ρn(x−1) + O(n−1),

λnwn(x) = −ir−2
1 e−ir1ρn(x+1) + (i− 1)r−2

1 e−ir1ρne−r1ρnx

+r−2
1 eir1ρn(x−1) + (i+ 1)r−2

1 er1ρn(x−1) + O(n−1),

Jw′
n(x) = sn(x) = O(n−1),

w′
n(x) = O(n−1)

(4.1)

for sufficient large positive integer n. Moreover, (wn, λnwn) are approximately normalized in H in the sense
that there exist positive constants c1 and c2 independent of n such that

c1 ≤ ‖w′′
n‖L2(0,1), ‖λnwn‖L2(0,1) ≤ c2 (4.2)

for all sufficient large positive integers n.

Proof. Since the characteristic determinant ∆(ρ) possesses only simple roots for sufficiently large modulus ρ,
the corresponding eigenfunctions Φ(x) = [w1(x), w2(x)w3(x), w4(x), s1(x), s2(x)]� (see (2.11)–(2.12)) can be
obtained by replacing one of the rows of TRΦ̂ in (3.18) by e�j

(
Φ̂(x, ρ)

)
, where ej is the jth column of the

identity matrix. Indeed, we know from (3.16) that Φ̂(x, ρ) = P (ρ)Ψ̂(x, ρ) and hence

Φ̂(x, ρ) =

[
Φ̂11(x, ρ) O4×2

Φ̂21(x, ρ) Φ̂22(x, ρ)

]
(4.3)
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where

Φ̂11(x, ρ) :=

⎡⎢⎢⎢⎢⎣
r1ρ[1]1er1ρx r1ρ[1]1e−r1ρx r1ρ[1]1eir1ρx r1ρ[1]1e−ir1ρx

r21ρ
2[1]1er1ρx −r21ρ2[1]1e−r1ρx ir21ρ

2[1]1eir1ρx −ir21ρ2[1]1e−ir1ρx

r31ρ
3[1]1er1ρx r31ρ

3[1]1e−r1ρx −r31ρ3[1]1eir1ρx −r31ρ3[1]1e−ir1ρx

r41ρ
4[1]1er1ρx −r41ρ4[1]1e−r1ρx −ir41ρ4[1]1eir1ρx ir41ρ

4[1]1e−ir1ρx

⎤⎥⎥⎥⎥⎦ , (4.4)

Φ̂21(x, ρ) := ρ3

[
[0]1er1ρx [0]1e−r1ρx [0]1eir1ρx [0]1e−ir1ρx

d2r
3
1 [1]1er1ρx d2r

3
1 [1]1e−r1ρx −d2r

3
1 [1]1eir1ρx −d2r

3
1 [1]1e−ir1ρx

]
(4.5)

and

Φ̂22(x, ρ) :=

[
ρ3[ed3x]1 ρ3[e−d3x]1
ρ3[d3ed3x]1 ρ3[−d3e−d3x]1

]
. (4.6)

Thus the first component of Φ = (w1(x, ρ), w2(x, ρ), w3(x, ρ), w4(x, ρ), s1(x, ρ), s2(x, ρ)) is given by

w1(x, ρ) =
d−1
3 r−3

1

2 cosh(d3)
E−1

1 ρ−13 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ

r21ρ
2 −r21ρ2

d2r
2
1ρ

2 −d2r
2
1ρ

2

r−1
1 [1]1ρ3E1 −r−1

1 [1]1ρ3E2

r−1
1 d2[1]1ρ3E1 −r−1

1 d2[1]1ρ3E2

r1ρ[1]1er1ρx r1ρ[1]1e−r1ρx

r1ρ r1ρ 0 0

ir21ρ
2 −ir21ρ2 0 0

id2r
2
1ρ

2 −id2r
2
1ρ

2 ρ3[1]1 ρ3[1]1
−ir−1

1 [1]1ρ3E3 ir−1
1 [1]1ρ3E4 0 0

−ir−1
1 d2[1]1ρ3E3 id2r

−1
1 [1]1ρ3E4 d3ρ

3ed3 [1]1 −d3ρ
3e−d3 [1]1

r1ρ[1]1eir1ρx r1ρ[1]1e−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where E1, E2, E3 and E4 are given by (3.19). After a simple calculation, we obtain

w1(x, ρ) =
1

2 cosh(d3)
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0
0 −1 i −i 0 0
0 0 0 0 1 1
1 e−r1ρ −eir1ρ −e−ir1ρ 0 0

0 0 0 0 ed3 −e−d3

er1ρ(x−1) e−r1ρx eir1ρx e−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−1)

= det

⎡⎢⎢⎢⎣
0 1 1 1
0 −1 i −i
1 e−r1ρ −eir1ρ −e−ir1ρ

er1ρ(x−1) e−r1ρx eir1ρx e−ir1ρx

⎤⎥⎥⎥⎦+ O(ρ−1)

= (i+ 1)
{

e−ir1ρx − e−r1ρx + i(eir1ρx − e−r1ρx) + er1ρ(x−1)
(
e−ir1ρ + ieir1ρ

)
+ O(ρ−1)

}
.
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By (3.25), it follows that

w1(x, ρ) = (i+ 1)eir1ρ

{
e−ir1ρ(x+1) − (1 + i)e−ir1ρe−r1ρx + ieir1ρ(x−1) + (i− 1)er1ρ(x−1) + O(ρ−1)

}
. (4.7)

Similarly, we have

w3(x, ρ) =
d−1
3 r−3

1

2 cosh(d3)
E−1

1 ρ−13 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ

r21ρ
2 −r21ρ2

d2r
2
1ρ

2 −d2r
2
1ρ

2

r−1
1 [1]1ρ3E1 −r−1

1 [1]1ρ3E2

r−1
1 d2[1]1ρ3E1 −r−1

1 d2[1]1ρ3E2

r31ρ
3[1]1er1ρx r31ρ

3[1]1e−r1ρx

r1ρ r1ρ 0 0
ir21ρ

2 −ir21ρ2 0 0
id2r

2
1ρ

2 −id2r
2
1ρ

2 ρ3[1]1 ρ3[1]1
−ir−1

1 [1]1ρ3E3 ir−1
1 [1]1ρ3E4 0 0

−ir−1
1 d2[1]1ρ3E3 id2r

−1
1 [1]1ρ3E4 d3ρ

3ed3 [1]1 −d3ρ
3e−d3 [1]1

−r31ρ3[1]1eir1ρx −r31ρ3[1]1e−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

w3(x, ρ) =
r21ρ

2

2 cosh(d3)
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0
0 −1 i −i 0 0
0 0 0 0 1 1
1 e−r1ρ −eir1ρ −e−ir1ρ 0 0

0 0 0 0 ed3 −e−d3

er1ρ(x−1) e−r1ρx −eir1ρx −e−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−1)

= r21ρ
2 det

⎡⎢⎢⎢⎢⎣
0 1 1 1
0 −1 i −i
1 e−r1ρ −eir1ρ −e−ir1ρ

er1ρ(x−1) e−r1ρx −eir1ρx −e−ir1ρx

⎤⎥⎥⎥⎥⎦+ O(ρ−1)

= −(i+ 1)r21ρ
2

{
e−ir1ρx + e−r1ρx + i(eir1ρx + e−r1ρx)

−er1ρ(x−1)
(
e−ir1ρ + ieir1ρ

)
+ O(ρ−1)

}
.

This, together with (3.25), implies that

w3(x, ρ) = −(i+ 1)r21ρ
2eir1ρ

{
e−ir1ρ(x+1) + (1 + i)e−ir1ρe−r1ρx (4.8)

+ieir1ρ(x−1) − (i− 1)er1ρ(x−1) + O(ρ−1)
}
.
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Also, along the same line, we can obtain

w2(x, ρ) =
d−1
3 r−3

1

2 cosh(d3)
E−1

1 ρ−13 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ

r21ρ
2 −r21ρ2

d2r
2
1ρ

2 −d2r
2
1ρ

2

r−1
1 [1]1ρ3E1 −r−1

1 [1]1ρ3E2

r−1
1 d2[1]1ρ3E1 −r−1

1 d2[1]1ρ3E2

r21ρ
2[1]1er1ρx −r21ρ2[1]1e−r1ρx

r1ρ r1ρ 0 0

ir21ρ
2 −ir21ρ2 0 0

id2r
2
1ρ

2 −id2r
2
1ρ

2 ρ3[1]1 ρ3[1]1

−ir−1
1 [1]1ρ3E3 ir−1

1 [1]1ρ3E4 0 0

−ir−1
1 d2[1]1ρ3E3 id2r

−1
1 [1]1ρ3E4 d3ρ

3ed3 [1]1 −d3ρ
3e−d3 [1]1

ir21ρ
2[1]1eir1ρx −ir21ρ2[1]1e−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

w2(x, ρ) =
r1ρ

2 cosh(d3)
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0

0 −1 i −i 0 0

0 0 0 0 1 1

1 e−r1ρ −eir1ρ −e−ir1ρ 0 0

0 0 0 0 ed3 −e−d3

er1ρ(x−1) −e−r1ρx ieir1ρx −ie−ir1ρx 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−1)

= r1ρ det

⎡⎢⎢⎢⎢⎢⎣
0 1 1 1

0 −1 i −i
1 e−r1ρ −eir1ρ −e−ir1ρ

er1ρ(x−1) −e−r1ρx ieir1ρx −ie−ir1ρx

⎤⎥⎥⎥⎥⎥⎦+ O(ρ−1)

= (i+ 1)r1ρ
{
− ie−ir1ρx + e−r1ρx + i(ieir1ρx + e−r1ρx)

+er1ρ(x−1)
(
e−ir1ρ + ieir1ρ

)
+ O(ρ−1)

}
.

By (3.25), we get

w2(x, ρ) = (i+ 1)r1ρeir1ρ

{
− ie−ir1ρ(x+1) + (1 + i)e−ir1ρe−r1ρx

−eir1ρ(x−1) + (i− 1)er1ρ(x−1) + O(ρ−1)
}
.

(4.9)
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Furthermore, it has

s1(x, ρ) =
d−1
3 r−3

1

2 cosh(d3)
E−1

1 ρ−13 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1ρ r1ρ

r21ρ
2 −r21ρ2

d2r
2
1ρ

2 −d2r
2
1ρ

2

r−1
1 [1]1ρ3E1 −r−1

1 [1]1ρ3E2

r−1
1 d2[1]1ρ3E1 −r−1

1 d2[1]1ρ3E2

ρ3[0]1er1ρx ρ3[0]1e−r1ρx

r1ρ r1ρ 0 0

ir21ρ
2 −ir21ρ2 0 0

id2r
2
1ρ

2 −id2r
2
1ρ

2 ρ3[1]1 ρ3[1]1

−ir−1
1 [1]1ρ3E3 ir−1

1 [1]1ρ3E4 0 0

−ir−1
1 d2[1]1ρ3E3 id2r

−1
1 [1]1ρ3E4 d3ρ

3ed3 [1]1 −d3ρ
3e−d3 [1]1

ρ3[0]1eir1ρx ρ3[0]1e−ir1ρx ρ3[ed3x]1 ρ3[e−d3x]1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

s1(x, ρ) =
r−1
1 ρ2

2 cosh(d3)
det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0
0 −1 i −i 0 0
0 0 0 0 1 1
1 e−r1ρ −eir1ρ −e−ir1ρ 0 0

0 0 0 0 ed3 −e−d3

0 0 0 0 ed3x e−d3x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ O(ρ−1) = O(ρ−1). (4.10)

Based on above computations, (4.1) can then be deduced from (4.7)–(4.10) by setting

wn(x) := −1 − i

2
r−2
1 ρ−2

n e−ir1ρnw1(x, ρn) (4.11)

in (4.7)–(4.10), respectively. Finally, it follows from (3.26) that

‖e−ir1ρn(x+1)‖2
L2(0,1) = 1 + O(n−1), ‖eir1ρn(x−1)‖2

L2(0,1) = 1 + O(n−1),

‖e−r1ρnx‖2
L2(0,1) = O(n−1), ‖er1ρn(x−1)‖2

L2(0,1) = O(n−1).
(4.12)

These together with (4.1) yield (4.2). The proof is complete. �

5. Riesz basis property and exponential stability

Let us recall that for a closed operator A in a Hilbert space H, a nonzero element φ ∈ H is called a
generalized eigenvector of A, corresponding to an eigenvalue λ of A, if there is a nonnegative integer n such
that (λ − A)nφ = 0. A sequence {φn}∞n=1 in H is called a Riesz basis for H if there exists an orthonormal
basis {en}∞n=1 in H and a linear bounded invertible operator T such that [18]

Tφn = en, n = 1, 2, . . .
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Let {λn}∞n=1 = σ(A), the spectrum of A. Suppose each λn has finite algebraic multiplicity mn, and let {ψni}mn
1

be the set of generalized eigenvectors of A corresponding to λn. Then if {ψni | 1 ≤ i ≤ mn, n = 1, 2, . . .} form
a Riesz basis for H, then the C0-semigroup generated by A can be represented as

eAtx =
∞∑

n=1

eλnt
mn∑
j=1

anjfnj(t)ψnj , ∀x =
∞∑

n=1

mn∑
j=1

anjψnj ∈ H (5.1)

where fnj(t) are the polynomials of t with order not greater than mn. In particular, if mn = 1 for all sufficiently
large n, then the spectrum determined growth condition holds, i.e., ω(A) = s(A), where ω(A) is the growth
bound of eAt, and s(A) is the spectral bound of A [6].

The following result from [6] provides a useful way to verify the Riesz basis property for the generalized
eigenvectors of linear operators with compact resolvents in Hilbert spaces.

Theorem 5.1. Let A be a densely defined discrete operator (i.e., there is a λ ∈ ρ(A), the resolvent set of A,
such that (λ−A)−1 is compact on H) in a Hilbert space H. Let {φn}∞1 be a Riesz basis for H. If there are an
integer N ≥ 0 and a sequence of generalized eigenvectors {ψn}∞N+1 of A such that

∞∑
N+1

‖φn − ψn‖2 <∞,

then
(1) there are integer M > N and generalized eigenvectors {ψn0}M

1 of A such that {ψn0}M
1 ∪{ψn}∞M+1 form

a Riesz basis for H;
(2) if {ψn0}M

1 ∪ {ψn}∞M+1 are the generalized eigenvectors corresponding to eigenvalues {σn}∞1 of A, then
σ(A) = {σn}∞1 where σn is accounted as many as times according to its algebraic multiplicity;

(3) if there is an integer M0 > 0 such that σn �= σm for all m,n > M0, then there is an integer N0 > M0

such that all σn are algebraically simple for all n > N0.

Now, we are ready to state the first main result.

Theorem 5.2. There is a sequence of generalized eigenfunctions of the operator A defined by (2.3) and (2.4),
which forms a Riesz basis for H. Moreover, all eigenvalues with sufficient large modulus are algebraically simple.

Proof. We show that {(wn, λnwn), (wn, λnwn)} obtained in Theorem 4.1 satisfies the hypotheses in Theorem 5.1
with respect to a suitably chosen reference Riesz basis of H. To do this, we define another operator A0 : D(A0) (⊂
H) → H by

A0(w, z) :=
(
z,− 1

m
[Aw′′′ +B2γ(Jw′)]′

)
(5.2)

with

D(A0) :=

{
(w, z) ∈ H

∣∣∣∣∣ w
′ ∈ D(T ), z ∈ H2

w(0, 1), Aw′′′ +B2γ(Jw′) ∈ H1(0, 1),

w′′(1) = Aw′′′(1) +B2γ(Jw′)(1) = 0

}
(5.3)

where m,A and B are the same as in (1.1), and the operators T and J are that in (1.4) and (1.5) respectively.
It is easy to verify that A0 is a skew-adjoint operator in H with compact resolvents and hence the generalized
eigenfunctions {(wn0, λn0wn0), (wn0, λn0wn0)} of A0 form a Riesz basis for H. Moreover, from the arguments
in Sections 3 and 4, λn0 and (wn0, λn0wn0) have the same asymptotics (3.22) and (4.1) with k = k̃ = 0,
respectively. Now,

∞∑
n≥N

‖(wn, λnwn) − (wn0, λn0wn0)‖2 =
∞∑

n≥N

O(n−2) <∞. (5.4)

The same is true for their conjugates. Hence, all hypotheses of Theorem 5.1 are satisfied and the generalized
eigenfunctions of A form a Riesz basis in H. Finally, since for a skew-adjoint operator, the geometric multiplicity
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and algebraic multiplicity of each eigenvalue are the same, we see that all eigenvalues of A0 with sufficiently
large modulus are algebraically simple. Since {(wn, λnwn), (wn, λnwn)} form a Riesz basis for H, we also have
that all eigenvalues of A with sufficiently large modulus are algebraically simple. The proof is complete. �

The second main result is:

Theorem 5.3. Let A be defined by (2.3) and (2.4). Then the spectrum-determined growth condition ω(A) =
s(A) holds true for the C0-semigroup generated by A. Moreover, the system (2.5) is exponentially stable, that
is to say, there exist two positive constants M and ω such that the C0-semigroup eAt generated by A satisfies

‖eAt‖ ≤Me−ωt. (5.5)

Proof. The spectrum-determined growth condition follows from Theorem 5.2. By Theorem 2.1, A is dissipative
and hence there is no eigenvalue on the right half complex plane. Moreover, it is a simple task to check that the
operator A has no eigenvalue on the imaginary axis. This, together with (3.23) and the spectrum-determined
growth condition, shows that eAt is exponentially stable. The proof is complete. �

6. Exact controllability

Instead of (1.6), we consider the open loop system⎧⎪⎪⎪⎨⎪⎪⎪⎩
mwtt(x, t) +Awxxxx(x, t) +B2γ(Jwx)x(x, t) = 0,
w(0, t) = wx(0, t) = wxx(1, t) = 0,

Awxxx(1, t) +B2γJwx(1, t) = u(t),
y(t) = wt(1, t)

(6.1)

where u ∈ L2
loc(0,∞) is the control input and y is the output. Suppose A0 is defined as in (5.2) and (5.3) that

is nothing but A with k = 0. Define an extension Â0 of A0 as⎧⎪⎨⎪⎩
Â0(w, z) :=

(
z,− 1

m [Aw′′′ +B2γ(Jw′)]′
)
,

D(Â0) :=
{

(w, z) ∈ H
∣∣∣∣ w′ ∈ D(T ), z ∈ H2

w(0, 1),
Aw′′′ +B2γ(Jw′) ∈ H1(0, 1), w′′(1) = 0,

}
.

(6.2)

Then for any (w, z) ∈ D(Â0), (φ, ψ) ∈ D(A∗
0) = D(A0),

〈Â0(w, z), (φ, ψ)〉 = 〈(w, z),A∗
0(φ, ψ)〉 − [Aw′′′ +B2γ(Jw′)](1)ψ(1). (6.3)

Next, define the natural extension Ã0 : H → H−1 = [D(A0)]′ of A0 as

〈Ã0F,G〉 = 〈F,A∗
0G〉, ∀G ∈ D(A∗

0), F ∈ D(Ã0) = H. (6.4)

Then for any F = (w, z) ∈ D(Â0),

Â0F = Ã0F − [Aw′′′ +B2γ(J )w′](1)b in H−1 (6.5)

where
b := δ(· − 1) the Dirac delta. (6.6)

It is seen that Y (t) = (y(·, t), yt(·, t)) satisfies the first two equations of (6.1) only then dY (t)
dt = Â0Y (t).

Furthermore, if Y (t) also meets the third condition of (6.1), then Â0Y (t) = Ã0Y (t) + bu(t) in H−1, where
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b := −(0, b)�. In other words, the system (6.1) can be represented as

dY (t)
dt

= Ã0Y (t) + bu(t) (6.7)

in H−1. Therefore, (6.1) is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
mwtt(x, t) +Awxxxx(x, t) +B2γ(Jwx)x(x, t) + δ(x− 1)u(t) = 0,
w(0, t) = wx(0, t) = wxx(1, t) = 0,

Awxxx(1, t) +B2γJwx(1, t) = 0,
y(t) = b∗wt(·, t).

(6.8)

Or in the form of {
mwtt + Aw + bu(t) = 0,

y(t) = b∗wt.
(6.9)

Since by the method of [11] on page 8, it is easily shown that D(A1/2) × L2(0, 1) = H, where A is a positive
selfadjoint operator in L2(0, 1) defined by{

Aw(x) = Aw(4)(x) +B2γ(Jw′)′(x),

D(A) = {w ∈ H4(0, 1) ∩H2
w|w′′(1) = Aw′′′(1) +B2γ(Jw′)(1) = 0}.

(6.10)

In this way, the system (6.9) is a typical second order collocated system studied in [7]. It is well-known that
the system is exactly controllable if and only if it is exactly observable [4].

Now we apply the abstract results of [7] to the system (6.1). Since

A0 =
(

0 I
−A 0

)
, (6.11)

A0(wn0, λn0wn0) = λn0(wn0, λn0wn0) if and only if

Aen = −λ2
n0en = (iλn0)2en, ωn = iλn0, en =

wn0

‖wn0‖L2(0,1)
· (6.12)

By (3.22) and (4.1), it follows that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωn = iλn0 = −d1d2

2r21
−

(1
2 + n)2π2

r21
+ O(n−1) as n→ ∞,

λn0‖wn0‖L2(0,1)en(x) = λn0wn0(x) = −ir−2
1 e−ir1ρn(x+1) + (i− 1)r−2

1 e−ir1ρne−r1ρnx

+r−2
1 eir1ρn(x−1) + (i+ 1)r−2

1 er1ρn(x−1) + O(n−1).

(6.13)

Theorem 6.1.

(i). Let T > 0 be any constant and CT be some positive constant depending on T . For any given initial
condition (w(·, 0), wt(·, 0)) = (w0, w1) ∈ H and control input u ∈ L2(0, T ), there exists a unique solution
to equation (6.1) such that (w,wt) ∈ C(0, T ;H) satisfying

‖(w(·, T ), wt(·, T ))‖2
H + ‖y‖2

L2(0,T ) ≤ CT

[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T )

]
.
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(ii). System (6.1) is regular. Precisely, if the initial condition is zero that (w(·, 0), wt(·, 0)) = (0, 0) and
u(t) ≡ u is a step control input, then the corresponding output response y satisfies

lim
σ→0

∣∣∣∣ 1σ
∫ σ

0

y(1, t)dt
∣∣∣∣2 = 0.

(iii). System (6.1) is exactly controllable and observable on some [0, T ], T > 0.

Proof. By (4.2) and (6.13), it follows that |bn| = |〈b, en〉[D(A0)]×[D(A0)]′ | = |en(1)| < C for some constant C > 0
and |ωn+1 −ωn| ≥ δ0 for some δ0 > 0 and all n ≥ 1. By Proposition 2 of [7], b is admissible [3]. Moreover, since
|ωn+1 −ωn| ≥ δωβ

n+1 for some constants δ, β, the hypotheses of Theorem 4 of [7] is satisfied. This together with
the admissibility of b gives the (i). Moreover, the transfer function of (6.1) tends to zero along the positive axis,
which deduces (ii) of Theorem 6.1 by equivalent condition proved in [17].

Furthermore, by virtue of Theorem 5.3 and Theorem 4 of [7], the system (6.1) is exactly observable on
some [0, T ], T > 0. This is actually the Russell’s principle of “exact controllability via exponential stability” for
hyperbolic systems. The proof is complete. �
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