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Abstract

A second-order hyperbolic system with collocated sensor=actuator is considered. The semigroup generation is shown
for the closed-loop system under the feedback of a generic unbounded observation operator. The equivalence between
the exponential stability of the closed-loop system and exact controllability of the open-loop system is established in the
general framework of well-posed linear systems. Finally, the conditions are weakened for the diagonal semigroups with
6nite dimensional inputs. Example of beam equation is presented to display the application. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In the past two decades, much e;ort has been made for the stability analysis of <exible systems under
boundary feedback controls (see [3,4]). Because of the simplicity and e;ectiveness of the direct output feed-
back, the methods of collocated sensor=actuator control strategy have been applied in the control of vibration
of <exible robot arms ([15,16,30]) and smart structures [5]. Such kind of systems can be modeled by the
following in6nite dimensional system in a Hilbert space H :

ẋ(t) = Ax(t) + Bu(t);

y(t) = B∗x(t); (1)

where the system operator A is skew-adjoint in H and hence generates a C0-group on H , u(t) is the control
input and y(t) is the output of the system. The closed-loop system is produced by the output feedback control

u(t) = −Ky(t) = −KB∗x(t) (2)

∗ Corresponding author. Fax: +86-10-62587343.
E-mail address: bzguo@iss03.iss.ac.cn (B.-Z. Guo).

0167-6911/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6911(01)00201 -8



46 B.-Z. Guo, Y.-H. Luo / Systems & Control Letters 46 (2002) 45–65

for some bounded feedback operator K from the output space to the input space, and hence the closed-loop
system becomes

ẋ(t) = (A− BKB∗)x(t): (3)

System (1) is called output feedback stabilizable if there is a K such that system (3) is stable in some sense.
When B is a bounded operator from the control space to the state space, it is shown in [2] that the weak
controllability of system (1) implies the weak stability of system (3) and also the strong stability provided
that A has compact resolvent. Slemrod [24] showed that if system (1) is exactly controllable on some [0; T ],
T ¿ 0; then it is exponentially stabilizable. The well-known Russell’s “controllability via stability” principle
[20] shows, on the other hand, that the exponential stability of system (3) implies the exact controllability of
system (1) on some [0; T ], T ¿ 0:

It should be indicated that for linear systems with bounded control operator B in Hilbert spaces, many
profound results are already known in earlier literatures. The limitation of the characterization of exact con-
trollability by bounded control is obtained in [17]. A recent nice summary can be found in [8]. For instance,
Theorem 4.15 of [8] says that if A generates a C0-semigroup in a Hilbert space H and B is a bounded operator
and the control space is 6nite dimensional, then the linear system of the following:

ẋ(t) = Ax(t) + Bu(t)

is not exactly controllable in [0; t] for any 6nite t ¿ 0. On the other hand, when B is unbounded but admissible
[27], the exact controllability is possible even for scalar control. We refer to [11,12] for recent consideration
on this respect.

However, for some given K , few results are known in the literature on the relationship between the
exponential stability of system (3) and the exact controllability of system (1) when the control operator
B is admissible. Although some e;orts have been made from the point of view of optimal feedback control
[18], the whole matter could not be understood until the generic theory of linear well-posed system theory was
developed (see [6] and the references therein). In this paper, we discuss such a relation for a second-order
hyperbolic system with generic admissible input B of the following:

ytt + Ay + Bu(t) = 0;

O(t) = B∗yt; (4)

where (i) A : D(A)(⊂ X ) → X is an unbounded positive self adjoint operator in the Hilbert space X . D(A)
as well as D(A1=2) is dense in X . We identify X with its dual X ′, so the following relations hold:

D(A1=2) ⊂ X ⊂ D(A1=2)′:

(ii) B∈L(U;D(A1=2)′), where U is the control Hilbert space.
(iii) B∗ ∈L(D(A1=2); U ) is de6ned as

〈B∗x; u〉U×U = 〈x; Bu〉D(A1=2)×D(A1=2)′ ∀x∈D(A1=2): (5)

(iv) An extension Ã∈L(D(A1=2); D(A1=2)′) of A is de6ned by

〈Ãx; z〉D(A1=2)′×D(A1=2) = 〈A1=2x; A1=2z〉X×X ; ∀x; z ∈D(A1=2): (6)

Ã is an isometry from D(A1=2) to D(A1=2)′ by virtue of the Lax–Milgram theorem.

By the closed-loop form of system (4), we mean system (4) under the direct output feedback control
u(t)=O(t). Our 6rst result in Section 2 shows that the closed-loop system is well-posed without admissibility
assumption. In Section 3, it is shown that the exponential stability of the closed-loop system implies the
exact controllability of the open-loop system. In Section 4, by assuming the boundedness of the transfer
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function of system (4), it is shown that the exact controllability of the open-loop system also implies the
exponential stability of the closed-loop system. Finally, in Section 5, we discuss the application to diagonal
semigroups where the admissibility is shown to guarantee the boundedness of the transfer function under some
spectral condition of A. This avoids the veri6cation of boundedness of transfer function which is diQcult in
applications. An example of beam equation is presented to display the application of our results in the vibration
control of <exible systems.

2. Semigroup generation

Let A; B; B∗ be de6ned as in (4). It is well-known that for any �∈ �(A), �− Ã is an isometric from D(A1=2)
to D(A1=2)′ and

Ãx = Ax for any x∈D(A):

Moreover, it is easy to verify that Ã
−1

B∈L(U;D(A1=2)) and more generally

B∗(�− Ã)−1B∈L(U ) for any �∈ �(A):

By these de6nitions, we may formulate (4) to be

ytt + Ãy + Bu(t) = 0 in D(A1=2)′: (7)

Design the feedback control

u(t) = B∗yt: (8)

Then the closed-loop system becomes

ytt + Ãy + BB∗yt = 0 in D(A1=2)′; (9)

which can be written as

d
dt

(
y

yt

)
=

(
0 I

−Ã −BB∗

)(
y

yt

)
in D(A1=2) × D(A1=2)′: (10)

However, we want to consider system (10) in the energy state space H =D(A1=2)×X. To this purpose, de6ne

A

(
f

g

)
=

(
0 I

−Ã −BB∗

)(
f

g

)
=

(
g

−Ãf − BB∗g

)
(11)

with

D(A) = {(f; g) |f; g∈D(A1=2);−Ãf − BB∗g∈X }: (12)

Theorem 1. A generates a C0-semigroup of contractions on H.

Proof. First; we show that A is dissipative. Let (f; g)∈D(A). Then

Re〈A(f; g); (f; g)〉= Re〈A1=2g; A1=2f〉X×X − Re〈Ãf + BB∗g; g〉X×X

= Re〈A1=2g; A1=2f〉X×X − Re〈Ãf + BB∗g; g〉D(A1=2)′×D(A1=2)

= Re〈Ãf; g〉D(A1=2)×D(A1=2)′ − Re〈Ãf + BB∗g; g〉D(A1=2)′×D(A1=2)
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=−Re〈BB∗g; g〉D(A1=2)′×D(A1=2)

=−Re〈B∗g; B∗g〉U×U = −‖B∗g‖2
U 6 0:

So A is dissipative. Next; we show that A−1 exists. Solving

A

(
f

g

)
=

(
g

−Ãf − BB∗g

)
=

(
�

 

)
∈H

we have g = �∈D(A1=2) and −Ãf − BB∗g =  . The later is equivalent to

Ãf = −BB∗�−  ∈D(A1=2)′:

However; since Ã is an isometry from D(A1=2) to D(A1=2)′; the above equation is solvable in D(A1=2) with

f = Ã
−1

(−BB∗�−  ):

So

A−1

(
�

 

)
=

(
Ã
−1

(−BB∗�−  )

�

)
: (13)

Therefore; A generates a C0-semigroup on H by the Lumer–Phillips theorem [19].

We claim that for any  ∈X , Ã
−1

 =A−1 . Indeed, let Ã
−1

 =w. Then w∈D(A1=2) and Ãw=  . For any
x∈D(A), we have

〈w; Ax〉 = 〈A1=2w; A1=2x〉 = 〈Ãw; x〉 = 〈 ; x〉:
Hence w∈D(A∗) = D(A) and so Aw =  , that is w = A−1 . So (13) can be written as

A−1

(
�

 

)
=

(
−Ã

−1
BB∗�− A−1 

�

)
: (14)

Corollary 1. B∗ satis<es∫ T

0
‖B∗yt‖2

U dt6
1
2
‖(y0; y1)‖2

H ∀(y0; y1)∈D(A); T ¿ 0:

Proof. By assumption; (y; yt)∈D(A) and

d
dt

(
y

yt

)
= A

(
y

yt

)
∈H:

Taking inner product with (y; yt) on both sides of the above in H; one has

〈A1=2yt; A1=2y〉 + 〈ytt ; yt〉= 〈A1=2yt; A1=2y〉 − 〈Ãy + BB∗yt; yt〉
= 〈A1=2yt; A1=2y〉 − 〈A1=2y; A1=2yt〉 − 〈BB∗yt; yt〉:

Hence;

〈ytt ; yt〉 + 〈A1=2y; A1=2yt〉 = −〈BB∗yt; yt〉:
That is

d
dt

E(t) = −‖B∗yt‖2
U ;
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where

E(t) = 1
2 [‖A1=2y‖2 + ‖yt‖2]: (15)

Hence;∫ T

0
‖B∗yt‖2

U dt = E(0) − E(T )6E(0): (16)

Corollary 1 shows that although (y; yt)∈H provided that (y0; y1)∈H; B∗yt , however, is well-de6ned in
L2(0; T ;U ) for any T ¿ 0. Namely

 (y0; y1) = B∗yt (17)

is a well-de6ned linear-bounded operator from H to L2(0; T ;U ) for any T ¿ 0. In other words, (0; B)T is
always admissible with respect to the semigroup generated by A [27]. By this reason, we always understand
B∗yt in the sense of (17) for any (y0; y1)∈H .

3. Controllability via stability

From generic well-posed linear system theory [6], the basic assumption for the following observation system

�tt + A� = 0;

O(t) = B∗�t (18)

making sense is the admissibility assumption∫ T

0
‖B∗�t‖2

U dt6CT‖(�0; �1)‖2
H ∀(�0; �1)∈D(A) (19)

for some T ¿ 0 and CT ¿ 0; where (�0; �1) is the initial condition of (18) and the operator A is de6ned as

A =

(
0 I

−Ã 0

)
; D(A) = {(f; g)∈H; A(f; g)∈H}: (20)

Suppose that (f; g)∈H; Ã(f; g)∈H. Then f∈D(A) and −Af = g. That is

A =

(
0 I

−A 0

)
: (21)

When condition (19) is satis6ed, we say that B is admissible. In this case, for any initial condition (�0; �1),
the output O(t) makes sense in the sense of (19), or by [26]

O(t) = B∗
Le

At(�0; �1)T; t¿ 0 a:e:; (22)

where

B =

(
0

B

)
(23)

B∗ = (0; B∗) and B∗
L is the Lebesgue extension of B∗.
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Admissibility is a fundamental assumption for the well-posedness of the controlled system (7). Actually
write (7) to be

d
dt

(
y

yt

)
= A

(
y

yt

)
+ Bu(t) in D(A1=2) × D(A1=2)′: (24)

It is seen that B∈L(U;D(A∗)′ = D(A)′) with〈
Bu;

(
f

g

)〉
D(A)′×D(A)

= 〈Bu; g〉D(A1=2)′×D(A1=2):

Therefore, the admissibility assumption (19) is nothing but the admissibility of B with respect to eAt (note
that A is skew-adjoint). Under assumption (19), for every u∈L2(0; T ;U ); T ¿ 0 and the initial condition
(y0; y1)∈H , there exists a unique solution to (24)(

y(t)

yt(t)

)
= eAt

(
y0

y1

)
+ !(t)u; (25)

where !(t) :L2(0; T ;U ) → H is the strongly continuous family of bounded operators given by

〈!(t)u; Z〉 =
∫ t

0
〈Bu(s); e−A(t−s)Z〉D(A)′×D(A) ds ∀Z ∈D(A):

The generic well-posed linear abstract system theory tells us that !(t)u is continuous simultaneously with
respect to (t; u) (see [9,27]).

The next result is the in6nite dimensional version of Russell’s “controllability via stability” principle.

Theorem 2. Suppose that the control operator B is admissible. If A generates an exponential stable
C0-semigroup; then system (18) is exact observable on some [0; T ]; T ¿ 0; in H; namely; there exists
DT ¿ 0 such that∫ T

0
‖O(t)‖2

U dt¿DT‖(�0; �1)‖2
H ∀(�0; �1)∈D(A): (26)

Proof. By duality principle; we only need to show that system (24) is exactly controllable on some [0; T ];
T ¿ 0: That is; for any given (y∗

0 ; y
∗
1 )∈H; there exists an T ¿ 0 such that the solution to (24) satis6es

y(T ) = y∗
0 ; yt(T ) = y∗

1 :

Since A is exponentially stable; there is an T0 ¿ 0 such that for all T ¿T0

‖eAT‖¡ 1: (27)

Let (
w(t)

wt(t)

)
= eAt

(
w0

w1

)
; 06 t6T; (28)

which de6nes a solution to Eq. (10) with initial condition (w0; w1)∈H that will be determined later. From
Corollary 1 and (25); u1 = B∗yt ∈L2(0; T ;U ) and(

w(t)

wt(t)

)
= eAt

(
w0

w1

)
+ !(t)u1: (29)
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Next; consider

ztt + Ãz − BB∗zt = 0;

z(T ) = y(T ); zt(T ) = yt(T ): (30)

Let %(t) = z(T − t). Then % satis6es

%tt + Ã% + BB∗%t = 0;

%(0) = w(T ); %t(0) = −wt(T ): (31)

So; u2(t) = −B∗%t(T − t) = −B∗zt(t)∈L2(0; T ;U ). Hence; the solution of (30) can be written as(
z

zt

)
= eAt

(
z(0)

zt(0)

)
− !(t)u2: (32)

Set

y(t) = w(t) − z(t); u = u1 + u2 ∈L2(0; T ;U ):

Then it follows from (29) and (32) that(
y

yt

)
= eAt

[(
w0

w1

)
−
(

z(0)

zt(0)

)]
+ !(t)u (33)

and y(T ) = yt(T ) = 0: The proof is complete if we can show that for any given (y0; y1); there is a (w0; w1)
such that(

w0

w1

)
−
(

z(0)

zt(0)

)
=

(
y0

y1

)
: (34)

This is true since from (31)(
%(t)

%t(t)

)
= eAt

(
w(T )

−wt(T )

)
:

Hence;∥∥∥∥∥
(

z(0)

zt(0)

)∥∥∥∥∥6 ‖eAT‖
∥∥∥∥∥
(

w(T )

−wt(T )

)∥∥∥∥∥6 ‖eAT‖2

∥∥∥∥∥
(

w0

w1

)∥∥∥∥∥ :
So the map(

w0

w1

)
→
(

z(0)

zt(0)

)
= P

(
w0

w1

)

is a contraction map. Therefore;(
w0

w1

)
−
(

z(0)

zt(0)

)
= (I −P)

(
w0

w1

)
=

(
y0

y1

)

has a unique solution(
w0

w1

)
= (I −P)−1

(
y0

y1

)
: (35)
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4. Stability via controllability

In this section, we consider the reversion of Theorem 2, namely, whether the exact observability of system
(18) implies the exponential stability of the semigroup eAt?

Let us study the following control-observation system

ytt + Ãy + Bu(t) = 0;

Ou(t) = B∗yt (36)

or its 6rst-order form

d
dt

(
y

yt

)
= A

(
y

yt

)
+ Bu(t); in D(A1=2) × D(A1=2)′;

Ou(t) = B∗
(

y

yt

)
: (37)

Suppose B is admissible. Then the generic well-posed abstract linear system theory (see e.g. [7]) tells us that
(37) de6nes a well-posed linear system if and only if its transfer function H(s)∈L(U ) determined (up to a
constant bounded linear operator of L(U )) by

H(s) −H(&)
s− &

= −B∗(s− A)−1(& − Ã)−1B for any s; &∈ �(A) with s = & (38)

is uniformly bounded on some vertical line parallel to the imaginary axis:

sup
Res=+

‖H(s)‖¡∞ for some +¿ 0; (39)

where

Ã =

(
0 I

−Ã 0

)
: (40)

Remark 1. In the original paper [7]; (39) is replaced by

sup
Res¿+

‖H(s)‖¡∞ for some +¿ 0: (41)

However; the arguments there can be changed a little bit so that assumption (39) is suQcient for the validity
of the results. Moreover; when B is admissible; (39) implies (41). This can also be shown by the LindelVof
theorem in complex analysis (see e.g. [25]). Indeed; by (38)

‖H(s)‖6 ‖H(+)‖ + |+− s| ‖B∗(+− A)−1‖ ‖(s− Ã)−1B‖:
However; from [28]

‖(s− Ã)−1B‖6 K√
Res

for some K ¿ 0 and Res¿+:

Hence the LindelVof theorem can be applied to get the implication of (41) and (39).
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Now, it is easy to 6nd

(s− Ã)−1

(
f

g

)
=

(
(s2 + Ã)−1(g + sf)

s(s2 + Ã)−1(g + sf) − f

)
; ∀(f; g)∈D(A1=2) × D(A1=2)′: (42)

De6ne

h(s) = B∗(s− Ã)−1B = sB∗(s2 + Ã)−1B: (43)

It is obvious that for any s with Res¿ 0; H (s)∈L(U ) and

h(s) − h(&)
s− &

= −B∗(s− A)−1(& − Ã)−1B for all s; &∈ �(A); s = &:

So condition (39) is satis6ed if and only if assumption (H) holds:

Assumption (H).

sup
Res=+

‖h(s)‖¡∞ for some +¿ 0: (44)

Therefore; under Assumption (H) and the admissibility of B (A; B; B∗) is well posed in the sense of [7].
Furthermore; since for any s∈ �(Ã)

(s− Ã)−1Bu =

(
(s2 + Ã)−1Bu

s(s2 + Ã)−1Bu

)
∈D(B∗) ∀u∈U (45)

it follows from the appendix that the transfer function of (37) is

H(s) = h(s) = sB∗(s2 + Ã)−1B: (46)

For any initial condition (y0; y1)∈H; the solution of (37) is found to be(
y

yt

)
= T (t)

(
y0

y1

)
+ !(t)u∈H;

Ou(t) = B∗
L

(
y

yt

)
= L∞

(
y0

y1

)
+ F∞u; (47)

where F∞ ∈L(L2
loc(0;∞;U )); L∞ ∈L(H; L2

loc(0;∞;U )) are bounded linear operators. In particular; when
(y0; y1) = 0 and the Laplace transform û(s) of u exists; it holds that

Ô(s) = H(s)û(s) for all Res¿ 0: (48)

Theorem 3. Suppose

(i) B is admissible.
(ii) Assumption (H) holds.

Then the reversion Theorem 2 holds true. That is; if system (18) is exactly observable on some [0; T ]; T ¿ 0;
in H; then A generates an exponential stable C0-semigroup.
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Proof. Suppose without loss of generality that (y0; y1)∈D(A). Let E(t) be de6ned by (15). Then eAt is
exponentially stable if and only if

E(0) − E(T )¿ cE(0) for some c¿ 0 and T ¿ 0: (49)

However; since∫ T

0
‖B∗yt‖2

U dt = E(0) − E(T )

(49) holds if and only if∫ T

0
‖B∗yt‖2

U dt¿ cE(0): (50)

Now, decompose y into y = � +  , where � satis6es

�tt + A� = 0; t ∈ (0; T ];

�(0) = y0; �t(0) = y1 (51)

and  satis6es

 tt + Ã = −Bu(t); u(t) = B∗yt; t ∈ (0; T ];

 (0) = 0;  t(0) = 0: (52)

Note that B∗yt = B∗�t + B∗ t . Since (18) is exactly observable by output B∗�t , in order to show (50), we
need only show that∫ T

0
‖B∗yt‖2

U dt¿ c̃
∫ T

0
‖B∗�t‖2

U dt for some c̃¿ 0: (53)

Note that B∗�t and B∗ t make sense under the admissibility of B and∫ T

0
‖B∗�t‖2

U dt6 2
∫ T

0
‖B∗yt‖2

U dt + 2
∫ T

0
‖B∗ t‖2

U dt:

The proof is complete if we can show that∫ T

0
‖B∗ t‖2

U dt6 Xc
∫ T

0
‖B∗yt‖2

U dt for some Xc¿ 0: (54)

Set ũ(t)=0; as t ¿T and ũ(t)=B∗yt(t) as t ∈ [0; T ). It follows from (48) that the solution of (52) satis6es

Ô (s) = H(s)û(s) for all s with Res¿ 0;

where Ô (t) = B∗ ̃ (t),  ̃ (t) is the solution of (52) with u(t) = ũ(t). Hence,

‖Ô (s)‖ = ‖H (s)‖ ‖û(s)‖6C+‖û(s)‖ for some C+ ¿ 0 and all s with Res = +:

By the Plancherel theorem, we get∫ ∞

0
e−2+t‖Ô (t)‖2 dt6C+

∫ ∞

0
e−2+t‖u(t)‖2 dt6C+

∫ T

0
‖u(t)‖2 dt:
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Therefore,∫ T

0
‖Ô (t)‖2 dt6 c̃

∫ T

0
‖u(t)‖2 dt:

Noting that

!(t)v =
∫ t

0
T (t − 0)

[
0

BB∗

]
v(0) d0 for any v∈L2(U ;D(A1=2)′)

in (47), we see that  (t) =  ̃ (t) for t ∈ [0; T ). So, O (t) = B∗ (t) for t ∈ [0; T ) and (53) then follows from
the above inequality.

Remark 2. By (50); eAt is exponentially stable if and only if (A;B) is exactly controllable. This fact was
stated as Proposition 8 of [30]. From the property of transfer function; we know that the negative identity
operator in control space −I ∈L(U ) is an admissible feedback operator [29] for system (37). Since system
(37) is a well-posed system and is assumed being exactly controllable; for any given (y0; y1); (y∗

0 ; y
∗
1 ); there

exists an t∗ ¿ 0 and control u0 ∈L2(0; t∗;U ) such that the solution of (37) with initial condition (y0; y1)
satis6es (y(·; t∗); yt(·; t∗)) = (y∗

0 ; y
∗
1 ); the feedback control u(t) = −Ou(t) + u0(t) for system (37) will steel

(y0; y1) to (y∗
0 ; y

∗
1 ); which shows that (A∗;B) is exactly controllable. However; at this stage; we are not sure

mathematically if system (37) under the feedback control u(t) =−Ou(t) + u0(t) is just (A;B). If this is true;
the proof can be signi6cantly simpli6ed.

Remark 3. In the reviewing process; we found in Proposition 10 of the survey paper [30] (the proof was not
presented there) that Assumption (H) implies the admissibility of B. Hence condition (i) of Theorem 3 can
be removed.

To end this section, we present a result on the compactness of A.

Proposition 1. Suppose that A−1 is compact on X. Then A−1 is compact on H.

Proof. By assumption; A−1=2 is compact on X. Suppose (�n;  n)∈H; ‖A1=2�n‖6C; ‖ n‖6C are bounded
sequence. Since

�n = A−1=2A1=2�n;

we see that �n has a subsequence which (still denoted by �n) is convergent on X :�n → �. Let

xn = −Ã
−1

BB∗�n − A−1 n:

We want to show that xn has a subsequence converging in D(A1=2). This is true for the second term A−1 n

since A1=2A−1 n = A−1=2 n has a convergent subsequence. So we consider only the sequence

wn = Ã
−1

BB∗�n:

Note that Ã
−1

B∈L(U;D(A1=2)); B∗ ∈L(D(A1=2); U ). So Ã
−1

BB∗ ∈L(D(A1=2)). Hence;

Ã
−1

BB∗�n → Ã
−1

BB∗� in D(A1=2):

The proof is complete.
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Since system (36) or (37) is a regular system under conditions (i) and (ii) of Theorem 3, B∗yt makes
sense in L2(0; T ;U ) for any T ¿ 0. We can then discuss the following optimal control problem for the cost
functional:

J (u) = E(T ) +
1
2

∫ T

0
‖u(t)‖2 dt +

1
2

∫ T

0
‖B∗yt‖2(t) dt:

It can be easily shown that the feedback u = B∗yt is the optimal control of system (36) for the above cost
function. We omit the details here. A special example can be found in [14].

5. Application to diagonal semigroup

In this section, we have limited ourselves to a kind of diagonal semigroups. Let A be a positive self-adjoint
operator in X

Aen = !2
nen; !n ¿ 0; (55)

where {en} is an orthonormal basis of X . Suppose that U = Cm is a 6nite dimensional space, and uk is an
orthonormal basis of U . Rewrite (36) here as

ytt(t) + Ay(t) + Bu = 0;

Ou(t) = B∗yt: (56)

Then for any B∈L(U;D(A1=2)′), there are Bk ∈D(A1=2)′; 16 k6m such that

B =
m∑

k=1

ukBk : (57)

Here we understand uk ∈U ′ such that 〈uk ; uj〉= 6kj; the notation of Dirac delta. So B∈L(U;D(A1=2)′) if and
only if

Bk =
∞∑
n=1

bknen with
∞∑
n=1

|bkn|2
!2

n
¡∞; 16 k6m: (58)

In this case

B∗(en) = (B1(en); : : : ; Bm(en)) = (b1n; : : : ; bmn): (59)

Now,

A =

(
0 I

−A 0

)

has eigenelements {±i!n; !±n}∞n=1 :

A!±n = ±i!n!±n:

{!n} forms an orthonormal basis for D(A1=2) × X :

!n =

(−i!−1
n en

en

)
; !−n =

(
i!−1

n en

en

)
: (60)

Let (
�0

�1

)
=

∞∑
n=1

an!n +
∞∑
n=1

cn!−n:
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Then the solution of (18) can be written as(
�

�t

)
=

∞∑
n=1

anei!nt!n +
∞∑
n=1

cne−i!nt!−n:

Hence,

B∗�t =
∞∑
n=1

(anei!nt + cne−i!nt) (b1n; : : : ; bmn): (61)

Proposition 2. Let A and B be de<ned by (55) and (57); respectively. Suppose that

|!n − !n−1|¿ +¿ 0 for all n¿ 1: (62)

Then

(i) B is admissible if and only if |bkn|6M for some M ¿ 0 and all n¿ 1 and 16 k6m.
(ii) System (56) is exactly observable if and only if |bkn|¿M0 for some M0 ¿ 0 and all n¿ 1 and

16 k6m.

Proof. The necessities come from Propositions 4.1 and 4.2 of [22]. The suQciencies follow from Ingham’s
class result [10].

Now, we are in a position to study h(�) which can be found to be

h(�) =
∞∑
n=1

�
�2 + !2

n

(
b1n

m∑
k=1

ukbkn; : : : ; bmn

m∑
k=1

ukbkn

)
: (63)

Theorem 4. Suppose that U is <nite dimensional. Let A and B be de<ned by (55) and (57); respectively.
If there are constants &¿ 0 and 6¿ 0 such that

!n+1 − !n¿ 6!&
n+1; ∀n¿ 1; (64)

then h(�) de<ned by (63) satis<es assumption (H) provided that B is admissible. Therefore; the corresponding
operator A of the closed-loop system of (56) generates an exponential stable C0-semigroup if and only if

(i) B is admissible.
(ii) System (18) is exactly observable on some [0; T ]; T ¿ 0:

According to Proposition 2, (i) and (ii) can be replaced by

M0 ¡ |bkn|¡M for all n¿ 1 and 16 k6m

where M0; M ¿ 0 are two constants independent of k and n. Moreover,

lim
�→∞

h(�) = 0: (65)

Therefore, under assumption (64), the feedthrough operator D = 0 and hence system (56) is regular [29].
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Proof. By (64); we see that !n is increasing with respect to n. Moreover; it is easy to show by induction
that

!n+1¿!1 + n6!&
1 ; ∀n¿ 1: (66)

Hence;
∞∑
n=1

!−2
n ¡∞: (67)

When B is admissible; we have; by Proposition 2; that |bkn|6M for some M ¿ 0 and all n¿ 1 and 16 k6m.
Hence;

‖h(�)‖6m2M 2
∞∑
n=1

|�|
|�2 + !2

n|
: (68)

Because of (67); in order to show the boundedness of the right-hand side of (68) on some vertical line
Re � = +¿ 0 of the complex plane; we need only consider those � with |�| large enough. Suppose that
� = + + iy. Suppose without loss of generality that y¿ 0: First; from (68)

‖h(�)‖6 2m2M 2
∞∑
n=1

y
|y2 − +2 − !2

n| + 2+y
for all y¿+: (69)

Suppose that y2 ¿+2 +!2
1; y=2

√
y2 − +2 ± 2+y¡C for some C ¿ 0; and n0 is the largest integer such that

!2
n0
¡y2 − +26!2

n0+1. Then we have
∞∑
n=1

y
|y2 − +2 − !2

n| + 2+y

=
∞∑

y2−+2¡!2
n

y
!2

n + +2 − y2 + 2+y
+

∞∑
y2−+2¿!2

n

y
y2 − +2 − !2

n + 2+y

=
∞∑

n=n0+2

y
!2

n + +2 − y2 + 2+y
+

y
!2

n0+1 + +2 − y2 + 2+y

+
n0−1∑
n=1

y
y2 − +2 − !2

n + 2+y
+

y
y2 − +2 − !2

n0
+ 2+y

6
1
+

+
∞∑

n=n0+2

y
!2

n + +2 − y2 + 2+y
+

n0−1∑
n=1

y
y2 − +2 − !2

n + 2+y

6
1
+

+
∞∑

n=n0+1

1
!n+1 − !n

∫ !n+1

!n

y
x2 + +2 − y2 + 2+y

+
n0−1∑
n=1

1
!n+1 − !n

∫ !n+1

!n

y
y2 − +2 − x2 + 2+y

6
1
+

+
1

6!&
n0+1

∫ ∞

!n0+1

y
x2 + +2 − y2 + 2+y

+
1

6!&
1

∫ !n0 =2

!1

y
y2 − +2 − x2 + 2+y

+
1

!n0 − !n0−1

∫ !n0

!n0 =2

y
y2 − +2 − x2 + 2+y

=
1
+

+ S1 + S2 + S3;
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where

S1 =
1

6!&
n0+1

y

2
√

y2 − +2 − 2+y
log

!n0+1 +
√

y2 − +2 − 2+y

!n0+1 −
√

y2 − +2 − 2+y

6
C

6!&
n0+1

log
4!2

n0+1

!2
n0+1 − y2 + +2 + 2+y

6
C

6!&
n0+1

log
2!2

n0+1

+y

6
C

6!&
n0+1

log
2!2

n0+1

+!n0

6
C

6!&
n0+1

log
2!2

n0+1

+!1
6M16∞ for some M1 ¿ 0;

S2 =
1

6!&
1

∫ !n0 =2

!1

y
y2 − +2 − x2 + 2+y

dx6
1

6!&
1

y

2
√

y2 − +2 − 2+y
log

√
y2 − +2 + 2+y + !n0 =2√
y2 − +2 + 2+y − !n0 =2

6
C

6!&
1

log

(
1 +

!n0√
y2 − +2 + 2+y − !n0 =2

)
6

C

6!&
1

log

(
1 +

!n0√
y2 − +2 − !n0 =2

)

6
C

6!&
1

log(3)6M26∞ for some M2 ¿ 0;

S3 =
1

!n0 − !n0−1

∫ !n0

!n0 =2

y
y2 − +2 − x2 + 2+y

dx6
C

6!&
n0

log

√
y2 − +2 + 2+y + !n0√
y2 − +2 + 2+y − !n0

6
C

6!&
n0

log

(
1 +

2!n0√
y2 − +2 + 2+y − !n0

)
6

C

6!&
n0

log

(
1 +

2
√

2!n0√
y2 − +2 − !n0 +

√
2+y

)

6
C

6!&
n0

log
(

1 +
2!n0√
+!n0

)
6M36∞ for some M3 ¿ 0:

Note that in the above derivations; we used frequently the following inequality:
1
2 (a + b)26 a2 + b26 (a + b)2 for all a; b¿ 0:

Therefore;

‖h(�)‖6 2m2M 2
3∑

n=1

(
1
+

+ Mi

)
¡∞ for all � = + + iy; +¿ 0 is 6xed: (70)

Now we show (65). Let �¿ 0. Then for any N ¿ 1
∞∑
n=1

�
�2 + !2

n
6

N−1∑
n=1

�
�2 + !2

n
+

∞∑
n=N

1
!n − !n−1

∫ !n

!n−1

�
�2 + x2 dx

6
N−1∑
n=1

�
�2 + !2

n
+

∞∑
n=N

1

6!&
N

∫ !n

!n−1

�
�2 + x2 dx =

N−1∑
n=1

�
�2 + !2

n
+

1

6!&
N

∫ ∞

!N−1

�
�2 + x2 dx

6
N−1∑
n=1

�
�2 + !2

n
+

1

6!&
N

∫ ∞

0

1
1 + x2 dx:

Letting 6rst � → ∞ and then N → ∞ in the above inequality; we see that (65) holds true. The proof is
complete.
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Remark 4. Condition (64) is satis6ed when

!n = =n1+&[1 + O(n−#)]; =; &; #¿ 0 as n → ∞: (71)

The boundedness of h(�) in the case of & = 1 was proved in [21].

For a quite while we conjecture that the transfer function in Theorem 4 is always bounded on some right
half complex plane without the spectral assumption (64), which is based on the Corollary 9 of [23] that if
conditions (i) and (ii) of Theorem 4 are satis6ed, then

supNk ¡∞;

where Nk denotes the number of elements in the set {n∈N | k6!n6 k + 1}. However, the following
counterexample gives a negative answer.

Example 1. Take m = 1; bn = 1;

!n =

{
n if n∈ [4k ; 5

24
k ];

n2 otherwise;
n¿ 1; k¿ 1:

Then !n¿ n; n¿ 1; so b is always admissible and the associated system is exactly controllable by Proposition
2. However; !n here do not satisfy (64) because !n in this example is not even monotonically increasing
which is implied automatically by condition (64). We show that the transfer function in this case is not
bounded on any right complex plane. Indeed; (63) now becomes

h(�) =
∞∑
k=1

�b2
k

�2 + !2
k

=
∞∑
k=1

(5=2)4k∑
n=4k

�
�2 + n2 + h2(�) = h1(�) + h2(�); (72)

where h2(�) is bounded on any vertical line Re � = +¿ 0 as we proved in Theorem 4. We claim that

|h1(+ + 4ni)| → ∞ as n → ∞ (73)

for any +¿ 0. Therefore; h does not satisfy Assumption (H).
Indeed, set �n = a + 4ni. Then |�n|¿ 4n and

|h1(+ + 4ni)|¿
∣∣∣∣∣∣
∞∑
k=1

(5=2)4k∑
m=4k

4n

�2
n + m2

∣∣∣∣∣∣
¿

∣∣∣∣∣∣
(5=2)4n∑
m=4n

4n

�2
n + m2

∣∣∣∣∣∣−
∣∣∣∣∣∣

∞∑
k=n+1

(5=2)4k∑
m=4k

4n

�2
n + m2

∣∣∣∣∣∣−
∣∣∣∣∣∣
n−1∑
k=1

(5=2)4k∑
m=4k

4n

�2
n + m2

∣∣∣∣∣∣
¿

∣∣∣∣∣∣
(5=2)4n∑
m=4n

4n

�2
n + m2

∣∣∣∣∣∣−
√

2
∞∑

k=n+1

(5=2)4k∑
m=4k

4n

m2 − 42n + +2 + 2+4n

−
√

2
n−1∑
k=1

(5=2)4k∑
m=4k

4n

42n − +2 − m2 + 2+4n = S11 − S12 − S13: (74)
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First, we show that

S12 + S136M4 ¡∞ for some M4 ¿ 0: (75)

In fact, as 4n¿ +2, it has

S12 + S13 =
n−1∑
k=1

(5=2)4k∑
m=4k

4n

42n − m2 − +2 + 2+4n +
∞∑

k=n+1

(5=2)4k∑
m=4k

4n

m2 − 42n + +2 + 2+4n

6
n−1∑
k=1

(5=2)4k∑
m=4k

∫ m+1

m

4n dx
42n − x2 − +2 + 2+4n +

∞∑
k=n+1

(5=2)4k∑
m=4k

∫ m

m−1

4n dx
x2 − 42n + +2 + 2+4n

6
∫ (5=2)4n−1+1

4

4n dx
42n − x2 − +2 + 2+4n +

∫ ∞

4n+1−1

4n dx
x2 − 42n + +2 + 2+4n

6
4n

2
√

42n − +2 + 2+4n
log

√
42n − +2 + 2+4n + x√
42n − +2 + 2+4n − x

∣∣∣∣∣
x=(5=2)4n−1+1

+
4n

2
√

42n − +2 − 2+4n
log

x +
√

42n − +2 − 2+4n

x −√
42n − +2 − 2+4n

∣∣∣∣∣
x=4n+1−1

¡M4 ¡∞ ∀n¿ 1:

Now, we estimate S11. Let n0 be such an integer so that n2
0 ¡ 42n − +2 + 22n+1+6 (n0 + 1)2. It is seen that

[n0; n0 + 1] ⊂ [4n; 5
24

n]. Note that as m∈ [4n; 5
24

n]

Re
4n

�2
n + m2 =

4n(m2 − 42n + +2)
(m2 − 42n + +2)2 + 42n+1+2 ¿ 0; m∈

[
4n;

5
2
4n
]

and the function f(y) = y=(y2 + b2) is a convex function as y¿ 0 and f(y) attains its unique maximum
f(b) = 1=(2b) at y = b and hence

4n(m2 − 42n + +2)
(m2 − 42n + +2)2 + 42n+1+2

¿




4n(x2 − 42n + +2)
(x2 − 42n + +2)2 + 42n+1+2 when m2 − 42n + +26 22n+1+; x∈ [m− 1; m];

4n(x2 − 42n + +2)
(x2 − 42n + +2)2 + 42n+1+2 when m2 − 42n + +2¿ 22n+1+; x∈ [m;m + 1]:

Therefore,

S11 ¿
(5=2)4n∑
m=4n

4n(m2 − 42n + +2)
(m2 − 42n + +2)2 + 42n+1+2

¿
n0∑

m=4n+1

∫ m

m−1

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2 +

(5=2)4n∑
m=n0+1

∫ m+1

m

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2
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=
∫ (5=2)4n

4n

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2 −

∫ n0+1

n0

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2

¿
∫ (5=2)4n

4n

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2 − 1

4+
:

Denote +n = +=4n. Then∫ (5=2)4n

4n

4n(x2 − 42n + +2) dx
(x2 − 42n + +2)2 + 42n+1+2 =

∫ 5=2

1

(x2 − 1 + +2
n) dx

(x2 − 1 + +2
n)2 + 4+2

n

¿
1
5

∫ 2

1

(x − 1 + +2
n) dx

(x − 1 + +2
n)2 + 4+2

n
=

1
5

∫ 1++2
n

+2
n

u
u2 + 4+2

n
du

¿
1
5

∫ 1

+2
n

u
u2 + +2

n
du =

1
10

log
1 + 4+2

n

+4
n + 4+2

n
→ ∞ (as n → ∞);

which implies that

S11 → ∞ as n → ∞: (76)

This concludes (73) by combining (74)–(76).

Finally, as an application of the result, we give a di;erent proof for the exponential stability of the following
example of beam equation which was 6rst discussed in [4].

Example 2. Consider the beam equation with boundary control

ytt(x; t) + yxxxx(x; t) = 0;

y(0; t) = yx(0; t) = yxx(1; t) = 0;

yxxx(1; t) = u(t): (77)

Using the method in [9] or [21]; we can write (77) to be

ytt(x; t) + yxxxx(x; t) + 6(x − 1)u(t) = 0;

y(0; t) = yx(0; t) = yxx(1; t) = yxxx(1; t) = 0: (78)

De6ne X = L2(0; 1); U = C,

A� = �(4)(x); D(A) = {�∈H 4(0; 1)|�(0) = �′(0) = �′′(1) = �′′′(1) = 0};
B� = k6(x − 1): (79)

Then

B∗� = k�(1) (80)

for any �∈D(A1=2) = {�∈H 2(0; 1) |�(0) = �′(0) = 0}. The closed-loop equation is the well-known beam
equation with shear force feedback control

ytt(x; t) + yxxxx(x; t) = 0;

y(0; t) = yx(0; t) = yxx(1; t) = 0;

yxxx(1; t) = k2yt(1; t) (81)
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and operator A is de6ned as

A(f; g) = (g;−f(4));

D(A) = {(f; g)∈ (D(A1=2) ∩ H 4(0; 1)) × D(A1=2)|;
f′′′(1) = k2g(1); f′′(1) = 0}: (82)

It is well known that A−1 is compact on X and hence A−1 is compact on H = D(A1=2) × X in terms of
Proposition 1. The eigenpairs of {(!2

n; en)}∞1 of A can be easily found to be

!n = [n− 1=2)?]2 + O(n−1);

en = e−(n−1=2)?x + (−1)ne−(n−1=2)?(1−x) + sin(n− 1=2)?x − cos(n− 1=2)?x + O(n−1):

Now, it is easily shown that bn = 0 and

bn = 2k(−1)n−1 + O(n−1); n¿ 1:

By virtue of Theorem 4, system (81) is exponentially stable. Moreover, system (77) is a regular system with
the output O(t) = yt(1; t).
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Appendix A

The following result is due to [31].

Theorem A. Let H;U; Y be the Hilbert spaces. Suppose that the following system

ẋ(t) = Ax(t) + Bu(t);

y(t) = Cx(t) (A.1)

is a well-posed system in H; where A is the generator of a C0-semigroup on H; and B∈L(U; [D(A∗)]′);
C ∈L(D(A); Y ) be the admissible control and observe operators. If (� − A)−1B ⊂ D(C) for all �∈ �(A);
then the transfer function H (s) of system (A.1) is

H (s) = C(s− A)−1B:
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Proof. Suppose that C+ ={s|Res¿ +} ⊂ �(A) for some +¿ 0. For any &∈C+ and u0 ∈U; setting u(t)=e&tu0

and solving Eq. (83); we 6nd that

x(t) = e&t(& − A)−1Bu0; y(t) = e&tC(& − A)−1Bu0

satis6es Eq. (A.1) with the initial condition x(0) = (& − A)−1Bu0. In view of the general well-posed system
theory; the Laplace transforms of x; y; u satisfy

ŷ(s) = C(s− A)−1(& − A)−1Bu0 + H (s)û(s): (A.2)

Now; it is found directly that

ŷ(s) =
1

s− &
C(& − A)−1Bu0; x̂(s) =

1
s− &

(& − A)−1Bu0; û(s) =
1

s− &
u0 ∀Res¿&:

Substituting the above into (A.2) and dividing by s− & on both sides and letting s → & gives

H (&)u0 = C(& − A)−1Bu0:

The result is proved due to the arbitrariness of &.
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