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ON SPECTRUM OF A GENERAL PETROVSKY TYPE
EQUATION AND RIESZ BASIS OF N-CONNECTED

BEAMS WITH LINEAR FEEDBACK AT JOINTS

BAO-ZHU GUO, YU XIE, and XUE-ZHANG HOU

Abstract. A framework of a general type of Petrovsky equation is
formulated. The characteristic equation for eigenvalues of the sys-
tem is derived and the associated eigenfunctions are found. For N -
connected beams with linear feedbacks at joint points, the asymptotic
expansions of eigenvalues and eigenfunctions are further developed,
and the Riesz basis property and the exponential stability are then
concluded.

1. Introduction

The vibration and control of serially connected strings and Euler–
Bernoulli beams with linear feedback controls at joints have been studied
extensively in the last two decades (see, e.g., [2–4, 11, 16, 17, 20, 21]). In
addition to the analysis of the distribution of eigenvalues, one also needs
to establish the so-called spectrum-determined growth condition in order to
conclude exponential stability for these infinite-dimensional systems from
spectral analysis. In the case of serially connected strings, the first results
on exponential stability were obtained in [16] for a 2-connected strings with
linear feedbacks at the middle of the span. The stability of N -connected
strings under joints feedbacks was studied in [17]. It is shown in [19] that any
system of N -connected strings with linear feedbacks at the joint points can
be put into a first-order homogeneous hyperbolic equation in the following
general form:

∂

∂t

[
u(x, t)
v(x, t)

]
= K(x)

∂

∂x

[
u(x, t)
v(x, t)

]
, x ∈ (0, 1), t > 0,

v(1, t) = Du(1, t), u(0, t) = Ev(0, t),
(1.1)

where K(x) = diag {λ1(x), . . . , λN (x), µN+1(x), . . . , µn(x)} is a diagonal
(n × n)-matrix with real entries λi(x) ∈ C1[0, 1], µj(x) ∈ C1[0, 1] and
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λi(x) > 0, µj(x) < 0 for all x ∈ [0, 1], i = 1, 2, . . . , N , j = N + 1, . . . , n,

u(x, t) = (u1(x, t), u2(x, t), . . . , uN (x, t))T ,

v(x, t) = (vN+1(x, t), vN+2(x, t), . . . , vn(x, t))T

are column vectors in R
N and R

n−N , respectively, andD and E are real con-
stant matrices of appropriate sizes. It was proved in [14] that the spectrum-
determined growth condition always holds for system (1.1).

For Euler–Bernoulli beams, using the frequency approach, exponential
stability was studied for a single beam equation with moment boundary
feedback control due to failure of finding the energy multiplier which is one
of the main approaches in proving the exponential stability of the system [5]
and for 2-connected beams [21] under linear feedback control at dissipative
joints. On the other hand, the spectrum analysis was carried out for 2-
connected beams [3] and for general N -connected beams [20] under joint
linear feedback controls. It turned out to be very difficult to establish the
spectrum-determined growth condition for distributed parameter systems
[22]. Euler–Bernoulli beams are not an exception. Even for a single beam
equation, the proof of the exponential stability is difficult despite that its
spectral distribution is clear (see, e.g., [5]).

Recently, an alternative referred to as the Riesz basis approach was pro-
posed which may lead to a more profound result than the stability analysis.
In this approach, instead of the spectrum-determined growth condition, one
tries to establish the Riesz basis property for the system. If successful, the
growth condition can then be concluded as a consequence of existence of
the Riesz basis. The Riesz basis for single beam equations was developed
in [6–8]. The basis property for 2-connected beams was studied in [9, 10].
In this paper, we study the following general Petrovsky type system [15] in
one space variable in normal form:


∂

∂t

[
u(x, t)
v(x, t)

]
= K

∂2

∂x2

[
u(x, t)
v(x, t)

]
, x ∈ (0, 1), t > 0,[

A,B
][

ux(0, t),vx(0, t),u(0, t),v(0, t)
]T = 0,[

E,F
][

ux(1, t),vx(1, t),u(1, t),v(1, t)
]T = 0,

(1.2)

where

u(x, t) =
[
u1(x, t), u2(x, t), . . . , un(x, t)

]T
,

v(x, t) =
[
v1(x, t), v2(x, t), . . . , vn(x, t)

]T
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are column vectors in R
n, ux and vx denote the derivatives of u and v with

respect to x, respectively; A, B, E, and F are real, constant (2n × 2n)-
matrices; K is a constant (2n× 2n)-matrix of the form

K =
[

0 Υ
−Υ 0

]
,

Υ = diag
[
l−2
1 ,−l−2

2 , . . . , (−1)n+1l−2
n

]
, lj > 0, i = 1, 2, . . . , n.

The contribution of this paper is as follows:
(a) a general approach is presented for the analysis of the distribution of

eigenvalues of system (1.2);
(b) the asymptotics of eigenpairs of an N -connected beam equation with

linear joints are obtained;
(c) the Riesz basis property is proved for the N -connected beam system.
The paper is organized as follows. In the next section, the characteristic

equation of system (1.2) is derived and the eigenfunctions are found. The
general treatment of the asymptotic expansions of the eigenvalues is pre-
sented in Sec. 3. Section 4 is devoted to a system of N -connected beams.
Riesz basis for this special system is obtained in Sec. 5. The exponential
stability is proved in Sec. 6. Finally, in Sec. 7, we give some remarks on
some unsolved problems.

2. Characteristic equation

In this section, we derive the characteristic equation satisfied by eigen-
values of system (1.2). To begin with, we put system (1.2) into the frame-
work of evolutionary equations in an underlying Hilbert space H. Take
H = (L2(0, 1))2n and define A : D(A)(⊂ H) → H by

A
[
u
v

]
= K

∂2

∂x2

[
u
v

]
, (2.1)

where

D(A) =

{
[u,v]T ∈ (H2(0, 1))2n

∣∣∣∣∣
[
A,B

][
ux(0),vx(0),u(0),v(0)

]T = 0,[
E,F

][
ux(1),vx(1),u(1),v(1)

]T = 0

}
and H2(0, 1) denotes the usual Sobolev space. With this setting, system
(1.2) can be considered as an abstract equation in H:

d

dt

[
u
v

]
= A

[
u
v

]
. (2.2)

Obviously, A is densely defined in H. Next, we consider the eigenvalue
problem for A. For any given Φ =

[
f , g

]T ∈ H, solve the following equation:

(λ−A)
[
u
v

]
=
[
f
g

]
, (2.3)
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i.e., 
∂2

∂x2

[
u
v

]
= λK−1

[
u
v

]
−K−1Φ,[

A,B
][

ux(0),vx(0),u(0),v(0)
]T = 0,[

E,F
][

ux(1),vx(1),u(1),v(1)
]T = 0,

(2.4)

which can be further written as a first-order ordinary differential equation
of the following form:

∂

∂x


ux

vx

u
v

 =
[
02n λK−1

I2n 02n

]
ux

vx

u
v

−
[
K−1Φ

0

]
,

[
A,B

][
ux(0),vx(0),u(0),v(0)

]T = 0,[
E,F

][
ux(1),vx(1),u(1),v(1)

]T = 0,

(2.5)

where I2n denotes the 2n× 2n identity matrix. Set

Kλ =
[
02n λK−1

I2n 02n

]
. (2.6)

Then the solution to the governing equation of (2.5) is
ux(x)
vx(x)
u(x)
v(x)

 = eKλx


ux(0)
vx(0)
u(0)
v(0)

−
∫ x

0

eKλ(x−s)

[
K−1Φ

0

]
ds. (2.7)

In order for (2.7) to satisfy (2.5), the last two boundary conditions should
be fulfilled, i.e.,

[
A,B

][
ux(0),vx(0),u(0),v(0)

]T = 0,[
E,F

]
eKλ

[
ux(0),vx(0),u(0),v(0)

]T
=
∫ 1

0

[
E,F

]
eKλ(1−s)

[
K−1Φ, 0

]T
ds.

(2.8)

Define

H(λ) =
[ [

A,B
][

E,F
]
eKλ

]
. (2.9)

Then for

h(λ) = detH(λ) �= 0, (2.10)
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it has

R(λ,A)Φ =
[
02n, I2n

]
eKλx


ux(0)
vx(0)
u(0)
v(0)


−
∫ x

0

[
02n, I2n

]
eKλ(x−s)

[
K−1Φ

0

]
ds,

(2.11)

where 
ux(0)
vx(0)
u(0)
v(0)

 = H−1(λ)

 0∫ 1

0

[
E,F

]
eKλ(1−s)

[
K−1Φ

0

]
ds

 . (2.12)

Therefore, in this case, λ ∈ ρ(A) and R(λ,A) is compact.
On the other hand, if h(λ) = 0, for any 4n × 1 nonzero column vector

Z = (ux(0),vx(0),u(0),v(0))T satisfying H(λ)Z = 0, by setting Φ = 0 in
(2.7), we have 

ux(x)
vx(x)
u(x)
v(x)

 = eKλxZ �= 0

and hence (ux(x),vx(x),u(x),v(x))T �= 0. Therefore,

[
u
v

]
=
[
02n, I2n

] 
ux

vx

u
v

 =
[
02n, I2n

]
eKλxZ �= 0 (2.13)

and satisfies

A
[
u
v

]
= λ

[
u
v

]
.

In other words, λ ∈ σ(A) = σp(A).
Summarizing, we have obtained the following Theorem 1.

Theorem 1. Let h(λ) = detH(λ) be defined by (2.10). Then h(λ) is an
entire function of λ, and the following statements hold :

(i) λ ∈ σ(A) if and only if h(λ) = 0, i.e.,

σ(A) = {λ ∣∣ h(λ) = 0}. (2.14)

The eigenvalues are symmetric with respect to the real axis.
(ii) For each λ ∈ σ(A), the corresponding eigenfunction

[
u,v

]T is given
by (2.13), where Z is any nonzero solution of the algebraic equation
H(λ)Z = 0.

(iii) A is a densely defined discrete operator in H, i.e., A is densely defined
in H and R(λ,A) = (λ−A)−1 is compact for any λ ∈ σ(A).
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(iv) If A is dissipative, then A generates a C0-semigroup of contractions
on H.

Proof. Items (i)–(iii) follow from the previous discussion, and (iv) follows
from the Lumer–Phillips theorem in semigroup theory of linear operators
(see, e.g., [1]).

3. Asymptotic expansion of eigenvalues

In this section, we always assume that A is dissipative. Under this as-
sumption, all eigenvalues of A are located on the left complex half-plane
with conjugate pairs. Let λ = ρ2 ∈ σ(A). We may consider only λ with
π/2 ≤ arg(λ) ≤ π owing to the symmetry of the distribution of eigenvalues.
For these λ, we have

π

4
≤ arg(ρ) ≤ π

2
. (3.1)

Proposition 1. Assume that (3.1) holds. We set

e2ω1ρ = y, ω1 =
i+ 1√

2
.

Then y satisfies
f(y) +O(ρ−1) = 0, |ρ| → ∞, (3.2)

where f(y) =
M∑
i=1

aiy
ξi for some reals ai and ξi and integer M .

Proof. Setting

ω1 = exp
( π

4i

)
=
i+ 1√

2
, ω2 = exp

(
3π
4i

)
=
i− 1√

2
,

ω3 = −ω1, ω4 = −ω2,

(3.3)

which are the fourth-roots-of-unity of x4 + 1 = 0, we have

Re(ρω1) = |ρ| cos
(
arg(ρ) +

π

4

)
≤ 0,

Re(ρω2) = |ρ| cos
(

arg(ρ) +
3
4
π

)
= −|ρ| sin

(
arg(ρ) +

π

4

)
≤ −|ρ| cos

(π
4

)
.

(3.4)

Now consider the eigenvalue problem A[u,v]T = λ
[
u,v

]T in a different
way as compared with (2.13):

∂2

∂x2

[
u
v

]
= λK−1

[
u
v

]
= −λK̃

[
u
v

]
,[

A,B
][

ux(0),vx(0),u(0),v(0)
]T = 0,[

E,F
][

ux(1),vx(1),u(1),v(1)
]T = 0,

(3.5)
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where
T = [u1, u2, . . . , un, v1, v2, . . . , vn]T ,

K̃ =

[
0n Υ̃
−Υ̃ 0n

]
, Υ̃ = diag

[
l21,−l22, . . . , (−1)n+1l2n

]
.

(3.6)

Let [
u
v

]
= SY (x), S =

[
In In
−iP iP

]
, S−1 =

1
2

[
In iP
In −iP

]
, (3.7)

where P = diag
[
1,−1, . . . , (−1)n+1

]
. Then

Y ′′(x) = −λS−1K̃SY (x) (3.8)

and −S−1K̃S is a diagonal matrix,

−S−1K̃S =
[
iΛ2 0n

0n −iΛ2

]
, Λ = diag

[
l1, l2, . . . , ln

]
. (3.9)

Then it follows that the general solution of (3.8) is

Y (x) =
[
eω1ρxΛ 0n

0n eω2ρxΛ

]
C1 +

[
eω3ρxΛ 0n

0n eω4ρxΛ

]
C2, (3.10)

where C1 and C2 are arbitrary constant (2n× 1)-vectors and

eωjρxΛ = diag
{
eωjρl1x, . . . , eωjρlnx

}
, j = 1, 2, 3, 4.

Hence the general solution of the governing equation of (3.5) is[
u
v

]
= SY (x) =

[
eω1ρxΛ eω2ρxΛ

−iPeω1ρxΛ iPeω2ρxΛ

]
C1

+
[

eω3ρxΛ eω4ρxΛ

−iPeω3ρxΛ iPeω4ρxΛ

]
C2.

(3.11)

In order for (3.11) to be a solution of (3.5), the constant vectors C1 and
C2 should be chosen so that the boundary conditions of (3.5) be satisfied.
To this end, let

A =
[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
,

E =
[
E11 E12

E21 F22

]
, F =

[
F11 F12

F21 F22

]
,

C1 =
[
c1, c2

]T
, C2 =

[
c3, c4

]T
,

where Akl, Bkl, Ekl, Fkl, k, l = 1, 2, are (n× n)-matrices and

cj = (cj1, · · · , cjn)T , j = 1, 2, 3, 4.

Then by the conditions[
A,B

][
ux(0),vx(0),u(0),v(0)

]T = 0,
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E,F

][
ux(1),vx(1),u(1),v(1)

]T = 0,

we obtain
MC = 0, (3.12)

where C =
[
c1, c2, c3, c4

]T and

M =
[
M1, M2, M3, M4

]
, (3.13)

M1 =


ρω1Λ(A11 − iPA12) +B11 − iPB12

ρω1Λ(A21 − iPA22) +B21 − iPB22[
ρω1Λ(E11 − iPE12) + F11 − iPF12

]
eω1ρΛ[

ρω1Λ(E21 − iPE22) + F21 − iPF22

]
eω1ρΛ

 ,

M2 =


ρω2Λ(A11 + iPA12) +B11 + iPB12

ρω2Λ(A21 + iPA22) +B21 + iPB32[
ρω2Λ(E11 + iPE12) + F11 + iPF12

]
eω2ρΛ[

ρω2Λ(E21 + iPE22) + F21 + iPF22

]
eω2ρΛ

 ,

M3 =


ρω3Λ(A11 − iPA12) +B11 − iPB12

ρω3Λ(A21 − iPA22) +B21 − iPB22[
ρω3Λ(E11 − iPE12) + F11 − iPF12

]
eω3ρΛ[

ρω3Λ(E21 − iPE22) + F21 − iPF22

]
eω3ρΛ

 ,

M4 =


ρω4Λ(A11 + iPA12) +B11 + iPB12

ρω4Λ(A21 + iPA22) +B21 + iPB22[
ρω4Λ(E11 + iPE12) + F11 + iPF12

]
eω4ρΛ[

ρω4Λ(E21 + iPE22) + F21 + iPF22

]
eω4ρΛ

 .
It is seen that C �= 0 if and only if det(M) = 0. By (3.4),

eω1ρ = O(1), eω2ρ = O(e−c|ρ|) as |ρ| → ∞ (3.14)

for some constant c > 0, and, therefore,

det(e(ω1+ω2)ρΛ) detM = det
[
M ′

1 M
′
2 M

′
3 M

′
4

]
+O(e−c|ρ|), (3.15)

where

M ′
1 = M1, M ′

3 = M3 · eω1ρΛ,

M ′
2 =


ρω2Λ(A11 + iPA12) +B11 + iPB12

ρω2Λ(A21 + iPA22) +B21 + iPB22

0
0

 ,

M ′
4 =


0
0

−ρω2Λ(E11 + iPE12) + F11 + iPF12

−ρω2Λ(E21 + iPE22) + F21 + iPF22

 .
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Now setting e2ω1ρ = y and taking the dominant terms of ρ, we find that
det(e(ω1+ω2)ρΛ) detM = 0 can be written equivalently as (3.2) for some f
claimed. The result follows.

The method adopted in proving Proposition 1 is from [13], which much
simplifies the analysis in [20]. Our next task is to estimate asymptotically
the distribution of eigenvalues A. In general, this seems to be impossible.
In the next section, we show by an example that the general collinear Euler–
Bernoulli beam equation with linear joints that was studied in [20] can be
put into the form of system (1.2). The main result of [20] says that if all
lj , j = 1, 2, . . . , n, are the same, then there is at most n streams of eigen-
frequencies, each lying asymptotically on a vertical line. More generally, if
l1 : l2 : · · · : ln = p1 : p2 : · · · : pn, where pi are all integers, then there is
at most p1 + p2 + · · · + pn streams of vertical eigenfrequencies. However, if
the ratios of lj are irrational, then no distinct streams occur, and the eigen-
frequencies form a chaotic pattern. In particular, if all lj , j = 1, 2, . . . , n,

are integers, then f(y) is a polynomial of degree less than
n∑

i=1

li = Ln and

there are at most Ln “streams” of vertical eigenfrequencies. This result is
deduced by a key assumption that f(y) has only simple roots for all ρ with
sufficiently large moduli.

4. Application to a system of N-connected beams

In this section, we apply the results of the previous sections to a system
of serially connected beams with linear feedback control at the joint points
discussed in [20] as its type II of four types of general collinear Euler–
Bernoulli beam equation with linear joints. That is, at each joint point, it
is assumed that both displacement and bending moment are continuous, but
rotation and shear force are discontinuous. We find not only the asymptotic
expansion of eigenvalues which is the major concern of [20], but also the
asymptotic expansion of the corresponding eigenfunctions. The governing
equation reads

ytt(x, t) + yxxxx(x, t) = 0, Lj−1 < x < Lj , j = 1, 2, . . . , n. (4.1)

The boundary conditions are{
y(0) = yxx(0) = 0,

yx(Ln) = yxxx(Ln) = 0.
(4.2)
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The linear feedback controls at the joint points Lj , j = 1, . . . , n − 1, take
the form

y(L−
j , t) = y(L+

j , t),

yxx(L−
j , t) = yxx(L+

j , t),

ytx(L+
j , t) − ytx(L−

j , t) = (−1)jrjyt(L−
j , t) + p2

jyxx(L−
j , t),

yxxx(L+
j , t) − yxxx(L−

j , t) = −q2j yt(L−
j , t) + (−1)jsjyxx(L−

j , t),

(4.3)

where 0 = L0 < L1 < · · · < Ln and

p2
j ≥ 0, q2j ≥ 0, p2

j + q2j > 0, rj , sj ∈ R,

p2
jα

2 + q2jβ
2 + (rj − sj)αβ ≥ 0 ∀α, β ∈ R.

(4.4)

Let us define the energy of system (4.1)–(4.4) as

E(t) =
1
2

n∑
j=1

∫ Lj

Lj−1

[y2
t (x, t) + y2

xx(x, t)]dx.

Then a simple computation shows that Ė(t) ≤ 0 and hence the system is
dissipative.

Without loss of generality, we may assume that n is odd. For
j = 1, 2, . . . , n, we set

uj(x, t) =
1
2

[
yt

(
Lj +

(−1)j − 1
2

lj + (−1)j+1ljx, t

)
+

(−1)j+1

l2j
yxx

(
Lj +

(−1)j − 1
2

lj + (−1)j+1ljx, t

)]
,

vj(x, t) =
1
2

[
yt

(
Lj +

(−1)j − 1
2

lj + (−1)j+1ljx, t

)
− (−1)j+1

l2j
yxx

(
Lj +

(−1)j − 1
2

lj + (−1)j+1ljx, t

)]
,

(4.5)

where lj = Lj − Lj−1, j = 1, 2, . . . , n, 0 ≤ x ≤ 1. Then system (4.1)–(4.4)
can be transformed into the form of (1.2) with the following (2n × 2n)-
matrices:

A =


0 0 0 . . . 0 0 0 0 . . . 0
0 P21 0 . . . 0 0 P22 0 . . . 0
0 0 P41 . . . 0 0 0 P42 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . P(n−1)1 0 0 0 . . . P(n−1)2

 , (4.6a)
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B =


Pn1 0 0 . . . 0 Pn2 0 0 . . . 0
0 P̃21 0 . . . 0 0 P̃22 0 . . . 0
0 0 P̃41 . . . 0 0 0 P̃42 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . P̃(n−1)1 0 0 0 . . . P̃(n−1)2

 ,
(4.6b)

E =


P11 0 . . . 0 0 P12 0 . . . 0 0
0 P31 . . . 0 0 0 P32 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . P(n−2)1 0 0 0 . . . P(n−2)2 0
0 0 . . . 0 Pn1 0 0 . . . 0 Pn2

 ,
(4.6c)

F =


P̃11 0 . . . 0 0 P̃12 0 . . . 0 0
0 P̃31 . . . 0 0 0 P̃32 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . P̃(n−2)1 0 0 0 . . . P̃(n−2)2 0
0 0 . . . 0 0 0 0 . . . 0 0

 , (4.6d)

where for j = 1, 2, . . . , n− 1,

Pn1 =
[
1
1

]
, Pn2 =

[
1
−1

]
,

Pj1 =


0 0
0 0
1
lj

1
lj+1−1

lj
1

lj+1

 , Pj2 =


0 0
0 0
1
lj

1
lj+1

1
lj

−1
lj+1

 ,

P̃j1 =


1 −1
1 1

p2
j − rj 0
q2j + sj 0

 , P̃j2 =


1 −1
−1 −1

−p2
j − rj 0

q2j − sj 0

 .
In the rest of this paper, we are limit ourselves to system (4.1)–(4.4) but

keep the notation of system (1.2) with A,B,E, F specified by (4.6). Divide
by ρω1 both sides of those equations which contain nonzero factors ρ in the
system M̃C = 0; then (3.12) becomes

M̃C = 0, (4.7)

where
M̃ =

[
M1 M2 M3 M4

]
, (4.8)

and for 1 ≤ k ≤ 4,
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Mk =



Q0k 0 0 . . .
0 Q2k R2k . . .
...

...
...

. . .
0 0 0 . . .

Q1ke
ωkρl1 R1ke

ωkρl2 0 . . .
...

...
...

. . .
0 0 0 . . .
0 0 0 . . .

0 0 0
0 0 0
...

...
...

0 Q(n−1)k R(n−1)k

0 0 0
...

...
...

Q(n−2)ke
ωkρln−2 R(n−2)ke

ωkρln−1 0
0 0 Qn1e

ωkρln


4n×n

, (4.9)

with

Q01 = [1 − i 1 + i]T , Q02 = [1 + i 1 − iT ]T ,
Q03 = Q01, Q04 = Q02, Qn1 = Q01,

Qn2 = Q02 · i, Qn3 = −Qn1, Qn4 = −Qn2.

(4.10)

For j = 1, 3, . . . , n− 2, l = 2, 4, . . . , n− 1,

Qj1 =
[
1 − i+

(1 + i)p2
j − (1 − i)rj
ρω1

,

− (1 + i) +
(1 − i)q2j + (1 + i)sj

ρω1
, 1 − i, 1 + i

]T

, (4.11a)

Qj2 =
[
− (1 − i) +

(1 − i)p2
j − (1 + i)rj
ρω1

,

− (1 + i) +
(1 + i)q2j + (1 − i)sj

ρω1
, 1 + i, 1 − i

]T

, (4.11b)

Qj3 =
[
− (1 − i) +

(1 + i)p2
j − (1 − i)rj
ρω1

,

1 + i+
(1 − i)q2j + (1 + i)sj

ρω1
, 1 − i, 1 + i

]T

, (4.11c)

Qj4 =
[
1 − i+

(1 − i)p2
j − (1 + i)rj
ρω1

,
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1 + i+
(1 + i)q2j + (1 − i)sj

ρω1
, 1 + i, 1 − i

]T

; (4.11d)

Ql1 =
[
1 + i+

(1 − i)p2
l − (1 + i)rl
ρω1

,

− (1 − i) +
(1 + i)q2l + (1 − i)sl

ρω1
, 1 + i, 1 − i

]T

, (4.12a)

Ql2 =
[
1 + i+

(1 + i)p2
l − (1 − i)rl
ρω1

,

1 − i+
(1 − i)q2l + (1 + i)sl

ρω1
, 1 − i, 1 + i

]T

, (4.12b)

Ql3 =
[
− (1 + i) +

(1 − i)p2
l − (1 + i)rl
ρω1

,

1 − i+
(1 + i)q2l + (1 − i)sl

ρω1
, 1 + i, 1 − i

]T

, (4.12c)

Ql4 =
[
− (1 + i) +

(1 + i)p2
l − (1 − i)rl
ρω1

,

− (1 − i) +
(1 − i)q2l + (1 + i)sl

ρω1
, 1 − i, 1 + i

]T

; (4.12d)

Rj1 =
[
1 + i, 1 − i, −(1 + i), 1 − i

]T
,

Rj2 =
[
1 + i, −(1 − i), −(1 − i), 1 + i

]T
,

Rj3 =
[− (1 + i), −(1 − i), −(1 + i), 1 − i

]T
,

Rj4 =
[− (1 + i), 1 − i, −(1 − i), 1 + i

]T ;

(4.13)

Rl1 =
[
1 − i, 1 + i, −(1 − i), 1 + i

]T
,

Rl2 =
[− (1 − i), 1 + i, −(1 + i), 1 − i

]T
,

Rl3 =
[− (1 − i), −(1 + i), −(1 − i), 1 + i

]T
,

Rl4 =
[
1 − i, −(1 + i), −(1 + i), 1 − i

]T
.

(4.14)

Lemma 1. Let A be the operator associated with system (4.1)–(4.4) and
λ = ρ2 ∈ σ(A), π/4 ≤ arg(ρ) ≤ π/2. Then

ρk =
(k + 1/2)πω1

Ln
+O(k−1), (4.15)

where k are sufficiently large positive integers.
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Proof. Note that λ = ρ2 ∈ σ(A) if and only if det M̃ = 0. Now multiplying
det M̃ by e(ω1+ω2)ρLn , we can obtain (3.15) with M ′

j , j = 1, 2, 3, 4, defined
by

M ′
1 = M̃1, M ′

2 = M̃2, M ′
3 = M̃3 · eρω1Λ, M ′

4 = M̃4 · eρω2Λ, (4.16)

where M̃j , j = 1, 2, 3, 4, are obtained from corresponding Mj in (4.9) after
setting Qj2 = Rj2 = 0 for odd j and Qj4 = Rj4 = 0 for even j. The others
remain the same as in (4.10)–(4.14).

After a straightforward computation, we obtain

det
[
M ′

1, M
′
2, M

′
3, M

′
4

]
= detM ′ +O(ρ−1) (4.17)

with the following (4n× 4n)-matrix:

M ′ =



N0 0 0 . . . 0 0 0
N11 N12 0 . . . 0 0 0
0 N21 N22 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . N(n−2)1 N(n−2)2 0
0 0 0 . . . 0 N(n−1)1 N(n−1)2

0 0 0 . . . 0 0 Nn


, (4.18)

where

N0 =
[
Q01, Q02, Q03 · eω1ρl1 , 0

]
,

Nn =
[
Qn1 · eω1ρln , 0, Qn3, Qn4

]
,

Nj1 =
[
Q′

j1 · eω1ρlj , 0, Q′
j3, Q

′
j4

]
,

Nj2 =
[
Rj1 · eω1ρlj+1 , 0, Rj3, Rj4

]
,

Nl1 =
[
Q′

l1, Q
′
l2, Q

′
l3 · eω1ρll , 0

]
,

Nl2 =
[
Rl1, Rl2, Rl3 · eω1ρll+1 , 0

]
,

j = 1, 3, . . . , n− 2, l = 2, 4, . . . , n− 1,

and Q0l, Qnl, and Rjl are the same as in (4.10), (4.13), and (4.14), and Q′
jl

are given by

Q′
j1 =

[
1 − i, −(1 + i), 1 − i, 1 + i

]T
,

Q′
j3 =

[− (1 − i), 1 + i, 1 − i, 1 + i
]T
,

Q′
j4 =

[
1 − i, 1 + i, 1 + i, 1 − i

]T
,

Q′
l1 =

[
1 + i, −(1 − i), 1 + i, 1 − i

]T
,

Q′
l2 =

[
1 + i, 1 − i, 1 − i, 1 + i

]T
,

Q′
l3 =

[− (1 + i), 1 − i, 1 + i, 1 − i
]T
,

j = 1, 3, . . . , n− 2, l = 2, 4, . . . , n− 1.
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A similar computation as in [20] shows that

detM ′ = (−1)(n+1)/2 · 16n · i · detS, (4.19)

where S is a (2n× 2n)-matrix of the form (4.18) with Nj being replaced by
N ′

j :

N ′
0 =

[
1, eω1ρl1

]
, N ′

n =
[− eω1ρln , 1

]
,

N ′
k1 =

[−(1 + i)eω1ρlk 1 + i
(1 + i)eω1ρlk 1 + i

]
, N ′

k2 =
[
(1 − i)eω1ρlk+1 −(1 − i)
(1 − i)eω1ρlk+1 1 − i

]
,

N ′
l1 =

[−1 + i (1 − i)eω1ρll

1 − i (1 − i)eω1ρll

]
, N ′

l2 =
[
1 + i −(1 + i)eω1ρll+1

1 + i (1 + i)eω1ρll+1

]
,

k = 1, 3, . . . , n− 2, l = 2, 4, . . . , n− 1.

Using the same approach as in [20], we can obtain

detS = 4n−1 · S0 · S1 · · ·Sn

= 4n−1 · (e2ω1ρ(l1+···+ln) + 1) = 4n−1 · (e2ω1ρLn + 1),
(4.20)

where
S0 =

[
1, eω1ρl1

]
, Sn =

[
1, eω1ρln

]T
,

Sj =
[

0 1
eω1ρ(lj+lj+1) 0

]
, j = 1, 3, . . . , n− 2,

Sl =
[
0 eω1ρ(lj+lj+1)

1 0

]
, l = 2, 4, . . . , n− 1.

(4.21)

Combining (4.17), (4.19), and (4.20), we finally find that det M̃ = 0 is
equivalent to

e2ω1ρLn + 1 +O(ρ−1) = 0. (4.22)
Therefore, in this case f(y) = yLn +1 and f(y) = 0 does possess only simple
zeros. By the Rouché theorem, the solution of (4.22) can be found as

2ω1ρLn = (2k + 1)πi+O(ρ−1)

for sufficiently large positive integers k, which proves Lemma 1.

Now we are in a position to estimate asymptotically the eigenfunctions[
uk,vk

]T corresponding to λk = ρ2
k with ρk given by (4.15).

Lemma 2. Let
[
uk,vk

]T be the eigenfunctions corresponding to λk = ρ2
k

with ρk given by (4.15) for all sufficiently large positive integers k:

uk =
[
u1k, . . . , unk

]T
, vk =

[
v1k, . . . , vnk

]T
.

Then for odd j, we have

ujk(x) = sin
(k + 1/2)πLj

Ln

{
sin

(k + 1/2)π(Lj−1 + ljx)
Ln
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+ ie−
(k+1/2)πljx

Ln · sin (k + 1/2)πLj−1

Ln

}
+O(k−1), (4.23)

vjk(x) = −i · sin (k + 1/2)πLj

Ln

{
sin

(k + 1/2)π(Lj−1 + ljx)
Ln

− ie−
(k+1/2)πljx

Ln · sin (k + 1/2)πLj−1

Ln

}
+O(k−1); (4.24)

for even j, we have

ujk(x) = sin
(k + 1/2)πLj

Ln

{
sin

(k + 1/2)π(Lj − ljx)
Ln

− ie−
(k+1/2)πlj(1−x)

Ln · sin (k + 1/2)πLj−1

Ln

}
+O(k−1), (4.25)

vjk(x) = i · sin (k + 1/2)πLj

Ln

{
sin

(k + 1/2)π(Lj − ljx)
Ln

+ ie−
(k+1/2)πlj(1−x)

Ln · sin (k + 1/2)πLj−1

Ln

}
+O(k−1), (4.26)

where k ∈ Z.

Proof. Since some calculations in proving Lemma 2 and Lemma 1 are over-
whelming, we postpone the proof of Lemma 2 in the Appendix.

We summarize these results as the following Theorem 2.

Theorem 2. Let A be the operator of system (4.1)–(4.4), σ(A) =
{λk, λk}. Let {[uk,vk]T , [ūk, v̄k]T } be the corresponding eigenfunctions.
Then λk = ρ2

k and uk = [u1k, . . . , unk]T have the asymptotic expansions
(4.15) and (4.23), respectively, for sufficiently large positive integers k.

5. Riesz basis generation for system (4.1)–(4.4)

Let us recall that for a closed linear operator A in a Hilbert space H,
a nonzero x ∈ H is called a generalized eigenvector of A, corresponding to
an eigenvalue λ of A with finite algebraic multiplicity, if there is a positive
integer n such that (λ − A)nx = 0. A sequence {φn}∞1 in H is called a
Riesz basis for H if there exists an orthonormal basis {en}∞1 in H and a
linear bounded invertible operator in H such that

Tφn = en, n = 1, 2, . . . .

For a linear operator A in a Hilbert space H, let {λn}∞n=1 = σ(A) with λn �=
λm for n �= m be the spectrum of A. Suppose that the algebraic multiplicity
of λn is mn (<∞). Let {ψni

}mn
1 be the set of generalized eigenvectors of A

associated with λn. Then if {ψni
| 1 ≤ i ≤ mn, n = 1, 2, . . . } form a Riesz
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basis for H, then the C0-semigroup eAt generated by A can be represented
as

eAtx =
∞∑

n=1

eλnt
mn∑
j=1

anjfnj(t)ψnj ∀x =
∞∑

n=1

mn∑
j=1

anjψnj ∈ H, (5.1)

where fnj(t) are polynomials of order not greater than mn. In particular,
if mn = 1 for all sufficiently large n, then the the spectrum-determined
growth condition holds, i.e. ω(A) = S(A), where ω(A) is the growth bound
of eAt, S(A) is the spectral bound of A.

The following result developed recently in [7] turns out to be very useful
for the verification of Riesz basis generation for beam equations.

Theorem 3. Let A be a densely defined discrete operator. If there are
an integer N ≥ 0 and a sequence of generalized eigenvectors {ψn}∞n=N+1 of
A such that

∞∑
N+1

‖φn − ψn‖2 <∞,

where {φn}∞n=1 is a Riesz basis for H, then the following assertions hold.

(i) There are constant M > N and generalized eigenvectors {ψn0}M
1 of

A such that {ψn0}M
1 ∪ {ψn}∞M+1 form a Riesz basis for H.

(ii) Let {ψn0}M
1 ∪ {ψn}∞M+1 correspond to the eigenvalues {σn}∞1 of A.

Then σ(A) = {σn}∞1 , where σn is counted according to its algebraic
multiplicity.

(iii) If there is an integer M0 > 0 such that σn �= σm for all m,n > M0,
then there is an integer N0 > M0 such that all σn are algebraically
simple for all n > M0.

The main result of this section is the following Theorem 4.

Theorem 4. For system (4.1)–(4.4), if there exists j, j ∈ {1, . . . , n−1},
such that

Lj

Ln
=
m̄

n̄
, where m̄ and n̄ are coprime integers and m̄ is odd, then

the following assertions hold.

(i) There is a sequence of generalized eigenvectors of the system operator
A, which forms a Riesz basis for H.

(ii) Let σ(A) = {λk, λk}. Then λk = ρ2
k with ρk given by (4.15) are

algebraically simple for all sufficiently large positive integers k.

Therefore, for the C0-semigroup eAt generated by A, the spectrum-
determined growth condition ω(A) = S(A) holds.

Proof. We show that
[
uk,vk

]T determined by Theorem 2 satisfy the con-
dition of Theorem 3 for a properly chosen reference Riesz basis. To do this,
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we define another operator Ã : D(Ã)(⊂ H) → H by the rule

Ã
[
u
v

]
= K

∂2

∂x2

[
u
v

]
, (5.2)

where

D(Ã) =

{[
u,v

]T ∈ (H2(0, 1))2n

∣∣∣∣∣
[
A, B̃

][
ux(0),vx(0),u(0),v(0)

]T = 0,[
E, F̃

][
ux(1),vx(1),u(1),v(1)

]T = 0

}
,

where A and E are given in (4.6), B̃ and F̃ are the same as B and F but
with p2

j , q
2
j , rj , sj , j = 1, . . . , n − 1, vanishing. Then it is easy to see that

Ã is skew-adjoint in H with compact resolvent. The results of the previous
sections are still valid for the eigenvector [ũk, ṽk]T of Ã, where

ũk = [ũ1k, . . . , ũnk]T , ṽk = [ṽ1k, . . . , ṽnk]T , ũjk, ṽjk, j = 1, . . . , n,

and without loss of generality, we assume that k ∈ Z. Moreover, ũjk and
ṽjk have the same asymptotics as ujk and vjk given in (4.23)–(4.26).

Since there exists j, j ∈ {1, . . . , n− 1}, such that
Lj

Ln
=
m̄

n̄
, m̄ and n̄ are coprime integers, m̄ is odd,

it follows from [21] that there exists a constant c > 0 such that∣∣∣∣sin (k + 1/2)πLj

Ln

∣∣∣∣ > c for all k ∈ Z.

A simple calculation shows that∥∥∥[ũk, ṽk

]T∥∥∥2

H
=

n∑
j=1

∫ 1

0

(|ũjk(x)|2 + |ṽjk(x)|2)dx

=
n∑

j=1

∣∣∣∣sin (k + 1/2)πLj

Ln

∣∣∣∣2 · [1 +O(k−1)]

(5.3)

as k → ∞. By (5.3), we see that there exist positive constants m and M
independent of k such that

m <
∥∥∥[ũk, ṽk

]T∥∥∥2

H
< M for all k ∈ Z.

Since Ã is skew-adjoint with compact resolvent, it follows from general
operator theory that

[
ũk, ṽk

]T , k ∈ Z, together with their conjugates, form
a Riesz basis for H.

Furthermore, since
[
ũk, ṽk

]T have the same asymptotic expansions as[
uk,vk

]T , we see that there exists a N > 0 such that
∞∑

k≥N

∥∥∥[uk,vk

]T − [
ũk, ṽk

]T∥∥∥2

H
=

∞∑
k≥N

O(k−2) <∞. (5.4)
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The same is true for their conjugates. Hence all conditions of Theorem 3
are satisfied. The result follows.

6. Exponential stability for system (4.1)–(4.4)

Theorem 5. Under the condition of Theorem 4, system (4.1)–(4.4) is
exponentially stable. That is, there exist positive M and ω such that the
C0-semigroup eAt generated by A satisfies the inequality∥∥eAt

∥∥
H ≤Me−ωt.

Proof. We write further (4.17) as

det[M ′
1, M

′
2, M3, M

′
4] = detM ′ + aρ−1 +O(ρ−2).

After a long but straightforward computation, we find that

a =
1

4ω1

n−1∑
j=1

[i(p2
j + q2j ) + rj + sj ](eρω1Lj − e−ρω1Lj )2.

Hence (4.22) can be written as

e2ω1ρLn +1+
1

4ρω1

n−1∑
j=1

[i(p2
j +q2j )+rj +sj ](eρω1Lj −e−ρω1Lj )2 +O(ρ−2) = 0.

(6.1)

Substituting ρk = − (k + 1/2)πω1

Ln
+ O(k−1) into (6.1) and comparing the

order of both sides as in [7], we can obtain the following asymptotic expres-
sions of eigenvalues:

ρk =
(k + 1/2)πω1

Ln
− 1

8(k + 1/2)πω1

×
n−1∑
j=1

[
p2

j + q2j − i(rj + sj)
]
sin2 (k + 1/2)πLj

Ln
+O(k−2),

λk = ρ2
k = − 1

4Ln

n−1∑
j=1

(p2
j + q2j ) sin2 (k + 1/2)πLj

Ln

±
 (n+ 1/2)2π2

L2
n

+
1

4Ln

n−1∑
j=1

(rj + sj) sin2 (k + 1/2)πLj

Ln

 i
+O(k−1), k → ∞.

(6.2)

Finally, since system (4.1)–(4.4) is dissipative, it is easily shown that there
is no λ ∈ σ(A) such that Reλ = 0. Therefore, A generates an asymptoti-
cally stable C0-semigroup on H. By (6.2), we see that this C0-semigroup is
also exponentially stable due to the spectrum-determined growth condition.
The proof is complete.
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7. Additional remarks

It is known that for the first-order homogeneous hyperbolic system (1.1),
an equivalent new norm can be introduced for the state Hilbert space so
that the system be dissipative under the new norm (see [14]) and hence
the well-posedness is easily established by the Lumer–Phillips theorem in
semigroup theory of linear operators [1]. However, such method seems not
applicable to our system (1.2). Thus, the well-posedness for the general
system (1.2) is still an unsolved problem. Our results in Sec. 5 show that in
some cases, Riesz basis generation can be valid. But even for some cases of
n = 1, we do not know whether system (1.2) is a Riesz spectral system [12].
To explain this, let

A =
[
0 0
1 1

]
, B =

[
1 1
0 0

]
, E =

[
0 0
1 0

]
, F =

[
1 −1
0 0

]
in (1.2). Then this system is equivalent to the following system:

ytt(x, t) + yxxxx(x, t) = 0, 0 < x < 1, t > 0,

y(0, t) = yx(0, t) = yxx(1, t) = 0,

yxxx(1, t) = yxt(1, t),
(7.1)

which was studied in [18]. It was shown that this system is associated with
an exponential stable 1-time integrated semigroup. In this case, detH(λ) =
0 reduces to

cosh(τ) cos(τ) + i sinh(τ) sin(τ) + 1 = 0
and the eigenvalues λn = iτ2

n can be found explicitly as

τn = (i+ 1)(n+ 1/2)π, n = 0, 1, . . . . (7.2)

Moreover, each eigenvalue has the algebraic multiplicity 2 and the corre-
sponding generalized eigenfunctions can be found as[

un

vn

]
= cosh(τnx)

[
1
i

]
− i cos(τnx)

[
1
−i

]
,[

u1n

v1n

]
= (x− i) sinh(τnx)

[
1
i

]
+ i(x+ i) sin(τnx)

[
1
−i

]
.

(7.3)

However, we still do not know if there is a C0-semigroup associated with
(7.1) although we have explicit expressions of generalized eigenfunctions.

8. Appendix: Proof of Lemma 2

Since characteristic equation (4.22) of system (4.1)–(4.4) possesses only
simple roots for ρ with sufficiently large modulus, we can obtain correspond-
ing eigenfunctions by calculating the determinant of the matrix M̃j which is
obtained by replacing one of the rows of M̃ in (4.7) by uj or vj , j = 1, . . . , n,
in (3.11), such that det M̃j �= 0. Fix j, 1 ≤ j ≤ n, and substitute uj into
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(2n+j)th row of M̃ and then multiply det M̃j by e(ω1+ω2)ρLn . After setting
all terms containing eω2ρls for some s to be zero and taking dominant terms
with respect to the order of ρ and exchanging lines and rows in this matrix,
we obtain

uj(x) = det M̃j = e−(ω1+ω2)ρLn · [det M̃ ′
j +O(ρ−1)

]
, (8.1)

where M̃ ′
j has the same form as M ′ in (4.18) but with Nj1 and Nj2 replaced

by Ñj1 and Ñj2 of the following form:

Ñ0 = N0,

Ñn =
[
(1 − i)eω1ρln 0 −1 + i 1 − i
eω1ρlnx eω2ρlnx eω1ρln(1−x) eω2ρln(1−x)

]
,

and

Ñj1 =
[
Q̃j1, Q̃j2, Q̃j3, Q̃j4

]
,

Ñj2 =
[
R̃j1, R̃j2, R̃j3, R̃j4

]
,

where for odd j,

Q̃j1 =
[
eω1ρljx, −(1 + i) · eω1ρlj , (1 − i) · eω1ρlj , (1 + i) · eω1ρlj

]T
,

Q̃j2 =
[
eω2ρljx, 0, 0, 0

]T
,

Q̃j3 =
[
eω1ρlj(1−x), 1 + i, 1 − i, 1 + i

]T
,

Q̃j4 = big[eω2ρlj(1−x), 1 + i, 1 + i, 1 − i
]T
,

R̃j1 =
[
0, (1 − i)eω1ρlj+1 , −(1 + i)eω1ρlj+1 , (1 − i)eω1ρlj+1

]T
,

R̃j2 =
[
0, 0, 0, 0

]T
,

R̃j3 =
[
0, −(1 − i), −(1 + i), 1 − i

]T
,

R̃j4 =
[
0, 1 − i, −(1 − i), 1 + i

]T
,

and for even j,

Q̃j1 =
[
eω1ρljx, −(1 − i), 1 + i, 1 − i

]T
,

Q̃j2 =
[
eω2ρljx, 1 − i, 1 − i, 1 + i

]T
,

Q̃j3 =
[
eω1ρlj(1−x), (1 − i)eω1ρlj , (1 + i)eω1ρlj , (1 − i)eω1ρlj

]T
,

Q̃j4 =
[
eω2ρlj(1−x), 0, 0, 0

]T
,

R̃j1 =
[
0, 1 + i, −(1 − i), 1 + i

]T
,

R̃j2 =
[
0, 1 + i, −(1 + i), 1 − i

]T
,

R̃j3 =
[
0, −(1 + i)eω1ρlj+1 , −(1 − i)eω1ρlj+1 , (1 + i)eω1ρlj+1

]T
,
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R̃j4 =
[
0, 0, 0, 0

]T
.

Let us consider only odd j �= n, since other cases could be treated simi-
larly. We can obtain (cf. (4.19))

det M̃ ′
j = (−1)(n+1)/2 · 16n · i

2
· det S̃j , (8.2)

where like S in (4.19), S̃j is a (2n × 2n)-matrix and can be obtained from
S with N ′

j1 and N ′
j2 replaced by Ñ ′

j1 and Ñ ′
j2 of the following form:

Ñ ′
j1 =

[
αj βj

(1 − i)eω1ρlj 1 − i

]
,

Ñ ′
j2 =

[− 1−i
2 eω1ρlj+1 · eω2ρlj(1−x) − 1+i

2 eω2ρlj(1−x)

−(1 + i)eω1ρlj+1 −1 − i

]
,

(8.3)

where

αj = eω1ρljx + ieω2ρljx +
1 − i

2
eω1ρlj · eω2ρlj(1−x),

βj = eω1ρlj(1−x) + ieω1ρlj · eω2ρljx − 1 + i

2
eω2ρlj(1−x).

Next, similarly to (4.20), we have

det S̃j = 4n−2 · S0 · S1 · · ·Sj−1 · Ŝj · Sj+1 · · ·Sn, (8.4)

where Sl, l = 0, 1, . . . , n, l �= j, are given by (4.21) and Ŝj is given by

Ŝj =

[
Ŝj1 Ŝj2

Ŝj3 Ŝj4

]
, (8.5)

where

Ŝj1 = −(1 + i)eω1ρ(lj+lj+1−ljx) + (1 − i)eω1ρ(lj+lj+1) · eω2ρljx,

Ŝj2 = −(1 + i)eω1ρlj(1−x) + (1 − i)eω1ρlj · eω2ρljx

+ (1 + i)eω2ρlj(1−x),

Ŝj3 = (1 + i)eω1ρ(lj+lj+1) · eω2ρlj(1−x) + (1 + i)eω1ρ(lj+1+ljx)

− (1 − i)eω1ρlj+1 · eω2ρljx,

Ŝj3 = (1 + i)eω1ρljx − (1 − i)eω2ρljx.

(8.6)

Substituting (8.5) and (8.6) into (8.4) gives

det S̃j = 4n−2(1 + i) · (eω1ρLj − e−ω1ρLj ) · [eω1ρ(Lj−1+ljx)

− e−ω1ρ(Lj−1+ljx) + ieω2ρljx · (eω1ρLj−1 − e−ω1ρLj−1)
]
.

(8.7)
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For either even j or j = n, we always have

det S̃j = 4n−2(1 − i) · (eω1ρLj − e−ω1ρLj ) · [eω1ρ(Lj−ljx)

− e−ω1ρ(Lj−ljx) − ieω2ρlj(1−x) · (eω1ρLj−1 − e−ω1ρLj−1)
]
,

j = 2, 4, . . . , n− 1,

(8.8)

det S̃n = −4n−1 · eω1ρLn · [eω1ρ(Ln−1+lnx) − e−ω1ρ(Ln−1+lnx)

+ ieω2ρlnx · (eω1ρLn−1 − e−ω1ρLn−1)
]
.

(8.9)

Combining (8.1), (8.2), and (8.7)–(8.9), we finally obtain (up to a nonzero
scalar) (4.23)–(4.26). The proof is complete.
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