
Mathl. Comput. Modelling Vol. 16, No. 4, pp. 57-68, 1992 

Printed in Great Britain. All rights reserved 

0895-7177192 $5.00 + 0.00 

Copyright@ 1992 Pergamon Press plc 

AGE-DEPENDENT POPULATION DYNAMICS BASED 
ON PARITY INTERVAL PROGRESSION 

W. L. CHAN 

Department of Mathematics 

The Chinese University of Hong Kong, Hong Kong 

B. Z. Guo 

Beijing Institute of Information and Control 

Beijing, China 

(Received April 1991) 

Abstract-A controlled age-dependent population equation based on the parity interval progression 

is developed. The asymptotic properties for the stationary case are studied by investigating the 

spectrum of the corresponding population operator in the semigroup framework. 

1. INTRODUCTION 

The McKendrick equation of population dynamics [l] is one of the most important age-dependent 
population models. It has been used to study a great many biological and physical phenomena. Its 
applications to human populations has recently been reported in [2]. However, being a macrosopic 
model, it has its limitations. In this article, we shall develop a microscopic population model 
based on the concepts of birth parity or order (number of births) and birth interval. These ideas 
can be traced back to Henry [3] and later Whelpton [4] and Feeney [5]. We believe that age 
structure alone is not adequate to explain the human population. Birth parity and birth interval 
should play an important role. We are particularly interested in birth control strategies involving 
both of them and hopefully building up a framework for integrating micro-level birth analysis 
into macro-level studies of fertility and population growth trends. 

2. THE MODEL 

Let N be the maximal birth order (number of births) ever attained by females in a closed 
population. pn(r, t, s), n = 0, 1,2,. . . , N denotes the age distribution of females who have the 
parity n and whose n th birth has age s. ps(r,t,s) = pc( T, t is the age density of females who ) 
have no births at time t. Obviously, the age distribution of females of population pf (T, t) can be 
expressed as 

@(T-J) = Po(r,t) + -g /‘“-“P.(P,t,s) ds, 
n=l O 

(1) 

where r,,, is the age limit, [ri, rs] denotes the fecundity interval of females, ~1 > 0. 
Define the age-parity-interval-specific fertility fn ( T, t , s) by 

fn(r,t,S) = 4n(rytyS) 
Pn-1(r,t, s>’ 

n=1,2 )..., N, 
(2) 

h(r,t,s) = h(r,t), 
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where &(r, t, s) dt is the number of women aged r who had n - 1 births previously and whose 
(n - l)th birth has age s in time interval (t, t + dt). Of course, f(r, t,s) take zero values outside 

[73,~21 x [kc=) x [O,T2---11. 

The absolute birth rate 4(t) of the population can then be computed as 

Denoting the female relative mortality rate by ,~j (r, t), then the definitions above show 
a small enough time interval At and age interval Ar, one has 

p,(r+At,t+At,s+At) Ar= [1-pj(r,t) At] 

(3) 

that in 

b,(r,t,s) Ar-_fn+l(r,t,s)Pn(r,t,s) ArAt]. (4) 

Taking the limits as Ar -+ 0, At + 0, one gets the basic partial differential equation 

Qk(r,t,s) = -pf(r,t) zk(r,t,s) -h+l(r,t,s) h(r,t,s), 
forall t>O and O<r<r,, 

(5) 

where 

or 

&(r, t, s) = iirn, 
&(r+Ah,t+Ah,s+Ah)-p,(r,t,s) 

W Ah 
, 

Dp,(r,t,s) = &h(rjt7s) + &h(r,t,s) + &h(rjt,s) 
di! dr 8.5 ’ 

(6) 

if p,(r,t, s) is differentiable with respect to r, t, s. 
In order to solve Equation (5), some boundary conditions are required. From the definitions, 

we have 
pl(r,t,O) = fl(r,t) po(r,t), 

J 

pz-r1 

h(r,t,O) = .k(r,t,s) Pn--l(r,t,s) ds, n L 2, 
(8) 

0 

Po(0, t> = ho(t) [J “fi(r,t) m(r,t) dr+~JFaJr-rlfn(r,t.s) P,+-l(r,t,S) drds] , 
Pl n=2 r1 0 

(g) 

pn(O,t,s) = 0, n 2 1. 

where Lo(t) is the infant’s sex ratio. 
Let pn(r,O,s) = pnO(r,s),pOO(r,s) = poo(r) be the initial age distribution of parity n and 

interval s. We then have the population equation of age-parity-interval progression model: 

j%(r,t,s) = -Pj(r,t,s) Pn(r,t,s) - fn+i(r,t,s) Pn(r,t,s), 

h(r,O,s)=ho(r,s), O<r<r,, OIsSr,--1, 

boundary conditions (8) and (9). 
(10) 

Naturally the mortality rate satisfies the following conditions: 

J 
P 

o pj(p, t) dp < +m, for r < r,; J op- pj (p, t) dp = $00. (11) 

Many important indices in birth analysis can be expressed in terms of fn(r, t, s) and Pn(r,t, s). 
For example, the nth fertility ,&(r, t) of females aged r 

p,(, q = fn(r7t) Pn-l(rlt) , CfzoPn(r,t) ’ Iz= l,%*-*,N, (12) 
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where pn(r,t) = JlmSrlp,(r,t,s) ds, n 2 1, denotes the age distribution density of females 
with parity n, and 

fn(r,t) = SZ-m-r1 fn(r,t,s) Pn-l(r,t,s) ds n = 2 3 

T-L1(r,t) 
, 

) ) . . . ) 

N 

. (13) 

Others, include the average fertility f (r, t) of all women aged T at time t 

f(r,t) = ~Pn(rJ~ (14 
n=l 

and the age-specific fertility p(t) of females 

p(t) = Jr2 f(T,t) dr. (15) 
r1 

If Xn(r, t, s) denotes the females parity-interval ratio, 

L(r, t, s) = Pn(r, t, s> 
zq(r,t) ’ 

n=0,1,2 ,..., N, 

Ao(r,t,s) = &(r,t), 5 jrm-r’Xn(r,t,s) ds = 1, 
n=O e 

then in view of the fact that for small enough Ar, At 

~.&‘+At,t+At,s+At) Ar=[l-~~(r,t) At]p,(r,t,s), 

and combining (4) we get immediately the female parity-interval ratio equation 

Dkl(r,t,s) = -fn+l(r,t,S).X,(r,t,S), 
Jn(r, 0, s> = ~nO(~, s), n 2 0, 
h(r,t,O) = f1(r,t) Xo(r,t), 

J 

n-r1 

L(r,t,O) = fn(p,t, 8) Ll(r,t, s) ds, n L 2, 
0 

(16) 

(17) 

(18) 

(19) 

&2(0,t,s) = 1 1, ifn=O, 

0, ifn#O. 
n = 0,l ,.“, N, 

where &o(T, s), X&r, s) = X ( ) 0s T are the initial conditions, and 

In the application to population forecasting, Equation (19) is more convenient since the mortality 
function does not appear in this model. 

J 
Q-t-1 

h(r,t) = L(r,t,s) ds, n 2 2, (20) 
0 

is the female parity ratio and the age-parity fertility 

fn(r t> = S;“- fn(r,t,s) L--1(~,t,s) ds 
, 

Ll(~,t) 
, n=2,3 ,,.., N. (21) 
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Furthermore, integrating with respect to s from 0 to T, - ~1 on both sides of Equation (lo), we 
get the age-dependent parity progression model. On the other hand, if we let 

(22) 

x*(t, s) denotes the number of females who had n births and whose nth birth has age s, then 
integrating with respect to r from 0 to rm on both sides of Equation (lo), we have 

D%(C s) = -P.f(Q z,(t, s) - fntl(t, s> &b(t, s), 12 1 1, 

Dxo(t) = -P.f(t> x0(t) - (l- ko(t)) fl@> x0(+)+ ko(tf-" &&,s) &I-l(t,S) ds, 

0 n=2 

Gx(O,s) = %0(S), n 2 0, 

Xl@, 0) = fl(Q x0(t), 

J 
r2-r1 Gl(t,0) = fn(t,s) zn--1(&s) ds, in 2 2, 

0 

(23) 
where 

fn(t, s) x,-1(4 s) = lrm fn(r,t, s) x,--l(r,t, s> dr, for n L 2, 

fl(t> a(t) = brm fl(r,t) xo(r,t) dr. 

fn(t,s) xn-l(t, s) d eno t es all the births of the females who had n - 1 births previously and whose 
(n - l)th birth has age s. Equation (23) is very similar to the yeast model discussed in [6]. In 
fact, starting from Equation (lo), we can even deduce the McKendric type population model. 

From Equation (10) we see that, when the initial conditions pnc(r, s) are given, the age-parity- 
interval density p,(r,t, s) can be determined by the parameters fn(r, t,s) describing the age 
distribution of females who have a given birth order and birth interval. The parameters fn(r, t, s), 
n= 1,2 ,...) N, can thus be considered as control variables. A birth control or family-planning 
program is essentially the regulation of fn(r,t, s), i.e., control via the birth order and birth 
interval. For example, in the one-child program one just sets fs = fs = .. . = f~ = 0. A 
two-child program is equivalent to the case fz = f4 = . . . = f~ = 0, etc. Any viable birth policy 
can only be regulated on the basis of the natural birth level of females of the society. For this 
reason, we consider the “standard age-parity-interval progression fertilities” as the average age- 
parity-interval progression fertilities of women under the natural fertile state (i.e., no artificial 
means are imposed). The standard age-parity-interval progression fertilities are denoted by 

&(r,t,s), n= 1,2 ,..., N, (24) 

hl(?-,t,s) = hl(r,t). I n a stationary period we can assume &(T,t,s) = &(P,s), independent of 
time t. The programmed age-parity progression fertilities are hence expressed as 

fn(r,t,s) =P?L(t,s) hn(r,s), n= 1,2,...,N, (25) 

L%(t,s) = Pi(t). N a t urally hn(r, s) take zero values outside of [Q, Q] x [0, rz - ~11. 
The parameters ,&(t, s) appearing in (25) clearly indicate the relative level of the actual age- 

parity-interval progression fertilities comparing to the standard age-parity-interval progression 
fertilities. They form a group of control variables corresponding to various birth policies. For 
example, 

(i) birth order control: that only “one child” is allowed for every fertile woman is just to say 
,L9i = 1, and p2 = ps = . . . = pN = 0; only “two children” is permitted is equivalent to 
that ,Bi = pz = 1, ,& = ,L& = . . . = PN = 0; 

(ii) birth interval control: 
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(iii) 

p1=1, /L(t,s)= 
1 

;> i’,:‘;:o> n = 2,3, . . . , N, 

7 01 
(26) 

correponds to the policy that the first birth is allowed for every fertile women, but another 
birth is not permitted until the age of her last child is beyond se; 
birth order and interval control: first birth is not restricted and the second is permitted 
only when the age of her first child is beyond so, and third birth is forbidden is just to say 
Pl =l,ps=...=pN=O, and &J take the form of (26). 

3. THE STATIONARY CASE 

In this section, we will consider the stationary age-parity-interval progression system, i.e., 
&(Gs) = &(s), Pi(s) = Prl lo(t) = k0, p.f(~,t) = pf(r), fn(r,t,s) = P,(s) L(T,s), are all 

independent of time t for all 71, n = 1,2,. . . , N, and measurable with respect to their variables 
in Equation (10). This system describes, to a certain extent, the birth dynamic process of a 
stationary closed population within a short period of time. The system is as follows: 

&(r,t,s) = -PI09 pn(r,t,s) -Pn+1(s) hn+l(r,s) ‘Pn(r,t,s), 12 L 0, 

Pn(~, 0, s> = Pno(T, s), n 2 0, 

Pl(r,t!O) = Plh($ PO(T,f), 

Pn(r,t,O) = 
J 

Q--r1 
A(s) hn(~, s> Pn-l(r,t, s) ds, n L 2, (27) 

0 

Po(O,t) = ho r*P~h(r) po(r,t) dr+~/r2/-r-r1j%(s) hn(r,s) p,_l(r,t,~) ds dr] , 
n=2 r1 PI 

pn(O,t,s) = 0, n 2 1, 

where 0 5 pn(s), hn(r,s) 5 1, meas{r E [T~,Q] x [0, ~1 1 h,(~,s) # 0) > 0 for n = 1,2,. . . , N. 
For n= 1,2 N, let ,..., 

1: (lo... 0 0 ... 0 0 . . ..O’ . . 0 

*. 

An(r,s) = ; ’ 
-hn(r,s) i 

1: *. . 
oo... 0 ..:o 

1 0 ..* 0 
1 . 

Bo(r,s) = - . [ :I r2 - r1 (j 0 . . . (j 
7 Bl(+, s) 

Bn(r, s) = -A,(r, s), n 2 2, 

0 . . . &(r,s) *. . 

C,(r,s) = ; 

= h(r) Bo(r, s), 
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Then Equation (10) can be written as 

P(0, t, s) = ~y2-‘1 [&3ncn(r,s)] P(T,&S) dsdr. 
n=l 

Let T(Q) SO, h) be the solution of following matrix ordinary differential Equation 

dX(h) _ _ 
dh 

g/%(s) An(ro+h,so+h) I X(h), 
n=l 

(29) 
X(0) = I, 

then integrating along the characteristic curve, we can get the following integrated version of 
Equation (28): 

[ T(s - t, r - t, t) Po(r - t, s - t), r,s 1 t, 

P(r,t,s) = 
$o/%B,(~-s,r)] P(r--s&-s,4 dr, 

r 2 s,t > s, 

c&(29, T) P(2p,t - r, T) dddr, ] t, s > r. 

(30) 

Now, we discuss the system in the Banach space X = L(0, pm) x (L(0, To) x (0, r, - rl))N. In 
the spirit of [l], we first have: 

THEOREM 1. For every Po(r, s) E X, there exists a unique solution to system (30) which can be 
expressed as 

P(r, t, s) = B(t) Po(r, s) E C(0, T; X), for all T > 0, 

where T(t) is a strongly continuous semigroup in X, and its infinitesimal generator A is defined 

by 

A@(r,s) = -$ -$ [ J 
r @Cd, s) do + Q(r,s) - PI(r) Q(r, s) - 5 ,&(s).k(r, s) @(r, s>, 

0 1 n=l 

D(A) ={O E X : (r, s) H Jl @(S, s) d6 
is absolutely continuous in s for r E [0, rm], 

(r, s) w [$ Jo’ @(fl, s) dfi + @(r, s)] 
is absolutely continuous in r for s E [0, r, - rl], a.e., 

limo [$ Jl Q(ti, s) d6 + Q(r, s)] = .&:l2 Jofawr’ 
[ 
n$l /%G(r, s)] Q(r, s) ds dr, 

for s E [0, rm - rl], a.e., 

(r, s) c~ $ @(r, 4 dr 
is absolutely continuous in r for s E [0, r, - q], a.e., 

(r, s) c* [ 6 J: @(r, 7) dT + @(r, s)] 
is absolutely continuous in s for r E [0, r,,,], a.e., 

Fi [$ .&’ Q(r, T> d7 + @(r, s)] = Jp-” n$oABn(r, s)] Q(r, s) ds, 

for r E [0, rm], a.e.,} 

(31) 
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Furthermore, x(t) is also a positive semigroup. 

On the other hand, starting directly from (27), we have 

,-S:_,[ ( /‘I P+r-s)+Pn+l(p) h,+l(p+r-s,p)]dp PoTa(r-4s-t), r, s 1 t, 

Pn(T,t, S) = 
e-.D ( k”f P+‘-)+P~+I(P) h.+l(p+r-s,p)]dp %-VI 

SO Pn (T) 

x hn(T - S, T) p,-1(r - s, t - s, T) dT, r 2 s, t > s, 

0, t,s>r, n=2,3 ,..., N, 

e- ~,:,h(p+‘.-~)+Pz(~) “z(p+r--s,p)ldppOI(r _ t s _ t) > 
T s > t 

, I _, 

m(r,t,s) = 
e- .rJ PI ( P++-s)+Pa(~) ha(p)+r-s,p)]dp 

P1h(r - S) 

xpo(r-s,t-s), T>S, t>s, 

0, t, s > T, 

e- .f,~tIi-4d+Pd441 dPpoo(r _ t) r > t 
9 -1 

m(r,t) = ko J;‘,” /3lh1(29) po(t9,t - r) dzp + Lo J;; $- nc2a(T) bz(~, T) L 1 (32) 

x pn___1(29,t - P, T) d?Ydr, T < t. 

Starting from (32), it can be deduced iteratively that 

pn(r,t,s)= Kp(r,t,s)pnrJ(r-t,s-t) 
n-p1 

+ 
J 

@qr,t, s)p,_1,o(r - t,s -t + 71) dT1 + . . . 

0 
r2-r1 f-2-Q 

+ 

J J 
. . . Ay)(r t s Tl,...,T*_l) , 9 7 

0 0 

x plo(r - t, s - t + ~1 + r2 + .-- + T,_I) dam dT2.. . drn-l 

pz-p1 p2-71 

+ J J . . . lil~)(P,t,S,~~,72...~~-_1) 
0 0 

X$‘O(?‘- S- 71 - r2 - a.*- T,_l,t - S- ~1 - T2 - **. - Tn-l) dqdT2 . ..d~.,-1, 

X &+_-m,O(~ - t, s - t + 71 + 72 + . . * + Tm) dq dq . . . dq,, 

C4-f.1 f2--Pl 

+ J J . . . ~@)(T,t,S,T~,T~...Tn-l) 

0 0 

XJIJO(?‘-S-T~-T2-...Tn-l,t-S-T~-T2-”’-T,+~) 

x dq dT2 . . . dq+.l, n = 1,2, . . . , N, 

(33) 
where I-&‘, m = O,l,... ,n are some bounded measurable functions and are continuous with 
respect to t, and here we assume that all functions take zero values outside their domains of 
definition. 

MCM 16:4-E 
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So po(r,t) can be expressed as 

XI~~-1)(~,t-T,T,Tl,T2 )..., T,_z) 

xpo(d-r-T~-72-“‘-7,-2,t-P-r--_~-72-”’-T~-_2) I 
xdq dr2.. .drn_2, r < t. 

In particular, when t > r,,,, we have 

PO(r,t) = ko J r2fllhl(d)po(t9,t - r)d6 -I- ko ‘a 
r1 JJ r2-r1 dfl dr 

fl 0 

x po(t9 - 7 - Tl - 72 - * * * - Tn_2, t - P - 7 - Tl - 72 - . . . - rn-2) 
1 

x dr,dr, . ..dr.,_,, 

and when t 5 r1 

po(r,t> = { 

\ 

XP,--I-_m,o(d - t + P, T - t + P -I- q + 72 + . . . + T,) 
I 

dq dr2 . . . drm 

xpoo(zP -t + r) 
I 

dq dT2.. .drn_2, r < t. 
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(35’) 
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2 jra-“. . .I,“-” K~&,t,s, r1,r2,, . . ,T,) 
m=O 0 

xp,_,,o(r-t,~--+$-71+~~+3.‘..+7m) dn dr,...dr,,, 

+ J,r2-P1.. . jy K$qr,d, s, Tl, r2 . . . T+l) 

x e- ~:_;s-rl-.“rn-l[l”f(~)+~lhl(~)l dppoo(r _ t) dr 
1 

dr2 . . . d7 
n-l, 

, for t 2 T1, 12 2 1. 

Deducing iteratively from (35’), we can determine uniquely po(r, t) from (pO~,pol, . . . ,ponr) and 
po(r, t) form a compact set of L((0, rm) x (T,, t)) for all bounded (poo,p01,. . . ,pON) E X, when 
t > r,. This shows that: 

THEOREM 2. T(t) is compact in X for t >_ r,,,, but not for t < rm, and hence does not have an 
analytic extension. 

By Theorem 2 we know that the spectrum, a(A), of the operator A consists of distinct eigen- 
values of A. There is only a finite number of eigenvalues of A in any finite strip parallel to the 
imaginary axis. Now we investigate the spectrum of A. If X E u(A), the point spectrum of A, 
then there exists a nonzero element @ E X, such that A@ = )rQ, this is equivalent to saying that 
T(t)@ = ext@, for all t 2 0. By (32), Cp = (&I,&, . . . , 4~)~ satisfies 

c-X~-Sb[~~f(~+r-s)+.~“+,(~)h,+l(p+r-~,p)l dp 

&(r, s) = x soT3--p1 P,(T) L(r - s, r> &-l(r - s, T> d7, r >_ s, 

0, s>r, n=2,3 ,..., IV, 

h(r, s) = 
,-xS-S,‘[lr,(P+r--J)tP2(P) %‘tr--J,p)] dp 

Plhl(r-s)40(r- s), r > s, 

0, s > r, 

40(r)= e 
-X+--~&JJ(P)+PI(P)I dp 

Iterating, we have 

&(r, s) = e -XJ-~~[~,(P+~-S)+P"+~(P) h,+l(p-tr-s,p)l 0 

x ~‘?..~rZ-rl~ [Pn-m(7;n+l) L,(r - s - ~1 - . . . - rm, h+d 

xe 
-XT,+l-_Srm+l 0 ~f(P+r-s--l-‘..-~mtl) 

xe 
- JOT,+ 1 P,-,,.(P) h,-,(p+r-s-71-...-s,+1rp) dp 

x /?lhl(r-s-q--...- 7,-l) &(r-s-_-l -..*-T,_~)] dq...dr,_l, 

n= 1,2 ,..., N, 

do(r) = do(O)e 
-+~,%,CP)+P~P)I dp 

, 

cjo(o) = k. 1” plh1(6) cj~~(ti) d29 + ho 
Pl 

x &-1(t9, r) d29 dr. 
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&(r, s) = e -+sor PI(P) dp ,-s,’ P~+I(P) hn+l(Ptr-sap) dp 

x ~r2-r1...~r2-r1~ [Pn--m(%.+l) ha-m(r - s - 71 - *** - 7-m, %+I) 

- xe -Jo:+l Pn-m (P) h,-,(Ptr-s-71-...-T,,p) dp. (33) 

X Plhl(r - s - 71 - -- +- 7,-l) e- 0 

J--‘--sl----r,-l Plhl(p) dp 

1 

x c/q.. .dT,_l ho, ?I= 1,2 ,***> N. 

This says that A is of geometric multiplicity 1. Let 

F(X) = 1 - ko J r3 &h(r) e --~w%-~~(‘LJ,(P) dp dr _ k 
0 

ra ,-Xr-J; Pi dp d,, 

r1 J r1 
fl: pn(s) hn(r, s) e-s,’ A.(P) k.(ptr-sap) dp 

xe 
- sorm+l Pm_ I-,(P) h,-1-,(ptr-s-rl-.-.-s,,p) dp 

x Plhl(r - s - 71 - . . . - 7,-z) e 
_ S.--‘l-...-r,_2 

P1hl(p) dp 
1 

dT1 . . . drn-2 
I> 

, 

then F(X) # 0. C onversely, if F(A) # 0, then Qi, = (de,&,. . . , qi~)~, & is defined by (37), where 
Qs(0) = c is any nonzero costant, which satisfies B(t)@ = A@, so A E a(A). Similar to [2] we can 
prove the following results. 

THEOREM 3. 

(9 69 = q4A) consists of the zeros of the entire function F(A) defined by (39). 
(ii) A has only one real eigenvalue X0, its algebraic multiplicity is 1. 

(iii) u(A) is an infinite set. 
(iv) The solution P(r,t, s) of Equation (30) has the following asymptotic expression 

P(r, s,t) = FpxoPO(r, s) . e -&It + O(e(-Xo--E)t 
)I as t--*cq (40) 

where E > 0 is a small number such that a(A) n {A 1 X0 -E < Re X < Ao} = C#J, X0 is the dominant 
real eigenvalue (the growth index), and 

px,Po(r, s) = 2iir0(X - Xo) R(& A) PO@, s), (41) 

where @(T,s) = R(A,A) q(r,s), it follows from the standard results in semigroup theory that 

Q = WA, A) Q = Sow esxt T(t) Qdt, i.e., @ = (&,41,. . . ,~sN)T satisfies 

1 

Jo emAt e - S,‘_,[~I(Ptr--s)+P,+l(p) k+l(ptr-s,p)] dp 
QIr,(r -t, s - t) dt 

h(r, s) = 
+ e-Xs e- SbIlll(Ptr-s)tP,+~(p) L+l(ptr-s,p)] dp 

x Liwl h(T) hn(T - 67) q&P-1(r - S,T) dr, T 2 s, 

0, S>T, n=2,3 ,,.., N, 

Jo eSxte -J,‘_, [IrAP+--s)tP&) Wptr-sap)] dp qh(r -t, s - t) dt 

41(5 s> = +e-xs e- s,‘b,b’+r--S)+PdP) ha(p+r-s,p)l dp PlhI(,, _ s),40(T _ s), T > s - f 

0, s>r, 
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c&(r) =I es” e -s,:, b‘j(P)+Pl”l(P)I dp $s(r _ t) + e-~rkO 

(v) Let N,(t) = Jim JISpl pn(r,t, s) dr ds be the number of women who have parity n at time 
t, then when As = 0, there is a constant Ni such that 

lim Nn(t) = N;, 
t--r03 (43) 

the convergence is in a damped oscillarory fashion 171. 

When Xc = 0, Theorem 3 tells us that 

Jiir P(r, t, a) = P0Po(r, s), 

OO(r, s) = POPO(r, s) is a nonnegative equilibrium state of (30). 
The distribution of (pi, pz(s), . . . , /IN) for the case of F(0) = 0, i.e., the growth index As = 0, 

seems very important in practice, since the final target of the control of population is to pilot the 
growth index to zero. Let 

G(Pi > /32(s), . ’ . ,PN(s)] = F(O), for all (PI, P,(s), . . . ,PN(s)) E f&v, (44 

where fiN = {(PI,Pz(s),... ,pN(s)) E Rx(LW(O,r2-rl)) N-1l 0 5 P,(s) < 1, for s E [0, r2-ri], 
a.e.,n=1,2 ,..., N}. 

In the following we assume that when 

(A, P2(‘), * * *, pN(.>) 2 (i%,fiZ(.), . . . ,pN(*)), (45) 

i.e., A(s) > D*(s), for all 12 = 1,2,. . . , N and s E [0, rm - rl], let As and is be the growth index 

corresponding to (pi, @2(e), . . . , pN(‘)) and (pi, &(.), . . . , &(‘)), respectively, then %J 1 X0. For 
example, if N = 1, then when Pi > l/rr, Xo is increasing with respect to pi. The general case 
has some requirements about hi(r,s) ( we omit the details here). The reader can refer to [8]. 

Furthermore, if p,(s) = ,8N, independent of s, then since G : Rx (Lm(O, r, -r1))N-2 x R -+ W 

is a continuous function, if for some (pr,&(.), . . . , ,8,~-~(‘), pN> E &NC, such that 

W1,Pz(.>,... ,pN-l(‘),PN)) = 0, 

(here fiNC = Wl,P2(4,..., PN-I(S),PN) E R x (L”(O,r2 - r1))N-2 x W ] 0 5 A(s) < 1, 
for s E [0, ~2 - q], a.e., n = 1,2,. . . , N}), then from (45), we have 

G&,(pl,p2(.),...,p,-,(.),p,)) = 

ra 
- ko 

J [ 

&- e- Lr’ l‘jb’) dp “-’ hN(r + s, T) e- s,’ Ph’hN(P+r2--3) dpg(s) ds 

r1 J r1 

J 
f-2 

pf(r) e-s,’ pf(P)dP dr 

J 
‘-’ + hN(r+ s,r) e-~~-‘PNhN(P+S) dp g(s) ds , 

T-t.1 n 1 
G&,(P1,P2(.), . . . , PN-I(*),~N)) # 0. By the implicit function theorem, there exists an open 

neighborhood of (Pi,&(.), . . . ,,ON_1(-),/3N) such that 

PN = g(Pl,P2(‘),...,PN-l(‘)), (46) 

where g is aoperator fromti x (L@‘(0,rm-ri))N-2 +R. For (P~,~~(.),...,PN_~(.),PN) E nNC 
inwhich/?,(~),n=1,2,...,Naresosmallthat 

W1, P2(.), . . . , PN-~(*),PN) > 0, 
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PN 

Figure 1. The distribution of critical fertilities of parity interval progression popula- 
tion system. 

the corresponding growth index X0,-, < 0. For (pl,pz(.), . . . ,pN_,(.),/3~) E t2Nc in which p, = 1, 
n= 1,2,..., N, there are two cases: 

CASE 1. The corresponding growth index Alo < 0 (e.g., the death rate is very large); 

CASE 2. Alo > 0; 
In Case 1, the distribution of &,pz(.), . . . ,,BN-~(.),~N) corresponding to the zero growth 

index may be a piece of an (N - 1)-dimension curved surface in R x (Loo(O, r, - ~1))~~~ x R. 

Usually, Case 2 is more probable. In such a case, since the growth index X0 is a continuous function 

of (Pl,PZ(.), . * * ,@N-l(‘>,flN> SO all (hjP2(.), . . . , PN- 1 (e), PN) corresponding to the zero growth 
index forms a (N - l)-dimension smooth curved surface in R x (LW(O,~m - ~-1))~~~ x R, i.e., 

PN = ~(~l,~Z(*),..*, PN-l(‘)), for all (Pl,P2(‘), . . . ,pN-I(‘)) E flN---1, (47) 

where fiN-1 = {(A, /32(m), . . . ,~~-l(~))~O~~~(s)~1,sf[0,~2-~l],a.e.,n=1,2 ,..., N-l}. 

THEOREM 4. If under the natural fertile state (i.e., ,B1 = j32 = . . . = /3~ = l), the growth index is 
greater than zero, than there exists a (N - l)-dimension smooth curved surface SN-’ connected 
with the axis in R x (.LW(O, p2 - Q))M-~ x i : 

sN-1 . 
* PN = !@1,@2(*), . . . ,@N-l(‘)), 

such that 

(9 pyno (P1,P2, (eh.. . , PN-l(‘), PN) lies above SN-‘, the corresponding 

(ii) Ghen \/$,j$(.),... ,/?N_,(.),/~N) lies on SNml, A0 = 0; 
(iii) When (/I,, p2(.), . . . ,,BJ-,T_~(*),/~N) lies below SNW1, X0 < 0. 
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