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Abstract. In this paper we analyze a multidimensional controlled wave equation on a bounded
domain, subject to partial Dirichlet control and colocated observation. By means of a partial Fourier
transform, it is shown that the system is well-posed and regular in the sense of D. Salamon and G.
Weiss. The corresponding feedthrough operator is found to be the identity operator on the input
space.
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1. Introduction. A very general class of linear infinite-dimensional systems for
which there is a well established theory parallel to that for finite-dimensional systems
is the class of well-posed and regular linear systems (see [5]). This generic framework
covers many systems governed by partial differential equations with actuators and
sensors supported on isolated points, on a subdomain, or on a part of the boundary
of the spatial region. There are many papers in this field (e.g., [7], [13], [14], [15],
[16], [20], [21], [24], [25], [26], [27], [34], [35], [36], [38], and the references therein).
Recently, the regular linear system theory has been generalized to the time-varying
case in [22]. We refer to [5] for a nice earlier summary of well-posed system theory.

Well-posedness and regularity are two new crucial concepts introduced in linear
infinite-dimensional systems theory under the above-mentioned framework. It is no-
table that these two concepts are completely different from those one usually uses
in partial differential equations. For the reader’s convenience, we shall recall their
definitions and other related notions in section 2. As remarked in [4], very little
is known about the well-posedness or the regularity of controlled infinite-dimensional
systems. In [2], the well-posedness of the wave equation with Dirichlet input and colo-
cated output in a two-dimensional (2-D) disk was proved by a direct method. The
well-posedness of the same equation on a bounded open domain of R

n(n ≥ 2) with a
smooth boundary was proved in [1] using microlocal analysis. The well-posedness and
regularity of the multidimensional heat equation with both Dirichlet- and Neumann-
type boundary control has been established in [3]. To the best of our knowledge, [3]
is the first article dealing with the regularity of a multidimensional partial differential
equation system, although well-posedness and regularity have been well-established
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for many one-dimensional systems (see [11]). The regularity of the wave equation in
a 2-D disk with Dirichlet control and colocated observation was first obtained in [12].
However, the same problem for a general bounded domain in R

n has remained open.
The aim of this paper is to give a positive solution to the above-mentioned prob-

lem. More precisely, we consider the following multidimensional wave equation with
partial Dirichlet control and colocated observation:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wtt(x, t) − Δw(x, t) = 0, x ∈ Ω, t > 0,
w(x, t) = 0, x ∈ Γ1, t > 0,
w(x, t) = u(x, t), x ∈ Γ0, t > 0,

y(x, t) = −∂(−Δ)−1wt(x, t)

∂ν
, x ∈ Γ0, t > 0.

(1.1)

Here, Ω ⊂ R
n (n ≥ 2) is a bounded domain with the smooth boundary ∂Ω = Γ0 ∪Γ1,

both Γ0 and Γ1 are disjoint parts of the boundary relatively open in ∂Ω with int(Γ0) �=
∅, and ν is the unit normal vector of Γ0 pointing towards the exterior of Ω. In system
(1.1), u is the input function (or control) and y is the output function (or output). Put
H = L2(Ω) ×H−1(Ω) and U = L2(Γ0). The following result comes from Proposition
2.2 of [1] and Theorem 4.2 of [19, p. 46] (see also [17]).

Theorem 1.1. Let T > 0, (w0, w1) ∈ H, and u ∈ L2(0, T ;U). Then there
exists a unique solution (w,wt) ∈ C([0, T ];H) to (1.1) satisfying w(·, 0) = w0 and
wt(·, 0) = w1. Moreover, there exists a constant C > 0, independent of (w0, w1, u),
such that

‖(w(·, T ), wt(·, T ))‖2
H + ‖y‖2

L2(0,T ;U) ≤ C
[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T ;U)

]
.

Theorem 1.1 implies that the system described by (1.1) is well-posed with state
space H, input space U , and output space U (the precise definition of these concepts
will be given in the next section). We mention that Proposition 2.2 of [1] says that
there exists a C∗ > 0 independent of u such that

‖y‖2
L2(0,T ;U) ≤ C∗‖u‖2

L2(0,T ;U) when (w0, w1) = 0.

However, as was indicated in [2] and [37], Theorem 1.1 can be derived from here with
relative ease.

The main goal of this paper is to show that the system described by (1.1) is
regular as well. Our result reads as follows.

Theorem 1.2. System (1.1) is regular. More precisely, if w(·, 0) = wt(·, 0) = 0
and u(x, t) ≡ u(x) is a step input with some u ∈ U , then the corresponding output y
satisfies

lim
σ→0

∫
Γ0

∣∣∣∣ 1σ
∫ σ

0

y(x, t)dt− u(x)

∣∣∣∣2 dx = 0.

This result allows us to study dynamic stabilization, optimal control, or other
problems for system (1.1) using a theory that is parallel in many ways to the finite-
dimensional theory; see, e.g., [6]. Also, as we shall explain in section 2, Theorem
1.2 states that system (1.1) has feedthrough operator D = I, where I is the identity
operator on U .

This paper is organized as follows: In the next section, we introduce the back-
ground and the necessary preliminaries about well-posed and regular systems. The
proof of Theorem 1.2 is given in section 3.
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2. Preliminaries. In this section, we shall briefly recall some background about
infinite-dimensional well-posed and regular systems (see [5], [27], [30], [31], [32], [33],
[34]).

Let X, U , and Y be three Hilbert spaces. Denote by ‖ · ‖ the norm of X (induced
by its inner product). In what follows, we choose X, U , and Y to be the state, input,
and output spaces, respectively, of an infinite-dimensional linear system. This system
is described by the equations{

ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X,
y(t) = Cex(t) + Deu(t),

(2.1)

where the (usually unbounded) operator A generates a C0-semigroup T(·) on X, B is
a control operator from U to X, Ce is an observation operator from X to Y , and De

is a bounded operator from U to Y . In (2.1), u(t) ∈ U , x(t) ∈ X, and y(t) ∈ Y are
called the input, the state, and the output, respectively. The input function u(·) is
assumed to be in the space L2

loc(0,∞;U), but the representation (2.1) is valid only if
u ∈ H1

loc(0,∞;U) and Ax(0)+Bu(0) ∈ X (see [28] for details). For the case that both
B and Ce are bounded, a nice theory for system (2.1) has been summarized in the
book [9]. The framework of well-posed system theory is, however, mainly concerned
with the case where neither B nor Ce is bounded.

Let us recall some basic notation. The Hilbert space X−1 is defined as the com-
pletion of X with respect to the norm

‖x‖−1 = ‖(β − A)−1x‖ ∀ x ∈ X,

and the space X1 is the space D(A) with the norm

‖x‖1 = ‖(β − A)x‖ ∀ x ∈ D(A),

where β ∈ ρ(A), the resolvent set of A. It is easy to verify that both X−1 and X1

are independent of the choice of β. It was shown in [30] that X−1 = D(A∗)′, the dual
space of D(A∗) with respect to the pivot X. Identifying X with its dual space, we
have the following continuous, dense inclusions:

X1 ↪→ X ↪→ X−1.

Definition 2.1. System (2.1) is said to be well-posed if the following hold:

(a) A generates a C0-semigroup T(·) on X.
(b) B ∈ L(U,X−1) is an admissible control operator for T(·), i.e., for some (and

hence for any) t > 0 there exists Ct > 0 such that∥∥∥∥∫ t

0

T(t− τ)Bu(τ)dτ

∥∥∥∥2

≤ Ct

∫ t

0

‖u(t)‖2
Udt ∀ u ∈ L2(0, t;U).

(c) The domain D(Ce) ⊃ D(A). If we denote by C the restriction of Ce to D(A),
then C ∈ L(X1, Y ) is an admissible observation operator for T(·), which
means that for some (and hence for any) t > 0, there exists C ′

t > 0 such that∫ t

0

‖CT(·)x‖2
Y dt ≤ C ′

t‖x‖2 ∀ x ∈ D(A).
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(d) The input-output map is bounded; i.e., for some (and hence for any) t > 0,
there exists C ′′

t > 0 such that∫ t

0

‖y(t)‖2
Y dt ≤ C ′′

t

∫ t

0

‖u(t)‖2
Udt ∀ u ∈ L2(0, t;U) when x0 = 0.

It should be noted that the definition above is not the standard one given by [5]
or [8], but it is equivalent to Weiss’s definition (see [16], [23], [27]). From [31], B is
admissible for T(·) if and only if the adjoint operator B

∗ is admissible for T
∗(·), the

adjoint C0-semigroup of T(t).
Roughly speaking, a well-posed system is a system for which both the state and

output depend continuously on the initial state and input function of the system.
If system (2.1) is well-posed, then the weak solution of (2.1) can be represented

as (see [5], [28])⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = T(t)x0 +

∫ t

0

T(t− τ)Bu(τ)dτ ∈ C([0,∞);X)

∀ x0 ∈ X,u ∈ L2
loc(0,∞;U),

y(t) = CΛ

[
x(t) − (λ− A)−1

Bu(t)
]
+ H(λ)u(t) ∈ L2

loc(0,∞;Y )

∀ u ∈ L2
loc(0,∞;U),

(2.2)

where CΛx = limλ→+∞ Cλ(λ − A)−1x for all x ∈ D(CΛ) is by definition the Λ-
extension of C, where D(CΛ) is the subspace of X for which the associated limit
exists (see [5]). H(λ) is called the transfer function which is defined in some right-half
planes and is an analytic L(U, Y )-valued function. It can be shown that if û(λ) exists,
then

ŷ(λ) = H(λ)û(λ) when x0 = 0,(2.3)

whereˆdenotes the Laplace transform. In terms of the operators from (2.1), we have
(see [28])

H(λ) = Ce(λ− A)−1
B + De.

The transfer function H(λ) can be determined by the triple of operators (A,B,C) up
to an additive constant bounded operator in the following way (see [8]):

H(λ) − H(β)

λ− β
= −C(λ− A)−1(β − A)−1

B ∀ λ, β ∈ C+
ρ , λ �= β,(2.4)

where C+
ρ = {λ ∈ C| Reλ > ρ} for some ρ > 0 and C stands for the complex plane.

Using the transfer function, the boundedness of the input-output map described in
condition (d) of Definition 2.1 can be expressed as the boundedness of the transfer
function on an open right complex half plane (see [8], [11], [16])

sup
Reλ≥α>ρ

‖H(λ)‖L(U,Y ) < ∞(2.5)

for some α ∈ R.
The paper [32] introduced an important subclass of well-posed systems, the so-

called regular systems, for which the representation (2.2) becomes much simpler.
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Definition 2.2. System (2.1) is said to be regular if it is well-posed and there
exists an operator D ∈ L(U, Y ) such that, for x0 = 0 and u(t) ≡ u ∈ U , the output y
of (2.1) satisfies

lim
t→0

1

t

∫ t

0

y(τ)dτ = Du(2.6)

in the strong topology of Y . The above D and property (2.6) are called the feedthrough
operator and the regularity of system (2.1), respectively.

It was shown in [34] that, in the frequency domain, (2.6) is equivalent to

lim
λ∈R, λ→+∞

H(λ)u = Du ∀ u ∈ U.(2.7)

If a well-posed system is regular, then (2.2) can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x(t) = T(t)x0 +

∫ t

0

T(t− τ)Bu(τ)dτ ∈ C([0,∞);X),

x0 ∈ X, u ∈ L2
loc(0,∞;U),

y(t) = CΛx(t) + Du(t) ∈ L2
loc(0,∞;Y ), u ∈ L2

loc(0,∞;U).

(2.8)

In this case, the transfer function is uniquely determined by the quadruple of operators
(A,B,C,D) and can be represented as

H(λ) = D + CΛ(λ− A)−1
B.(2.9)

It is seen that the representations (2.8) and (2.9) resemble that for finite-dimensional
systems.

Roughly speaking, a well-posed regular system is like a linear finite-dimensional
system among the infinite-dimensional systems but with the feature of allowing both
control and observation operators to be unbounded in some sense. Unlike stability,
controllability, observability, etc., which have finite-dimensional counterparts, regu-
larity is an important but new concept in linear infinite-dimensional systems under
the elegant framework of well-posed linear systems theory.

Now let us introduce a special class of well-posed systems: the colocated second-
order linear systems. It is well known that “passivity,” which was introduced in
connection with circuit theory in the 1950s (see [10]), is a very important concept in
control system design. It means that the increase of energy stored in the system does
not exceed the energy that enters from the external world. For such a system, the
transfer function is positive real, and negative output feedback produces a dissipative
system, which is stable in the sense of Lyapunov. For a long time, it has been known
by engineers that a partial differential equation describing a mechanical system, like a
flexible structure in which the power flow into the system is the scalar product 〈u, y〉
(e.g., when u is force and y is velocity), leads to a positive-real system (2.1) in which
U = Y and A

∗ +A ≤ 0,C = B
∗ if actuators and sensors are designed in a “colocated”

fashion. The particular case A + A
∗ = 0 corresponds to energy preserving systems.

This means that the measurement and control action are made dual in some sense.
In [11] and [35], an abstract setting of a second-order passive system of the following

type was studied. The state space is X = D(A
1/2
0 ) × H, and the input and output

spaces are the same U = Y (see also [2], [37]):{
ẍ(t) + A0x(t) = B0u(t),
y(t) = B

∗
0ẋ(t),

(2.10)
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where
(i) A0 : D(A0)(⊂ H) → H is an unbounded positive self-adjoint operator in the

Hilbert space H;

(ii) B0 ∈ L(U, (D(A
1/2
0 ))

′
);

(iii) B
∗
0 ∈ L(D(A

1/2
0 ), U) is defined as

(B∗
0x, u)U = 〈x,B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

∀ x ∈ D(A
1/2
0 );

(iv) an extension Ã0 ∈ L(D(A
1/2
0 ), (D(A

1/2
0 ))′) of A0 is defined by

〈Ã0x, z〉(D(A
1/2
0 ))′×D(A

1/2
0 )

= (A
1/2
0 x,A

1/2
0 z)H ∀ x, z ∈ D(A

1/2
0 ).

It was found in [11] that if system (2.10) is well-posed, its transfer function is
uniquely determined by the pair (A0,B0):

H(λ) = λB
∗
0(λ

2 + Ã0)
−1

B0.(2.11)

Actually, it was indicated in [2] and [37] that, for this system, the boundedness of
the transfer function on some open right half complex plane implies automatically
the admissibility of [ 0

B0
] for the associated semigroup generated by A = [ 0 I

−A0 0 ]. This
system is closely related (via feedback) to the example in [29].

To end this section, we return to our wave equation (1.1) with control u ∈
L2
loc(0,∞;U), U = L2(Γ0). We formulate our problem in the framework of (2.10),

although it is already available in the literature (see, e.g., [1]).
Let H = H−1(Ω) be the dual space of the usual Sobolev space H1

0 (Ω) (with
respect to the pivot space L2(Ω)). Let A0 be the positive self-adjoint operator in H
induced by the bilinear form a(·, ·) defined by

〈A0f, g〉H−1(Ω)×H1
0 (Ω) = a(f, g) =

∫
Ω

∇f(x)∇g(x)dx ∀ f, g ∈ H1
0 (Ω).(2.12)

By means of the Lax–Milgram theorem, A0 is a canonical isomorphism from D(A0) =
H1

0 (Ω) to H. If we introduce the Laplacian −Δ : H2(Ω) ∩H1
0 (Ω) → L2(Ω), then it

is easy to show that A0f = −Δf for f ∈ H2(Ω) ∩H1
0 (Ω) and that A−1

0 g = (−Δ)−1g
for any g ∈ L2(Ω). Hence, A0 is an extension of usual Laplacian to the space H1

0 (Ω).

It is well known that D(A
1/2
0 ) = L2(Ω). Define the Dirichlet map

Υ ∈ L(L2(Γ0), L
2(Ω)),

i.e., Υu = v by {
Δv = 0 in Ω,
v|Γ1 = 0, v|Γ0 = u.

(2.13)

Using the Dirichlet map, we can rewrite the first three equations in (1.1) as

ẅ + A0(w − Υu) = 0.(2.14)

We identify H with its dual H ′. Then the following relations hold:

D(A
1/2
0 ) ↪→ H ↪→ (D(A

1/2
0 ))′.
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An extension Ã0 ∈ L(D(A
1/2
0 ), (D(A

1/2
0 ))′) of A0 is defined by

〈Ã0f, g〉(D(A
1/2
0 ))′×D(A

1/2
0 )

= (A
1/2
0 f,A

1/2
0 g)H ∀ f, g ∈ D(A

1/2
0 ).(2.15)

Hence, (2.14) can be rewritten in H−1 as

ẅ + Ã0w = B0u,(2.16)

where B0 ⊂ L(U, (D(A
1/2
0 ))′) is given by

B0u = Ã0Υu ∀ u ∈ U.(2.17)

Define B∗
0 ∈ L(D(A

1/2
0 ), U) by

(B∗
0f, u)U = 〈f,B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

∀ f ∈ D(A
1/2
0 ).

Then for any f ∈ D(A
1/2
0 ) and u ∈ C∞

0 (Γ0), we have

〈f,B0u〉D(A
1/2
0 )×(D(A

1/2
0 ))′

= 〈Ã0f, Ã
−1
0 B0u〉D(A

1/2
0 )×(D(A

1/2
0 ))′

= (A
1/2
0 f,A

1/2
0 Ã−1

0 B0u)H = (A−1
0 A

1/2
0 f,A−1

0 A
1/2
0 Ã−1

0 B0u)H1
0 (Ω)

= (A
−1/2
0 f,A

−1/2
0 Υu)H1

0 (Ω) = (f,Υu)L2(Ω)

= (A0A
−1
0 f,Υu)L2(Ω) = −

(
∂(−Δ)−1f

∂ν
, u

)
U

.

In the last step, we used the fact that∫
Ω

∇v∇φ = 0 ∀ φ ∈ H1
0 (Ω)

holds for any classical solution v of (2.13). Since C∞
0 (Γ0) is dense in L2(Γ0), we obtain

B∗
0 = −∂(−Δ)−1

∂ν

∣∣∣∣
Γ0

.(2.18)

Now, we have formulated system (1.1) into an abstract form of the second-order
system (2.10) in the state space H:{

ẅ(t) + Ã0w(t) = B0u(t),
y(t) = B∗

0 ẇ,
(2.19)

where B0 and B∗
0 are defined by (2.17) and (2.18), respectively.

The main contribution of this paper is to show that system (2.19) is regular with
feedthrough operator D = I.

3. Proof of Theorem 1.2. From (2.19), we see that system (1.1) is in the
framework of form (2.10) discussed in section 2. Since system (1.1) is well-posed, it
follows from (2.11) that the transfer function of system (1.1) is

H(λ) = λB∗
0(λ2 + Ã0)

−1B0,(3.1)
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where Ã0, B0, and B∗
0 are given by (2.15), (2.17), and (2.18), respectively. Moreover,

from the well-posedness and (2.5), it follows that there exists a positive number α > 0
such that

sup
Reλ≥α

‖H(λ)‖L(U) = M < ∞.(3.2)

To begin, we show the following proposition.
Proposition 3.1. Theorem 1.2 is valid if for any u ∈ C∞

0 (Γ0) the solution uε

to the equation ⎧⎨⎩ uε(x) − ε2Δuε(x) = 0, x ∈ Ω,
uε(x) = 0, x ∈ Γ1,
uε(x) = u(x), x ∈ Γ0

(3.3)

satisfies

lim
ε→0

∫
Γ0

∣∣∣∣ε∂uε(x)

∂ν
− u(x)

∣∣∣∣2 dx = 0,(3.4)

where ε are real and positive numbers.
Proof. In light of the equivalence between (2.6) and (2.7), in order to prove

Theorem 1.2 we need only to show that

lim
λ∈R, λ→+∞

H(λ)u = u(3.5)

for any u ∈ L2(Γ0) = U in the strong topology of U , where H(λ) is given by (3.1).
We claim that in order to show (3.5), it suffices to show that (3.5) is satisfied for all
u ∈ C∞

0 (Γ0). Indeed, for any u ∈ U and any given δ > 0, since C∞
0 (Γ0) is dense in

L2(Γ0), if (3.5) is valid for u ∈ C∞
0 (Γ0), then one can find u0 ∈ C∞

0 (Γ0) and the real
number β > α such that

‖u0 − u‖U < min

{
δ

3M
,
δ

3

}
, sup

λ∈R, λ>β
‖H(λ)u0 − u0‖U <

δ

3
,

where M and α are given in (3.2). Therefore,

sup
λ∈R, λ>β

‖H(λ)u− u‖U = sup
λ∈R, λ>β

‖H(λ)u0 − u0 + H(λ)(u− u0) − u + u0‖U < δ.

This shows that (3.5) is valid for any u ∈ U .
Now assume that u ∈ C∞

0 (Γ0), and put

wλ(x) = ((λ2 + Ã0)
−1B0u)(x).

Then wλ satisfies ⎧⎨⎩ λ2wλ(x) − Δwλ(x) = 0, x ∈ Ω,
wλ(x) = 0, x ∈ Γ1,
wλ(x) = u(x), x ∈ Γ0,

(3.6)

and

(H(λ)u)(x) = −λ
∂((−Δ)−1wλ)(x)

∂ν
∀ x ∈ Γ0.(3.7)
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Since u ∈ C∞
0 (Γ0), there exists a unique classical solution to (3.6). Take a function

v ∈ H2(Ω) such that ⎧⎨⎩ Δv(x) = 0, x ∈ Ω,
v(x) = 0, x ∈ Γ1,
v(x) = u(x), x ∈ Γ0.

(3.8)

Then (3.6) can be written as{
λ2wλ(x) − Δ(wλ(x) − v(x)) = 0, x ∈ Ω,
(wλ − v)

∣∣
∂Ω

= 0,
(3.9)

or equivalently

−λ2((−Δ)−1wλ)(x) = wλ(x) − v(x).

Hence (3.7) becomes

(H(λ)u)(x) =
1

λ

∂wλ(x)

∂ν
− 1

λ

∂v(x)

∂ν
.(3.10)

Letting uε(x) = wλ(x) with ε = λ−1 and noting that ∂v(x)
∂ν is independent of λ, we

conclude the required result.
The rest of this section is devoted to proving that the solution uε of (3.3) with

u ∈ C∞
0 (Γ0) satisfies (3.4). We shall go a little bit further. Indeed, we will show that

there exists a constant C > 0 such that for all ε ∈ (0, 1), any solution uε ∈ H2(Ω) of(
ε2Δ − 1

)
uε(x) = 0, x ∈ Ω,

satisfies the following inequality:∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε ‖uε‖2
H3/2(∂Ω) .

This will be performed by estimating the Dirichlet–Neumann map by means of
easy Fourier analysis tools after applying a diffeomorphism to reduce locally our ge-
ometry to the half-space. Notice that the Dirichlet–Neumann map for the Laplacian
in a manifold was more precisely computed in [18] by using symbolic calculus of
pseudodifferential operators.

Proof of Theorem 1.2. By Proposition 3.1, we need only to show that the solution
uε of (3.3) with u ∈ C∞

0 (Γ0) satisfies (3.4) . We assume 0 < ε < 1 throughout the
proof.

For any x0 ∈ ∂Ω, suppose without loss of generality that in an open neighborhood
Vx0

⊂ R
n of x0,

Vx0 ∩ Ω = {(x′, xn) = (x1, x2, . . . , xn−1, xn) ∈ Vx0 , xn − φ(x′) > 0}

for some φ ∈ C3(Rn−1). Then the unit outward normal vector to Vx0∩∂Ω at (x′, φ(x′))
is defined by

ν(x′) =

(
∂x1φ(x′), . . . , ∂xn−1φ(x′),−1

)√
1 + |∇φ(x′)|2

.
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Let us use the geodesic normal coordinates as follows. Let

(h, s) = (h1, h2, . . . , hn−1, s) ∈ R
n.

We introduce a diffeomorphism by

Ψ(h, s) = (h, φ(h)) − sν(h)

such that
(i) Ψ−1(Ωx0

) = Br = {(h, s) ∈ R
n, |(h, s)| < r};

(ii) Ψ−1(Ωx0 ∩ Ω) = B+
r = {(h, s) ∈ Br, s > 0};

(iii) Ψ−1(Ωx0 ∩ ∂Ω) = {(h, s) ∈ Br, s = 0} = {|h| < r} × {0}
for some r > 0 and an open neighborhood Ωx0(⊂ Vx0) of x0, where | · | denotes the
Euclidean norm. Using the diffeomorphism Ψ : Br → Ωx0

, the normal derivative on
the boundary becomes

∂

∂ν
= −∂s,

and the operator in the first equation of (3.3) can be written in the form

Δ − 1

ε2
= ∂2

s + P (h, s,−i∂h) + �(h, s)∂s −
1

ε2
,

where ∂h = (∂h1
, . . . , ∂hn−1

), � is a continuous function, and P is a second-order
elliptic differential operator in the h variables only.

The proof is now divided into three steps.
Step 1. Flattening and localization. We first flatten the local domain Ωx0

∩ Ω
with the above diffeomorphism Ψ and set

ũε(h, s) = uε(Ψ(h, s)), ũ(h) = uε(Ψ(h, 0)).(3.11)

Then ũε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
s ũε(h, s) +

n−1∑
i,j=1

aij(h, s)∂hi
∂hj

ũε(h, s) + Qũε(h, s) −
1

ε2
ũε(h, s) = 0,

(h, s) ∈ B+
r ,

ũε(h, 0) = ũ(h), |h| < r,

(3.12)

where Q is a linear differential operator of order 1 with continuous coefficients in
Br and (aij)1≤i,j≤n−1 is a strictly positive definite symmetric matrix of continuous
functions of (h, s) in Br. Assume that λ0 > 0 is a constant such that

n−1∑
i,j=1

aij(h, s)ξiξj ≥ λ0|ξ|2 ∀ ξ = (ξ1, ξ2, . . . , ξn−1) ∈ R
n−1, (h, s) ∈ Br.(3.13)

Let μ0 > 0 be such that μ0 < λ0

(n−1)2 . Since aij is continuous in Br, one can find

a scalar ρ ∈ (0, r) such that

|aij(h, s) − aij(0, 0)| ≤ μ0 ∀ i, j = 1, 2, . . . , n− 1, (h, s) ∈ B+
ρ .(3.14)
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Second, we introduce a cutoff function ϕ = ϕ(h, s) ∈ C∞
0 (Bρ) such that 0 ≤ ϕ ≤ 1

and ϕ = 1 in Bρ/2. Set, for all (h, s) ∈ R
n−1 × R

+,

χε(h, s) = ϕ(h, s)ũε(h, s), f(h) = ϕ(h, 0)ũ(h).(3.15)

Then one can check that χε ∈ H2(Rn−1 × R
+) and χε(h, s) = 0 in R

n−1 × {s ≥ ρ}.
By (3.12), χε satisfies⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2
sχε(h, s) +

n−1∑
i,j=1

aij(0, 0)∂hi
∂hj

χε(h, s) −
1

ε2
χε(h, s)

= Gχε(h, s) + Lũε(h, s), (h, s) ∈ R
n−1 × R

+,

χε(h, 0) = f(h), h ∈ R
n−1,

(3.16)

where ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gχε(h, s) =

n−1∑
i,j=1

[aij(0, 0) − aij(h, s)]∂hi
∂hj

χε(h, s),

Lũε(h, s) = −ϕ(h, s)Qũε(h, s) + [∂2
s , ϕ]ũε(h, s)

+

n−1∑
i,j=1

aij(h, s)[∂hi
∂hj , ϕ]ũε(h, s)

(3.17)

with

[∂2
s , ϕ]ũε = 2∂sϕ∂sũε + ∂2

sϕũε, [∂hi∂hj , ϕ]ũε = ∂hiϕ∂hj ũε + ∂hjϕ∂hi ũε + ∂hi∂hjϕũε.

Clearly, G and L are two linear differential operators of order 2 and order 1, respec-
tively.

Step 2. Partial Fourier transform. Fix s, for any χ(·, s) ∈ L2(Rn−1). From now
on, we denote by χ̂(ξ, s) the partial Fourier transform of χ(h, s) with respect to h,
i.e.,

χ̂(ξ, s) =

∫
Rn−1

χ(h, s)e−i〈h,ξ〉dh.

Applying the above partial Fourier transform to system (3.16), it becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂2
s χ̂ε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)χ̂ε(ξ, s) = Ĝχε(ξ, s) + L̂ũε(ξ, s),

(ξ, s) ∈ R
n−1 × R

+,

χ̂ε(ξ, 0) = f̂(ξ), ξ ∈ R
n−1,

(3.18)

where A = {aij(0, 0)}1≤i,j≤n−1 is a positive definite symmetric matrix. Notice that

χ̂ε(ξ, s) = 0 ∀(ξ, s) ∈ R
n−1 × [ρ,+∞) .(3.19)

To analyze the solution of (3.18) satisfying (3.19), we decompose χ̂ε(ξ, s) as fol-
lows. Let

χ̂ε(ξ, s) = wε(ξ, s) + vε(ξ, s), (ξ, s) ∈ R
n−1 × R

+,(3.20)
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where wε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2
swε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)wε(ξ, s) = 0, (ξ, s) ∈ R

n−1 × R
+,

wε(ξ, 0) = f̂(ξ), ξ ∈ R
n−1,

lim
s→+∞

wε(ξ, s) = 0, ξ ∈ R
n−1,

(3.21)

and vε satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2
svε(ξ, s) −

1

ε2
(ε2ξ�Aξ + 1)vε(ξ, s) = Ĝχε(ξ, s) + L̂ũε(ξ, s),

(ξ, s) ∈ R
n−1 × R

+,

vε(ξ, 0) = 0, ξ ∈ R
n−1,

vε(ξ, s) = −f̂(ξ)e−s

√
ε2ξ�Aξ+1

ε , (ξ, s) ∈ R
n−1 × [ρ,+∞) .

(3.22)

The validity of the last equality comes from (3.19) and the following explicit expression
of the solution of (3.21):

wε(ξ, s) = f̂(ξ)e−s

√
ε2ξ�Aξ+1

ε .(3.23)

We claim that there exists a constant C > 0 such that for all ε ∈ (0, 1)∫
Rn−1

|ε∂swε(ξ, 0) + wε(ξ, 0)|2dξ ≤ Cε2‖uε‖2
H1(∂Ω).(3.24)

Indeed, by (3.23), we get∫
Rn−1

|ε∂swε(ξ, 0) + wε(ξ, 0)|2dξ =

∫
Rn−1

(
ε2ξ�Aξ√

ε2ξ�Aξ + 1 + 1

)2

|f̂(ξ)|2dξ

≤
∫

Rn−1

ε2ξ�Aξ|f̂(ξ)|2dξ,

and (3.24) follows easily.
Now we need to bound the quantity

∫
Rn−1 |ε∂svε(ξ, 0) + vε(ξ, 0)|2dξ uniformly

with respect to ε. This will be done in the next step.
Step 3. Estimate of ε∂svε(·, 0) + vε(·, 0). We will estimate ∂svε(·, 0) by means

of a classical trace theorem. This requires the computation of ∂2
svε and ∂svε. To do

it, we estimate L̂ũε and Ĝχε first. Throughout the proof, C denotes several positive
constants independent of ε.

(a) Estimate of L̂ũε and Ĝχε. Clearly, we have∥∥∥L̂ũε

∥∥∥
L2(Rn−1×R+)

≤ C ‖uε‖H1(Ω) .(3.25)

By (3.14) and the Plancherel formula, it follows that

‖Ĝχε‖L2(Rn−1×R+) = (2π)
n−1

2 ‖Gχε‖L2(Rn−1×R+)

≤ (2π)
n−1

2 μ0

n−1∑
i,j=1

‖∂hi
∂hj

χε‖L2(Rn−1×R+)

≤ μ0(n− 1)2‖|ξ|2χ̂ε‖L2(Rn−1×R+).

(3.26)



1610 BAO-ZHU GUO AND XU ZHANG

From (3.26) and noting (3.20), we find

‖Ĝχε‖L2(Rn−1×R+) ≤ μ0(n− 1)2
∥∥|ξ|2wε

∥∥
L2(Rn−1×R+)

(3.27)

+μ0(n− 1)2
∥∥|ξ|2vε∥∥L2(Rn−1×R+)

.

On the other hand, multiplying (3.22) by −|ξ|2vε and then integrating by parts
over R

n−1 × R
+, taking (3.13) and the last equality of (3.22) into account, we have

λ0

∥∥|ξ|2vε∥∥L2(Rn−1×R+)
≤ ‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+).(3.28)

Substituting (3.28) into (3.27), we get(
1 − μ0(n−1)2

λ0

)∥∥∥Ĝχε

∥∥∥
L2(Rn−1×R+)

≤ μ0(n− 1)2
∥∥∥|ξ|2 wε

∥∥∥
L2(Rn−1×R+)

+ μ0(n−1)2

λ0

∥∥∥L̂ũε

∥∥∥
L2(Rn−1×R+)

.
(3.29)

Moreover, from (3.23) and (3.13), we have

∥∥∥|ξ|2 wε

∥∥∥
L2(Rn−1×R+)

=

(∫
Rn−1

∣∣∣|ξ|2 f̂(ξ)
∣∣∣2 (∫ +∞

0

e−2s

√
ε2ξ�Aξ+1

ε ds

)
dξ

)1/2

=

∥∥∥∥√ ε

2
√

ε2ξ�Aξ+1
|ξ|2 f̂

∥∥∥∥
L2(Rn−1)

≤
√

1
2
√
λ0

∥∥∥|ξ|3/2 f̂ ∥∥∥
L2(Rn−1)

≤ C ‖uε‖H3/2(∂Ω).

(3.30)

Finally, it follows from (3.29), (3.30), and (3.25) that∥∥∥Ĝχε

∥∥∥
L2(Rn−1×R+)

≤ C
(
‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)

)
.(3.31)

(b) Estimate of ∂2
svε. Multiplying (3.22) by ∂2

svε and then integrating by parts
over R

n−1 × R
+, we obtain, noticing the last equality of (3.22),

‖∂2
svε‖2

L2(Rn−1×R+) ≤
(
‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+)

)
‖∂2

svε‖L2(Rn−1×R+).

This together with (3.25) and (3.31) gives

‖∂2
svε‖L2(Rn−1×R+) ≤ C[‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)].(3.32)

(c) Estimate of ∂svε. Noticing the last equality of (3.22), multiplying (3.22) by
−vε, and integrating by parts over R

n−1 × R
+, we also have

‖∂svε‖2
L2(Rn−1×R+) +

1

ε2
‖vε‖2

L2(Rn−1×R+)

≤ ‖ε(Ĝχε + L̂ũε)‖L2(Rn−1×R+)

∥∥∥vε
ε

∥∥∥
L2(Rn−1×R+)

.

Thus,

‖∂svε‖L2(Rn−1×R+) ≤ ε
(
‖Ĝχε‖L2(Rn−1×R+) + ‖L̂ũε‖L2(Rn−1×R+)

)
.
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This together with (3.25) and (3.31) gives

‖∂svε‖L2(Rn−1×R+) ≤ C[‖uε‖H3/2(∂Ω) + ‖uε‖H1(Ω)].(3.33)

(d) Estimate of ∂svε(·, 0). We use the following standard inequality:∫
Rn−1

|∂svε(ξ, 0)|2 dξ = −2

∫
Rn−1

∫ +∞

0

Re
(
∂svε(ξ, s)∂2

svε(ξ, s)
)
dsdξ

≤ ‖∂svε‖2
L2(Rn−1×R+) +

∥∥∂2
svε

∥∥2

L2(Rn−1×R+)
.

(3.34)

This together with (3.32) and (3.33) gives the desired estimate for vε:∫
Rn−1

|ε∂svε(ξ, 0) + vε(ξ, 0)|2dξ ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.35)

Here we used the fact that vε(·, 0) = 0 given by the second equation of (3.22).
Combining (3.20), the estimates (3.24) and (3.35) imply∫

Rn−1

|ε∂sχ̂ε(ξ, 0) + χ̂ε(ξ, 0)|2dξ ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.36)

and hence by the Parseval formula, we obtain∫
Rn−1

|ε∂sχε(s, 0) + χε(s, 0)|2ds ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.37)

By (3.15), we deduce from (3.37) that∫
|s|<ρ/2

|ε∂sũε(s, 0) + ũε(s, 0)|2ds ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.38)

which implies by the change of coordinates involving Ψ that∫
Ω̃x0

∩∂Ω

∣∣∣∣ε∂uε(x)

∂ν
− uε(x)

∣∣∣∣2 dx ≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)],(3.39)

where Ω̃x0 ⊂ Ωx0 is an open neighborhood of x0 ∈ ∂Ω. Since x0 is arbitrarily chosen,
one easily deduces from (3.39) that∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε2[‖uε‖2
H3/2(∂Ω) + ‖uε‖2

H1(Ω)].(3.40)

Now, multiplying (3.3) by uε and integrating by parts, we find

‖ε∇uε‖2
L2(Ω) + ‖uε‖2

L2(Ω) = ε2

∫
∂Ω

∂uε(x)

∂ν
uε(x)dx.

Hence, using the Cauchy–Schwarz inequality, we get

ε2‖uε‖2
H1(Ω) ≤ ε

(∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥
L2(∂Ω)

+ ‖uε‖L2(∂Ω)

)
‖uε‖L2(∂Ω)

≤ ε

2C

∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

+

(
1 +

C

2

)
ε‖uε‖2

L2(∂Ω).
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Substituting the above formula into (3.40), we have finally proved that there exists a
constant C > 0 such that for all ε ∈ (0, 1) any solution uε ∈ H2(Ω) of(

ε2Δ − 1
)
uε(x) = 0, x ∈ Ω,

satisfies ∥∥∥∥ε∂uε

∂ν
− uε

∥∥∥∥2

L2(∂Ω)

≤ Cε‖uε‖2
H3/2(∂Ω).(3.41)

Therefore,

lim
ε→0

∥∥∥∥ε∂uε

∂ν
− u

∥∥∥∥
L2(Γ0)

= 0.

This completes the proof of Theorem 1.2.
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