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SUMMARY

In this paper, we are concerned with the boundary stabilization of a one-dimensional anti-stable Schrödinger
equation subject to boundary control matched disturbance. We apply both the sliding mode control (SMC)
and the active disturbance rejection control (ADRC) to deal with the disturbance. By the SMC approach, the
disturbance is supposed to be bounded only. The existence and uniqueness of the solution for the closed-loop
system is proved and the ‘reaching condition’ is obtained. Considering the SMC usually requires the large
control gain and may exhibit chattering behavior, we develop the ADRC to attenuate the disturbance for
which the derivative is also supposed to be bounded. Compared with the SMC, the advantage of the ADRC
is not only using the continuous control but also giving an online estimation of the disturbance. It is shown
that the resulting closed-loop system can reach any arbitrary given vicinity of zero as time goes to infinity
and high gain tuning parameter goes to zero. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For a system described by partial differential equations (PDEs), the boundary control dominates
the research tread in the past two decades, see [1–4] and the references therein. Traditionally, the
system is controlled in the ideal operational environment with exact mathematical model and no
internal and external disturbances. This can be found in many researches for the stabilization of
infinite-dimensional systems described by Schrödinger, wave and flexible beam equations [1, 4, 5].

Basically speaking, two different type of control methods can be used to stabilize the PDEs
without disturbance. The collocated control design is based on the passive principle that makes
the closed-loop system dissipative and hence stable at least in the sense of Lyapunov [1]. The non-
collocated method is systematically applied, because of the introduction of backstepping method to
PDEs in the last few years ([3], see also [2]), to stabilize some unstable or even anti-stable wave and
heat equations [3, 6, 7].

However, ‘if there is no uncertainty in the system, the control, or the environment, feedback
control is largely unnecessary’ [8]. When the external disturbances enter the system from boundary
or the internal of the spatial domain, the new approach is needed to deal with the uncertainties.
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The adaptive control method is powerful in dealing with the systems with the unknown parameters
[9–11]. The general method to reject the disturbance is the sliding mode control (SMC) method
[12–16]. In [15], on the basis of the semigroup theory, the SMC is used to deal with a class of abstract
infinite-dimensional systems where the control and disturbance are all assumed to be bounded
(mainly in distributed control). The boundary stabilization for a one-dimensional heat equation with
boundary disturbance is studied in [14], where the SMC is designed for the first-order PDEs obtained
through an integral transformation on the heat equation (which is second order in spatial variable).
Very recently, the sliding mode boundary stabilizer is designed for a one-dimensional unstable heat
and wave equations in [13] and [17] respectively. Another powerful method in dealing with the
disturbance is the active disturbance rejection control (ADRC) method. The ADRC, as an uncon-
ventional design strategy, was first proposed by Han in 1990s ([18]). It has been now acknowledged
to be an effective control strategy for lumped parameter systems in the absence of proper models and
in the presence of model uncertainty. The numerous applications have been carried out in the last
decade (see e.g., [19]). Its convergence has been proved for lumped parameter systems in [20]. Very
recently, it has been successfully applied to the attenuation of disturbance for a one-dimensional
anti-stable wave equation in [17]. Other method in dealing with uncertainty includes the Lyapunov
function based method, see [21, 22] and the references therein.

Motivated mainly by [17] and [23], we are concerned with, in this paper, the stabilization of a
one-dimensional Schrödinger equation, which is suffered from the unknown external disturbance
on the input boundary by both the SMC approach and the ADRC approach, respectively.

The system that we are concerned with is governed by the following PDEs:

8<
:
ut .x, t /D�juxx.x, t /, x 2 .0, 1/, t > 0,
ux.0, t /D�jqu.0, t /, q > 0, t > 0,
ux.1, t /D U.t/C d.t/, t > 0,

(1.1)

where u is the complex-valued state, j is the imaginary unit, U is the control input. The unknown
disturbance d is supposed to be uniformly bounded measurable, that is, jd.t/j 6 M0 for some
M0 > 0 and all t > 0. The system represents an anti-stable distributed parameter system: all
eigenvalues of the free system (without control and disturbance) are located on the right-half
complex plane.

The main contribution of this paper is to apply both the SMC and the ADRC approaches to reject
and attenuate, respectively, the disturbance in the stabilization of the system (1.1). The distinguish
feature of this problem that is contrast to the wave and beam equations is that the state variable
is complex valued. This gives rise to some problems in terms of mathematical rigorousness. For
instance, the sliding modes are actually two by its real and imaginary parts, whereas that of beam or
wave is only one in the real number field space [17].

The rest of the paper is organized as follows. Section 2 is devoted to the disturbance rejection
by the SMC approach. The sliding mode control is designed and the existence and uniqueness of
solution of the closed-loop system are proved. The finite time ‘reaching condition’ is presented
rigorously. In Section 3, we use the ADRC approach to attenuate the disturbance by designing a
high gain estimator to estimate the disturbance. After canceling (compensating) the disturbance by
the approximated one, we design the state feedback controller. The closed-loop system is shown to
attend any arbitrary given vicinity of zero as the time goes to infinity, and the gain tuning parameter
tends to zero. Some concluding remarks are presented in Section 4.

2. SLIDING MODE CONTROL APPROACH

We consider system (1.1) in the state space H D L2.0, 1/. Following [7], we introduce a
transformation

w.x, t /D u.x, t /�
Z x

0

k.x,y/u.y, t /dy, (2.1)
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where the gain kernel k satisfies the following PDE:8̂̂
<̂
ˆ̂̂:
kxx.x,y/� kyy.x,y/D cjk.x,y/, c > 0,

ky.x, 0/C jqk.x, 0/D 0,

k.x, x/D�
cj

2
x � jq.

(2.2)

The existence of solution to problem (2.2) can be proved by transforming it into an integral equation
using the variable change � D xC y, �D x � y, which is Lemma 2.1 in the succeeding text [7].

Lemma 2.1
The problem (2.2) admits a unique solution that is twice continuously differentiable in 06 y 6 x.

Proof
We introduce new variables

� D xC y, �D x � y (2.3)

and denote

G.� , �/D k.x,y/D k

�
� C �

2
,
� � �

2

�
. (2.4)

To derive equation in terms of these new variables, we compute

kx.x,y/DG�.� , �/CG�.� , �/,

ky.x,y/DG�.� , �/�G�.� , �/,

kxx.x,y/DG��.� , �/C 2G��.� , �/CG��.� , �/,

kyy.x,y/DG��.� , �/� 2G��.� , �/CG��.� , �/,

k.x, x/DG.� , 0/, ky.x, 0/DG�.� , �/�G�.� , �/, k.x, 0/DG.� , �/.

Substitute these derivatives into (2.2) to yield

G��.� , �/D
cj

4
G.� , �/, 06 �6 � 6 2 (2.5)

with the boundary conditions8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

G�.� , �/�G�.� , �/C jqG.� , �/D 0 06 � 6 2,

G.� , 0/D�
�cj

4
� jq, 06 � 6 2.

G�.� , 0/D�
cj

4
.

(2.6)

Integrate (2.5) over Œ0, �� with respect to �, and use the third condition of (2.6), to obtain

G�.� , �/D�
cj

4
C
cj

4

Z �

0

G.� , s/ds. (2.7)

Integrate (2.7) over Œ�, �� with respect to � to give

G.� , �/DG.�, �/�
cj

4
.� � �/C

cj

4

Z �

�

Z �

0

G.� , s/dsd� . (2.8)

To find G.�, �/, we use (2.6) to write

d

d�
G.� , �/DG�.� , �/CG�.� , �/D 2G�.� , �/C jqG.� , �/. (2.9)
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Using (2.7) with �D � , we can write (2.9) in the form of differential equation for G.� , �/:

d

d�
G.� , �/D�

cj

2
C
cj

2

Z �

0

G.� , s/dsC jqG.� , �/. (2.10)

Integrate (2.10) by making use of the variation of constants formula to obtain

G.� , �/D�jqejq� �
cj

2

Z �

0

ejq.���/d� C
cj

2

Z �

0

ejq.���/
Z �

0

G.� , s/dsd� . (2.11)

Substitute the aforementioned result into (2.8), to obtain an integral equation for G.� , �/:

G.� , �/D�jqejq� �
cj

2

Z �

0

ejq.���/d� C
cj

2

Z �

0

ejq.���/
Z �

0

G.� , s/dsd�

�
cj

4
.� � �/C

cj

4

Z �

�

Z �

0

G.� , s/dsd� .

(2.12)

We now use the method of successive approximations to show that this equation has a unique
continuous solution. Set

8̂̂<
ˆ̂:
G0.� , �/D�jqejq� �

cj

2

Z �

0

ejq.���/d� �
cj

4
.� � �/,

Gn.� , �/D
cj

2

Z �

0

ejq.���/
Z �

0

Gn�1.� , s/dsd� C
cj

4

Z �

�

Z �

0

Gn�1.� , s/dsd� , n> 1.

(2.13)
Then one can readily show that

jG0.� , �/j6 qC c

2
�C

c

4
j� � �j6 2cC q DM .

Suppose that

jGn.� , �/j6M nC1 .� C �/
n

nŠ
.

Then, we have the following estimate

jGnC1j6
cM nC1

4nŠ

ˇ̌̌
ˇ̌2 Z �

0

Z �

0

.� C s/ndsd� C

Z �

�

Z �

0

.� C s/ndsd�

ˇ̌̌
ˇ̌

6 cM
nC1

4nŠ
4
.� C �/nC1

nC 1

6M nC2 .� C �/
nC1

.nC 1/Š
.

(2.14)

By mathematical induction, (2.14) is true for all n > 0. It then follows from the Weierstrass M -test
that the series

G.� , �/D
1X
nD0

Gn.� , �/
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converges absolutely and uniformly in 0 6 � 6 � 6 2. Furthermore, by [24, Theorem 4.17, p.156],
we deduce that

G.� , �/D
1X
nD0

Gn.� , �/D�jqejq� �
cj

2

Z �

0

ejq.���/d� �
cj

4
.� � �/

C

1X
nD1

cj

2

Z �

0

ejq.���/
Z �

0

Gn�1.� , s/dsd� C
1X
nD1

cj

4

Z �

�

Z �

0

Gn�1.� , s/dsd�

D�jqejq� �
cj

2

Z �

0

ejq.���/d� �
cj

4
.� � �/

C
cj

2

Z �

0

ejq.���/
Z �

0

1X
nD1

Gn�1.� , s/dsd� C
cj

4

Z �

�

Z �

0

1X
nD1

Gn�1.� , s/dsd�

D�jqejq� �
cj

2

Z �

0

ejq.���/d� �
cj

4
.� � �/

C
cj

2

Z �

0

ejq.���/
Z �

0

G.� , s/dsd� C
cj

4

Z �

�

Z �

0

G.� , s/dsd� .

(2.15)

This shows thatG.� , �/ is a continuous solution of Equation (2.12), and hence is twice continuously
differentiable in 0 6 � 6 � 6 2, and jG.� , �/j 6 M exp.M.� C �//. We claim that this solution is
unique. To this purpose, it suffices to show that the equation

G.� , �/D
cj

2

Z �

0

ejq.���/
Z �

0

G.� , s/dsd� C
cj

4

Z �

�

Z �

0

G.� , s/dsd� (2.16)

has zero solution only. Define the mapping F0 W �0 ! �0,�0 D ¹Gj G.� , �/ is continuous in
06 �6 � 6 2º:

.F0G/.� , �/D
cj

2

Z �

0

ejq.���/
Z �

0

G.� , s/dsd� C
cj

4

Z �

�

Z �

0

G.� , s/dsd� ,8G 2�0.

Then F0 is a compact operator on�0. By (2.14), the spectral radius of F0 is zero. So 0 is the unique
spectrum of F0. Therefore, (2.16) has zero solution only. The proof is complete. �

Remark 2.1
The proof of Lemma 2.1 shows that

lim
N!1

NX
nD0

Gn.� , �/DG.� , �/D k.x,y/, � D xC y, �D x � y (2.17)

uniformly in x 2 Œ0, 1�,y 2 Œ0, x�, where Gn.� , �/ is given by (2.13). This can be used to
approximate the kernel function k numerically.

The transformation (2.1) transforms system (1.1) into the following system:

8̂̂
<
ˆ̂:
wt .x, t /D�jwxx.x, t /� cw.x, t /, x 2 .0, 1/, t > 0,
wx.0, t /D 0, t > 0,

wx.1, t /D U.t/C d.t/� k.1, 1/u.1, t /�
Z 1

0

kx.1,y/u.y, t /dy, t > 0.

(2.18)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2194–2212
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Set the sliding mode surface as

SW D

²
f 2H

ˇ̌̌
ˇ
Z 1

0

f .x/dx D 0

³
, (2.19)

which is a closed subspace of the state space H. The corresponding sliding mode function for system
(2.18) is

SW .t/D

Z 1

0

w.x, t /dx. (2.20)

On the sliding mode surface SW .t/� 0, the system (2.18) becomes8<
:
wt .x, t /D�jwxx.x, t /� cw.x, t /, x 2 .0, 1/, t > 0,

wx.0, t /D
Z 1

0

w.x, t /dx D 0, t > 0.
(2.21)

The Proposition 2.1 in the succeeding text shows that system (2.21) decays exponentially in H
as t !1 with the decay rate �c. This is the advantage of the transformation (2.1). If we use the
analytic backstepping transformation presented in exercise 6.2 of [3] on pages 76–77 (see (3.1) in
next section), it is hard to find the sliding mode surface in H.

Proposition 2.1
The system (2.21) associates with a C0-semigroup of contractions on SW , and is exponentially
stable in SW with the decay rate �c.

Proof
Define the operator A WD.A/.� SW /! SW as follows:´

Af .x/D�jf 00.x/� cf .x/,8 f 2D.A/,

D.A/D ¹f 2 SW \H 2.0, 1/
ˇ̌
f 00 2 SW , f 0.0/D 0º.

It is easy to show that for any f 2D.A/, f 00 2 SW if and only if f 0.1/D 0. So we can write A as´
Af .x/D�jf 00.x/� cf .x/,8 f 2D.A/,

D.A/D ¹f 2 SW \H 2.0, 1/
ˇ̌
f 0.0/D f 0.1/D 0º.

Now for any f 2D.A/,

RehAf ,f i D �Rej
Z 1

0

f 00.x/f .x/dx � c

Z 1

0

jf .x/j2dx D�c

Z 1

0

jf .x/j2dx 6 0. (2.22)

Hence, AC cI is dissipative and so is for A. For any g 2 SW solve Af D g, that is²
�jf 00.x/� cf .x/D g.x/,
f 0.0/D f 0.1/D 0,

to obtain the unique solution f as8̂̂̂
<
ˆ̂̂:
f .x/D c0

�
e

p
c.jC1/x
p
2 C e

�

p
c.jC1/x
p
2

�
C

1
p
2c.j C 1/

Z x

0

�
e

p
c.jC1/
p
2

.x�s/
� e
�

p
c.jC1/
p
2

.x�s/

�
g.s/ds,

c0 D�
1

p
2c.j C 1/

�
e

p
c.jC1/
p
2 C e

�

p
c.jC1/
p
2

� Z 1

0

�
e

p
c.jC1/
p
2

.1�s/
� e
�

p
c.jC1/
p
2

.1�s/

�
ds.

So, A�1 exists and is bounded on SW . By the Lumer–Phillips theorem ([25, Theorem 4.3,p.14]), A
generates a C0-semigroup of contractions on SW , and so does for ACcI . Therefore, the semigroup
generated by A is exponentially stable with the decay rate �c. �

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2194–2212
DOI: 10.1002/rnc



2200 B.-Z. GUO AND J.-J. LIU

Now, we are in a position to seek the finite time ‘reaching condition’ for target system (2.18).
Formally, it has

PSW .t/D

Z 1

0

wt .x, t /dx D
Z 1

0

Œ�jwxx.x, t /� cw.x, t /�dx

D�jwx.1, t /� c
Z 1

0

w.x, t /dx D�jwx.1, t /� cSW .t/,

(2.23)

and hence

PSW .t/D�j

�
U.t/C d.t/� k.1, 1/u.1, t /�

Z 1

0

kx.1, y/u.y, t /dy

�
� cSW .t/.

Design the feedback controller

U.t/D k.1, 1/u.1, t /C
Z 1

0

kx.1, y/u.y, t /dy C cjSW .t/CU0.t/, (2.24)

where U0 is a new control. Then

PSW .t/D�jU0.t/� jd.t/.

Let

U0.t/D�j.M0C �/
SW .t/

jSW .t/j
for SW .t/¤ 0.

Then

PSW .t/D�.M0C �/
SW .t/

jSW .t/j
� jd.t/ for SW .t/¤ 0. (2.25)

Therefore,

d

dt
jSW .t/j

2 D 2 ReSW .t/ PSW .t/D�2.M0C �/jSW .t/j � 2 Re.jd.t/SW .t//6 �2�jSW .t/j,
(2.26)

which is just the finite time ‘reaching condition’ to be proved rigorously later. The sliding mode
controller is

U.t/D k.1, 1/u.1, t /C
Z 1

0

kx.1, y/u.y, t /dy C cjSW .t/� j.M0C �/
SW .t/

jSW .t/j
for SW .t/¤ 0.

(2.27)

Under the control (2.27), the closed-loop of the target system (2.18) becomes8̂<
:̂
wt .x, t /D�jwxx.x, t /� cw.x, t /,
wx.0, t /D 0,

wx.1, t /D cjSW .t/� j.M0C �/
SW .t/
jSW .t/j

C d.t/D cjSW .t/C Qd.t/,SW .t/¤ 0,
(2.28)

where

Qd.t/D�j.M0C �/
SW .t/

jSW .t/j
C d.t/. (2.29)

The next result confirms the existence and uniqueness of the solution to (2.28) and the finite time
‘reaching condition’ to the sliding mode surface SW .

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2194–2212
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Proposition 2.2
Suppose that d is measurable and jd.t/j 6M0 for all t > 0, and let SW be defined by (2.20). Then
for any w.�, 0/ 2 H, SW .0/ ¤ 0, there exists a tmax > 0 such that (2.28) admits a unique solution
w 2 C.0, tmaxIH/ and SW .t/D 0 for all t > tmax.

Proof
Write system (2.28) as

d

dt
w.�, t /DA0w.�, t /CB0 Qd.t/, B0 D�jı.x � 1/, (2.30)

where A0 is given by8̂<
:̂

A0f D�jf 00 � cf ,

D.A0/D
²
f 2H 2.0, 1/

ˇ̌̌
ˇ f 0.0/D 0, f 0.1/D cj

Z 1

0

f .x/dx

³
.

(2.31)

We claim that A0 generates a C0-semigroup on H. To this purpose, it suffices to show that A�0 , the
adjoint operator of A0, generates a C0-semigroup on H.

A straightforward calculation shows that´
A�0g D jg00 � cgC cg.1/,

D.A�0/D
®
g 2H 2.0, 1/

ˇ̌
g0.0/D g0.1/D 0

¯
.

(2.32)

The dual system of (2.30) is hence given by8̂<
:̂
w�t .x, t /D jw�xx.x, t /� cw�.x, t /C cw�.1, t /,

w�x.0, t /D w�x.1, t /D 0,

y.t/D B�0w� D�jw�.1, t /.

(2.33)

It is an exercise to obtain the eigenpairs .�n,'n/ of A�0 are

�n D�c � j.n�/
2,'n.x/D cosn�x � c

cosn�

c � j.n�/2
, nD 0, 1, 2, � � � .

By Bari’s theorem, ¹'nº1nD0 forms a Riesz basis for H. So, A�0 generates a C0-semigroup on H, and
so does for A0. Moreover, for any w�.�, 0/ 2H, suppose that

w�.x, 0/D
1X
nD0

an'n.x/.

Then

w�.x, t /D eA
�
0
tw�.x, 0/D

1X
nD0

e�ntan'n.x/,

and hence

y.t/D�j

1X
nD0

e�ntan'n.1/.

By Ingham’s inequality ([26, theorems 4.3]), there exists a T > 0, such that

Z T

0

jy.t/j2dt 6 CT
1X
nD0

jan'n.1/j
2 6DT kw�.�, 0/k2 (2.34)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2014; 24:2194–2212
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for some constants CT ,DT that depend on T only. This shows that B�0 is admissible for eA
�
0
t and

so is B0 for eA0t [27, 28]. Therefore, for any T > 0 and w.�, 0/ 2 H, if SW 2 C Œ0,T �, SW .t/ ¤ 0
for all t 2 Œ0,T /, then there exists a unique solution w 2 C.0,T IH/ to (2.28).

Suppose that SW 2 C Œ0,T �, SW .t/ ¤ 0 for all t 2 Œ0,T /. Because f .x/ � 1 2 D.A�0/, by the
admissibility just verified, take the inner product with f D 1 on both sides of (2.30) to obtain

d

dt

Z 1

0

w.x, t /dx D hw,A�0f i C Qd.t/hf ,B�0f i D �j Qd.t/D�.M0C �/
SW .t/

jSW .t/j
� jd.t/,

8 t 2 Œ0,T � a.e.

or

PSW .t/D�.M0C �/
SW .t/

jSW .t/j
� jd.t/,8 t 2 Œ0,T � a.e., (2.35)

which is just (2.25). So if (2.35) admits a unique continuous, nonzero solution, then (2.28) admits a
unique solution w 2 C.0,T IH/.

Suppose that t0 > 0 and SW .t0/D S0 ¤ 0. Then it follows from (2.35) that

SW .t/D S0 � .M0C �/

Z t

t0

SW .�/

jSW .�/j
d� � j

Z t

t0

d.�/d� ,8 t > t0. (2.36)

Define a closed subspace of C
h
t0, t0C

jS0j
4.2M0C�/

i
by

�D

²
S 2 C

�
t0, t0C

jS0j

4.2M0C �/

� ˇ̌̌
ˇS.t0/D S0, jS.t/j

> 3jS0j
4

,8 t 2

�
t0, t0C

jS0j

4.2M0C �/

�³
, (2.37)

and a mapping F on � by

.FS/.t/D S0 � .M0C �/

Z t

t0

S.�/

jS.�/j
d� � j

Z t

t0

d.�/d� . (2.38)

Then for any S 2�, it has

j.FS/.t/j> jS0j � .t � t0/.2M0C �/>
3jS0j

4
.

This shows that F���. Moreover,

j.FS1/.t/� .FS2/.t/j6 .M0C �/

Z t

t0

ˇ̌̌
ˇ S1.�/jS1.�/j

�
S2.�/

jS2.�/j

ˇ̌̌
ˇ d�

6 2.M0C �/

Z t

t0

jS1.�/� S2.�/j

jS1.�/j
jd� 6 2.M0C �/

3.2M0C �/
kS1 � S2k�,

where kSk� D kSkC
h
t0,t0C

jS0j

4.2M0C�/

i. The aforementioned inequality shows that the mapping F

defined by (2.38) is a contraction mapping on �. By the contraction mapping principle, there exists

a unique, nonzero solution SW to (2.36) in C
h
t0, t0C

jS0j
4.2M0C�/

i
.

The aforementioned arguments show that when SW .0/ ¤ 0, there exists a unique continuous
solution SW to (2.35) in the maximal interval Œ0, tmax/, where it must have SW .tmax/ D 0. It then
follows from (2.26) that jSW .t/jmust be decreasing in Œ0, tmax/ and jSW .t/j> 0 for all t 2 Œ0, tmax/.
Because SW .t/ is continuous, the reaching condition (2.26) implies that SW .t/� 0 for all t > tmax.
The proof is complete. �
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Returning back to the system (1.1) under the transformation (2.1), feedback control (2.27), we
obtain the main result of this section from Proposition 2.2.

Theorem 2.1
Suppose that d is measurable and jd.t/j6M0 for all t > 0, and let SU be the sliding mode function
given by

SU .t/D

Z 1

0

u.x, t /dx �
Z 1

0

Z x

0

k.x,y/u.y, t /dydx. (2.39)

Then for any u.�, 0/ 2 H, SU .0/ ¤ 0, there exists a tmax > 0 such that the closed-loop system of
(1.1) under the feedback control (2.27) is8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

ut .x, t /D�juxx.x, t /,
ux.0, t /D�jqu.0, t /,

ux.1, t /D k.1, 1/u.1, t /C
Z 1

0

kx.1,y/u.y, t /dy C cjSU .t/

�j.M0C �/
SU .t/

jSU .t/j
C d.t/,SU .t/¤ 0,

(2.40)

which admits a unique solution u 2 C.0, tmaxIH/ and SU .t/ D 0 for all t > tmax. On the sliding
mode surface SU .t/D 0, the system (1.1) becomes8̂̂̂

<
ˆ̂̂:

ut .x, t /D�juxx.x, t /,

ux.0, t /D�jqu.0, t /,Z 1

0

u.x, t /dx �
Z 1

0

Z x

0

k.x,y/u.y, t /dydx D 0,

(2.41)

which is equivalent to (2.21) and hence is exponentially stable in H with the decay rate �c.

It is remarked that system (2.28) is equivalent to system (2.40) under the equivalent transformation
(2.1).

3. THE ACTIVE DISTURBANCE REJECTION CONTROL APPROACH

In this section, we suppose in addition that j Pd j is also uniformly bounded. Following exercise 6.2
of [3] on pages 76–77, we introduce a transformation

w.x, t /D u.x, t /C j.c0C q/
Z x

0

ejq.x�y/u.y, t /dy, c0 > 0. (3.1)

Its inverse transformation is found to be

u.x, t /D w.x, t /� j.c0C q/
Z x

0

e�jc0.x�y/w.y, t /dy. (3.2)

The transformation (3.1) transforms system (1.1) into the following system:8̂̂
<
ˆ̂:
wt .x, t /D�jwxx.x, t /, x 2 .0, 1/, t > 0,
wx.0, t /D jc0w.0, t /, t > 0,

wx.1, t /D U.t/C d.t/C j.c0C q/w.1, t /C c0.c0C q/
Z 1

0

e�jc0.1�x/w.x, t /dx, t > 0.

(3.3)
It is seen that the anti-stable factor �jqu.0, t / in (1.1) becomes the dissipative term jc0w.0, t /
in (3.3) under the transformation (3.1), both at the end x D 0. In what follows, we consider
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the stabilization of system (3.3) until the final step to go back the system (1.1) under the inverse
transformation (3.2). Introduce a new controller U0.t/ so that

U.t/D U0.t/� j.c0C q/w.1, t /� c0.c0C q/
Z 1

0

e�jc0.1�x/w.x, t /dx. (3.4)

Then (3.3) becomes 8<
:
wt .x, t /D�jwxx.x, t /, x 2 .0, 1/, t > 0,
wx.0, t /D jc0w.0, t /, t > 0,
wx.1, t /D U0.t/C d.t/.

(3.5)

We write (3.5) into the operator form. Define the operator A as follows:´
Af .x/D�jf 00.x/,
D.A/D ¹f 2H 2.0, 1/

ˇ̌
f 0.0/D jc0f .0/, f

0.1/D 0º.
(3.6)

Its adjoint A� is found to be´
A�f .x/D jf 00.x/,
D.A�/D ¹f 2H 2.0, 1/

ˇ̌
f 0.0/D�jc0f .0/, f

0.1/D 0º,
(3.7)

with

A��1f D C � j
Z x

1

.x � �/f .�/d� , C D�
1

c0

Z 1

0

f .x/dxC j

Z 1

0

xf .x/dx,8 f 2H. (3.8)

Then we can write (3.5) in H as

d

dt
w.�, t /DAw.�, t /CB.U0.t/C d.t//, B D�jı.x � 1/. (3.9)

Lemma 3.1
Let A be defined by (3.6). Then each eigenvalue of A is algebraically simple, and there exists
a sequence of eigenfunctions of A, which form a Riesz basis for H. Therefore, A generates an
exponential stable C0-semigroup on H.

Proof
Solve Af D�j�2f , that is, ´

f 00.x/D �2f .x/,

f 0.0/D jc0f .0/, f
0.1/D 0,

(3.10)

to obtain

f .x/D
�C jc0

�� jc0
e�x C e��x , (3.11)

where � satisfies

e2� D
�� jc0

�C jc0
D 1�

2jc0

�
CO.j�j�2/ as j�j !1. (3.12)

Notice that � ¤ ˙jc0,� ¤ 0 for nonzero f by (3.10). Solve .�j�2 �A/' D f where f is given
by (3.11), that is ´

'00.x/D �2'.x/� jf .x/,

'0.0/D jc0'.0/,'
0.1/D 0,

(3.13)
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to obtain

'.x/D Qc

�
�C jc0

�� jc0
e�x C e��x

�
� j

Z x

0

e�.x�s/ � e��.x�s/

2�
f .s/ds

for general constant Qc. By '0.1/D 0, it follows thatZ 1

0

h
e�.1�s/C e��.1�s/

i
f .s/ds D 0.

Substitute (3.11) into previous equation to obtain

2e��
�2 � jc0C c

2
0

�2C c20
D
e��

2�

�
4�C e2� � e�2�

�
D 0.

So �2 D jc0 � c
2
0 and e2� D �2� ˙

p
4�2C 1. But � D ˙

q
jc0 � c

2
0 does not satisfy the

characteristic equation (3.12) by Mathematica. Hence, each eigenvalue of A is algebraically simple.
Next, by the second equality of (3.12), it has

�D n�j CO.n�1/, n!1. (3.14)

Substitute (3.14) into (3.12) to obtain O.n�1/D�c0=.n�/ and so

�D n�j �
c0

n�
CO.n�2/, �j�2 D�2c0C j.n�/2CO.n�1/,n!1. (3.15)

It is straightforward to verify that all eigenvalues of A have negative real parts. This also explains
why the system (1.1) is anti-stable: all eigenvalues of the free system (replace c0 by �q) are located
on the right half complex plane.

From (3.14) and (3.11), we obtain

f .x/D cosn�xCO.n�1/, n!1. (3.16)

Because from (3.8), A��1 is compact on H and so is A�1. Hence, A is a discrete operator. Because
¹cosn�xº1nD0 forms an orthonormal basis for H, it follows from theorem 6.3 of [29] and (3.16)
that there is a sequence of the eigenfunctions of A, which form a Riesz basis for H. The proof
is complete. �

Lemma 3.2
Let A and B be defined in (3.9). Then B is admissible to the semigroup eAt .

Proof
By (3.8), we have

B�A��1f D�jC ,

which is bounded from H to C. Consider the dual system of (3.9):8<
:

d

dt
w�.�, t /DA�w�.�, t /,

y.t/D B�w�.�, t /,

that is, 8̂̂̂
<
ˆ̂̂:

w�t .x, t /D jw�xx.x, t /, x 2 .0, 1/, t > 0,

w�x.0, t /D�jc0w
�.0, t /, t > 0,

w�x.1, t /D 0, t > 0,

y.t/D�jw�.1, t /.

(3.17)
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By (3.15) and (3.16), the eigenpairs ¹	n,gnº of A� are

	n D j�
2
D�2c0 � j.n�/

2CO.n�1/, gn.x/D cosn�xCO.n�1/, n!1.

By Lemma 3.1, ¹gnº forms a Riesz basis for H, so the solution w of (3.17) can be written as

w�.x, t /D
1X
nD0

bne
�ntgn.x/.

Hence,

y.t/D�j

1X
nD0

bne
�ntgn.1/.

Same to (2.34), there exists a T > 0 such thatZ T

0

jy.t/j2dt 6 C0T
1X
nD0

jbngn.1/j
2 6 C1T

1X
nD0

jbnj
2 6 C2T kw�.�, 0/k2

for some constants CiT , i D 0, 1, 2 that depend on T only. This, together with boundedness of
B�A��1 shows that B is admissible to the semigroup generated by A [27, 28]. �

Let

y1.t/D

Z 1

0

.2x3 � 3x2/w.x, t /dx, y2.t/D
Z 1

0

.12x � 6/w.x, t /dx. (3.18)

Because B is admissible to the C0-semigroup eAt , the solution of (3.5) is understood in the sense of

d

dt
hw.�, t /,f i D hw.�, t /,A�f i � jf .1/.U0.t/C d.t//, 8 f 2D.A�/. (3.19)

Let f .x/D 2x3 � 3x2 2D.A�/ in (3.19) to obtain

Py1.t/D jU0.t/C jd.t/� jy2.t/. (3.20)

That is to say, for any initial value w.�, 0/ 2H, the (weak) solution of (3.5) must satisfy (3.20).

Remark 3.1
From (3.19), y1,y2 can be chosen as y1.t/ D

R 1
0
f .x/w.x, t /dx, y2.t/ D

R 1
0
.A�f /.x/w.x, t /dx

where f 2D.A�/, f .1/¤ 0. Our choice is only a special case by this general principle.

Design the high gain estimators for y1 and d as follows:´
POy.t/D j.U0.t/C Od.t//� jy2.t/�

1
"
. Oy.t/� y1.t//,

POd.t/D j

"2
. Oy.t/� y1.t//,

(3.21)

where " > 0 is the design small parameter and Od is regarded as an approximation of d . Let

Qy.t/D Oy.t/� y1.t/, Qd.t/D j. Od.t/� d.t// (3.22)

be the errors. Then Qy, Qd satisfy

d
dt

�
Qy.t/

Qd.t/

�
D

 
�1
"

1

� 1
"2

0

!�
Qy.t/

Qd.t/

�
C

�
0

�j

�
Pd.t/D A

�
Qy.t/

Qd.t/

�
CB Pd.t/. (3.23)
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The eigenvalues of A are found to be

�D�
1

2"
˙

p
3

2"
j . (3.24)

The state feedback controller to (3.5) is designed as follows:

U0.t/D� Od.t/. (3.25)

It is clearly seen from (3.25) that this controller is just used to cancel (compensate) the disturbance
d because A generates an exponential stable C0-semigroup. This estimation/cancelation strategy
(3.25) is obviously an economic strategy. Under the feedback (3.25), the closed-loop system of
(3.5) becomes 8̂̂̂

ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂:

wt .x, t /D�jwxx.x, t /, x 2 .0, 1/, t > 0,

wx.0, t /D jc0w.0, t /, t > 0,

wx.1, t /D� Od.t/C d.t/, t > 0.

POy.t/D�jy2.t/�
1

"
. Oy.t/� y1.t//,

POd.t/D
j

"2
. Oy.t/� y1.t//.

(3.26)

Proposition 3.1
Suppose that jd j 6 M0 and Pd is also uniformly bounded measurable. Then for any initial value
w.�, 0/ 2H, the closed-loop system (3.26) of (3.5) admits a unique solution .w,wt /> 2 C.0,1IH/.
Moreover, the solution of system (3.26) tends to any arbitrary given vicinity of zero as t !
1, "! 0.

Proof
Using the error variables . Qy, Qd/ defined in (3.22), we can write the equivalent system of (3.26)
as follows: 8̂̂

ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

wt .x, t /D�jwxx.x, t /, x 2 .0, 1/, t > 0,

wx.0, t /D jc0w.0, t /, t > 0,

wx.1, t /D j Qd.t/, t > 0.

PQy.t/D�
1

"
Qy.t/C Qd.t/, t > 0,

PQd.t/D�
1

"2
Qy.t/� j Pd.t/, t > 0.

(3.27)

It is seen from (3.27) that . Qy, Qd/ is an external model for the ‘w part’ of the system [30]. So, we can
solve this ODE separately to be�

Qy.t/
Qd.t/

�
D eAt

�
Qy.0/
Qd.0/

�
C

Z t

0

eA.t�s/B Pd.s/ds, (3.28)

where A,B are defined in (3.23). By (3.24), a simple computation shows that the solution . Qy, Qd/ of
(3.28) satisfies

. Qy.t/, Qd.t//! 0 as t !1, "! 0. (3.29)

Now, we consider the ‘w part’ of the system (3.27) that is re-written as8̂<
:̂
wt .x, t /D�jwxx.x, t /, x 2 .0, 1/, t > 0,

wx.0, t /D jc0w.0, t /, t > 0,

wx.1, t /D j Qd.t/, t > 0.

(3.30)
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System (3.30) can be rewritten as an evolution equation in H as

d

dt
w.�, t /DAw.�, t /C jB Qd.t/, (3.31)

where A,B are the same as that in (3.9).
Because A generates an exponential stable C0-semigroup on H (Lemma 3.1), and B is admissible

to eAt (Lemma 3.2), for any initial valuew.�, 0/ 2H, there exists a unique solutionw 2 C.0,1IH/
that can be written as

w.�, t /D eAtw.�, 0/C j
Z t

0

eA.t�s/B Qd.s/ds. (3.32)

By (3.29), for any given "0 > 0, there exist t0 > 0 and "1 > 0 such that j Qd.t/j< "0 for all t > t0 and
0 < " < "1. We rewrite solution of (3.32) as

w.�, t /D eAtw.�, 0/C jeA.t�t0/
Z t0

0

eA.t0�s/B Qd.s/dsC j
Z t

t0

eA.t�s/B Qd.s/ds. (3.33)

The admissibility of B implies that

����
Z t

0

eA.t�s/B Qd.s/ds
����
2

H
6 Ctk Qdk2L2loc.0,t/

6 t2Ctk Qdk2L1.0,t/,8
Qd 2 L1.0,1/ (3.34)

for some constant Ct that is independent of Qd . Because eAt is exponentially stable, it follows from
proposition 2.5 of [28] that����

Z t

t0

eA.t�s/B Qd.s/ds
����D

����
Z t

0

eA.t�s/B.0Þ
t0

Qd/.s/ds

����6 Lk QdkL1.0,1/ 6 L"0, (3.35)

where L is a constant that is independent of Qd , and

.d1Þ
�
d2/.t/D

²
d1.t/, 06 t 6 � ,
d2.t � �/, t > � ,

(3.36)

where the left-hand side of (3.36) denotes the � -concatenation of d1 and d2 [27]. Suppose that
keAtk6 L0e�!t for some L0,! > 0. By (3.33), (3.34), and (3.35), we have

kw.�, t /k6 L0e�!t kw.�, 0/kCL0Ct0e�!.t�t0/k QdkL1.0,t0/CL"0. (3.37)

As t !1, the first two terms of (3.37) tend to zero. The result is then proved by the arbitrariness
of "0. �

Returning back to system (1.1) by the inverse transformation (3.2), feedback control (3.4) and
(3.25), and new variable (3.18), we have proved, from Proposition 3.1, the main result of this section.

Theorem 3.1
Suppose that jd j 6 M0 and Pd is also uniformly bounded measurable. Then for any initial value
u.�, 0/ 2H, the closed-loop system of (1.1) following8̂̂<

ˆ̂:
ut .x, t /D�juxx.x, t /, x 2 .0, 1/, t > 0,
ux.0, t /D�jqu.0, t /, t > 0,

ux.1, t /D� Od.t/� j.c0C q/u.1, t /C q.c0C q/
Z 1

0

ejq.1�x/u.x, t /dxC d.t/, t > 0,

(3.38)
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admits a unique solution .u,ut /> 2 C.0,1IH/, and the solution of system (3.38) tends to any
arbitrary given vicinity of zero as t !1, "! 0, where the feedback control is

U.t/D� Od.t/� j.c0C q/u.1, t /C q.c0C q/
Z 1

0

ejq.1�x/u.x, t /dx, t > 0 (3.39)

and Od satisfies ´
POy.t/D�jy2.t/�

1
"
. Oy.t/� y1.t//,

POd.t/D j

"2
. Oy.t/� y1.t//,

(3.40)

8̂̂̂
<
ˆ̂̂:
y1.t/D

Z 1

0

.2x3 � 3x2/

�
u.x, t /C j.c0C q/

Z x

0

ejq.x�y/u.y, t /dy

�
dx,

y2.t/D

Z 1

0

.12x � 6/

�
u.x, t /C j.c0C q/

Z x

0

ejq.x�y/u.y, t /dy

�
dx.

(3.41)

4. NUMERICAL SIMULATIONS

In this section, the finite difference method is applied to compute the real and imaginary parts of
the displacements numerically for both SMC and ADRC to illustrate the effect of the controllers.
Figure 1(a,b) shows the real and imaginary parts of displacement of system (2.40). Here, the steps
of space and time are taken as 0.1 and 0.0001, respectively. We choose q D 1, c D 10, M0 D 4,
� D 1, u.x, 0/ D 10x3 � 2jx2, and d D 2 sin t . The kernel function is approximated by (2.17)
with N D 20. Figure 2(a,b) shows the real and imaginary parts of controller by SMC. Because of
discontinuity, the control vibrates rapidly after some time.

(a) Real part (b) Imaginary part

Figure 1. Real and imaginary parts of displacement with d.t/D 2 sin t by sliding mode control.
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Figure 2. Real and imaginary parts of controller by sliding mode control.
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(a) Real part (b) Imaginary part

Figure 3. Real and imaginary parts of displacement with d.t/ D 2 sin t by active disturbance rejection
control.
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Figure 4. Real and imaginary parts of Od.t/ and disturbance d.t/ D cos t C j sin t by active disturbance
rejection control.
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Figure 5. Real and imaginary parts of the controller by active disturbance rejection control.

Figure 3(a,b) plots the real and imaginary parts of system (3.38) with the same space and
time sizes used in SMC. Other parameters are q D c0 D 1, " D 0.01, u.x, 0/ D x C jx2,
d.t/ D cos t C j sin t . It is seen that in both cases, the displacements are obviously convergent.
Moreover, Figure 4(a,b) shows the convergence of Od to the disturbance d . Figure 5(a,b) shows the
controller by ADRC. It is much better than that by SMC.

5. CONCLUDING REMARKS

In this paper, we apply two different approaches to stabilize a one-dimensional anti-stable
Schrödinger equation subject to boundary control matched disturbance. We first apply the SMC
approach to reject the disturbance. Because in SMC approach, we do not need to estimate the
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disturbance, the disturbance is assumed to be bounded only. The sliding mode surface is found
to be a closed subspace of the state space. The closed-loop system is shown to have a unique (weak)
solution and can reach the SMC in finite time. On the SMC, the system is shown to be exponen-
tially stable with arbitrary prescribed decay rate. Owing to its complex valued nature, the ‘reaching
condition’ for Schrödinger equation is much more difficult than that for wave and beam equations.

The ADRC is introduced to attenuate the disturbance. The disturbance is supposed additionally
to have bounded derivative. The ADRC is an online estimation/cacellation control strategy, and we
design a high gain estimator to estimate the disturbance. The smooth feedback control is designed
(observed-based feedback control in some sense), which contains two parts. The first part is used to
cancel (compensate) the disturbance and the second part is to counter the anti-stability. The well-
posedness of the closed-loop system is presented. It is shown that the closed-loop system can reach
any arbitrary given vicinity of zero as time goes to infinity and high gain tuning parameter goes
to zero.
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