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The optimal birth control of an age-dependent population model with 
unbounded time Interval is considered. The mimmum principle which must be 
satisfied by the overtaking optimal control is established. Large time behaviour and 
the turnpike property of the overtaking optimal trajectory are studied. Existence 
results are also presented. ‘5’ 1990 Academic Press. Inc 

1. INTRODUCTION 

The problem of controlling and managing age-dependent biological 
populations has been studied in an optimal control setting by the authors 
in [ 1,2] with a finite or infinite time horizon and various terminal 
conditions (see also [3,4]). The aim of this paper is to study conditions 
under which the optimal birth control over an infinite time horizon of the 
McKendrick model has a stabilizing effect. As opposed to [I], here, we do 
not a priori assume that the cost functional, an improper integral, 
converges. This leads us to consider a weaker type of optimality, known as 
the overtaking optimality. Such a concept has a long history in the 
economic and operation research literature. It is hoped that our study will 
lead to a proper understanding of the open-endedness of the future in 
age-dependent population management. 

Recently in [S], the overtaking optimal control of an infinite dimen- 
sional linear control system with unbounded time interval has been 
considered. However, the results there cannot be applied directly to our 
situation since the McKendrick model involves a bilinear (nonlinear) 
boundary birth control of a distributed system discribed by a first-order 
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differential equation. We are, in fact, extending some of the results of [S] 
to a nonlinear case. 

The paper is organized as follows. In Section 2 the optimal birth control 
problem is formulated. In Section 3 the minimum principle which must be 
satisfied by the overtaking optimal control is established via an associated 
finite horizon optimal control problem. Section 4 deals with the large time 
behaviour of the overtaking optimal trajectory, i.e., the turnpike property. 
Generally speaking, this property says that an optimal trajectory on any 
finite horizon will stay most of the time in the vicinity of an extremal 
steady state and will ultimately converge to it if the time interval becomes 
unbounded. Finally in Section 5, some existence results for overtaking 
optimal control are presented. 

2. PROBLEM STATEMENT 

We consider the population evolution system described by the following 
first-order partial differential equation with boundary control 

dPo-> t) + apG.3 2) 
at -= -P(Y) Pk, t), 

ar 
O<r<rm, t>O, 

p(r, 0) = PO(r), O<rr,<r,, (1) 

P(O, t)=P(t)jl*k(r)h(r)p(r, t)dr, t20 
0 

in which p(r, t) is the population density, r denotes age, t represents time; 
r, is the maximum age; /l(t), the control variable, is the specific fertility 
rate of females at time t; k(r) and h(r) denote, respectively, the female ratio 
and the fertility pattern; [r,, rz] is the fertility interval with s:: h(r) dr = 1. 
The initial population density PO(r) is a nonnegative function and the 
mortality rate p(r) satisfies 

s 
I 
10) 4 < +a, r<rm, 

0 

Assume that the population parameters in Eq. (1) are nonnegative and 
measurable functions. Furthermore, let B, h, and k be bounded functions 
whose values outside their domain of definitions are zero. 
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By the method of characteristics, the solution of Eq. (1) can be written 
(formally) as 

po(r- t) ,-J:-tPwP, 

i 

r 2 t, 
p(r, t) = 

/?(t - I) jr* k(s) h(s) p(s, t - r) ds e-Jb’“(P)dp, 
r, 

(2) 
r < t. 

The classical solution of (1) is a solution of (2). Under certain smoothness 
conditions on the population parameters, the two are equivalent. For a 
detailed discussion, see [6]. 

For an arbitrary po(r)eL2(0, rm), Eq. (2) in L*(O, r,) has a unique 
solution p(r, t) E C(0, cc ; L*(O, r,)). 

Because of the above reasons, we call the solution of Eq. (2) as a weak 
solution of Eq. (1). Unless otherwise stated, in what follows when we speak 
of solution of Eq. (1) we shall mean the weak solution. 

Consider now the optimal control problem. The performance of the 
system on any interval [0, t] is evaluated by the cost functional 

J(P, p, t) = jr jr”’ L(p(r, t), B(t)) dr & (3) 
0 0 

where L: L2(0, r,) x [0, ao) + L2(0, r,) is a continuously differentiable 
function. We call d( po) the set of pairs (fl, p) which satisfy 

(1) B(.)E Uad= {P(t)10~~o~B(t)~81, te CO, 00) a.e., P(t) is 
measurable on [0, uo)}. 

(2) p(., .) is given by (2). 

Then /I( -) is called an admissible control at po, and p( -, .) is the associated 
trajectory. 

In this paper, we consider our problem on an infinite horizon, and we do 
not a priori assume the convergence of (3) as t + co. Hence we need to 
consider the following weaker notions of optimality. 

DEFINITION 1. (/I*, p*) E d(p,) is overtaking optimal at p. if for any 
other pair (8, PI E d(po) 

lim CJ(B, p, t) - w*, p*, t)l> 0. 
1-m 

(4) 

In other words, for every (p, /I) E &( po), any fixed T> 0, and every E > 0, 
there exists t with t 2 T such that 

w*, p*, t) G JUL P, t) + &. (5) 
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For any fixed T and an overtaking optimal control pair (fi*, p*), define 
the finite horizon optimal control problem: 

Minimize J(/3, p, T) 

subject to 

ZPP(Y, t) + @(r, 1) 
at -= -P(r) p(r, t), ar O<r,, t>O, 

p(r, 0) = PO(r), 

~(0, t) = B(t) jr2 k(r) h(r) p(r, t) dr, 
,“I 

O<rdr,, 

t 3 0, 

p(r, T) = p*(r, T), B(. ) E Uad. 

For notational convenience, we denote the infinite horizon problem the 
IHP problem, and the associate finite horizon problem the FHP problem. 
First, we have the following apparent result: 

PROPOSITION 1. [f (p*, p*) is optimal for IHP, then it is optimal for 
FHP. 

Proof: If (/3*, p*) is not FHP optimal for IHP, then for some (fi, fi) 
satisfying (6), fi(. ) E UUd, and some E > 0 we have 

/‘ll’mL(B(r, t),fi(t))drdt<j’l”‘L(p*(r, t),/?*(t))drdt-8. 
0 0 0 0 

Let (/3, p) be defined by 

(P(t), p(r, t)) = M*(f). p*(r, t)) for all t E (r, cc), 

= (b(t), P(r? t)) for all t E [0, T]. 

We then have (/I, p) E &( po) and 

~‘~rmL(~(r,t),~(t))drdt(j’~r~L(P*(r,t),~*(t))drdt-i: 
0 0 0 0 

for all t 3 T. This last statement contradicts the optimality of (/?*, p*). This 
concludes the proof of the proposition. 

We proved minimum principle for FHP problem in [l], 

THEOREM 1. Let (/3*, p*) be the solution of FHP; then there exist 
II,,> 0, a=(r) E L’(O, r,,,), not both zero, such that the following minimum 
principle holds, 

B*(t) ff[T(B*t P*) = ,j,y;;,I, W/0*5 P*), Vt E [0, T] a.e., 0) 
, . 
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where 

qT(t) is the solution of the adjoint equation 

w-9 t) + a&, t) WP*, P*) 
ar -= W) dry t) - B*(t) k(r) h(r) q(t) + A,, at aP 

7 (7) 

dr, T) = UT(r), 

do, t) = qT(f)* 

As with Eq. (l), we call solutions (weak solutions) of Eq. (7) to be the 
solutions of 

q=(t) = e-J~-‘~(pJdp~,(T- t) 

+JTe -r~-‘p(p)dpfl*(S) k(s - t) h(s - t) q&) ds 
I 

-b,j, 
=emri-fp(p)dp aup*, B*) 

ap 

ds 
9 

(s-&s) 

q(r, t) = e- IL+T-t~(~)d~~T(r+ T-t) 

+J*=e -r~+S-‘pcp)dpfi*(S)k(r+S- t) h(r+s- t)q=(S) ds 

-20,~* 
Te-J;+s-rp(p)dp aL(P*? 8*) 

ap 
& 

(r+s-r,s) 

O<t<T, O<r<r,. (8) 

Proposition 1 tells us that if (fl*, p*) is optimal for IHP, then it must 
satisfy the minimum principle (7) on [0, T]. Equation (7a) is equivalent to 

[ J qTtt) ‘2k(r)h(r)p*(r, t)dr-~‘maL(~~‘*)l 
r1 0 (I,f) 

dr] 

. CB - B*(t)1 GO, VP E CBO, PII, t E CO, 7’1 a.e. (9) 

Since LOT, a=(r) cannot vanish simultaneously, we may assume that 
1) (A,,, pT, (r, O)ll, as Ti + co to be a monotone increasing series, such that 
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a oT -, L and pr,(r) 
easily that 

-+,x(r) (in the weak sense). By (8), it can be shown 

qr, -+ q(t), 

q(f)=S:tr”e -J:-‘~(p)q3*(s) k(s - t) h(s - t) q(s) ds 

‘+‘-‘~(P)dp/3*(s) k(r + s - t) h(r + s - t) q(s) ds 

t+r,--r 
e-j:+i-rp(p)dp aL(;; P*) ds. (10) 

(r+s-f.8) 

Under the assumption that 

Assumption 1. 

i ‘me-$~i~)~~laL(~~*)l~~,,,dr<~, VtE[O,oO)a.e., (11) 
0 

Eq. (10) has a unique solution and q(r, t) is the mild solution of adjoint 
system 

&7(r, t) + &(r, t) ___ - 
ar at 

= I+) 4(r, t) -P*(t) k(r) h(r) 4(t) + L wp*, P*) 
ap ’ 

do> t) = 4th (12) 

Furthermore, if we assume 

Assumption 2. 

lim rm e-jFJP(P)& 
s 

laL($B’)IIr,r,dr=O, (13) t-Q, 0 

then there is a transversality condition 

q(r, cx3)=0. (14) 

THEOREM 2 (Minimum Principle). Under Assumptions 1 and 2, the 
overtaking optimal control (/I*, p*) satisfies 

P*(t) q?v*, P*) = B0yzB, Bf$(B*, P*)? Vt E [0, co] a.e., 
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where 

and q(t) is the solution of the adjoint equation 

aq(r, t) + &Ar, t) aup*, P*) 
ar -= h-1 dry t) - 8*(t) k(r) W-1 q(t) + L at ap ’ 

q(r, a)=O, 

do9 t) = 4(t), 

where I, 20, q(t) are not both zero. 

3. THE TURNPIKE PROPERTY 

In this part we investigate the asymptotic convergence properties of 
overtaking optimal trajectory. In the literature these are the so-called 
turnpike properties. We assume the following: 

Assumption 3. L( p( .), /I) satisfies the following growth condition: there 
exist K, > 0 and K > 0 such that 

and L(p( .), /?) is convex on L2(0, r,) x C&, /Ii]. 

Assumption 4. There is an unique constant C 2 0, /I0 6 fl< /I1 such that 

We can now establish the weak turnpike theorem 

THEOREM 3. Under Assumptions 3 and 4 if (J(r, t), p(t)) E d( po) is such 
that 

iGi f’i’” [L($(r, t),?(t))-L@(r),/?)] drdt=a<a, (17) 
T-m o o 
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(18) 

where e(r) = e -6~(P)dp. 

Pro@ First we show that there exists a constant &? > 0 such that 

s 
‘m B(r, t) dr < &f, vt>o. (19) 

0 

In fact, by (2) for T> rm 

jiml(r, T) dr = 6 fl( T- r) jr2 k(s) h(s) $(s, T- r) ds e-G”(PJdp dr 
II 

= 
s 
r-, fl(ct) e-r~-‘p(P)dp jrm k(r) h(r) d(r, t) dr dt 

0 

T  

GM I s rm d(r, t) dr dt, 
T-r, 0 

where M is a constant. If Tk -+ 03 such that @ a(r, Tk) dr + co, then the 
above expression says that 

Tk 
I s 

rm 
j(r, t)drdt+ +co as k+co. 

Tk-r, 0 

Using Jensen’s inequality on L 

L(d(r, t), j%t)) dr dt 

dt, i lTTkp j?(t) dt) dr 
k rm 

2 

II 1 

(20) 

i.e., lim k - m sz- ,m jhrn L(j(r, t), p(r)) dr dt = +co. This contradicts (17), 
and hence (19) holds. 
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Second, we show that there exists a constant A? such that 

/I ;jor P(r, t) drji <A, VT>O. (21) 

Suppose the contrary, that there exists a sequence {T,}, T, -+ cc such that 

Using Jensen’s inequality again on L 

we obtain 

This contradicts (17) and so (21) holds. 
Finally, for every z(r)E C’(0, rm), z(r)=0 on (rc, rm), for some r,< r,,,, 

it can be shown that 

(fi(r, 4 - pa(r), z(r) > 

= ji p(0, z) dzz(0) - ji (p(r) P(r, z), z(r) > dz + s,’ <BP, t), z’(r) > dr 

(22) 
so 

f <DO-, t) - p0(rh z(r) > 

=~jo~~(l)j~k(r)h(r)j?(r, t)drdt.z(O) 

1 = -- TJ‘o b(r) D(r, z), z(r)) dT+$joT (P(r, ~1, z’(r)> dz. (23) 
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Suppose (p*(r), B*) is a weak cluster point of the set 

When T goes to infinite in (23), we have 

(CL(r) P*(r), z(r) > + (p*(r), z’(r) > = 0 

for ail z(v) E CA(O, v). So p*(r) = ceP~~P(P’dp, c > 0. By (17), Jensen’s 
inequality, and the continuity of s: L(p(r), p) dr, we see that 

jr” Up*(r), D*) dr< jrm L(p(r), 8) dr. 
0 0 

Therefore, by the uniqueness of (p, p), we have 

p*(r) = P(r), P*=D, 

and this completes the proof. 

Define the operator A: L2(0, r,) --) L2(0, r,) by 

Ati(r) =4’(r) + Ar) 4(r), 

D(A) = {d(r) l&r), A&r) E L2(Q r,d> ; 

then it follows that 

(24) 

A*ll/(r) = -Ii/‘(r) + h-1 WI, 

WA*) = (Ii/(r) I W), A*+(r) E L2(0, r,,J>. (25) 

By the assumptions already made on L, we know that there exists a 
y+(r) E D(A*) such that 

j:m W(r), P> dr G jr UAr)9 8) dr - (p(r), A*+(r)) 
for all p(r) 2 0, P E [PO, Bll. (26) 

Let L,(p( ‘), p): L2(0, r,) x R’ + [O, co) be defined by 

j:m L(Ar), PI dr-jim Up(r), 8) dr- (am A*$(r)) 

Lot A *I, B) = forall p(r)20, BE CBo, PII, 

+a, otherwise. 
(28) 
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lim mes(S2,) = 0. 
T-m 

Choose t > 1 sufliciently large so that 

mes(O.) < 1. 

Then for each t E Q,, there exists h E [0, 1 
cr=t-/r, then 

] so that t-h$Q,. Let 

d(r, t) = p”(r, f~ + h) = S(h) p(r, a) 

jj(r - h, (T) ~--SF-!IP(P)~P, 

(P(h - r) J k(s) h(s)[S(h - r) d(s, a)] dse-jhp(P)dp, 
‘1 

Then L,( jj( .), p) = 0. Furthermore, I,,, also satisfies the growth condition 

IIp(r)l12 + P’> K2 * Lo(p(.), PI > K(llp(rN2 + B’). (28 ) 

LEMMA 1. If an admissible pair (fi( ., . ), p( .)) E JS!( pO) satisfies 

I 

m 
Lo(P( ., j), i%O) dj < NJ (29) 

0 

then necessarily I/ fi( ., t)\l is bounded for t B 0. 

Proof: As in [5], we define 

Q,= (j2 TI IIB(-, ~)112>~2} 

for each T > 0 and similar arguments show that 

r> h, 

r < h. 

By this we can show easily that 

IIP(*, j)ll GMlIP(*, aNI, A4 = const. 

This is the desired result. 

Remark. It can be shown that under the condition (17) and the 
assumption of Theorem 2 it follows that 

s 02 Lot P( .> j), fl(j)) dj < 00 0 
and therefore ljp( (, t)ll is bounded for t>O. 
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We introduce the set 

G= {p(rW2(0, r,)l SBE [Bo, 1311 s.t. L,(p(.), ,V=o} 

and the following 

(30) 

DEFINITION 2. Let F be the family of all trajectories p(r, . ) 2 0 such 
that 

p( ., t) E G a.e. on [O, co). 

We say that G has property Y (for convergence) if p( ., t) < a(. ) as t -+ co 
uniformly in 9. 

The following results are true. 

THEOREM 4. Under Assumption 4, if G has the property 59 and if a 
feasible pair (d, p) is such that 

s 

x: 
Lo(P( .> t), &t,, dt < ~0, (31) 

0 

then, necessarily, d( ., t) converges weakly to JY( .) as t + 00. 

COROLLARY. In addition to the hypotheses given in Theorem 3, let us 
suppose that there exists a pair (d, p) E &( po) such that (3 1) hoI&; then if 
in the class of all bounded trajectories there exists an overtaking optimal 
solution, say (8, p^), it follows that 

lim $(.. t)=P(.) in the weak sense. 
r-m 

Remark. If the system (1) is controllable, i.e., there exist B(t) E U and 
T> 0, such that the corresponding trajectory p(r, t) satisfy 

and define 
p(r, T) = P(r) 

(fl(r, t), p(t) = 
O<t<T. 

t> T, 

then condition (31) is satisfied. 

3. EXISTENCE OF OVERTAKING OPTIMAL SOLUTIONS 

Assumption 5. There exists (p”(r, t), p(t)) E -QI( po) such that 
cc 

I s 
‘In 

W(., t), i?t)) dt < ~0. (32) 0 0 
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THEOREM 5. Under Assumption 5 there exists an overtaking optimal 
solution ( ji, fl). 

ProoJ: Let 

@ =inf * 
ir j 

rm Up(r, t), P(t)) dr dt, (P, P) E d( pO) . 
0 0 i 

By assumption, CD is finite. Let (p,, fin) E &(po) be a minimizing sequence. 
For any fixed T> 0, since b,(t) E [Do, /II] for t > 0, we may extract, if 
necessary, a subsequence p^( t) such that 

B,(t) + Plw weakly in L*(O, T). 

Since {P(t)) P(t) E [PO, fir] for t E [0, T] a.e.} is a closed convex subset of 
L*(O, T), it is weakly closed, and hence j?(t) E [PO, fir] for t E [0, T] a.e. By 
(2) p,( ., t) + j?( ., t) weakly in L*(O, T; L*(O, r,) and (8, 8) E d( po). By 
convexity 

T rrn 

II Up@, t), B(t)) dr dt 
0 0 

is weak 1s.~. over L*(O, T; L*(O, r,)) x L*(O, T). This shows that 

Co 

I s 
rm L(fi(r, t), j?(t)) dr dt 6 @ 

0 0 

and (fi, 8) is an overtaking optimal solution. 
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2. 
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