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We consider stabilisation for a linear ordinary differential equation system with input dynamics governed by a heat equation,
subject to boundary control matched disturbance. The active disturbance rejection control approach is applied to estimate,
in real time, the disturbance with both constant high gain and time-varying high gain. The disturbance is cancelled in the
feedback loop. The closed-loop systems with constant high gain and time-varying high gain are shown, respectively, to be
practically stable and asymptotically stable.

Keywords: coupled PDE-ODE system; boundary control; disturbance rejection; active disturbance rejection control; stability

1. Introduction

In recent years, stabilisation for systems described by par-
tial differential equations (PDEs) subject to external dis-
turbance has received much attention. Many different ap-
proaches have been applied to deal with disturbance such
as the internal model principle for output regulation (Im-
monen & Pohjolainen, 2006); robust control for systems
with uncertainties from both internal un-modelled dynam-
ics and external disturbance; sliding mode control in various
situations (Cheng, Radisavljevic, & Su, 2011; Drakunov,
Barbieri, & Silver, 1996; Guo & Jin, 2013a, 2013b; Guo
& Liu, 2014; Orlov & Utkin, 1982, 1987; Pisano, Orlov,
& Usai, 2011; Utkin, 2008); adaptive control for systems
with unknown parameters (Guo & Guo, 2013a, 2013b,
2013c; Guo, Guo, & Shao, 2011; Krstic, 2009; Krstic &
Smyshlyaev, 2008); and the Lyapunov approach for dis-
tributed disturbance (He, Ge, How, Choo, & Hong, 2011;
Orlov, 1983), to name just a few.

On the other hand, there are many coupled ODE-PDE
systems that appeared in engineering from different aspects
such as electromagnetic coupling, mechanical coupling,
and coupled chemical reactions. An ordinary differential
equation (ODE)-wave system and an ODE-heat system,
without considering disturbance, have been considered in
Krstic (2009) and Tang and Xie (2011), respectively. For
the motivation, let us consider a controlled ODE:

Ẏ (t) = AY (t) + Bu(t − τ ), τ > 0, (1)

∗
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where A is an n × n matrix, B is the appropriate sized
control matrix, u is the control input, and τ is the time
delay in control. Set

z(x, t) = u(t + τ (x − 1)), 0 < x < 1.

Then, z satisfies

τzt (x, t) = zx(x, t), 0 < x < 1, t > 0. (2)

So, the control problem (1) can be formulated as the fol-
lowing coupled ODE-PDE control system:

⎧⎪⎨
⎪⎩

Ẏ (t) = AY (t) + Bz(0, t),

τzt (x, t) = zx(x, t),

z(1, t) = u(t),

(3)

where the PDE part is considered as the controller and the
original control plant ODE is connected with PDE through
the boundary output of the PDE. It is seen that the time delay
disappears in the state of the new formulated system (3).
This point of view clearly shows the infinite-dimensional
nature of the delay systems.

In this paper, we are concerned with stabilisation for
the following PDE-ODE cascade system through Dirichlet
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interconnection (see Figures 1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bu(0, t), t > 0,

ut (x, t) = uxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0, t ≥ 0,

ux(1, t) = U (t) + d(t), t ≥ 0,

X(0) = X0, u(x, 0) = u0(x),

(4)

where X ∈ R
n×1 and u ∈ L2(0, 1) are the states of ODE

and PDE, respectively, U ∈ L2
loc(0,∞) is the control input

of the entire system, A ∈ R
n×n and B ∈ R

n×1 are matrices,
d is the external disturbance at the control end, X0 and
u0(x) are the initial value of ODE and PDE, respectively. It
is supposed that the pair (A,B) is stabilisable, and both d

and its derivative are uniformly bounded, i.e., |d(t)| ≤ M1

and |ḋ(t)| ≤ M2 for some M1,M2 > 0 and all t ≥ 0.
The objective of this paper is to design a state feedback

control to achieve stabilisation for system (4) by attenuating
the disturbance. Our approach is the active disturbance re-
jection control (ADRC) approach that was proposed by Han
(2009) to deal with large uncertainty for general nonlinear
lumped parameter systems, and the backstepping approach
which was originally developed for PDEs in Smyshlyaev
and Krstic (2004, 2005). The backstepping method enables
us to transform the system (4) into a target system where
the ODE part is stable and the control is only used to cope
with the disturbance and stabilise the PDE part. The ADRC
is used to build an estimator to estimate the disturbance
and then cancel the disturbance in the feedback loop. The
ADRC has been successfully applied to one-dimensional
PDEs in previous studies (Guo & Jin, 2013a, 2013b; Guo
& Liu, 2014).

The rest of the paper is organised as follows. In Section
2, we design a disturbance estimator with constant high
gain by ADRC approach. The practical stability is devel-
oped. The constant high-gain disturbance estimator shears
the simple tuning in practice and noise filtering function but
causes peaking value problem in the initial stage. To over-
come the peaking value problem, we design a time-varying
disturbance estimator in Section 3 and obtain the asymptotic
stability. Section 4 presents some numerical simulations

PDE

ODE

ut(x, t) = uxx(x, t)
ux(0, t) = 0
ux(1, t) = U(t) + d(t)

Ẋ(t) = AX(t) + Bu(0, t)
�

Bu(0, t)

� �

u(x, 0)

X(t)X(0)

�

�

�U(t) + d(t) u(x, t)

Figure 1. Block diagram of coupled ODE-PDE system (4).

for illustration. Some concluding remarks are presented in
Section 5.

2. Constant high-gain estimator based feedback

In this section, we design a disturbance estimator-based
state feedback control with constant high gain. This is mo-
tivated from the extended state observer (ESO) by ADRC
approach.

We first introduce a feedback stabilising mechanism to
ODE part by the transformation u �→ w in the form (K.
Krstic, 2009):

w(x, t) = u(x, t) −
∫ x

0
q(x, y)u(y, t)dy − γ (x)X(t),

(5)

where

q(x, y) =
∫ x−y

0
γ (σ )Bdσ, γ (x) = [K0]e

[
0 A
I 0

]
x
[

I

0

]
,

with I being the n × n identify matrix and K being chosen
so that A + BK is Hurwitz. This transforms system (4) into
the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bw(0, t),

wt (x, t) = wxx(x, t),

wx(0, t) = 0,

wx(1, t) = U (t) + d(t) −
∫ 1

0
qx(1, y)u(y, t)dy

−γ ′(1)X(t),

X(0) = X0, w(x, 0) = w0(x).

(6)

It is seen from (6) that if the PDE part is stable, then so is
for the ODE part. This is the crucial role played by back-
stepping transformation (5) after which we need only to
consider the stabilisation of the PDE part. To go back to
system (4) from (6), the transformation (5) must be invert-
ible. This is true by solving u from (5) that

u(x, t) = w(x, t) +
∫ x

0
l(x, y)w(y, t)dy + ψ(x)X(t),

where

l(x, y) =
∫ x−y

0
ψ(ξ )Bdξ, ψ(x) = [K0]e

[
0 A + BK
I 0

]
x
[

I

0

]
.

We can stabilise system (6) by designing boundary state
feedback control. However, to increase the decay rate, we
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introduce further another transformation w �→ z:

z(x, t) = w(x, t) −
∫ x

0
k(x, y)w(y, t)dy, (7)

where

k(x, y) = −cx
I1(

√
c(x2 − y2))√

c(x2 − y2)
, 0 ≤ y, ≤ x ≤ 1, (8)

with I1 being the modified Bessel function. By transfor-
mation (7), system (6) is transformed into the following
target system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = U (t) + d(t) −
∫ 1

0
qx(1, y)u(y, t)dy

−γ ′(1)X(t) − k(1, 1)w(1, t)

−
∫ 1

0
kx(1, y)w(y, t)dy,

X(0) = X0, z(x, 0) = z0(x).

(9)

The transformation (7) is also invertible since

w(x, t) = z(x, t) +
∫ x

0
p(x, y)z(y, t)dy, (10)

where

p(x, y) = −cx
J1(

√
c(x2 − y2))√

c(x2 − y2)
, 0 ≤ y ≤ x ≤ 1,

with J1 being the Bessel function. Therefore, under two
transformations (5) and (7), systems (4) and (9) are equiva-
lent. So, we need only consider system (9) in what follows.

The state space for system (9) is chosen as H = R
n ×

L2(0, 1) with the inner product given by

〈[X, f ], [Y, g]〉 = X
Y +
∫ 1

0
f (x)g(x)dx,

∀ [X, f ], [Y, g] ∈ H. (11)

First, introduce a new control variable U0 by designing

U (t) =
∫ 1

0
qx(1, y)u(y, t)dy + γ ′(1) + k(1, 1)w(1, t)

+
∫ 1

0
kx(1, y)w(y, t)dy + U0(t), (12)

under which, system (9) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),

zx(0, t) = 0,

zx(1, t) = U0(t) + d(t),

X(0) = X0, z(x, 0) = z0(x).

(13)

We write system (13) as

d

dt
Z(·, t) = ADZ(·, t) + BD[U0(t) + d(t)], (14)

where Z(·, t) = [X(t), z(·, t)], BD = [0, δ(x − 1)], and
AD is a linear operator defined in R

n × L2(0, 1) as

⎧⎨
⎩
AD[X, f ] = [(A + BK)X + Bf (0), f ′′ − cf ] ,

∀ [X, f ] ∈ D(AD),

D(AD) = {[X, f ] ∈ R
n × H 2(0, 1)|f ′(0) = f ′(1) = 0}.

(15)

We compute A∗
D , the adjoint operator of AD , to obtain

⎧⎨
⎩
A∗

D[Y, g] = [
(A + BK)
Y, g′′−cg

]
, ∀ [Y, g] ∈ D(A∗

D),

D(A∗
D) = {[Y, g] ∈ R

n × H 2(0, 1)| g′(0)
+B
Y = 0, g′(1) = 0}.

(16)

Proposition 2.1: The operator AD defined by (15) gen-
erates an exponential stable C0-semigroup on H, and the
control operator BD is admissible to the semigroup eADt .
Hence, for any Z(x, 0) ∈ H, there exists a unique (weak)
solution to (14), which can be written as

Z(·, t) = eADtZ(·, 0) +
∫ t

0
eAD(t−s)BD[U0(s) + d(s)]ds,

∀ U0 ∈ L2
loc(0,∞), (17)

which is equivalent to saying

d

dt
〈Z(·, t), f 〉 = 〈Z(·, t),A∗

Df 〉 + [U0(t) + d(t)]B∗
Df,

∀ f ∈ D(A∗
D). (18)

Proof: Consider the observation problem for the dual sys-
tem of (13), which is produced by the operator A∗

D as fol-
lows:

{
d

dt
[Y (t), w(·, t)] = A∗

D[Y (t), w(·, t)],
y(t) = B∗

D[Y (t), w(·, t)],
(19)
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that is,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ẏ (t) = (A + BK)
Y (t),

wt (x, t) = wxx(x, t) − cw(x, t),

wx(0, t) = −B
Y (t), wx(1, t) = 0,

Y (0) = Y0, w(x, 0) = w0(x),

y(t) = w(1, t).

(20)

It is seen that the ‘ODE part’ of (20) is always well posed,
that is,

Y (t) = e(A+BK)
t Y0

and Y (t) is exponentially stable: ‖Y (t)‖ ≤ Me−ωt‖Y0‖ for
some M,ω > 0 and all t ≥ 0. For the ‘PDE part’ of (20), set

θ (x, t) = w(x, t) − (x−1)2

2 B
Y (t). Then, θ (x, t) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θt (x, t) = θxx(x, t) − cθ (x, t) +
[
B
 − c(x − 1)2

2
B


− (x−1)2

2 B
(A + BK)

]
Y (t),

θx(0, t) = 0, θx(1, t) = 0,

θ (x, 0) = θ0(x) = w0(x) − (x − 1)2

2
B
Y0,

y(t) = θ (1, t).

(21)

The homogeneous part of (21) associates with a C0-
semigroup S(t) on L2(0, 1):

S(t)θ0(x) =
∞∑

m=0

ame(−c−(mπ)2)t cos mπx,

∀ θ0(x) =
∞∑

m=0

am cos mπx ∈ L2(0, 1) (22)

because {cos mπx}∞m=0 forms an orthonormal basis for
L2(0, 1). Hence,

w(x, t) = θ (x, t) + (x − 1)2

2
B
Y (t)

= S(t)

[
w0(x) − (x − 1)2

2
B
Y0

]

+
∫ t

0
S(t − s)

[
B
 − c(x − 1)2

2
B


− (x − 1)2

2
B
(A + BK)


]
Y (s)ds

+ (x − 1)2

2
B
Y (t). (23)

By Theorem 1.4 of Pazy (1983, p.102), A∗
D generates a

C0-semigroup eA
∗
Dt on H, and so does AD (Corollary 10.6

of (Pazy, 1983, p.41)).

Furthermore, since S(t) is an exponential stable C0-
semigroup on L2(0, 1) and ‖Y (t)‖ ≤ Me−ωt‖Y0‖, we can
easily obtain from (23) that there are constants M0, ω0 >

0 such that ‖w(·, t)‖L2(0,1) ≤ M0e
−ω0t [‖Y0‖ + ‖w0‖L2(0,1)].

Hence, eA
∗
Dt is exponentially stable and so is eADt . This

proves the first part of the results.
Now, by (23),

y(t) = θ (1, t) =
∞∑

m=0

am(−1)me(−c−(mπ)2)t .

So, for any T > 0,

∫ T

0
y2(t)dt ≤

∞∑
m=0

a2
m

∫ T

0
e(−2c−2(mπ)2)t dt ≤ 1

2c

∞∑
m=0

a2
m

= 1

2c
‖θ0‖2

L2(0,1) ≤ C
[‖w0‖2

L2(0,1) + ‖Y0‖2
]

for some constant C > 0. By Definition 4.3.1 of Tucsnak
and Weiss (2009, p. 122), the observation operator B∗

D of
system (19) is admissible, and so is BD for eADt by the
duality principle Proposition 4.4.1 of Tucsnak and Weiss
(2009, p. 126). The other results are consequences of the
C0-semigroup generation and the admissibility of BD . �

By (18), system (14) is equivalent to a system of in-
finitely many ODEs (18), where f (x) is called a test func-
tion. Taking specially f (x) = (0, 2x3 − 3x2) ∈ D(A∗

D) in
(18), we obtain

ẏ1(t) = −U0(t) − d(t) + y2(t), (24)

where

y1(t) =
∫ 1

0
(2x3 − 3x2)z(x, t)dx,

y2(t) =
∫ 1

0
(−2cx3 + 3cx2 + 12x − 6)z(x, t)dx. (25)

From the resulting ODE (24), we see that the trick of
choosing the special test function f (x) = (0, 2x3 − 3x2) ∈
D(A∗

D) is to make the disturbance d(t) appear in the re-
sulting ODE so that we can estimate the disturbance by the
ADRC approach to ODEs. Directly estimating the distur-
bance in the PDE is extremely difficult.

Now, we design a linear ESO for ODE system (24) by
ADRC approach as follows (Guo & Zhao, 2011):

⎧⎪⎪⎨
⎪⎪⎩

˙̂yε(t) = −U0(t) − d̂ε(t) + y2(t) − 1

ε
(ŷε(t) − y1(t)),

˙̂
dε(t) = 1

ε2
(ŷε(t) − y1(t)),

(26)
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where ε > 0 is the design small parameter and d̂ε is
regarded as an approximation of d by the following
Lemma 2.2, which is never well explained in the existing
literature.

Lemma 2.2: Let (ŷε, d̂ε) be the solution of (26) and let y1

be defined in (25). Then,

(i) For any a > 0,

|ŷε(t) − y1(t)| + |d̂ε(t) − d(t)| → 0 as ε → 0

uniformly in t ∈ [a,∞). (27)

(ii) For any a > 0,

∫ a

0
[|ŷε(t) − y1(t)| + |d̂ε(t) − d(t)|]dt

is uniformly bounded as ε → 0. (28)

(iii) For any a > 0,

∫ a

0
[| ˙̂yε(t)|2 + | ˙̂

dε(t)|2]dt = O(ε−1) as ε → 0.

(29)

Proof: Let

ỹε(t) = ŷε(t) − y1(t), d̃ε(t) = d̂ε(t) − d(t) (30)

be the errors. Then, (ỹε, d̃ε) satisfies

d

dt

(
ỹε(t)
d̃ε(t)

)
=

(− 1
ε

−1
1
ε2 0

)(
ỹε(t)
d̃ε(t)

)
+

(
0

−1

)
ḋ(t)

= A

(
ỹε(t)
d̃ε(t)

)
+ Bḋ(t). (31)

The eigenvalues of A are found to be

λ1 = − 1

2ε
+

√
3

2ε
j, λ2 = − 1

2ε
−

√
3

2ε
j. (32)

A straightforward computation shows that

eAt =

⎛
⎜⎝

λ1

λ2 − λ1
eλ1t − λ2

λ2 − λ1
eλ1t λ1λ2

Cε(λ2 − λ1)

(
eλ2t − eλ1 t

)
Cε

λ2 − λ1

(
eλ1 t − eλ2t

) − λ2

λ2 − λ1
eλ1 t + λ1

λ2 − λ1
eλ2 t

⎞
⎟⎠ ,

eAtB = −

⎛
⎜⎝

λ1λ2

Cε(λ2 − λ1)

(
eλ2 t − eλ1t

)
− λ2

λ2 − λ1
eλ1t + λ1

λ2 − λ1
eλ2t

⎞
⎟⎠ , Cε = 1

ε2
. (33)

By (33), we see that there exists a constant L̂ > 0 such that

‖eAt‖ ≤ L̂

ε
e− 1

2ε
t , ‖eAtB‖ ≤ L̂e− 1

2ε
t . (34)

From estimations (34), we obtain immediately the conver-
gence (27)–(29). �

By Lemma 2.2, we see that the design of ESO (26) is to
make ‖eAt‖ have arbitrary decay rate and then make us of
special structure of B. So, ADRC is hard to apply directly
to PDEs because it is difficult to make a PDE system have
arbitrary decay rate. This also explains why ḋ must be
uniformly bounded.

The point (29) brings trouble to PDEs (see (44) later) be-
cause usually we only have admissibility with L2

loc control.
The admissibility with L1

loc leads to the bounded control
operator, see, for instance, Theorem 4.8 of Weiss (1989).
To overcome this difficulty in PDEs, we design the follow-
ing feedback control law to system (13), which is a slight
change of associated controls in papers Guo and Jin (2013a,
2013b); Guo and Liu (2014):

U0(t) = −sat(d̂ε(t)), (35)

where

sat(x) =
⎧⎨
⎩

M1, x ≥ M1 + 1,

−M1, x ≤ −M1 − 1,

x, x ∈ (−M1 − 1,M1 + 1).
(36)

Since |d(t)| ≤ M1, for any given a > 0, by (27), when ε

is sufficiently small, we have U0(t) = −d̂ε(t) for all t ∈
[a,∞). So, the feedback control law (35) is just used to
cancel the disturbance d since AD generates an exponential
stable C0-semigroup. This estimation/cancellation strategy
is just the nature of ADRC.

Under feedback (35), the closed-loop of system (13) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = −sat(d̂ε(t)) + d(t),

˙̂yε(t) = y2(t) − 1

ε
(ŷε(t) − y1(t)),

˙̂
dε(t) = 1

ε2
(ŷε(t) − y1(t)).

(37)

Lemma 2.3: Assume that |d(t)| � M1 and ḋ(t) is mea-
surable, |ḋ(t)| ≤ M2 for all t ≥ 0. Then, for any initial
value (X(0), z(·, 0), ŷε(0), d̂ε(0)) ∈ H × R

2, the closed-
loop system (37) admits a unique solution (X, z, ŷε, d̂ε)
 ∈
C(0,∞;H × R

2), and

lim
t→∞
ε→0

‖(X(t), z(·, t), ŷε(t), d̂ε(t) − d(t))‖H×R2 = 0.
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Proof: Using the error variables (ỹε, d̃ε) defined in (30),
we can write the equivalent system of (37) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = −sat(d̃ε(t) + d(t)) + d(t),

˙̃yε(t) = −1

ε
ỹε(t) − d̃ε(t),

˙̃dε(t) = 1

ε2
ỹε(t) − ḋ(t).

(38)

It is seen from (38) that (ỹε, d̃ε) is an external model for
the ‘(X, z) part’ of the system (Medvedev & Hillerström,
1995), which is just (31). By Lemma 2.2,

(ỹε(t), d̃ε(t)) → 0 as t → ∞, ε → 0. (39)

Now, we consider the ‘(X, z) part’ of system (38), which is
re-written as⎧⎪⎪⎨

⎪⎪⎩
Ẋ(t) = (A + BK)X(t) + Bz(0, t),

zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = −sat(d̃ε(t) + d(t)) + d(t),

(40)

System (40) can be rewritten as an evolution equation in H
as

d

dt
Z(·, t) = ADZ(·, t) + BD[−sat(d̃ε(t) + d(t)) + d(t)],

(41)

where Z(·, t) = [X(t), z(·, t)], and AD,BD are the same
as that in (14).

By Proposition 2.1, for any initial value [X(0), z(·, 0)] ∈
H, there exists a unique (weak) solution [X, z] ∈
C(0,∞;H) which can be written as

Z(·, t) = eADtZ(·, 0) +
∫ t

0
eAD(t−s)BD[−sat(d̃ε(s)

+ d(s)) + d(s)]ds. (42)

By (39), for any given ε0 > 0, there exist t0 > 0 and ε1 > 0
such that | − sat(d̃ε(t) + d(t)) + d(t)| < ε0 for all t > t0
and 0 < ε < ε1. We rewrite solution of (42) as

Z(·, t) = eADtZ(·, 0) + eAD (t−t0)
∫ t0

0
eAD (t0−s)BD[−sat(d̃ε(s)

+ d(s)) + d(s)]ds

+
∫ t

t0

eAD (t−s)BD[−sat(d̃ε(s) + d(s)) + d(s)]ds.

(43)

The admissibility of BD implies that

∥∥∥∥
∫ t0

0
eAD (t−s)BD[−sat(d̃ε(s) + d(s)) + d(s)]ds

∥∥∥∥
2

H
� Ct0‖sat(d̃ε + d) + d‖2

L2(0,t0)

� t0Ct0 (2M1 + 1)2, (44)

for some constant Ct0 that is independent of d̃ε and d. Since
eADt is exponentially stable, and B is admissible to eADt

with L2
loc control and hence is admissible to eADt with L∞

loc
control, it follows from Proposition 2.5 of Weiss (1989)
that

∥∥∥∥
∫ t

t0

eAD (t−s)BD[sat(d̃ε(s) + d(s)) + d(s)]ds

∥∥∥∥
=

∥∥∥∥
∫ t

0
eAD (t−s)BD(0 �

t0
[sat(d̃ε(s) + d(s)) + d(s)])ds

∥∥∥∥
� L‖[sat(d̃ε + d) + d]‖L∞(0,∞) � Lε0, (45)

where L is a constant that is independent of d̃ε and d, and
(Weiss, 1989)

(d1 �
τ

d2)(t) =
{

d1(t), 0 � t � τ,

d2(t − τ ), t > τ.
(46)

Suppose that ‖eADt‖ � L0e
−ωt for some L0, ω > 0. By

(43)–(45),

‖Z(·, t)‖ � L0e
−ωt‖Z(·, 0)‖

+L0t0(2M1 + 1)2Ct0e
−ω(t−t0) + Lε0. (47)

The first two terms on the right-hand side of (47) tend to
zero as t → ∞. This shows that ‖z(·, t)‖L2(0,1) → 0 as t →
∞. Hence, by (25), y1(t) = ∫ 1

0 (2x3 − 3x2)z(x, t)dx → 0
as t → ∞. The result then follows with (39) and (30). �

Returning back to system (4) by the inverse transforma-
tions (5) and (7), feedback control (12) and (35), we have
proved, the following Theorem 2.4, the main result of this
section.

Theorem 2.4: Assume that |d(t)| � M1 and ḋ(t) is mea-
surable, |ḋ(t)| ≤ M2 for all t ≥ 0. Then, for any initial value
(X(0), u(·, 0), ŷε(0), d̂ε(0)) ∈ H × R

2, the closed-loop of
system (4) following:

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f 
W

itw
at

er
sr

an
d]

 a
t 0

5:
51

 0
4 

A
ug

us
t 2

01
5 



1560 B.-Z. Guo et al.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bu(0, t), t > 0,

ut (x, t) = uxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0,

ux(1, t) = U (t) + d(t),

˙̂yε(t) = y2(t) − 1

ε
(ŷε(t) − y1(t)),

˙̂
dε(t) = 1

ε2
(ŷε(t) − y1(t)),

(48)

admits a unique solution (X, u, ŷε, d̂ε)
 ∈ C(0,∞;H ×
R

2), and

lim
t→∞
ε→0

‖(X(t), u(·, t), ŷε(t), d̂ε(t) − d(t))‖H×R2 = 0,

where the feedback control is

U (t) =
∫ 1

0
qx(1, x)u(x, t)dx + γ ′(1) + k(1, 1)w(1, t)

+
∫ 1

0
kx(1, x)w(x, t)dx − sat(d̂ε(t)), t � 0, (49)

and

⎧⎪⎪⎨
⎪⎪⎩

y1(t) =
∫ 1

0
(2x3 − 3x2)z(x, t)dx,

y2(t) =
∫ 1

0
(−2cx3 + 3cx2 + 12x − 6)z(x, t)dx,

(50)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x, t) = w(x, t) −
∫ x

0
k(x, y)w(y, t)dy,

k(x, y) = −cx
I1(

√
c(x2 − y2))√

c(x2 − y2)
,

w(x, t) = u(x, t) −
∫ x

0
q(x, y)u(y, t)dy − γ (x)X(t),

q(x, y) = ∫ x−y

0 γ (σ )Bdσ.

(51)

3. Time-varying high-gain estimator-based feedback

In previous section, we estimate the disturbance d(t) by
constant high gain. This brings the notorious peaking value
problem in estimator at t = 0 as indicated by (29). In this
section, we propose a novel disturbance estimator by time
varying high gain. This improves the performance through
four aspects: (1) the practical stability claimed by Theorem
2.4 becomes the asymptotic stability; (2) the boundedness
of derivative of disturbance is relaxed in much extend; (3)
the peaking value is reduced significantly; and (4) the possi-
ble non-smooth control (35) becomes smooth. The possible
trouble brought by this approach is the high-frequency noise
sensitivity.

Now, we design the following ESO with time varying
high gain for system (24) as follows:

{
˙̂y(t) = −U0(t) − d̂(t) − g(t)[ŷ(t) − y1(t)],
˙̂
d(t) = −g2(t)[ŷ(t) − y1(t)],

(52)

where g ∈ C1[0,∞) is a time-varying gain function satis-
fying:

⎧⎨
⎩

g(t) > 0, ġ(t) > 0, ∀ t ≥ 0,

g(t) → ∞ as t → ∞, sup
t∈[0,∞)

∣∣∣∣ ġ(t)

g(t)

∣∣∣∣ < ∞.
(53)

In addition, we assume that the disturbance d(t) ∈
H 1

loc(0,∞) satisfies

lim
t→∞

|ḋ(t)| + |d(t)|
g(t)

= 0. (54)

By condition (54), both d(t) and ḋ(t) are allowed (at least
mathematically) to grow exponentially at any rate by choos-
ing properly the gain function g(t). This relaxes the condi-
tion in the previous section where d(t) and ḋ(t) are assumed
to be uniformly bounded. Once again, d̂(t) is used to esti-
mate d(t), which is confirmed by the following lemma.

Lemma 3.1: Let (ŷ, d̂) be the solution of (52). Then,

lim
t→∞ |ŷ(t) − y(t)| = 0, lim

t→∞ |d̂(t) − d(t)| = 0. (55)

Proof: Set

ỹ(t) = g(t)[ŷ(t) − y1(t)], d̃(t) = d̂(t) − d(t). (56)

Then, the error (ỹ, d̃) is governed by

⎧⎨
⎩

˙̃y(t) = −g(t)[ỹ(t) − d̃(t)] + ġ(t)

g(t)
ỹ(t) − g(t)y2(t),

˙̃d(t) = −g(t)ỹ(t) − ḋ(t).

(57)

The existence of the local classical solution to (57) is guar-
anteed by the local Lipschitz condition of the right-hand
side of (57). The global solution is ensured by the follow-
ing Lyapunov function argument. Define

V (t) = ỹ2(t) + 3

2
d̃2(t) − ỹ(t)d̃(t). (58)

Then,

1

2
V (t) ≤ ỹ2(t) + d̃2(t) ≤ 2V (t). (59)
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Differentiate V along the solution of (57) to obtain

V̇ (t) = 2ỹ(t) ˙̃y(t) + 3d̃(t) ˙̃d(t) − ˙̃y(t)d̃(t) − ˙̃d(t)ỹ(t)

= 2ỹ(t)

{
−g(t)[ỹ(t) − d̃(t)] + ġ(t)

g(t)
ỹ(t) − g(t)y2(t)

}
+3d̃(t)

{−g(t)ỹ(t) − ḋ(t)
}

−d̃(t)

{
−g(t)[ỹ(t) − d̃(t)] + ġ(t)

g(t)
ỹ(t) − g(t)y2(t)

}
−ỹ(t)

{−g(t)ỹ(t) − ḋ(t)
}

=
[
−g(t) + 2ġ(t)

g(t)

]
ỹ2(t) − g(t)d̃2(t) − ġ(t)

g(t)
ỹ(t)d̃(t)

+ḋ(t)[ỹ(t) − 3d̃(t)] + g(t)y2(t)[d̃(t) − 2ỹ(t)]

≤ −1

2
κ(t)V (t) + [

4|ḋ(t)| + 3g(t)|y2(t)|] ‖(ỹ(t), d̃(t))‖

≤ −1

2
κ(t)V (t) +

√
2

[
4|ḋ(t)| + 3g(t)|y2(t)|] √

V (t),

(60)

where, by assumptions (53) and (54),

κ(t) = g(t) − sup
t∈[0,∞)

∣∣∣∣3ġ(t)

g(t)

∣∣∣∣ → ∞ as t → ∞, (61)

and hence, there exists t0 > 0 such that

κ(t) > 0, ∀ t ≥ t0.

This, together with (60), shows that

√
V (t)

dt
≤ −1

4
κ(t)

√
V (t) +

√
2

2
[4|ḋ(t)|

+ 3g(t)|y2(t)|],∀ t ≥ 0. (62)

It then follows that

√
V (t) ≤

√
V (0)e− 1

4

∫ t

0 κ(s)ds

+
∫ t

0 [
√

2(4|ḋ(s)| + 3g(t)|y2(t)|)]e 1
4

∫ s

0 κ(τ )dτds

2e
1
4

∫ t

0 κ(s)ds
.

(63)

The first term on the right-hand side of (63) is obviously
convergent to zero as t → ∞ owing to (61). Apply the
L’Hospital rule to the second term on the right-hand side of
(63) to obtain lim

t→∞
√

V (t) = 0, which amounts to

lim
t→∞[ỹ2(t) + d̃2(t)] = 0. (64)

This leads to

lim
t→∞[|ỹ(t)| + |d̃(t)|] = 0.

The proof is complete. �

By Lemma 3.1, we design naturally the feedback con-
trol

U0(t) = −d̂(t), (65)

under which, the closed-loop of system (13) is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = −d̂(t) + d(t),
˙̂y(t) = −g(t)[ŷ(t) − y1(t)],
˙̂
d(t) = −g2(t)[ŷ(t) − y1(t)].

(66)

Proposition 3.2: Assume that the time-varying gain
g(t) ∈ C1[0,∞) satisfies (53) and the disturbance d(t) ∈
H 1

loc(0,∞) satisfies (54). Then, for any initial value
(X(0), z(0), ŷ(0), d̂(0)) ∈ H × R

2, there exists a unique so-
lution (X, z, ŷ, d̂) ∈ C(0,∞;H × R

2) to system (66) and
system (66) is asymptotically stable in the sense that

lim
t→∞ ‖(X(t), z(·, t), ŷ(t), d̂(t) − d(t))‖H×R2 = 0.

Proof: Using the error variables (ỹ, d̃) defined in (56), we
can write the equivalent system of (66) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = (A + BK)X(t) + Bz(0, t),
zt (x, t) = zxx(x, t) − cz(x, t),
zx(0, t) = 0,

zx(1, t) = −d̂(t) + d(t),

˙̃y(t) = −g(t)[ỹ(t) − d̃(t)] + ġ(t)

g(t)
ỹ(t) − g(t)y2(t),

˙̃d(t) = −g(t)ỹ(t) − ḋ(t).

(67)

The ‘ODE part’ of (67) is just the system (57), which is
shown to be convergent by Lemma 3.1. The ‘(X, z) part’ of
(67) is similar to (40) and the proof hence becomes similar
to the proof of Theorem 2.4. The details are omitted. �

Returning back to system (4) by the inverse transforma-
tions (5) and (7), feedback control (12) and (35), we have
proved, from Proposition 3.2, the following Theorem 3.3.

Theorem 3.3: Assume that the time-varying gain g(t) ∈
C1[0, ∞) satisfies (53) and the disturbance d(t) ∈
H 1

loc(0,∞) satisfies (54). Then, for any initial value (X(0),
u(·, 0), ŷ(0), d̂(0)) ∈ H × R

2, the closed-loop of system (4)
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(a) The ODE state X(t) without control
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(b) The ODE state X(t) with control

Figure 2. The ODE state X(t) for the open-loop and the closed-loop counterparts.

following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX(t) + Bu(0, t), t > 0,

ut (x, t) = uxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = 0,

ux(1, t) = −d̂(t) +
∫ 1

0
qx(1, y)u(y, t)dy + γ ′(1)

+ k(1, 1)w(1, t) +
∫ 1

0
kx(1, y)w(y, t)dy+d(t),

˙̂y(t) = − g(t)[ŷ(t) − y1(t)],
˙̂
d(t) = − g2(t)[ŷ(t) − y1(t)],

(68)

admits a unique solution (X, u, ŷ, d̂)
 ∈ C(0,∞;H ×
R

2), and system (68) is asymptotically stable:

lim
t→∞ ‖(X(t), u(·, t), ŷ(t), d̂(t) − d(t))‖H×R2 = 0,

where

⎧⎪⎪⎨
⎪⎪⎩

y1(t) =
∫ 1

0
(2x3 − 3x2)z(x, t)dx,

y2(t) =
∫ 1

0
(−2cx3 + 3cx2 + 12x − 6)z(x, t)dx,

(69)

0

0.5

10 2 4 6 8 10

−15

−10
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0

5

x

t

(a) Displacement u(x, t) with time-varying gain
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−2
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2
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8

10
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14

16

(b) Disturbance d(t) and its estimation d̂(t)

Figure 3. PDE displacement and disturbance tracking by time-varying gain.
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Figure 4. PDE displacement and disturbance tracking by constant high gain.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(x, t) = w(x, t) −
∫ x

0
k(x, y)w(y, t)dy, k(x, y)

= −cx
I1(

√
c(x2 − y2))√

c(x2 − y2)
,

w(x, t) = u(x, t) −
∫ x

0
q(x, y)u(y, t)dy − γ (x)X(t),

q(x, y) = ∫ x−y

0 γ (σ )Bdσ.

(70)

4. Numerical simulation

In this section, we present some numerical simulations to
show visually the effectiveness of the proposed controller
for the ODE– PDE cascade system (68).

We choose A = 2, B = 1, d(t) = cos 5t , and the initial
values as X(0) = 1, u(x, 0) = x (0 < x ≤ 1). The time-
varying gain is taken as

g(t) =
{

t + 1, t + 1 ≤ 10,

10, t + 1 ≥ 10.
(71)

The numerical results are plotted in Figures 2 and 3, respec-
tively. In Figure 2 (a), the ODE state X(t) without control is
shown and in Figure 2(b), the ODE state X(t) with control
in system (68) is demonstrated. It is seen that the control
effect is very satisfactorily. Figure 3(a) shows the displace-
ment u(x, t) of system (68), and Figure 3(b) demonstrates
the disturbance estimation d̂(t) compared with the distur-
bance d(t). The convergences are all shown to be fast.

Figure 4 demonstrates the displacement u(x, t) of sys-
tem (68) (Figure 4(a)), and the disturbance estimation d̂(t)
compared with d(t) (Figure 4(b)), with the constant high

gain g(t) ≡ 10. The peaking value around 40 for distur-
bance tracking is clearly observed in Figure 4(b).

Compared with Figure 3(b), it is seen from Figure 4(b)
that the peaking value is dramatically reduced.

5. Concluding remarks

In this paper, the active disturbance rejection control is
applied to stabilisation for a cascade ODE– PDE system.
Both disturbance estimators with constant high gain and
time-varying gain are designed, respectively. The practi-
cal stability for the closed-loop system with constant high
gain and asymptotic stability with time-varying gain are
proved. The constant high gain is easily tuning in practice
but produces peaking value problem. The time-varying gain
reduces peaking value significantly but it brings sensitivity
for high-frequency noise. The last point comes from the fact
of noise tracking with disturbance together instead of noise
filtering, for which we refer to the discussion in numeri-
cal simulation of Guo and Zhou (2014). A recommended
scheme is to apply the time-varying gain in the initial stage
so that the peaking value can reach a reasonable area, and
then apply the constant high gain.
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Utkin, V.I. (2008). Sliding mode control: mathematical tools,
design and applications, In P., Nistri & G., Stefani (Eds.),
Nonlinear and Optimal Control Theory. (Lecture Notes
in Mathematics) (Vol. 1932, pp. 289–347). Berlin:
Springer.

Weiss, G. (1989). Admissibility of unbounded control opera-
tors. SIAM Journal on Control and Optimization, 27, 527–
545.

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

, U
ni

ve
rs

ity
 o

f 
W

itw
at

er
sr

an
d]

 a
t 0

5:
51

 0
4 

A
ug

us
t 2

01
5 




