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ON SPECTRUM OF A GENERAL PETROVSKY TYPE
EQUATION AND RIESZ BASIS OF N-CONNECTED
BEAMS WITH LINEAR FEEDBACK AT JOINTS

BAO-ZHU GUO, YU XIE, and XUE-ZHANG HOU

ABSTRACT. A framework of a general type of Petrovsky equation is
formulated. The characteristic equation for eigenvalues of the sys-
tem is derived and the associated eigenfunctions are found. For N-
connected beams with linear feedbacks at joint points, the asymptotic
expansions of eigenvalues and eigenfunctions are further developed,
and the Riesz basis property and the exponential stability are then
concluded.

1. INTRODUCTION

The vibration and control of serially connected strings and Euler—
Bernoulli beams with linear feedback controls at joints have been studied
extensively in the last two decades (see, e.g., [2—4,11,16,17,20,21]). In
addition to the analysis of the distribution of eigenvalues, one also needs
to establish the so-called spectrum-determined growth condition in order to
conclude exponential stability for these infinite-dimensional systems from
spectral analysis. In the case of serially connected strings, the first results
on exponential stability were obtained in [16] for a 2-connected strings with
linear feedbacks at the middle of the span. The stability of N-connected
strings under joints feedbacks was studied in [17]. It is shown in [19] that any
system of N-connected strings with linear feedbacks at the joint points can
be put into a first-order homogeneous hyperbolic equation in the following
general form:

0 |u(z,t)| 0 [u(z,t)
e [v(x,t)} = K(x)% [v(x,t)} , x€(0,1), t>0,
v(1,t) = Du(1,t), u(0,t) = Ev(0,1),

where K(z) = diag{A1(x),...,An(2), un+1(2),..., un(z)} is a diagonal
(n x m)-matrix with real entries \;(z) € C'[0,1], p;(z) € C*[0,1] and

(1.1)
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Ai(z) >0, pj(z) <Oforallz € [0,1],i=1,2,...,N,j=N+1,...,n,

u(x,t) = (u1(z,t), us(z, t),. .. ,uN(x,t))T,

v(z,t) = (vng1(2, ), onso(@,t), ... vn (2, )T

are column vectors in RV and R* ¥, respectively, and D and E are real con-
stant matrices of appropriate sizes. It was proved in [14] that the spectrum-
determined growth condition always holds for system (1.1).

For Euler-Bernoulli beams, using the frequency approach, exponential
stability was studied for a single beam equation with moment boundary
feedback control due to failure of finding the energy multiplier which is one
of the main approaches in proving the exponential stability of the system [5]
and for 2-connected beams [21] under linear feedback control at dissipative
joints. On the other hand, the spectrum analysis was carried out for 2-
connected beams [3] and for general N-connected beams [20] under joint
linear feedback controls. It turned out to be very difficult to establish the
spectrum-determined growth condition for distributed parameter systems
[22]. Euler-Bernoulli beams are not an exception. Even for a single beam
equation, the proof of the exponential stability is difficult despite that its
spectral distribution is clear (see, e.g., [5]).

Recently, an alternative referred to as the Riesz basis approach was pro-
posed which may lead to a more profound result than the stability analysis.
In this approach, instead of the spectrum-determined growth condition, one
tries to establish the Riesz basis property for the system. If successful, the
growth condition can then be concluded as a consequence of existence of
the Riesz basis. The Riesz basis for single beam equations was developed
in [6-8]. The basis property for 2-connected beams was studied in [9, 10].
In this paper, we study the following general Petrovsky type system [15] in
one space variable in normal form:

9 'U/(Z‘,t) 82 (.Z‘,t)
E {’U(:c,t)] - K@ [Z(xvt):| , T E (07 1)7 t>0,
[A, B] [uz(0,t),v,(0,t), u(0,t), v(07t)]T o,
(B, F] [ua (1, ), v,(1, ), u(1,£), (1, 1)] " =0,

(1.2)

where

u(z,t) = [U1($,t)7U2($,t), e ,un(x,t)]T,

v(x,t) = [o1 (2, ), v2(,8), . .., v (2, 1)] "
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are column vectors in R", u, and v, denote the derivatives of w and v with
respect to x, respectively; A, B, E, and F' are real, constant (2n x 2n)-
matrices; K is a constant (2n x 2n)-matrix of the form

0o T
-T 0]’
YT =diag [l;% -2 ..., (-)""'%), >0, i=1,2,...,n.

The contribution of this paper is as follows:

|

(a) a general approach is presented for the analysis of the distribution of
eigenvalues of system (1.2);

(b) the asymptotics of eigenpairs of an N-connected beam equation with
linear joints are obtained;

(c¢) the Riesz basis property is proved for the N-connected beam system.

The paper is organized as follows. In the next section, the characteristic
equation of system (1.2) is derived and the eigenfunctions are found. The
general treatment of the asymptotic expansions of the eigenvalues is pre-
sented in Sec. 3. Section 4 is devoted to a system of N-connected beams.
Riesz basis for this special system is obtained in Sec. 5. The exponential
stability is proved in Sec. 6. Finally, in Sec. 7, we give some remarks on
some unsolved problems.

2. CHARACTERISTIC EQUATION

In this section, we derive the characteristic equation satisfied by eigen-
values of system (1.2). To begin with, we put system (1.2) into the frame-
work of evolutionary equations in an underlying Hilbert space H. Take
H = (L*(0,1))?" and define A : D(A)(C ‘H) — H by

A m = Kaa—; m : (2.1)
o [A, B] [5(0), v,(0), u(0), (0)] " = 0,}

D(A) = {[u,v]T € (H?*(0,1))*"
(B, F] [, (1), v, (1), u(1),0(1)] " =0

and H?(0,1) denotes the usual Sobolev space. With this setting, system
(1.2) can be considered as an abstract equation in H:

% m —A m . (2.2)

Obviously, A is densely defined in H. Next, we consider the eigenvalue
problem for A. For any given ® = [ I, g] Te 'H, solve the following equation:

a-a 2 =[7). (2.3
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ie.,
o0x? |v v

[A, B] [u5(0), v,(0),u(0), v(0)] " =0,
[E, F[u,(1),v,(1),u(1),0(1)]" =0,

9 m K [“’] ~ K,

(2.4)

which can be further written as a first-order ordinary differential equation
of the following form:

Uy Uy
g ve|  [03, AKTY] |vg B K 1o
oxr u - I2n O2n u 0 ’
v v (2.5)
[4, B] [1,(0),v,:(0), u(0),v(0)]" =0,
(B, F] [ua(1), v,(1), u(1), 0(1)] " =0,
where I5, denotes the 2n x 2n identity matrix. Set
02y, AKT
Ky = . 2.6
A [IZn 02n ] ( )
Then the solution to the governing equation of (2.5) is
Uy () u,(0) )
vm(x) _ Kizx ’UI(O) _ ! Kx(z—s) K=o
w@) | = e w(0) | e 0 ds. (2.7)
v(z) v(0)

In order for (2.7) to satisfy (2.5), the last two boundary conditions should
be fulfilled, i.e.,

[4, B] [1,(0), v,(0), u(0),v(0)] " =0,

[, F] e [, (0),0.(0), u(0), v(0)] " (2.8)
- /01 (B, Fef0-9) [K19,0] " ds.
Define
H(\) = h#ﬁﬁ%] - (29)
Then for

h(\) = det H(X) # 0, (2.10)
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it has )
u,(0)
R\, A)® = [02n, T2, efrw 1;‘((00))
v(0) | (2.11)
: o [K1
_/O [02n7I2n]€K ( ) | 0 :|d8,
where
8 o
’l’jf :H_l()\) ' eK/\(l—s) K_lq) s . (212)
vé(()); /0 [, F] [ 0 ]d

Therefore, in this case, A € p(A) and R(A, A) is compact.

On the other hand, if A(A) = 0, for any 4n x 1 nonzero column vector
Z = (u4(0),v,(0),u(0),v(0)) satisfying H(A\)Z = 0, by setting ® = 0 in
(2.7), we have

vl(x) _ _Kyz
w@) | = e Z #£0
v(z)
and hence (u,(z),v,(7),u(x),v(x))T # 0. Therefore,
0,
u o Vg . Kyx
M = [02n, In] | 7| = [O2n, T2n] "7 Z #0 (2.13)
| v
and satisfies )
A “} = [“] .
|v v

In other words, A € o(A) = 0,(A).
Summarizing, we have obtained the following Theorem 1.

Theorem 1. Let h(\) = det H(\) be defined by (2.10). Then h()\) is an
entire function of X\, and the following statements hold:

(i) A€ o(A) if and only if h(N) =0, i.e.,

o(A) ={A | h(\) = 0}. (2.14)
The eigenvalues are symmetric with respect to the real axis.

(ii) For each A € o(A), the corresponding eigenfunction [u,v]T is given
by (2.13), where Z is any nonzero solution of the algebraic equation
H(\NZ =0.

(iii) A is a densely defined discrete operator in H, i.e., A is densely defined
in H and R(\, A) = (A — A)~! is compact for any \ € o(A).
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(iv) If A is dissipative, then A generates a Co-semigroup of contractions

on H.

Proof. Ttems (i)—(iii) follow from the previous discussion, and (iv) follows
from the Lumer—Phillips theorem in semigroup theory of linear operators
(see, e.g., [1]). O

3. ASYMPTOTIC EXPANSION OF EIGENVALUES

In this section, we always assume that A is dissipative. Under this as-
sumption, all eigenvalues of A are located on the left complex half-plane
with conjugate pairs. Let A = p? € o(A). We may consider only A with
m/2 < arg(\) < 7 owing to the symmetry of the distribution of eigenvalues.
For these A\, we have

T <arg(p) < 3. (3.1)
Proposition 1. Assume that (3.1) holds. We set
wnp _i+1
e =y, w= .
) 1 /2
Then y satisfies
fy)+0(p™) =0, |p| — o0, (3.2)
M
where f(y) = . a;y for some reals a; and &; and integer M.
i=1
Proof. Setting
. ( T ) i+1 . (37r> i—1
w1 = ex — = —, wo = exX — = s
L=OP\g) =~ g 2P\ V2 (3.3)
W3 = —W1, W4 = —Wwa,
which are the fourth-roots-of-unity of z% + 1 = 0, we have
Re(pw1) = || cos (arg(p) + 7 ) <0,
3
Re(ps) = |plcos (ar(p) + ) (3.4

. ™ s
= —Iplsin (arg(p) + 7 ) < —Iplcos ()

Now consider the eigenvalue problem A[u, 'v] Toa [u, fv] " in a different
way as compared with (2.13):

£ v f -]
[A, B [u4(0),v,(0), u(0), (0

AB (3.5)
[E, F] [um(l), v,(1),u(1),v(1)

Pt
~
I
=
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where
T:[ul,uQ,...,un,vl,vg,...,vn]T,
~ |0, T =
K = _% Nk T = diag [l%,—l%,...,(—l)”"‘lli].
Let

[Z] =5Y(), 5= [—IZZP flg} , 57 :% ﬁn —ifP] ’
where P = diag [1,—1,...,(—=1)"*!]. Then
Y (x) = —AST'KSY (2)
and —S~1KS is a diagonal matrix,

~ iA2
—S71KS = {Zé\ _(27\2} , A =diag [117l2,...7ln].
n

Then it follows that the general solution of (3.8) is
ewlpr 0 ewgpr 0
Y(.’l?) = |: O'n, €UJ2;LIA:| Cl + |: On ew4ga:A:| CQ?
where C; and Cy are arbitrary constant (2n x 1)-vectors and

wirth = diag {eiPh® . Pt} =1,2,3,4.

(&

Hence the general solution of the governing equation of (3.5) is
u ewlpr ewgpa:A
l:’U:l = SY('I) = |:_Z'Pew1pr ,L'Pewzpr:| C,
ewgpmA ew4pmA
+ |:ipew3pIA iPeWIA] Co.

193

(3.11)

In order for (3.11) to be a solution of (3.5), the constant vectors C; and
C'5 should be chosen so that the boundary conditions of (3.5) be satisfied.

To this end, let

A11 A12 Bll B12
A= B B = ’
|:A21 A22 B21 B22
FEi1 Ei» Fi1 Fio
E = F= )
|:E21 F22:| ’ |:F21 F22:|
T T
C, = [61782] R Cs = [03704] )

where Ay, By, Exi, Fri, k,1 = 1,2, are (n X n)-matrices and
cj=(cj1,,cm)", j=1,2,34.
Then by the conditions
(A, B] [u2(0), v4(0), u(0), (0)] " = 0.
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(B, F] [u, (1), 0.(1),u(1),v(1)] " =0,

we obtain
MC =0,

where C' = [cl, co, 03,04}

M= [Mla My, M3z, M,],

pwlA(Au — iPA12) + B11 — iPBio
pwlA(Agl - ZPAQQ) + B21 — iPBQQ
pwlA(EH — ZPE12) + F11 - ZPF12 ewlpA
pwlA(Egl - ZPEQQ) + F21 - ZPF22 ewlpl\
pCUQA(All + ZPAlg) + B11 + ZPB12
pw2(A2r +iPAsz) + B2y + 1P Bag
Pw2A(E11 +iPE3) + Fiy + iPFyp|ev2Ph

M,y =

M,

pw3sA(Ayy —iPA2) + By — iPBya
png(Agl — ZPAQQ) + B21 — iPBQQ
png(EH — ZPElg) + Fq — ZPF12 ewsPhA
png(Egl - ZPEQQ) + F21 - ZPF22 €w3pA
pw4A(A11 + ZPA12) + B11 + ZPB12
pwal(Azr +iPAsz) + B2y + 1P B
pw4A(E11 + ZPE12) + Fi1 + ZPF12 waph

My

It is seen that C # 0 if and only if det(M) = 0. By (3.4),
e¥t? =0(1), e*?r = O(e_c"") as |p| — o0

for some constant ¢ > 0, and, therefore,

det(e(lerwz)pA)detM = det [M{ Mé Mé Mi] + 0(6*0|P|),

where

! / wipA
M| =My, M= Ms-enrh

_,OLUQA(All + ZPAlg) + Bll + iPBlg
M — pwal(Agy +iPAsz) + Boy + iPBa)
2 = 0 )
L 0
i 0
M, = 0
4 —pw2A(E11 + iPE12) + Fy1 +tPFyo
| —pwal(Ea1 4+ iPEss) + Fay + iPFys

| [pw2A(Eay + iPEas) + Fay + iPFpy|e¥2P? |

| [pwiA(Boy + iPEas) + Fay + iPFpy|e¥+P? |

(3.12)

(3.13)

(3.14)

(3.15)



RIESZ BASIS OF SERIALLY CONNECTED BEAM SYSTEM 195

Now setting e?#1” = y and taking the dominant terms of p, we find that
det(e(“1+@2)PA) det M = 0 can be written equivalently as (3.2) for some f
claimed. The result follows. O

The method adopted in proving Proposition 1 is from [13], which much
simplifies the analysis in [20]. Our next task is to estimate asymptotically
the distribution of eigenvalues A. In general, this seems to be impossible.
In the next section, we show by an example that the general collinear Euler—
Bernoulli beam equation with linear joints that was studied in [20] can be
put into the form of system (1.2). The main result of [20] says that if all

l;, 7 =1,2,...,n, are the same, then there is at most n streams of eigen-
frequencies, each lying asymptotically on a vertical line. More generally, if
ly oot ly =p1 i p2: -+ pn, where p; are all integers, then there is

at most p; + p2 + - - - + p, streams of vertical eigenfrequencies. However, if
the ratios of [; are irrational, then no distinct streams occur, and the eigen-
frequencies form a chaotic pattern. In particular, if all ;, j =1,2,...,n,

are integers, then f(y) is a polynomial of degree less than Z l; = L, and

there are at most L, “streams” of vertical elgenfrequenmes ThlS result is
deduced by a key assumption that f(y) has only simple roots for all p with
sufficiently large moduli.

4. APPLICATION TO A SYSTEM OF IN-CONNECTED BEAMS

In this section, we apply the results of the previous sections to a system
of serially connected beams with linear feedback control at the joint points
discussed in [20] as its type II of four types of general collinear Euler—
Bernoulli beam equation with linear joints. That is, at each joint point, it
is assumed that both displacement and bending moment are continuous, but
rotation and shear force are discontinuous. We find not only the asymptotic
expansion of eigenvalues which is the major concern of [20], but also the
asymptotic expansion of the corresponding eigenfunctions. The governing
equation reads

Y (@, ) + Ypzaa(x,t) =0, L1 <x<Lj, j=12,...,n (4.1)

The boundary conditions are

(4.2)
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The linear feedback controls at the joint points Lj, j =1 — 1, take
the form
y(L7 1) = y(LF 1),
yil)l‘ n y{L’CL‘ 7t )
(L i t) = yaa(Ly 1) j ) , B (4.3)
ytm( i) — ( 1) =(-1) ijt(Lj i1) +pjsz(L_j 1),
ym(Lj,t) - ym(L;,t) = —qfy(L; 1) + (=1) 55922 (L] , 1),
where 0 = Lo < L1 < --- < L, and
p§.>0 >0, pi4+q >0, rjs;€R, 4
pjoz —|—q]ﬁ2 (rj —s;)af >0 Va,BeR. )

Let us define the energy of system (4.1)—(4.4)

ZA (W (2 8) + 42, (3, 8))da

Then a simple computation shows that E (t) < 0 and hence the system is
. For

dissipative.
Without loss of generality, we may assume that n is odd

7=1,2,...,n, we set

—1) — )
(1)71@- + (1)J+1zjx,t>

1
uj(z,t) = 5 {yt <Lj + 5
—1)9+1 —-1)Y -1 )
1 J 1) —1 (4.5)
Uj(xat) = 5 |:yt <LJ + —(7 )2 — lj + (—1)j+1lj$,t>
—1) — .
(1)71@. + (—1)J+1zjx,t>}

(_1>j+1
A
0 < x < 1. Then system (4.1)—(4.4)

where lj = Lj 7Lj_1, j = 1,2,...,77,
can be transformed into the form of (1.2) with the following (2n x 2n)-
matrices:
0 O 0 0 0 0 0 0
0 Py 0 ... 0 0 Py 0 ... 0
A=10 0 Py ... 0 0 0 Py ... 0 , (4.6a)
Py 0 0 0 ... Puiip
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[Pi 0 0 ... 0 Pp 0 0 .. 0
0 Py 0 .. 0 0 Pp 0 .. 0
B—|0 0 Py .. 0 0 0 Py .. 0o |,
Lo 0 0 Pyap 000 Pyl

(4.6b)
[Py 0 0 0 Pa 0 0 0]
0 Pdl 0 0 0 P32 0 0
E= : : : )
0 0 Ppoyy 0 0 0 Puop 0
L0 0 0 Pa 0 0 0 Pl
(4.6¢)
[P 0 0 0 Py 0 0 0
P31 0 0 P32 0 0
F=|: . : : : , (4.6d)
0 0 ... Pyuoy 0 0 0 ... Pugg O
Lo 0 ... 0 0 0 0 .. 0

where for j =1,2,...,n—1,

0 0 0 0
0 0 0 0
le = 1 1 ; PJQ = | L 1 ;
ﬁ ljirl li lj,ﬁl
b b+ i L+
1 -1 1 -1
~ 1 1 ~ -1 -1
Py = pi—r; 0] Py —pi—r; 0
qu + Sj 0 qj2- — Sy 0

In the rest of this paper, we are limit ourselves to system (4.1)—(4.4) but
keep the notation of system (1.2) with A, B, E/, F' specified by (4.6). Divide
by pw; both sides of those equations which contain nonzero factors p in the
system MC = 0; then (3.12) becomes

MC =0, (4.7)

where
M= [Ml My Ms M4], (4.8)
and for 1 <k <4,
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Qok 0 0
0 QQk ng
My = Qlkewk’pll leewkplz 0
L 0 0 0
0 0 0 -
0 0 0
(O) Q(no—l)k: R(n—l)k 7 (4 9)
Qn—2)k€“ =2 R, _o)ekPln= 0
0 0 Qnie“rPln | e
with

Qo1 =[1—1i 1447, Qoo =[1+4 1—41T,
Qoz = Qor, Qo1 = Qoz, Qn1 = Qo1, (4.10)
Qn2 = Qo2 - 1, Qn3z = —Qn1, Qna = —Qna.

Forj=1,3,...,.n—2,1=2,4,...,n—1,

(1+4d)p? — (1 —i)r;
= [1—i+ . ,
le [ pw1
1—d)g? + (1 +14)s; T
—(1+i)—|—( Jaj + )], 1—i, 14i| , (4.11a)
pw1
(1—d)p? — (1 +i)r;
o=|—(1—-19)+ J ,
s [ -9 puwy
14i)g7 + (1 —1i)s; T
gy IGO0 1—¢] . (4.11b)
pwi
(1+4)p? — (1L —i)r;
3= |—(1—1i)+ - :
Q= |-0-) "
1—1i)g? + (1 +1)s; T
1+i+( g +( )J, 1—14, 1+i], (4.11c)
pw1
(1—d)p? — (L +i)r;
a=[1—i+ ! ,
Qss [ pwr
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(1+4)g? 4+ (1 —1)s; B
1+i+ ! , 144, 1—2']; (4.114d)
pw1
Qu[1+i+(1_i)plz_(1+i)”
pw1 ’
1 N o2 1—34 T
S O € ) e k) R Y 1—¢] . (4.12a)
pw1
szz[1+z‘+(1+i)p12_(1_i)”
pwi ’
1—d)g? + (1+i T
1oig A= +( —H)sz’ - 1—&—2']7 (4.12b)
pwW1
Ql?,:[—(1+i)+(1_i)p12_(1+i)”
pw1 '
1 -\ 2 1—34 T
1—i+(+Z)QI+( Z)Sz’ 1414, 1—i], (4.12¢)
pw1
Ql4=[—(1+i)+(l+i)pl2Oi)”
pw1 ’
1—i)g? + (1+i T
S S € ) e e ) B 1+i] . (4.12d)
pw1
Ryp=[1+i, 1—i, —(1+4), 1-4d],
Ryp=[14i, —(1—i), —(1—i), 1+i]", i
Rjg=[—(1+i), —(1—i), —(1+i), 1-i",
Ru=[—0+i), 1—i, —(1—d), 1+id";
Ry=[l—i, 14i, —(1—i), 1+i,
Rp=[—(1—i), 1+i, —(1+i), 1-i, i
R =[-0—i), —(1+i), —(1—i) 1+,
Ru=[1—i, —(1+d), —(1+d), 1-i]".

Lemma 1. Let A be the operator associated with system (4.1)—(4.4) and
A=p? €o(A), n/4 < arg(p) < n/2. Then

(k+1/2)mw

-1

pr = (4.15)

where k are sufficiently large positive integers.
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Proof. Note that A = p* € o(A) if and only if det M = 0. Now multiplying
det M by e(“1Fw2)rln e can obtain (3.15) with Mj, j =1,2,3,4, defined
by

M| =M, M= DM, M= Ms-e’™ M,= M, e’ (4.16)

where Mj, Jj =1,2,3,4, are obtained from corresponding M; in (4.9) after
setting QQjo = Rjp = 0 for odd j and Q4 = R;4 = 0 for even j. The others
remain the same as in (4.10)—(4.14).

After a straightforward computation, we obtain

det [My{, Mj, M}, M;| =det M’ +O(p™") (4.17)
with the following (4n x 4n)-matrix:
[ Ng 0 0o ... 0 0 0
Ni1 Nio 0 .. 0 0 0
0 Ns; Nay ... 0 0 0
M= : S IR
0 0 0 . N(n—2)1 N(n—2)2 0
0 0 0o ... 0 Nim-1)1 Nm-1)2
| O 0 0o ... 0 0 N,
where
No = [Qo1, Qo2, Qoz - 1", 0],
N, = [in : ewlpln’ 0, Qn37 Qn4]7
le = [Q;l ! eUJ1pljﬂ 03 Q;37 Q;4]7
Njo = [Rj1 - €541, 0, Rjs, Ry,
Nll = [Q;h Q;27 Q;:} . eW1pll7 0}7
Nio = [Rin, Riz, Ry -1+, 0],

j=1,3,...,n—2, 1=24,....,n—1,
and Qoi, Qni, and Rj; are the same as in (4.10), (4.13), and (4.14), and Q;l
are given by
[1—i, —(1+d), 1—i, 1+,
[—(1—i), 140, 1—i, 144",
Qu=[1—i 1+i, 144, 1-i,
[1+i, —(1—d), 1+i, 1-4d,
[1+i, 1—i, 1—i, 1+,
[—(1+i), 1—i, 1+i, 1—i]",

j=1,3,....n—2, 1=24,...,n—1.
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A similar computation as in [20] shows that
det M" = (=1)(TD/2 .16 . i - det S, (4.19)

where S is a (2n x 2n)-matrix of the form (4.18) with N; being replaced by
N
J

N[/) — [17 ew1pl1]7 erL — [_ ewwln7 1]’
_ N\ pw1plp ; _ New1Plk+1 (1 _ 5
NI = [ (1+1)e 1+ z} N = [(1 i)e (1 z)} 7

(1+i)ewrPle 144 (1 —iq)ewrPlerr 1
N — —1+i (1—i)e=rrh ) _ [l (L d)erthin
1 1—i  (I—d)errl]” 27 (144 (14d)e=rPlsr |

k=1,3,....n—2, 1=24,...,n—1.
Using the same approach as in [20], we can obtain
detS:4"_1-So-Sl-~-Sn

=g L. (62wlﬂ(ll+---+ln) +1) = g1, (e2w1an +1), (4.20)
where
SO = [1, euhplq’ Sn — [1’ ew1pln]T
0 1 .
Sj = |:ew1p(lj+lj+1) 0:| , ] = 1,3,...,7’1;—27 (421)
0 ewrrli+li+1)
Sl—[l 0 , =24 ....n—1

Combining (4.17), (4.19), and (4.20), we finally find that det M = 0 is
equivalent to
e ln 114 0(p™ 1) =0. (4.22)

Therefore, in this case f(y) = y“» +1 and f(y) = 0 does possess only simple
zeros. By the Rouché theorem, the solution of (4.22) can be found as

2w1pLy, = (2k + 1)mi 4+ O(p™ 1)
for sufficiently large positive integers k, which proves Lemma 1. O

Now we are in a position to estimate asymptotically the eigenfunctions
[uk, vk]T corresponding to Ay = p7 with py given by (4.15).

Lemma 2. Let [uk, vk]T be the eigenfunctions corresponding to A\, = pr
with pg given by (4.15) for all sufficiently large positive integers k:
T T
up = I:ulk; ey unk::l ) Vi = I:Ul]m ey Unk] .
Then for odd j, we have
(k =+ 1/2)7TLj { sin (k + 1/2)71’([/]‘,1 + ljx)
L, Ly

ujk(z) = sin
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(k+1/2)7l;z 1/Dw L.
+267#] Sin(k—"_/L#} +O(k—1)7 (4.23)
k+1/2)rL; k+1/2m(L 1 +1;
vjk(w)z—i-Sin( +L/)7Tj{sin( + /)Wéﬂ 1+ z)
(k+1/2)7l ;= -
—4e” ~ Lm .Sin(kJrl/LmLJl} +O(k71); (4.24)

for even j, we have

k+1/2)rL; k+1/2)m(L; — 1
ujk(x):SiIl( +1/2)rL; sin( +1/2)m(L; — ;)
L, Ly,
(k+1/2)71; (1—2) k+1/2)nL;_
—ie” " Ln -sin(‘L/L#} +0(k™h), (4.25)
1/2)rL; 1/2)m(L; — 1
vjk(ﬂc) =1 -sin (k+ / >7T 2 { sin (k+ / >7T( - ljx)
Ly, Ly,
(k+1/2)ml;(1—x) k+1/2)nL;_
tieT T In -sin (—’—/L#} +O(k™), (4.26)
where k € 7.

Proof. Since some calculations in proving Lemma 2 and Lemma 1 are over-
whelming, we postpone the proof of Lemma 2 in the Appendix. O

We summarize these results as the following Theorem 2.

Theorem 2. Let A be the operator of system (4.1)-(4.4), o(A) =
Dk, A} Let {[ug,vi]7, [ug, )T} be the corresponding eigenfunctions.
Then A\, = pi and u, = [ulk,...,unk]T have the asymptotic expansions
(4.15) and (4.23), respectively, for sufficiently large positive integers k.

5. RIESZ BASIS GENERATION FOR SYSTEM (4.1)—(4.4)

Let us recall that for a closed linear operator A in a Hilbert space H,
a nonzero z € H is called a generalized eigenvector of A, corresponding to
an eigenvalue A\ of A with finite algebraic multiplicity, if there is a positive
integer n such that (A — A)"z = 0. A sequence {¢,}° in H is called a
Riesz basis for H if there exists an orthonormal basis {e,}{° in H and a
linear bounded invertible operator in H such that

Top=€,, n=12....

For a linear operator A in a Hilbert space H, let {\,}22; = 0(A) with \,, #
Am for n £ m be the spectrum of A. Suppose that the algebraic multiplicity
of A, is my, (<o0). Let {thy,, }7™ be the set of generalized eigenvectors of A
associated with A,. Then if {¢,, | 1 <i <m,, n=1,2,...} form a Riesz
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basis for H, then the Cy-semigroup et generated by A can be represented
as

o Mp o0 Mn
ey = Z etnt Z Unjfrj(t)n; Yo = Z Zaﬂjd]ﬂj € H, (5.1)
n=1 j=1 n=1j=1

where f,,;(t) are polynomials of order not greater than m,,. In particular,
if m, = 1 for all sufficiently large n, then the the spectrum-determined
growth condition holds, i.e. w(A) = S(A), where w(A) is the growth bound
of e4t, S(A) is the spectral bound of A.

The following result developed recently in [7] turns out to be very useful
for the verification of Riesz basis generation for beam equations.

Theorem 3. Let A be a densely defined discrete operator. If there are
an integer N > 0 and a sequence of generalized eigenvectors {1n}5o .y of
A such that

Z H(rbn - 1/Jn||2 < 00,

N+1
where {¢,}52 1 is a Riesz basis for H, then the following assertions hold.

(i) There are constant M > N and generalized eigenvectors {10} of
A such that {tno} U{Yn}371 form a Riesz basis for H.

(i) Let {tno}" U {n}3341 correspond to the eigenvalues {on}7° of A.
Then o(A) = {0,}5°, where o, is counted according to its algebraic
multiplicity.

(iii) If there is an integer My > 0 such that o, # o, for all m,n > Moy,
then there is an integer Ny > My such that all o, are algebraically
simple for all n > M.

The main result of this section is the following Theorem 4.

Theorem 4. For system (4.1)—(4.4), if there exists j, j € {1,...,n—1},
such that =% = @, where m and i are coprime integers and m is odd, then
n
the followinz assertions hold.

(i) There is a sequence of generalized eigenvectors of the system operator
A, which forms a Riesz basis for H.

(ii) Let o(A) = {Mg, Ai}. Then A\, = pi with py, given by (4.15) are
algebraically simple for all sufficiently large positive integers k.

Therefore, for the Cy-semigroup e' generated by A, the spectrum-

determined growth condition w(A) = S(A) holds.

Proof. We show that [uk, vk]T determined by Theorem 2 satisfy the con-
dition of Theorem 3 for a properly chosen reference Riesz basis. To do this,
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we define another operator A : D(A)(C ‘H) — H by the rule

~|u 82 U
AM‘@%L} (5.2)
_ -
D(A) = {[U,U]T € (H2(07 1))2n [A’?] [Ux(o)ﬁvx(()),u(O),’v(O)]T = 0,}’
(B, F] [ua (1), v,(1), u(1),v(1)] =0

where A and E are given in (4.6), B and F are the same as B and F but
with p3, ¢7, 75, sj, 5 = 1,...,n — 1, vanishing. Then it is easy to see that

Ais skew-adjoint in H with compact resolvent. The results of the previous
sections are still valid for the eigenvector [uy,vx]? of A, where

ﬂk = [ﬂlk,...,ﬂnk]T, ”l}k = [51ka-~-75nk]Ta ﬂjk., fﬁjk, j: 1,...,71,
and without loss of generality, we assume that & € Z. Moreover, u;;, and
U1, have the same asymptotics as u;, and vj; given in (4.23)—(4.26).

Since there exists j, j € {1,...,n — 1}, such that

j . m

L, n

it follows from [21] that there exists a constant ¢ > 0 such that

(k+1/2)rL;
LTL

A simple calculation shows that
T2 ot ~
@5, = X [ (an@P + @R
j=1
j=1

as k — oo. By (5.3), we see that there exist positive constants m and M
independent of k such that

, m and 7 are coprime integers, m is odd,

sin >c¢ forall keZ.

) (5.3)

k+1/2)7TLj [1+O(k‘_1)]

-
Sin Ln

2
m < H[ak,%k]THH<M for all k € Z.

Since A is skew-adjoint with compact resolvent, it follows from general

~ T . . .
operator theory that [uk, ’Uk] , k € Z, together with their conjugates, form
a Riesz basis for H. .

Furthermore, since [ﬂk,ﬁk} have the same asymptotic expansions as

[uk, vk]T, we see that there exists a N > 0 such that

i H [umvk]T — [ﬁk,ik]THi = i O(k™?) < 0. (5.4)

k>N k>N
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The same is true for their conjugates. Hence all conditions of Theorem 3
are satisfied. The result follows. O

6. EXPONENTIAL STABILITY FOR SYSTEM (4.1)—(4.4)

Theorem 5. Under the condition of Theorem 4, system (4.1)—(4.4) is
exponentially stable. That is, there exist positive M and w such that the
Co-semigroup et generated by A satisfies the inequality

HeAtHH < Me™ ¥t
Proof. We write further (4.17) as
det[M], Mb, Mz, Mj]=det M’ +ap~t+O0(p~?).
After a long but straightforward computation, we find that

n—1

1 . oL —pwi L
0= o LN+ ) s sl et
j=1
Hence (4.22) can be written as
1 n—1
wipLn ; wiL; _ —pwil; -2\ __
1P +1+m;[2(pﬁ+q?)+rj+8j](ep i —emrrla)? 1 0(p7?) = 0.
(6.1)
k+1/2
(Jrllﬂ + O(k™!) into (6.1) and comparing the
order of both sides as in [7],T§zve can obtain the following asymptotic expres-
sions of eigenvalues:

Substituting px = —

- (k+1/2)7rw1 . 1
PE= 8(k + 1/2)mw;
n—1
2, 2 . .o (k+1/2)7L; 2
x Zl (03 + ¢ —i(rj + s;)] sin I L+ 0k™?),
=
n—1
1 . o (E+1/2)1L;
— 2 2 4 2\ gip2 W /)R (6.2)
)\k Pk 4Ln j:1(p] +q])sln Ln

n—1

(n+1/2)*r? 1 .o (k+1/2)7L;
+ T+EZ(Tj+Sj)SID2L7J
n n j=1 n

+O0(k™Y), k- oo

Finally, since system (4.1)—(4.4) is dissipative, it is easily shown that there
isno A € o(A) such that Re A = 0. Therefore, A generates an asymptoti-
cally stable Cyp-semigroup on H. By (6.2), we see that this Cy-semigroup is
also exponentially stable due to the spectrum-determined growth condition.
The proof is complete. O
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7. ADDITIONAL REMARKS

It is known that for the first-order homogeneous hyperbolic system (1.1),
an equivalent new norm can be introduced for the state Hilbert space so
that the system be dissipative under the new norm (see [14]) and hence
the well-posedness is easily established by the Lumer—Phillips theorem in
semigroup theory of linear operators [1]. However, such method seems not
applicable to our system (1.2). Thus, the well-posedness for the general
system (1.2) is still an unsolved problem. Our results in Sec. 5 show that in
some cases, Riesz basis generation can be valid. But even for some cases of
n = 1, we do not know whether system (1.2) is a Riesz spectral system [12].
To explain this, let

St U R E e E
in (1.2). Then this system is equivalent to the following system:
Y (T, 1) + Ypzaa (2, ) =0, 0<axz <1, >0,
Y(0,8) = 42(0,1) = Y2 (1,) = 0, (7.1)
Yoaz (1, 1) = Yt (1, 1),

which was studied in [18]. It was shown that this system is associated with
an exponential stable 1-time integrated semigroup. In this case, det H(\) =
0 reduces to

cosh(7) cos(7) + isinh(7)sin(r) +1 =0

and the eigenvalues \,, = i72

Tm=(i+1)(n+1/2)7, n=01,.... (7.2)

Moreover, each eigenvalue has the algebraic multiplicity 2 and the corre-
sponding generalized eigenfunctions can be found as

Bﬂ _ cosh(mz) m i cos(ma) {_{J ,
[“1“} — (z — i) sinh(rz) m + i+ ) sin(rae) [_12} .

can be found explicitly as

(7.3)

Vin

However, we still do not know if there is a Cy-semigroup associated with
(7.1) although we have explicit expressions of generalized eigenfunctions.

8. APPENDIX: PROOF OF LEMMA 2

Since characteristic equation (4.22) of system (4.1)—(4.4) possesses only
simple roots for p with sufficiently large modulus, we can obtain correspond-
ing eigenfunctions by calculating the determinant of the matrix ]\A/E which is
obtained by replacing one of the rows of M in (4.7)byujorv;,j=1,...,n,
in (3.11), such that detZ\Ajj # 0. Fix j, 1 < j < n, and substitute u; into
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(2n+ j)th row of M and then multiply det ]\fZ] by e(@1tw2)pLn - After setting
all terms containing e“2”'s for some s to be zero and taking dominant terms
with respect to the order of p and exchanging lines and rows in this matrix,
we obtain

uj(z) = det M; = e~ (“r+w2)pbn [ det M! + O(p~ Y], (8.1)

where ]\A/fj' has the same form as M’ in (4.18) but with N;; and N;, replaced
by Nﬂ and Njg of the following form:

No = No,
< [(1—i)errln 0 —1+i 1—i
N’ﬂ - ewlplnm erplnm ewlpln(l—z) engpln(l—r) ’

and

le = [@jla @an ©j37 @]4]7
Njo = [Rj, Ry, Rjs, Ry,
where for odd j,
ew1Pli® (14 q) - ePli (1 —d)-ePl, (1414)- ewlplj]T’

et 0, 0, 0]"

b

[
[
[
Qja = bigle?5 0= 14, 144, 1—i]",
Rjp= [0, (1—d)erflitr,  —(14i)erplivi (1 —iq)errlint]”
[
[

1"

[
Qs = [P0 (1 —i)erfli (14 i)erfl, (1 —i)erel]”
Qja = [e=2Ps0=2) 0, 0, 0],
[
[
[

0, 1+i, —(1—4), 1+,
0, 1+i, —(1+4), 1—i]"
Ris=1[0, —(L+i)errins, —(1—i)erlin, (14 i)erlin]”

)
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Ryu=10, 0, 0, 0],

Let us consider only odd j # n, since other cases could be treated simi-
larly. We can obtain (cf. (4.19))

det M, = (=1)("+D/2 167 % - det S;, (8.2)

where like S in (4.19), §j is a (2n x 2n)-matrix and can be obtained from
S with Nj; and Nj, replaced by Nj; and N, of the following form:

N a;j B;
Nj = [(1 —i)e“rPli 11—’
A _%ewlplﬁrl . ew2pli(1—x) _%ewzpla‘(lﬂﬁ) (8.3)
2= —(1 4 i)ewrPlits R ’
where
oy = ewlpljm +Z~6wgpljx + 1- iewlplj . ewgplj(lfz)7
5j — ewlplj(l—w) +iew1plj . ewgplj;c _ 1—2i_iew2plj(1—1).
Next, similarly to (4.20), we have
detgj :4’”72'50'51"'53‘_1 '§j 'Sj+1"'5n, (84)
where S;, 1 =0,1,...,n, [ # j, are given by (4.21) and §j is given by
g = |2 2, (8.5)
Sjz Sja
where
§j1 = —(14d)erPlitlini=liz) 4 (] _ j)errlitlivg | gwzplz
§j2 _ _(1 + i)ewlplj(lfa:) + (1 o i)ewlplj . erplja:
+ (1 + i)ewzplj(l—x),
~ 8.6
Sjg _ (1 + i)ewlp(lj+lj+1) . ew2pli(1=2) + (1 + Z’)ewlp(lj+1+lj$) ( )
—(1- Z’)ewwlﬂl - ew2PliT
Sz = (14 14)e1Pli® — (1 — i)ev2rli®,
Substituting (8.5) and (8.6) into (8.4) gives
det §j — 471,—2(1 + Z) . (ewlpLj _ e—wlpLj) . [ewlp(Lj,1+ljx) (8 7)

— emwrp(Lj—atle) 4 jewepljz (ewlpLJ‘—l _ e*WlPLj—l)].
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For either even j or j = n, we always have

det §j =421 — i) - (e¥rPli — gmwrrly) . [e“’lp(Lj_ljf)

_ emwrplly—lm) _ ;owapli(1—m) (ewlpLj—l _ e*wlpLjfl)], (8.8)
i=24,...,n—1,
det §n — —gn—1 . gwipln [emp(Ln_lJrlnr) _ efwlp(Ln_lﬂnx)
(8.9)

+ jew2pPlnt (ewlan—l _ e*“’lan—l)]'

Combining (8.1), (8.2), and (8.7)—(8.9), we finally obtain (up to a nonzero
scalar) (4.23)—(4.26). The proof is complete.
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