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The Stabilization of a One-Dimensional Wave Equation by
Boundary Feedback With Noncollocated Observation

Bao-Zhu Guo and Cheng-Zhong Xu

Abstract—This note addresses the stabilization of a one-dimensional
wave equation with control at one end and noncollocated observation at
another end. A simple exponentially convergent observer is constructed.
The dynamical stabilizing boundary output feedback is designed via the
observed state. While the closed-loop system is nondissipative, we show its
exponential stability using Riesz basis approach.

Index Terms—Exact controllability, exponential stability, feedback con-
trol, observer, wave equation.

I. INTRODUCTION

It has been known by engineers for a long time that a partial differen-
tial equation describing a mechanical system, like a flexible structure
in which the power flow into the system is the scalar product hu; yi
(e.g., when u is force and y is velocity), leads to a positive-real system
if actuators and sensors are designed in a “collocated” fashion. Collo-
cated systems always relate with “passivity” which was introduced in
connection with circuit theory in 1950s [6]. By “passivity,” we mean
that the increase of energy stored in the system does not exceed the en-
ergy that enters from the external world. For such a system, the transfer
function is positive real and negative output feedback produces a dis-
sipative system, which is stable in the sense of Lyapunov.

However, collocated control design is not always feasible in prac-
tice and its performance is not always good enough [2]. Actually, the
noncollocated control has been widely used in engineering systems
control, see [1], [12], [10], [15], [18], [20], [21], [23], [25], and [27].
It is well-known that the noncollocated systems are usually not min-
imum-phase. As a result, a small increment of feedback controller gains
can easily make the closed-loop system unstable [18]. Hence, the con-
trol design for the stabilization of noncollocated systems is much harder
than collocated ones. Compared with the huge works on the stabi-
lization of collocated PDEs in literature, the study for noncollocated
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PDEs (systems described by partial differential equations) control is
still fairly scarce. Very recently, the observed state feedbacks are de-
signed through backstepping observers in [19] to stabilize a class of
one-dimensional parabolic PDEs. The abstract observers design for a
class of well-posed regular infinite-dimensional systems can be found
in [5] but the stabilization is not addressed.

In this note, a simple observer for a one-dimensional wave equation
with boundary control and noncollocated observation is constructed.
This observer design is closely related with the theory of well-posed
linear infinite-dimensional systems that has been studied extensively
in the last two decades [8]. This is because that we require output of
the system and state of the observer to depend continuously on input.
This seems very natural in design of the observers. The state space
for our observer is larger than the state space of the original system.
We prove that this observer is exponentially convergent. The boundary
output feedback control is designed by state of the observer. This re-
sults in nondissipativity of the closed-loop system, which gives rise to
difficulty of proof for the stability. Fortunately, using Riesz basis ap-
proach, we show that the closed-loop system is indeed exponentially
stable. Another difficulty that should be pointed out is that the uncon-
trolled wave equation has infinite many of eigenvalues on the imagi-
nary axis. This is different to the parabolic equation that has at most
a finite number of eigenvalues on the closed right-half complex plane,
for which the LQ approach can also be used to solve the problem [13].
Furthermore, our problem is also not the regular in the sense of [5]
where the feedthrough operator is required to be zero.

The problem we are concerned with is the following one-dimen-
sional wave equation with boundary control and noncollocated obser-
vation:

wtt(x; t)� wxx(x; t) = 0; 0 < x < 1; t > 0

w(0; t) = 0; t � 0

wx(1; t) = u(t); t � 0

y(t) = wx(0; t); t � 0

(1.1)

where u is the control (input) and y is the observation (output).
The state space is H = H1

L(0; 1) � L2(0; 1);H1

L(0; 1) =
ff j f 2 H1(0; 1); f(0) = 0g. H is equipped with the norm
k(f; g)k2H =

1

0
[jf 0(x)j2 + jg(x)j2] dx for any (f; g) 2 H . The

input (output) space is U = . A simple spectral analysis shows that
for any direct PI output feedback u = k1y + k2

t

0
y(s)ds with reals

k1; k2, the closed loop system is always unstable.
Define the operator A : D(A)(� H) ! H as following:

A(f; g) = (g; f 00)

D(A) = f(f; g) 2 H j A(f; g) 2 H; f
0(1) = 0g:

(1.2)

Then, (1.1) can be written as

(A;B; C) :

d

dt

w

wt
= A

w

wt
+ Bu(t)

y(t) = C
w

wt
= wx(0; t)

(1.3)

where

B =
0

�(x� 1)
; C = (�h�0(x); �i; 0)

and �( � ) denotes the Dirac function. Obviously, both B and C are un-
bounded operators.
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Theorem 1: For each u 2 L2

loc(0;1) and initial datum
(w(�; 0); wt(�; 0)) 2 H , there exists a unique solution (w;wt) 2
C(0;1;H) to (1.1), and for each T > 0, there exists a CT > 0
independent of u and (w(�; 0); wt(�; 0)) such that

k(w(�; T ); wt(�; T ))k2H +
T

0

jy(� )j2 d�

� CT k(w(�;0); wt(�; 0))k
2

H +
T

0

ju(�)j2d� :

Proof: By the well-posed linear infinite-dimensional system
theory [3], [8], it is equivalent to showing that C is admissible for
eAt;B� is admissible for eA t and the transfer function is bounded on
some right half complex plane (see [8, Defs. 2.1 and 2.5]).

We consider only the real function case since for the complex func-
tion, the proof is similar. Let u = 0. Define

E0(t) =
1

2

1

0

[w2

x(x; t) + w
2

t (x; t)] dx

and

�(t) =
1

0

(x� 1)wx(x; t)wt(x; t)dx:

Then, E0(t) = E0(0) and j�(t)j � E0(t) for every t � 0. Notice that

_�(t) =
1

2
w

2

x(0; t)� E0(t):

We have

2(T � 2)E0(0)�
T

0

w
2

x(0; t)dt � 2(T + 2)E0(0):

A direct computation shows

A�1(f; g) =
x

1

(x� � )g(�)d� �
1

0

�g(�)d�; f

CA�1(f; g) =
1

0

g(x) dx 8 (f; g) 2 H:

Hence CA�1 is bounded. This together with the previous right-hand
inequality shows that C is admissible for eAt (see also [16, eq. (2.3)]).
The left-hand side inequality shows that (C;A) is exactly observable
in [0; T ] for any T > 2 (see [16, eq. (2.6)], where there is a typo). It
should be �

0
kC txk

2 dt � ��kxk
2; see [16, Prop. 2.8]). The fact

thatB� is admissible for eA t is a well-known fact. Finally, the transfer
function for the system (1.1) is found to be

H(s) =
2

es + e�s

which is obviously bounded on some complex plane with feedthrough
operator zero.

In [5], the well-posed and regularity with feedthrough operator zero
(although not necessarily after more complicated computations) for the
system (A;B�;B) is required. A simple computation shows that this
corresponds to the following system in H :

wtt(x; t)� wxx(x; t) = 0; 0 < x < 1; t > 0

wt(0; t) = u(t); t � 0

wx(1; t) = 0; t � 0

y(t) = wx(0; t); t � 0:

However, the transfer function for this system is computed to be

Hb(s) =
es + e�s

es � e�s

and so its feedthrough operator is not zero.
The remaining part of this note is organized as follows. In Section II,

we construct an observer for the system (1.1) and show that this ob-
server is exponentially convergent. Section III is devoted to the output
feedback stabilization via the observed state.

II. OBSERVER DESIGN

We design the observer for the system (1.1) as follows:

ŵtt(x; t)� ŵxx(x; t) = 0; 0 < x < 1; t > 0

ŵx(0; t) = �ŵt(0; t) + �ŵ(0; t) + wx(0; t); t � 0

ŵx(1; t) = u(t); t � 0

(2.1)

where �; � > 0 are constants. The system (2.1) is considered in the
spaceH = H1(0; 1)� L2(0; 1) which is larger than H . The norm of
H is induced by the inner product

k(p; q)k2 =
1

0

[jp0(x)j2 + jq(x)j2] dx+ �jp(0)j2 8 (p; q) 2 H:

Define the operator A : D(A)(� H) ! H

A(f; g) = (g; f 00) 8 (f; g) 2 D(A)

D(A) = f(f; g) 2 H jA(f; g) 2 H

f 0(0) = �g(0) + �f(0); f 0(1) = 0g:

(2.2)

It is readily found that

A
�(�;  ) = (� ;��00) 8 (�; ) 2 D(A�)

D(A�) = f(�; ) 2 H jA�(�; ) 2 H

�0(0) = �� (0) + ��(0); �0(1) = 0g:

(2.3)

Take the product of (�; ) 2 D(A�) with (2.1) to obtain

d

dt

ŵ

ŵt

�

 
=

ŵ

ŵt

A
� �

 

+
0

�(x� 1)
u(t)

�

 

+
0

��(x)
wx(0; t)

�

 
:

Hence, (2.1) can be written as

ŵtt(x; t)� ŵxx(x; t) = �(x� 1)u(t)� �(x)wx(0; t)

0 < x < 1; t > 0

ŵx(0; t) = �ŵt(0; t) + �ŵ(0; t); t � 0

ŵx(1; t) = 0; t � 0

(2.4)

or
d

dt

ŵ

ŵt

= A
ŵ

ŵt

+
0 0

�(x� 1) ��(x)
�

u

wx(0; t)
= A

ŵ

ŵt

+B
u

wx(0; t)
: (2.5)
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Theorem 2: For any u( � ); wx(0; �) 2 L2

loc(0;1) and initial datum
(ŵ(�; 0); ŵt(�; 0)) 2 H, there exists a unique solution (ŵ; ŵt) 2
C(0;1;H) to (2.1), and for all T > 0, there exists a DT > 0 de-
pending on T only such that

k(ŵ(�; T ); ŵt(�; T ))k
2

H � DT k(ŵ(�; 0); ŵt(�; 0))k
2

H

+
T

0

[ju(� )j2 + jwx(0; � )j
2] d� : (2.6)

Proof: It suffices to show thatB� is admissible for eA t (see [8,
Def. 2.1] and [24, Th. 6.9]). A simple computation shows that this is
equivalent to saying that B�

A
��1 is bounded and for any T > 0,

there exists a MT > 0 depending on T only such that the system of
the following:

ŵtt(x; t)� ŵxx(x; t) = 0; 0 < x < 1; t > 0

ŵx(0; t) = �ŵt(0; t) + �ŵ(0; t); t � 0

ŵx(1; t) = 0; t � 0

yw(t) = (ŵt(1; t);�ŵt(0; t)); t � 0

(2.7)

satisfies (see also [16, eq. (2.3)])

T

0

[jŵt(1; t)j
2 + jŵt(0; t)j

2] dt �MTEm(0)

where

Em(t) =
1

2

1

0

[jŵx(x; t)j
2 + jŵt(x; t)j

2] dx+
�

2
jŵ(0; t)j2:

First, a simple computation shows that

A
��1

(�;  )

= �
x

1

(x� � ) (�)d� +
1

0

(��1 + � ) (�)d�

�
�

�
�(0);��(x) 8 (�; ) 2 H

B
�

A
��1

(�;  )

= (�(1);��(0)) 8 (�;  ) 2 H:

HenceB�
A

��1 is bounded onH. Second, we consider once again the
real function case only. Now, differentiate Em(t) in t to give

_Em(t) = ��ŵ2

t (0; t) � 0

and, hence, Em(T ) � Em(0) for any T > 0 and

T

0

ŵ
2

t (0; t)dt �
1

�
Em(0):

Next, let

�0(t) =
1

0

xŵx(x; t)ŵt(x; t) dx

Then, j�0(t)j � Em(t). Since

_�0(t) =
1

2
ŵ

2

t (1; t)�
1

2

1

0

[ŵ2

x(x; t) + ŵ
2

t (x; t) ] dx

it follows that

T

0

ŵ
2

t (1; t) dt � (2 + T )Em(0) 8 T > 0:

The result is proved.
To end this section, we show that the observer is exponentially con-

vergent in H. Actually, let

z(x; t) = ŵ(1� x; t)� w(1� x; t):

Then z satisfies

ztt(x; t)� zxx(x; t) = 0; 0 < x < 1; t > 0

zx(0; t) = 0; t � 0

zx(1; t) = ��zt(1; t)� �z(1; t); t � 0:

(2.8)

It is well-known that the system (2.8) associates with a C0-semi-
group solution inH and is exponentially stable in the sense of

E"(t) �Me
�!t

E"(0)

for some M;! > 0, where

E"(t) =
1

2

1

0

[jzx(x; t)j
2 + jzt(x; t)j

2] dx+
�

2
jz(1; t)j2:

III. OUTPUT FEEDBACK STABILIZATION

In this section, we design the output feedback control law

u(t) = ��ŵt(1; t)

for the system (1.1) and (2.1). The closed-loop system becomes

ŵtt(x; t)� ŵxx(x; t) = 0; 0 < x < 1; t > 0

ŵx(0; t) = �ŵt(0; t) + �ŵ(0; t) + wx(0; t); t � 0

ŵx(1; t) = ��ŵt(1; t); t � 0

wtt(x; t)� wxx(x; t) = 0; 0 < x < 1; t > 0

w(0; t) = 0; t � 0

wx(1; t) = ��ŵt(1; t); t � 0:

(3.1)

Consider (3.1) in the space X = H � H with norm induced by the
inner product

k(f; g; �;  )k2 =
1

0

[jf 0(x)j2 + jg(x)j2 + j�0(x)j2 + j (x)j2] dx

+�jf(0)j2 8 (f; g; �;  ) 2 X:
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The system operator (� X)! X for (3.1) is defined by

(f; g; �;  ) = (g; f 00;  ; �00) 8 (f; g; �;  ) 2 D( )

D( ) = f(f; g; �;  ) 2 X j (f; g; �;  ) 2 X
f 0(0) = �g(0) + �f(0) + �0(0)

�(0) = 0; f 0(1) = �0(1) = ��g(1)g:
(3.2)

A simple computation shows that is not dissipative. So we use Riesz
basis approach in the sequel to treat the C0-semigroup generation and
stability property of .

Lemma 1: �1 is compact on X and hence �( ), the spectrum of
, consists of isolated eigenvalues only.

Proof: For any (p1; q1; p2; q2) 2 X , solve (f; g; �;  ) =
(p1; q1; p2; q2) to obtain

g(x) = p1(x);  (x) = p2(x)

f(x) =
x

1
(x� � )q1(�)d� � 1

0
�q1(�)d� � �p1(1)x+ f(0)

f(0) = 1

�

1

0
[q2(�)� q1(�)]d� � �

�
p1(0)

�(x) =
x

1
(x� � )q2(�)d� � 1

0
�q2(�)d� � �p1(1)x:

So, �1 is defined on whole spaceX and �1 mapsX into a subset of
space (H2(0; 1)�H1(0; 1))2, which is compact inX . By the Sobolev
embedding theorem [14], �1 is compact on X , proving the required
result.

Lemma 2: There are two families of eigenvalues of which can be
expressed asymptotically as

�1n = 1

2
log 1��

1+�
+ n��i; Re �1n < 0; n 2 ZZ

�2n = 1

2
log 1��

1+�
+ n��i+ o 1

jnj
; jnj ! 1

�2n < 0
(3.3)

where

n� =
n� 1=2; 0 < � < 1

n; � > 1

n� =
n; 0 < � < 1

n� 1=2; � > 1:

(3.4)

The corresponding eigenfunctions for � 2 (0; 1) are (there are parallel
results for � > 1)

W1n(x) = (Fn(x); Fn(x)); n 2 ZZ
W2n(x) = ( ~Fn(x) +Gn(x); ~Fn(x))

(3.5)

where

Gn(x) = c2n ��12n p2n(1� x); p2n(1� x)

c2n = � 1

2�
e� 1 + � + (1� �)

(1 + �)�2n + �

(1� �)�2n � �

= �
p
1��

�
(�1)n + o 1

jnj

(3.6)

p2n(x) = e� x + e�� x =
1� �

1 + �

x

ein �x

+
1 + �

1� �

x

e�in �x + o
1

jnj

��12n p
0
2n(x) =

1� �

1 + �

x

ein �x

� 1 + �

1� �

x

e�in �x + o
1

jnj ; jnj ! 1

(3.7)

Fn(x) = (��11n f1n(x); f1n(x)); n 2 ZZ

f1n(x) = e� x � e�� x =
1� �

1 + �

x

ein �x

� 1 + �

1� �

x

e�in �x

��11n f
0
1n(x) =

1� �

1 + �

x

ein �x

+
1 + �

1� �

x

e�in �x

(3.8)

~Fn(x) = (��12n�2n(x); �2n(x))

�2n(x) = e� x � e�� x =
1� �

1 + �

x

ein �x

� 1 + �

1� �

x

e�in �x + o
1

jnj

��12n�
0
2n(x) =

1� �

1 + �

x

ein �x

+
1 + �

1� �

x

e�in �x + o
1

jnj ; jnj ! 1:

(3.9)

Proof: Suppose (f; g; �;  ) = �(f; g; �;  ) 6= 0. Then, we
have g = �f;  = �� and (f; �) satisfies

f 00(x) = �2f(x)

f 0(0) = ��f(0) + �f(0) + �0(0); f 0(1) = ���f(1)
�00 = �2�

�(0) = 0; �0(1) = ���f(1):
(3.10)

Let p(x) = f(1� x) � �(1� x). Then, p satisfies

p00(x) = �2p(x)

p0(0) = 0; p0(1) = ���p(1)� �p(1):
(3.11)

Now, if p � 0, that is, f � �. Then, f 6= 0 satisfies

f 00(x) = �2f(x)

f(0) = 0; f 0(1) = ���f(1): (3.12)

We get the eigenvalues

�1n =
1

2
log

1� �

1 + �
+ n��i; Re �1n < 0; n 2 ZZ:
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This is the first expression of (3.3). The corresponding eigenvectors are

W1n(x) = (��1
1n f1n(x); f1n(x); �

�1
1n f1n(x); f1n(x))

n 2 ZZ

where f1n is given by (3.8). This is the first expression of (3.5).
When p 6= 0, multiply by �p on both sides of the first equation of

(3.11) and integrate by parts to give

Re � < 0: (3.13)

The characteristic equation of (3.11) is

e2� =
(1� �)�� �

(1 + �)�+ �

=
1� �

1 + �
�

2�

(1 + �)2�
+ o(j�j�2); j�j ! 1:

Solve the previous equation by virtue of Rouché’s theorem to give the
second expression of (3.3)

�2n =
1

2
log

1� �

1 + �
+ n��i+ o

1

jnj
; jnj ! 1:

The corresponding solutions p2n to (3.11) are expressed by (3.7),
which holds for x 2 [0; 1] uniformly. It follows from (3.10) that the
corresponding eigenfunctions are

W2n(x) = (��1
2n f2n(x); f2n(x); �

�1
2n�2n(x); �2n(x))

where �2n(x) is given in (3.9). A simple computation shows that

f2n(x) = �2n(x) + c2np2n(1� x)

where c2n is given in (3.6). The second expression of (3.5) is derived.
The proof is complete.

Let us recall that W 2 D( ) is said to be a generalized
eigenfunction of associated with the eigenvalue � if there
is an integer ` � 1 such that (� � )`W = 0. The integer
m(a)(�) = supl2IN dim [ker(� � )`] is called the algebraic
multiplicity of �. An eigenvalue � is said algebraically simple if
m(a)(�) = 1.

The sequence fWngn2ZZ is called a basis for X if to each element
W 2 X corresponds a unique sequence of numbers fcng such that the
series

W =
n2ZZ

cnWn (3.14)

is convergent with respect to the norm of X . fWngn2ZZ is called a
Riesz basis for X if

a) spanfWng = X ;
b) there exist some positive constants m1 and m2 such that for any

numbers cn; n 2 I , where I is any finite subset of ZZ , the fol-
lowing holds:

m1

n2I

jcnj
2 � k

n2I

cnWnk
2 � m2

n2I

jcnj
2:

We refer to [26] for more details on Riesz basis.
Remark 1: In designing the output feedback control law, we

use the same gain � as that in (2.1). Actually, we can design
u(t) = �ŵt(1; t) for any  < 0. In this case, by the same spectral
analysis as in the proof of Lemma 2, the spectrum are still as that in
(3.3) but �1n is replaced by �1n = (1=2) log j(1�)=(1+)j+n�i.
So the decay rate is still dominated by �2n. It does not bring any
advantage for the stabilization.

Theorem 3: Suppose � 6= 1. Then, the following assertions hold
true:

i) has a family of generalized eigenfunctions, which forms a
Riesz basis for X ;

ii) all eigenvalues of with sufficiently large module are algebraic
simple;

iii) generates a C0-semigroup on X ;
iv) the spectrum-determined growth condition holds for e t :

!( ) = S( ) < 0, where !( ) is the growth order of e t;
v) the semigroup e t is exponentially stable.

Proof: The relationship between iii) and iv) and i) and ii) is well-
known, which can be found for the explanations of (5.1) of [22]). Hence
ii)–v) are consequences of (i) and (3.3), (3.13) and the following argu-
ments for the proof of assertion (i). We consider here only 0 < � < 1
since the case of � > 1 can be treated similarly.

It is known that there exists a set of generalized eigenfunctions for
the operator A defined by (2.2), which forms a Riesz basis for H (it
can be shown simply by the asymptotic expression obtained in Lemma
2 and the abstract result in [7]). Its characteristic equation is just (3.11)
and all generalized eigenfunctions are denoted by fGn(x)gn2ZZ ,
where ZZ0 is a set of index with the property that there exists a large
integerN such that ZZ0�fn j jnj > Ng is a finite set. The asymptotic
eigenfunctions forGn(x) are given by (3.6). From the arguments in the
sequel, we may assume without loss of generality that allW2n(x) have
the same form of (3.5): fW2n(x) = ( ~Fn(x)+Gn(x); ~Fn(x))gn2ZZ .
All eigenvalues ofA with large modulus are algebraically simple.

Let us define another operator ~A in H

~A(f; g) = (g; f 00)

D( ~A) = f(f; g) 2 H j ~A(f; g) 2 H; f 0(1) = ��g(1)g:

Its characteristic equation is (3.12). It is well known that the eigenfunc-
tions fFn(x)gn2ZZ of ~A given by (3.8) form a Riesz basis forH [17].

Now, define an isometric isomorphism 1 : X ! (L2(0; 1))2 �
C � (L2(0;1))2 by

1(f; g; �;  ) = (f 0; g; �f(0); �0;  ) 8 (f; g; �;  ) 2 X:

Then, the proof will be accomplished if we can show that

1
Fn(x)

Fn(x) n2ZZ

; 1

~Fn(x) +Gn(x)
~Fn(x) n2ZZ

forms a Riesz basis for (L2(0;1))2 � C � (L2(0;1))2.
Next, define a bounded invertible transformation 0 on L2(0; 1)�

L2(0;1):

0(f; g)(x) = (�g(1� x); f(1� x))

8 (f; g) 2 L2(0; 1)� L2(0; 1):
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Then, it is easy to see that (we use the column and row notations alter-
natively without confusion)

I 0 �I

0 1 0

c�1
2n 0 0 I � c�1

2n 0

1

Fn(x)

Fn(x)

= 1

0

Fn(x)

I 0 �I

0 1 0

c�1
2n 0 0 I � c�1

2n 0

�

1

~Fn(x) +Gn(x)
~Fn(x)

= 1

Gn(x)

0
+ o

1

jnj

where c2n is defined in (3.6) and I is the identity on (L2(0; 1))2. It is
obvious that ff(0; Fn(x))gn2ZZ ; f(Gn(x);0)gn2ZZ g forms a Riesz
basis for X and so

1

0

Fn(x) n2ZZ

; 1

Gn(x)

0
n2ZZ

forms a Riesz basis for (L2(0;1))2 � C � (L2(0;1))2. By classical
Bari’s theorem [11] and (3.15), it follows that

I 0 �I

0 1 0

c�1
2n 0 0 I � c�1

2n 0

1

Fn(x)

Fn(x)
n2ZZ

;

I 0 �I

0 1 0

c�1
2n 0 0 I � c�1

2n 0

1

�
~Fn(x) +Gn(x)

~Fn(x) n2ZZ

forms a Riesz basis for (L2(0;1))2�C � (L2(0;1))2. Notice that for
all n 2 ZZ or n 2 ZZ0, the transformations

I 0 �I

0 1 0

c�1
2n 0 0 I � c�1

2n 0

and their inverses are uniformly bounded in (L2(0;1))2 � C �
(L2(0;1))2 with respect to n. Therefore

1

Fn(x)

Fn(x) n2ZZ

; 1

~Fn(x) +Gn(x)
~Fn(x) n2ZZ

forms a Riesz basis for (L2(0;1))2 � C � (L2(0;1))2. The proof is
complete.

Finally, we indicate that Theorem 3 should be still true even for
� = 1. There is some other method to treat the exponential stability
for nondissipative PDEs. We refer to [9] for the progress on this aspect.
In order to understand the case of � = 1 intuitionally, we use an Le-
gendre spectral method to approximate (3.11) and obtain two figures.
Fig. 1 demonstrates the functional relation of S(A) with respect to �
where we take � = 0:7. It recommends the choice of small �. Fig. 2

Fig. 1. Functional relation of ( ) with respect to with = 0 7.

Fig. 2. Functional relation of ( ) with respect to with = 0 15.

demonstrates the functional relation of S(A) with respect to � where
we take � = 0:15, which recommends the choice of � around one.
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