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Abstract

We consider a system described by the Euler–Bernoulli beam equation, with one end clamped and with torque input at the other end. The
output function are the displacement and the angle velocity at the non-clamped end of the beam. We study the identification of the spatially
variable coefficients in the beam equation, from input–output data. We show that both the density and the flexural rigidity of the beam (which
are assumed to be of class C4) can be uniquely determined if the input and output functions are known for all positive times.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In control engineering, the determination of some physical
parameters by means of observed data is recognized as the iden-
tification problem which falls actually under the category of
inverse problems (Nakano, Ohsumi, & Shintani, 2000). One of
the fundamental questions in identification problems is parame-
ter identifiability. The system parameters are said to be identifi-
able if the input–output map of the system and the input–output
data contain sufficient information to uniquely determine these
parameters (Kitamura & Nakagiri, 1977). From the inverse
problem point of view, the parameter identifiability is equiva-
lent to the uniqueness of the solution of the inverse problem.
It is generally considered that the parameter identifiability is
the theoretical basis of many identification algorithms, such
as the output least-square method, a widely used algorithm in
engineering.

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor George
Weiss under the direction of Editor Miroslav Krstic.

∗ Corresponding author. Academy of Mathematics and Systems Science,
Academia Sinica, Beijing 100080, PR China. Fax: +86 10 62587343.

E-mail address: bzguo@iss.ac.cn (B.-Z. Guo).

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2006.11.002

Over the last two decades, the parameter identifiability for
distributed parameter systems has attracted a great deal of
attention. There are numerous works for one-dimensional
systems on this aspect. We refer to Giudici (1991), Ito and
Nakagiri (1997), Kitamura and Nakagiri (1977), Kravaris and
Seinfeld (1986), Lesnic (2000), Nakagiri (1983), Nakagiri
(1993), Pierce (1979), Udwadia and Sharma (1985), Yamamoto
and Nakagiri (1994) and the references therein. A nice earlier
survey can be found in Nakagiri (1993). In these works, three
different sorts of methods were used. The first sort of meth-
ods reduce the parameter identifiability problem to an inverse
Sturm–Liouville problem for which the Gelfand–Levitan result
is applicable (Kravaris & Seinfeld, 1986; Pierce, 1979; Udwa-
dia & Sharma, 1985). The second ones, by means of set repre-
sentations, have developed some conditions under which some
of the coefficients can be (or not) uniquely identified (Giudici,
1991; Kitamura & Nakagiri, 1977). Both these methods can be
traced back to the work of Kitamura and Nakagiri (1977). The
third kind of methods may be considered as the abstract formu-
lation of the first ones. Roughly speaking, the original problem
is transformed into the identifiability of some operator in gen-
eral abstract evolution equation in Banach (or Hilbert) space
(Nakagiri, 1983; Yamamoto & Nakagiri, 1994). However, the
last two methods require the distributed measurements.
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Although the study of identifiability for second-order
systems is quite comprehensive, few results, to our best knowl-
edge, are available for fourth-order systems like beam equa-
tions. In Lesnic (2000), the second sort of method was used
to identify the flexural rigidity and/or the mass density for an
Euler–Bernoulli beam through prescribed deflection and load.
In Ito and Nakagiri (1997), the third method was adopted to
discuss the identifiability of the flexural rigidity and damping
coefficients for an Euler–Bernoulli beam with Kelvin–Voigt
damping. In addition, an approach that is different from the
methods aforementioned, which is called the boundary control
method, was used in Avdonin, Medhin, and Sheronova (2000)
to recover an unknown piecewise constant coefficient for an
Euler–Bernoulli beam equation through the given Dirichlet-to-
Neumann map.

In this paper, we will use the first sort of method to deal
with the identifiability of the coefficients for an Euler–Bernoulli
beam, which is described by the following equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�(x)utt (x, t) + (r(x)uxx(x, t))xx = 0,

0 < x < 1, t > 0,

u(0, t) = ux(0, t) = 0, t �0,

r(x)uxx(x, t)|x=1 = 0, t �0,

(r(x)uxx(x, t))x |x=1 = g(t), t �0,

u(x, 0) = ut (x, 0) = 0, 0�x�1,

(1)

where x stands for the position and t the time. u(x, t) is the
transverse displacement at x and t, �(·) is the mass density
and r(·) = EI(·) is the flexural rigidity of the beam, where
E is the Young’s modulus and I the second moment of inertia
of the beam, g(·) is the known boundary input satisfying the
compatibility condition g(0)=0. The parameters to be identified
are �(·) and r(·). In practice, the Young’s modulus E is not
necessarily known exactly even if it is constant, because its
true value is occasionally slightly different to the nominal value
and cannot be determined until some test is performed (Nakano
et al., 2000). The identification of r(·) is necessary.

The aim of this paper is to show that if the boundary input
g(t) and observations u(1, t) and ux(1, t) are available for all
t �0, the unknown parameters �(·) and r(·) can be uniquely
determined by {(g(t), u(1, t), ux(1, t)), t �0}. From a math-
ematical point of view, this parameter identifiability problem
is an inverse boundary value problem. In the study of inverse
problems, the problems in time domain are often reduced to
problems in frequency domain (see, e.g., Pierce, 1979; Udwadia
& Sharma, 1985). Motivated by this idea, we reduce the inverse
boundary value problem under consideration to an correspond-
ing inverse boundary spectral problem (see Section 2). Fortu-
nately, the latter has already been solved by Barcilon (1982,
hyperlinkbib3 bib41986). The parameter identifiability prob-
lem is thus concluded. As a by-product, we also show that the
two inverse problems are equivalent to each other. This equiva-
lence is significant both theoretically and practically. It should
be pointed out that the equivalence result obtained in this paper
is not contained in Kachalov, Kurylev, Lassas, and Mandache
(2004) where the equivalence of several types of boundary in-
verse problems was discussed.

The remaining parts of the paper are as follows. In
Section 2, some necessary facts on the inverse eigenvalue
problem for the Euler–Bernoulli equation are introduced. The
main results are presented in Section 3.

2. Preliminary

In this section, we list briefly some basic facts on the eigen-
values and eigenfunctions of the Euler–Bernoulli beam equa-
tion. A result of an inverse eigenvalue problem for the beam
equation originated from Barcilon (1982) is also introduced.
Throughout the paper, we always assume that:

(a) �(·), r(·) ∈ C4[0, 1] and �(x), r(x) > 0 for any x ∈ [0, 1].
(b) g(·) ∈ L2(0, ∞) and g′(·) is integrable in any finite inter-

val.

By the eigenvalue problem associated with (1), we mean the
following two-points boundary value problem:⎧⎨⎩

(r(x)�′′
n(x))′′ = �2

n�(x)�n(x), 0 < x < 1,

�n(0) = �′
n(0) = 0,

�′′
n(1) = (r(x)�′′

n(x))′|x=1 = 0,

(2)

where �2
n, n = 1, 2, . . . , are eigenvalues with the order of the

following:

0 < �1 < �2 < · · · �n < �n+1 < · · · .

�n is the eigenfunction corresponding to �n. It is well known
that {�n}∞n=1, normalized by∫ 1

0
�(x)�2

n(x) dx = 1,

form an orthonormal basis for the space L2
�(0, 1). Here L2

�(0, 1)

denotes the space of square integrable functions over [0, 1] with
weight �.

Let {�2
n} and {�2

n} be the eigenvalues of (2) with boundary
conditions replaced by (3) and (4), respectively

�n(0) = �′
n(0) = �n(1) = (r(x)�′′

n(x))′|x=1 = 0, (3)

�n(0) = �′
n(0) = �n(1) = �′′

n(1) = 0. (4)

Let

Gi =
∫ 1

0

(1 − x)i

r(x)
dx, i = 1, 2.

It is shown in Barcilon (1982) that under the assumption (a),
�(·) and r(·) can be uniquely determined by {�n, �n, �n}∞n=1
and Gi, i = 1, 2. Furthermore, it is shown in Gladwell (2004,
pp. 386–389) (see also Barcilon, 1986, pp. 34–35) that
{�n, �n, �n}∞n=1 and Gi, i = 1, 2 can be determined from
{�n, �n(1), �′

n(1)}∞n=1.We write specifically this result as the
following Lemma 2.1.

Lemma 2.1. �(·) and r(·) can be uniquely determined by
{�n, �n(1), �′

n(1)}∞n=1.
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It is known that the following asymptotic properties hold
(see, e.g., Barcilon, 1986, p. 33)

�n = O((n − 1/2)2), �n(1) = O(1),

�′
n(1) = O(n − 1/2). (5)

Moreover (Gladwell, 2004, p. 382), for any n, �n(1)�′
n(1) > 0,

by which we may assume without loss of generality that

�n(1) > 0, �′
n(1) > 0. (6)

To end this section, let us interpret the solution of (1) (see also
Lagnese, 1991, Remark 2.1). Let H = H 2

E(0, 1) × L2
�(0, 1),

H 2
E(0, 1)={p ∈ H 2(0, 1)|p(0)=p′(0)=0} be the state Hilbert

space with the norm induced by the inner product (for any
(p, q) ∈ H):

‖(p, q)‖2
H =

∫ 1

0
[�(x)|q(x)|2 + r(x)|p′′(x)|2] dx.

It is known that (1) is equivalent to (Rebarber, 1995)

d

dt

(
u

ut

)
= A

(
u

ut

)
+ Bg, (7)

where the operators A : D(A)(⊂ H) �→ H and B : R �→
[D(A)]′ are defined by

A

(
�
�

)
=
(

�

− 1

�(x)
(r(x)�′′)′′

)
,

D(A) = {(�, �)
 ∈ H|� ∈ H 2
E(0, 1), (r(x)�′′)′′ ∈ L2(0, 1),

�′′(1) = (r(x)�′′(x))′|x=1 = 0},

B =
(

0

− 1

�(x)
�(x − 1)

)
.

A is skew-adjoint in H : A∗ =−A. By (5), one can easily show
that B is admissible for the C0-semigroup eAt (Ho & Russell,
1983, see also Guo, 2002). Therefore, for any g ∈ L2(0, ∞)

and initial data (u(·, 0), ut (·, 0)) ∈ H, there exists a unique
solution to (7) such that (u, ut )


 ∈ H, and for any (�, �)
 ∈
D(A),

d

dt

〈(
u

ut

)
,

(
�
�

)〉
H

=
〈(

u

ut

)
, −A

(
�

�

)〉
H

+
(

0
−�(1)g(t)

)
, t �0, a.e. (8)

In particular, since A(�n, i�n�n)

 = i�n(�n, i�n�n)


, it fol-
lows from (8) that⎧⎪⎪⎨⎪⎪⎩

d

dt
〈u, �n〉H 2

E(0,1) = 〈u, −i�n�n〉H 2
E(0,1),

d

dt
〈ut , �n〉L2

�(0,1) = −
〈
u,

1

�
(r�′′

n)
′′
〉
L2

�(0,1)

− �n(1)g(t),
(9)

which hold for all n and almost all t �0.

3. Main results

Due to the basis property of eigenfunctions {�n}∞n=1 in
L2

�(0, 1), the solution u of (1) can be represented as⎧⎨⎩u(x, t) =
∞∑

n=1
un(t)�n(x),

un(t) = ∫ 1
0 �(x)u(x, t)�n(x) dx.

(10)

By virtue of (9), differentiate un twice in t, to obtain

u′′
n(t) = d

dt

∫ 1

0
�(x)ut (x, t)�n(x) dx

= −
∫ 1

0
u(x, t)(r(x)�′′

n(x))′′ dx − �n(1)g(t)

= − �2
nun(t) − �n(1)g(t).

This together with the initial conditions un(0)=u′
n(0)=0 gives

un(t) = −�n(1)

∫ t

0

sin �n(t − 	)

�n

g(	) d	.

Substitute the above into (10) to yield

u(x, t) = −
∞∑

n=1

�n(1)�n(x)

∫ t

0
qn(t − 	)g(	) d	, (11)

where

qn(t) = sin �nt

�n

. (12)

In order to obtain {�n, �n(1), �′
n(1)} from (11), we need the

following Lemmas 3.1 and 3.2.

Lemma 3.1. If g(·) is not identically zero, then {�n}∞n=1 and
{�n(1)}∞n=1 are uniquely determined by {(g(t), u(1, t)), t �0}.

Proof. For any given t > 0, by virtue of (5), the series (11)
converges uniformly in x over [0, 1]. In particular,

u(1, t) = −
∞∑

n=1

�2
n(1)

∫ t

0
qn(t − 	)g(	) d	

= −
∫ t

0

[ ∞∑
n=1

�2
n(1)qn(t − 	)

]
g(	) d	. (13)

Notice that the change of orders of integration and summation
in (13) is guaranteed by the uniform convergence of the series
on the right-hand side of (13). Let

Q(t) = −
∞∑

n=1

�2
n(1)qn(t). (14)

Again by (5), the series in (14) is uniformly and boundedly
convergent over [0, ∞), which implies that Q is a bounded
continuous function. This, together with the assumption (b) in
the beginning of Section 2, enables us to apply the Laplace
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transform to (13) to obtain

û(1, s) = Q̂(s)ĝ(s),

where ∧ denotes the Laplace transform. Since u(1, ·) and g(·)
are known and g(·) is not null, by the uniqueness of the Laplace
transform, Q is uniquely determined by u(1, ·) and g(·).

Since Q(·) is uniquely determined by u(1, ·) and g(·), the
proof will be accomplished if we can show that {�n}∞n=1 and
{�n(1)}∞n=1 can be uniquely determined by Q(·). Indeed, apply
the Laplace transform to (14) to give

Q̂(s) =
∞∑

n=1

�2
n(1)

2i�n

(
1

s + i�n

− 1

s − i�n

)
. (15)

Since �n(1) > 0, {−i�n}∞n=1 are poles of Q̂ and �2
n(1)/2i�n is

the residue of Q̂ at {−i�n} for any n�1. Hence {�n}∞n=1 and
{�n(1)}∞n=1can be uniquely determined by Q̂. By the unique-
ness of the Laplace transform, {�n}∞n=1 and {�n(1)}∞n=1 are
uniquely determined by Q(·), proving the required result. �

Let us recall that a sequence {fi}∞i=1 is called a basis for a
Hilbert space H if any element w ∈ H has a unique represen-
tation

w =
∞∑
i=1

aifi , (16)

and the convergence of the series is in the norm of H. A basis
for H is a Riesz basis if it is equivalent to an orthonormal basis,
that is, if it is obtained from an orthonormal basis by means
of a bounded invertible transform (Young, 2001, p. 26). If the
sequence {fi}∞i=1 in (16) is a Riesz basis for H, the series in
(16) converges unconditionally in the norm of H.

Let 
 := {�n |n ∈ Z} be a countable subset of the complex
plane. Suppose

inf
n

Im �n > 0, sup
n

Im �n < ∞,

and �n are separable in the sense that

inf
m�=n

|�m − �n| > 0.

Then the family {ei�nt } forms a Riesz basis for its span in
L2(0, ∞) (see Avdonin & Ivanov, 2002, Remark 1).

Lemma 3.2. If g(·) is not identical to zero, then {�n}∞n=1
and {�n(1)�′

n(1)}∞n=1 are uniquely determined by {(g(t),

ux(1, t)), t �0}.

Proof. Since g′(·)is integrable in any finite interval, integrate
by parts over [0, t] for any t > 0, to give∫ t

0
qn(t − 	)g(	) d	 = O(�−2

n ). (17)

This together with (5) guarantees that we can differentiate (11)
in x term by term, which gives

ux(x, t) = −
∞∑

n=1

�n(1)�′
n(x)

∫ t

0
qn(t − 	)g(	) d	. (18)

By the uniform convergence of the series in (18) that is guar-
anteed by (17), we have

ux(1, t) = −
∞∑

n=1

�n(1)�′
n(1)

∫ t

0
qn(t − 	)g(	) d	. (19)

Take c > 0 and set

P(t) = −
∞∑

n=1

�n(1)�′
n(1)e−ct qn(t). (20)

We show that

e−ctux(1, t) =
∫ t

0
P(t − 	)e−c	g(	) d	. (21)

In fact, write (20) to be

P(t) =
∞∑

n=1

�n(1)�′
n(1)

2i�n

[e−(c−i�n)t − e−(c+i�n)t ]. (22)

Since {�n + ic, −�n + ic} are separable and all �n are real,
{e−(c−i�n)t , e−(c+i�n)t }∞n=1 form a Riesz basis for its span in
L2(0, ∞). By (5),

�n(1)�′
n(1)

2i�n

= O(n−1).

Hence the series in (22) converges unconditionally in L2(0, ∞).
In particular, P(t) ∈ L2(0, ∞).

Now set

Sn(t) = −
n∑

k=1

�k(1)�′
k(1)

2i�k

[e−(c−i�k)t − e−(c+i�k)t ],

n = 1, 2, 3 . . . .

Then we have, for any t > 0,∣∣∣∣∫ t

0
Sn(t − 	)e−c	g(	) d	 −

∫ t

0
P(t − 	)e−c	g(	) d	

∣∣∣∣
�
∫ t

0
|Sn(t − 	) − P(t − 	)|e−c	|g(	)| d	

�
(∫ t

0
e−2c	|g(	)|2 d	

)1/2(∫ t

0
|Sn(t−	)−P(t−	)|2 d	

)1/2

�
(∫ t

0
|g(	)|2 d	

)1/2(∫ t

0
|Sn(	) − P(	)|2 d	

)1/2

�‖g‖L2(0,∞)‖Sn(t) − P(t)‖L2(0,∞). (23)

This together with the convergence of Sn(t) to P(t) in L2(0, ∞)

gives (as n → ∞)∣∣∣∣∫ t

0
Sn(t − 	)e−c	g(	) d	 −

∫ t

0
P(t − 	)e−c	g(	) d	

∣∣∣∣ → 0,

proving (21).
Furthermore, since P(·) ∈ L2(0, ∞), e−c·g(·) ∈ L1(0, ∞),

by Young’s inequality, (21) implies that e−c·ux(1, ·) ∈
L2(0, ∞). This enables us to apply the Laplace transform
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to (21), to obtain

ûx(1, s + c) = P̂ (s)ĝ(s + c) ∀Re(s)�0. (24)

This together with the uniqueness of the Laplace transform
shows that P(·) is uniquely determined by g(·) and ux(1, ·)
because g(·) is not null.

Similar to (23), for any t > 0 and Re(s) > 0, we have∣∣∣∣∫ t

0
e−s	Sn(	) d	 −

∫ t

0
e−s	P(	) d	

∣∣∣∣
�
∫ t

0
|Sn(	) − P(	)| d	

�
√

t

(∫ t

0
|Sn(	) − P(	)|2 d	

)1/2

�
√

t‖Sn(	) − P(	)‖L2(0,∞) → 0 as n → ∞. (25)

Therefore, we can integrate the series in (22) over (0, t) to yield∫ t

0
e−s	P(	) d	

= −
∞∑

n=1

�n(1)�′
n(1)

2i�n

×
[

2i�n

(s+c)2+�2
n

−e−(s+c−i�n)t

s+c−i�n

+e−(s+c+i�n)t

s+c+i�n

]
. (26)

Passing t → ∞, we obtain

P̂ (s) = −
∞∑

n=1

�n(1)�′
n(1)

2i�n

[
1

s+c−i�n

− 1

s+c+i�n

]
. (27)

This, similar to Lemma 3.1, shows that {�n}∞n=1 and
{�n(1)�′

n(1)}∞n=1 are uniquely determined by P(·) and so are
by g(·) and ux(1, ·). The proof is complete. �

Now, we are in a position to prove the main result of this
paper.

Theorem 3.1. If g(·) is not identical to zero, then

(i) {�n, �n(1), �′
n(1)}∞n=1 are uniquely determined by

{(g(t), u(1, t), ux(1, t)), t �0}.
(ii) �(·) and r(·) are uniquely determined by {(g(t), u(1, t),

ux(1, t)), t �0}.

Proof. (i) follows from Lemmas 3.1 and 3.2, and (ii) can be
deduced from (i) and Lemma 2.1. �

The following result is a direct consequence of Theorem
3.1, which is much more easily understood for identification
problems.

Corollary 3.1. Let u be a solution of (1) and ũ be a solution
of (1) in which �(·) and r(·) are replaced by �̃(·) and r̃(·),

respectively. If g(·) is not identical to zero, then �(·)= �̃(·) and
r(·)= r̃(·) follows from u(1, t)− ũ(1, t)=ux(1, t)− ũx(1, t)=
0, t �0.

Finally, we give a result that reveals the relationship between
the inverse boundary value problem and the inverse boundary
spectral problem for the beam equation.

Theorem 3.2. The following two inverse problems are equiv-
alent:

(i) Determine �(·) and r(·) from the boundary spectral data
{�n, �n(1), �′

n(1)}∞n=1.
(ii) Determine �(·) and r(·) from the input–output maps:

g(t) → u(1, t), g(t) → ux(1, t), t �0.

Proof. (i) ⇒ (ii) is just Theorem 3.1.
(ii) ⇒ (i). By (13) and (19), we see that the two maps

g(t) → u(1, t) and g(t) → ux(1, t) are completely determined
by boundary spectral data {�n, �n(1), �′

n(1)}∞n=1. The proof is
completed. �
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