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Summary

In this paper, observers and observability for uncertain nonlinear systems are
systematically discussed. It is shown that for the convergence of a large class
of observers, featured with the augment state to estimate the uncertainty, it
requires not only the observability condition for the augment matrix pair but,
more importantly, requires a structural condition first proposed in this paper.
Furthermore, it is demonstrated that the combination of this structural condi-
tion and the observability of the augment matrix pair is a necessary and sufficient
condition for the convergence of the observers and the observability of the origi-
nal uncertain nonlinear systems. This implies that both the structural condition
and the observability condition of the augment matrix pair reveal essential
feature of the observing problems for uncertain nonlinear systems. In addi-
tion, for unobservable uncertain nonlinear systems, which do not satisfy this
necessary and sufficient condition, the biased estimation error is explicitly pre-
sented, which can be used to evaluate the estimation performance of this class
of observers. The numerical simulations for three typical examples are carried
out to validate our theoretical analysis.
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1 INTRODUCTION

Uncertainties, including but not limited to external disturbances, unmodeled dynamics, and parameter perturbations,
are ubiquitous in industrial systems and often bring adverse effects on performance and even stability of engineering
systems.1-5 For this reason, ensuring normal operation for a control system under various uncertainties becomes a central
issue in control theory. In recent years, the control approaches with estimation/compensation of uncertainty to force
the system to satisfy desired performance have been substantially developed for the control of uncertain systems.6-16 The
effectiveness of such control strategies lies in large part in the observer design, which is used not only to recover the state
but also the uncertainty. In this sense, the observer design has become a bedrock for the control of uncertain systems.

During the past decades, several classes of observers, including but no limited to extended state observer (ESO),17,18

extended high-gain observer (EHGO),19,20 unknown input observer (UIO),21 generalized extended state observer (GESO),22

proportional-integral observer (PIO)23 and disturbance observer (DO)6 have been proposed to estimate state or uncer-
tainty. Although using different names, these observers are based on the similar idea: expanding the state in the observer
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to include the uncertainty estimation. This state augment design has been shown as an effective way for estimating uncer-
tainties in practice. Substantial researches have been produced to analyze these classes of observers theoretically. The
convergence of nonlinear ESO with matched uncertainty has been studied in the work of Guo and Zhao.11,18 Under the
assumption that the nonlinear system is minimum phase, Freidovich and Khalil19 prove that the closed-loop system based
on the EHGO-based controller is stable. Hammouri and Tmar24 study a necessary and sufficient condition for the exis-
tence of UIO, and the stability condition of UIO is also presented. For bounded external disturbance, stability of GESO
for systems with mismatched disturbances has been studied in the work of Li et al.22 Considering discrete-time nonmin-
imum phase systems, it is shown that the estimation errors of the system state and unknown disturbance from PIO can
be constrained in a small bounded region.25 The global exponential stability of the estimation error from nonlinear DO
has been investigated in the work of Chen.6

Although some observers have been studied thoroughly from different perspectives, the theoretical analyses may have
the following two limitations:

• The structure of uncertain systems is limited to a special form. For instance, ESO and EHGO are constructed for those
uncertain systems that have cascade form and control matched uncertainty17,19;

• The assumptions on large-time behavior of uncertainties are conservative. For instance, the asymptotic stability of the
estimation errors of GESO and DO are proved under the assumption that the uncertainty converges to a constant as
time goes to infinity.6,22

However, in real physical plants, the uncertainties may affect the system from each channel, which can be mismatched
with the control input. Moreover, the uncertainties might be composed of the time-varying external disturbances and
linear/nonlinear unknown dynamics with respect to system states. To meet the requirement of engineering applications,
the detailed analysis of observers for uncertain nonlinear systems under a more general framework becomes significant
both theoretically and practically.

A fundamental problem motivates this investigation is: what kinds of uncertainties can be estimated by observer for
general uncertain nonlinear systems?

We are therefore focused ourselves to uncertainty observing problem for general uncertain nonlinear systems in this
paper. Firstly, we analyze estimation performance of observers for a large class of uncertain nonlinear systems. The observ-
ability for uncertain nonlinear systems is thus defined, which was neglected in previous studies. Secondly, we try to reveal
the essential nature of the observability for uncertain nonlinear systems. The main contributions of this paper consist of
four main points: a) The properties of the observers for a general class of uncertain nonlinear systems are rigorously ana-
lyzed and a structural condition, which is proved to be the essential condition to ensure the convergence of the observers,
is proposed in this paper; Specially, the performance of observers for uncertain nonlinear systems is quantitatively
analyzed; b) The combination of the structural condition proposed in this paper and the observability of the augment
matrix pair is proved to be a necessary and sufficient condition for the observers to be convergent; c) The observability for
uncertain nonlinear systems is defined. The combination of the structural condition and the observability of the augment
matrix pair is proved to be a necessary and sufficient condition for the uncertain systems to be observable. In particular,
an algebraic criterion of the observability for uncertain nonlinear systems is presented; d) For unobservable uncertain
nonlinear systems, the biased estimation error of the observers is quantitatively given in this paper, which can be used to
evaluate the estimation performance of the observers.

The paper is organized as follows. In Section 2, the observation problem and the observers for a large class of uncertain
nonlinear systems are introduced. In Section 3, the properties of the observers are analyzed and a necessary and sufficient
condition for convergence of the observers is presented. In Section 4, the condition in Section 3 is also proved to be nec-
essary and sufficient for observability of uncertain nonlinear systems. Finally, in Section 5, some numerical experiments
are performed to validate the theoretical results.

The following notations are used throughout the paper. TheRn represents the n-dimensional Euclidean space andRn×m

stands for the space of real n × m-matrices; C− denotes the left-half complex plane; for a vector or matrix Y, Y⊤ denotes its
transpose; for a square matrix Y, Y−1 denotes its inverse matrix; for a square matrix Y, 𝜎(Y) denotes the set of eigenvalues
of Y; In×n denotes the n × n unit matrix; 𝜆min(Y ) and 𝜆max(Y ) represent the minimal and maximal eigenvalues of the
symmetric real matrix Y, respectively; ||Y|| denotes the Euclidean norm of the vector Y and the corresponding induced
norm when Y is a matrix; Cs(Rn;R) denotes the set of all continuous differentiable functions from Rn to R up to s-order;
for any given function g, g( j) denotes its j-order total differentiation with respect to t, and specially f ( j) means d𝑗𝑓 (X(t),d(t),t)

dt𝑗
for the unknown function f(·) in system (1) in the beginning of next section for simplicity.
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2 PROBLEM FORMULATION

In this paper, we consider a class of uncertain nonlinear systems described as follows:{ .
X(t) = AoX(t) + buu(t) + bd𝑓 (X(t), d(t), t),
𝑦(t) = cX(t),

(1)

where X(t) ∈ Rn is the state vector, 𝑦(t) ∈ R is the measured output, u(t) ∈ R is the control input, d(t) ∈ R is the external
disturbance, and 𝑓 ∈ Cn(Rn+1 ×[0,∞);R) is an unknown function representing the uncertainty, which contains external
disturbance d(t), unmodeled dynamics, and parameter perturbations. Ao ∈ Rn×n, bu ∈ Rn, bd ∈ Rn, c ∈ R1×n are known
constant matrix and vectors. It is suppose without loss of generality that all bu, bd, c are nonzero.

We first specify some assumptions about system (1) in what follows. The following Assumption 1 is about the state X(t),
the input u(t), and the external disturbance d(t).

Assumption 1. The state X(t) and the input u(t) of system (1) are supposed to be bounded

sup
t≥0

||X(t)|| + sup
t≥0

|u(t)| ≤ M1; (2)

and the external disturbance d(t) satisfies

sup
t≥0

||(d(t), .
d(t), … , d(n)(t))|| ≤ M2, (3)

where Mi(i = 1, 2) are some positive constants.

The following Assumption 2 is about the unknown function f(·).

Assumption 2. There exists a nonnegative continuous function 𝜍 ∈ C(Rn+1; [0,∞)), such that for any function
gj ∈ ∇( j)f( j = 2, … ,n),

|𝑓 (X , d, t)| + ||∇𝑓 (X , d, t)|| + n∑
𝑗=2

|g𝑗(X , d, t)| ≤ 𝜍(X , d),∀t ∈ [0,∞),X ∈ R
n, d ∈ R, (4)

where ∇f and ∇( j)f represent the gradient of f and the finite set of all j-order partial derivatives of f with respect to its
arguments, respectively.

Remark 1. It is significant to emphasize that both Assumption 1 and Assumption 2 are essentially to ensure the
boundedness of f ( j)(j = 1, 2, … ,n). It also should be noticed that the boundedness requirement for the state X(t) in
Assumption 1 aims for estimating the state-dependent uncertainty f(X(t), d(t), t), so that this boundedness assumption
can be removed in the case that the uncertainty function is state independent. Moreover, the state could be bounded
in many practical control systems such as those for faults diagnosis.26 Finally, since the observer is usually designed
for feedback purpose, we can use observer-based feedback to make the state be bounded.9,11,12,18

Remark 2. Assumption 2 is about the “growth” requirement of the time-varying unknown function f(X, d, t) with
respect to (X, d), which is reasonable as stated in Remark 1. However, if the unknown function f(X, d, t) is time indepen-
dent, the Assumption 2 can be removed since in this case the left-hand side of (4) is always a nonnegative continuous
function with respect to (X, d) and ∇( j)f is just a finite set for each j = 1, 2, … ,n.

We point out that many physical systems can be modeled by system (1). Examples can be found from robotic systems,27

DC-DC converter,28 flight systems,29 among many others (see, eg, the work of Xue et al30). For the control of system (1),
there is a widely used method that performs two steps.15 One step is to estimate the uncertainty through observe and
the other is to compensate for the uncertainty in the feedback loop. The central strategy of this approach is the distur-
bance/observer/estimator, which provides an online estimation of the disturbance or uncertainty such as ESO, EHGO,
PIO, and GESO.

General observers of variable augment design to estimate the uncertainty are of the following form:[ .
X̂(t).
𝑓 (t)

]
= A

[
X̂(t)
𝑓 (t)

]
+ Buu(t) + L

(
𝑦(t) − C

[
X̂(t)
𝑓 (t)

])
, (5)
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where X̂(t) ∈ Rn and 𝑓 (t) ∈ R are the estimates of the state X(t) and the lumped uncertainty f(X(t), d(t), t), respectively;
A, Bu, and C are the following extended matrices

A =
[

Ao bd
0 0

]
, Bu =

[
bu
0

]
, C = [ c 0 ], (6)

and L ∈ Rn+1 is the observer gain vector to be designed.
In fact, the observer (5) is a general form for uncertain systems in the sense that all ESO, EHGO, PIO, and GESO are

special cases of (5), which can be summarized from the following two aspects.

a) Both ESO and EHGO17,19 are designed for special integral cascade systems, where

Ao =
⎡⎢⎢⎢⎣

0 1 … 0
⋮ ⋱ ⋱ ⋮
0 … 0 1
0 … … 0

⎤⎥⎥⎥⎦ , bd =
⎡⎢⎢⎢⎣

0
⋮
0
1

⎤⎥⎥⎥⎦ , bu =
⎡⎢⎢⎢⎣

0
⋮
0
1

⎤⎥⎥⎥⎦ , c = [ 1 0 … 0 ], (7)

which assumes that the relative degree from the control input to the controlled output is n and the lumped uncertainty
is matched with the control input;

b) The GESO and PIO22,23 are for general Ao, bd, bu, c, the lumped uncertainty is, however, commonly assumed to be
ultimately steady, ie, limt→∞𝑓

(1) = 0, which ensures asymptotically convergence of the estimation error. This paper
will further study the transient performance of the observer (5) without this ultimately steady assumption.

To analyze the performance of observer (5), we start from the estimation error:

𝜂(t) =
[

X(t)
𝑓 (X(t), d(t), t)

]
−
[

X̂(t)
𝑓 (t)

]
. (8)

It is seen that the estimation error is governed by

.
𝜂(t) = (A − LC)𝜂(t) + Bd𝑓

(1), (9)

where Bd =
[

0n×1
1

]
. To achieve asymptotically unbiased estimation 𝜂(∞) = 0, the observability of (A,C) is a basic

condition, which is commonly used in previous studies.17,19,22,23 This is because if (A,C) is observable, A − LC can be
designed to be Hurwitz by tuning L. Solve the error Equation (9) to obtain

𝜂(t) = e(A−LC)t𝜂(0) + ∫
t

0
e(A−LC)(t−s)Bd𝑓

(1)ds. (10)

It is seen that when (A,C) is observable, e(A−LC)t can decay as fast as desired by choosing the appropriate gain matrix L
from the pole assignment. Thus, if the uncertainty f(·) is a constant function, ie, f (1) ≡ 0, it follows from (7) and (10) that
𝜂(∞) = 0. Therefore, it is often assumed that the uncertainty is ultimately steady, ie, limt→∞𝑓

(1) = 0 to ensure asymp-
totically unbiased estimation.22,23 However, if f(·) is not a constant function, ie, f (1) ≢ 0, there is not necessarily existing
a gain vector L to achieve asymptotically unbiased estimation even if (A,C) is observable, which can be easily seen from
some simple counter examples, such as example 2 in Section 5.1 later. It is natural that some additional conditions about
bd in system (1), which demonstrates the position of the uncertainty f, should be required to ensure the asymptotically
unbiased estimation of the observer (5).

Actually, for general uncertainty f(·) satisfying Assumption 2, if (A,C) is observable and Assumptions 1 and 2 are
satisfied, the following proposed structural condition:

cbd = 0, cA0bd = 0, … , cAn−2
0 bd = 0, cAn−1

0 bd ≠ 0 (11)

will be proved to be not only a sufficient condition but also a necessary one to guarantee that there always exists a gain
vector L such that the observer (5) is convergent, which is presented in Theorem 2 in the next section. Specially, if we
only consider the sufficient condition for the convergence of the observer (5), we can replace Assumptions 1 and 2 by the
following weaker Assumption 3, then (A,C) is observable and condition (11) can insure that there always exists a gain
vector L such that the observer (5) is convergent, which is shown in Proposition 1 in the next section.
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3 CONVERGENCE OF THE OBSERVER

Before analyzing the performance of the observer (5), we first give two essential properties, which make the observer
feasible. The observer (5) is said to be convergent if the following conditions (P1) and (P2) are satisfied.

(P1). The observer is interiorly stable, ie, 𝜎(A − LC) ⊂ C−.
(P2). The estimation accuracy of the observer can be adjusted by 𝜎(A − LC), that is to say, for any T > 0 and any

𝜀 ∈ (0, 1], there exists L′ such that 𝜎(A − L′C) = 1
𝜀
𝜎(A − LC) and||𝜂(t)|| ≤ Γ𝜀,∀ t > T, (12)

where 𝜂(t) is defined as in (8) and Γ is a constant independent of 𝜀.

As discussed in Section 2, (P1) is a basic property for the observer to be practicable. (P2) means that the estimation
error of the observer (5) can be eventually unbiased ∶ lim𝜀→0||𝜂(t)|| = 0 by tuning the observer gain L′ in every time.
Actually, unlike properties analyzed in general observers, (P2) ensures not only the ultimate performance but also, more
importantly, the transient performance. Since (P1) and (P2) are preconditions for the observer (5) to be convergent, it is
significant to discuss under what conditions or for what kind of uncertainties, the observer can satisfy both (P1) and (P2).

According to the dynamics of the estimation error (9), it is difficult or even impossible to find analytically the estimation
error for general A,C, and f. Thus, we will first transform (9) into a special form that is more easy to be analyzed. The key
steps of this transform can be summarized as follows. First, since the observability of (A,C) is the prime condition for the
feasibility of observer, we always assume that (A,C) is observable. In this case, there is an (n + 1) × (n + 1) invertible
matrix

S ≜
⎡⎢⎢⎢⎢⎣

C
CA
CA2

⋮
CAn

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
c 0

cA0 cbd
cA2

0 cA0bd
⋮ ⋮

cAn
0 cAn−1

0 bd

⎤⎥⎥⎥⎥⎦
(13)

such that (A,C) can be changed into the observable canonical form

SAS−1 = Ā, CS−1 = C̄, (14)

where

Ā =
⎡⎢⎢⎢⎣

0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1[

cAn+1
0 cAn

0 bd
]

S−1

⎤⎥⎥⎥⎦(n+1)×(n+1)

, C̄ =
[

1 0 … 0
]

1×(n+1). (15)

Then, the estimation error (9) can be reformulated as
.
�̄�(t) = (Ā − L̄C̄)�̄�(t) + B̄d𝑓

(1), (16)

where we set
�̄�(t) = S𝜂(t), L̄ = SL, B̄d = SBd. (17)

We can see that the if we only consider the first term of the right-hand side of (16), it has been the estimation error of the
observable canonical form. We focus only on the second term B̄d𝑓

(1). Let

Δ =

⎡⎢⎢⎢⎢⎣
0 … 0
0 … 0

cbd … 0
⋮ ⋱ ⋮

cAn−2
0 bd … cbd

⎤⎥⎥⎥⎥⎦
[

𝑓 (1)

⋮
𝑓 (n−1)

]
. (18)

It is verified that
.
Δ = ĀΔ − B̄d𝑓

(1) + F, (19)

where

F = −
[

0n×1
1

] [
cAn−1

0 bd … cbd
] [ 𝑓 (1)

⋮
𝑓 (n)

]
+
[

0n×1
1

] [
cAn+1

0 cAn
0 bd

]
S−1Δ. (20)
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Since C̄Δ = 0, (19) becomes .
Δ = (Ā − L̄C̄)Δ − B̄d𝑓

(1) + F. (21)
Denote

𝜂o = �̄� + Δ. (22)
It then follows from (16) and (21) that

.
𝜂o = (Ā − L̄C̄)𝜂o + F. (23)

From the discussion above, we can see that the error Equation (9) is reformulated as (23) in the observable canonical
form. The convergence of system (23) is presented in the succeeding Lemma 1.

Lemma 1. Suppose that F defined in (20) is bounded. Then, there exists an (n + 1)-dimensional vector L̄ such that
system (23) satisfies both (P1) and (P2).

Proof. Since (Ā, C̄) is observable with both Ā and C̄ defined in (15), for any {�̄�1, �̄�2, … , �̄�n} ⊂ C−1, there exists an
(n + 1)-dimensional vector L̄0 such that

Ā − L̄0C̄ = P0Λ̄0P−1
0 , (24)

where

Λ̄0 =

[
�̄�1

⋱
�̄�n+1

]
,

P−1
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̄�n
1 −

n+1∑
i=2

ai�̄�
i−2
1 �̄�n−1

1 −
n+1∑
i=3

ai�̄�
i−3
1 … �̄�1 − an+1 1

�̄�n
2 −

n+1∑
i=2

ai�̄�
i−2
2 �̄�n−1

2 −
n+1∑
i=3

ai�̄�
i−3
2 … �̄�2 − an+1 1

⋮ ⋮ ⋱ ⋮ ⋮

�̄�n
n+1 −

n+1∑
i=2

ai�̄�
i−2
n+1 �̄�n−1

n+1 −
n+1∑
i=3

ai�̄�
i−3
n+1 … �̄�n+1 − an+1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

[a1, … , an+1] ≜ [
cAn+1

0 cAn
0 bd

]
S−1.

When we replace Λ̄0 with 1
𝜀
Λ̄0 (𝜀 ∈ (0, 1]) in (24), there also exists an (n + 1)-dimensional vector L̄ such that

Ā − L̄C̄ = P
[1
𝜀
Λ̄0

]
P−1, (25)

where P−1 = P−1
0 T with

T = T−1
a

⎡⎢⎢⎢⎣
1

𝜀n+1
1
𝜀n

⋱
1

⎤⎥⎥⎥⎦Ta (26)

and

Ta =
⎡⎢⎢⎢⎣

1 0 … 0
−an+1 ⋱ ⋱ ⋮
⋮ ⋱ 1 0

−a2 … −an+1 1

⎤⎥⎥⎥⎦ . (27)

The observe error Equation (23) becomes therefore

.
𝜂0 = T−1P0

⎡⎢⎢⎢⎣
�̄�1
𝜀

⋱
�̄�n+1

𝜀

⎤⎥⎥⎥⎦P−1
0 T𝜂0 + F. (28)

Denote𝜗 = T𝜂0. It follows from (24)-(28) that
.
𝜗 = 1

𝜀
(Ā − L̄0C̄)𝜗 + TF. (29)

Since TF = F, (29) becomes
.
𝜗 = 1

𝜀
(Ā − L̄0C̄)𝜗 + F. (30)
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Since Ā − L̄0C̄ is Hurwitz, there is an (n + 1) × (n + 1) positive definite matrix Q such that

(Ā − L̄0C̄)⊤Q + Q(Ā − L̄0C̄) = −I(n+1)×(n+1). (31)

Let V = 𝜗⊤Q𝜗, which satisfies
𝜆min(Q)‖𝜗‖2 ≤ V ≤ 𝜆max(Q)||𝜗||2,

and hence
.

V =
(1
𝜀
(Ā − L̄0C̄)𝜗 + F

)⊤

Q𝜗 + 𝜗⊤Q
(1
𝜀
(Ā − L̄0C̄)𝜗 + F

)
≤ −1

𝜀
𝜗⊤𝜗 + 1

2
𝜗⊤𝜗 + 2||QF||2

≤ −
1
𝜀
− 1

2

𝜆max(Q)
V + 2||Q||2||F||2.

(32)

Furthermore, since F is bounded, there exists a positive constant C1 such that 2||Q||2||F||2 ≤ C1. This, together
with (32), yields

V(t) ≤ e
−( 1

𝜀
− 1

2 )
𝜆max (Q) tV(0) + C1 ∫

t

0
e

−( 1
𝜀
− 1

2 )
𝜆max (Q) (t−s)ds. (33)

Since 0 < 𝜀 ≤ 1, we then have

V(t) ≤ e
−1

2𝜆max (Q)𝜀 tV(0) + C1 ∫
t

0
e

−1
2𝜆max (Q)𝜀 (t−s)ds

≤ e
−1

2𝜆max (Q)𝜀 tV(0) + 2𝜆max(Q)C1𝜀.

(34)

In addition, for any given T > 0, there exists a positive constant C2 independent of 𝜀 such that

e
−1

2𝜆max (Q)𝜀 tV(0) ≤ C2𝜀, ∀ t ∈ [T,∞). (35)

Let 𝛾 = C2 + 2𝜆max(Q)C1. Then, for any t ≥ T,
V ≤ 𝛾𝜀. (36)

This follows that ||𝜂0||2 = ||T−1𝜗||2 ≤ ||T−1||2 1
𝜆min(Q)

V ≤ Γ𝜀, ∀ t ∈ [T,∞), (37)

where Γ ≜ ||T−1||2
𝜆min(Q)

𝛾 is a constant independent of 𝜀.

By Lemma 1, the capability of observer (5) is demonstrated in the succeeding Theorem 1.

Theorem 1. For the observer (5), if (A,C) is observable and Assumptions 1 and 2 are satisfied, then there exists an
(n + 1)-dimensional vector L such that the property (P1) is satisfied; in addition, for any 𝜀 ∈ (0, 1] and T > 0, when
the gain vector L∗ is chosen such that 𝜎(A − L∗C) = 1

𝜀
𝜎(A − LC), it holds

||𝜂(t) + S−1Δ||2 ≤ Γ𝜀,∀ t > T, (38)

where Γ is a constant independent of 𝜀 and 𝜂(t), S, Δ are defined as those in (8), (13), (18), respectively.

Proof. Since Assumptions 1 and 2 are satisfied, we can easily show by a computation that f ( j)( j = 1, 2, … ,n) are
bounded. It follows from (20) that F is bounded. By Lemma 1, there exists an (n + 1)-dimensional gain vector L̄ such
that the estimation error system (23) satisfies both (P1) and (P2). Furthermore, since

SAS−1 = Ā,CS−1 = C̄, L̄ = SL, (39)

which is specified in (14) and (17), we have

S(A − LC)S−1 = Ā − L̄C̄, (40)

which means that
𝜎(A − LC) = 𝜎(Ā − L̄C̄). (41)

It then follows from Lemma 1 that for any 𝜀 ∈ (0, 1] and T > 0, there exists a gain vector L such that (P1) is satisfied,
and ||𝜂(t) + S−1Δ||2 ≤ Γ𝜀,∀ t > T, (42)
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for some 𝜀-independent constant Γ when we choose the gain vector L∗ such that 𝜎(A − L∗C) = 1
𝜀
𝜎(A − LC). This

completes the proof of the theorem.

Theorem 1 shows that the estimation error (𝜂(t) + S−1Δ) can be tuned as small as possible by the observer gain L∗.
Moreover, (𝜂(t) + S−1Δ) will converge to zero with the eigenvalues of 𝜎(A − L∗C) tending to negative infinity. Since S−1Δ
depends on the uncertainty f(·) and the structure of the original system (1), it cannot be adjusted by the observer gain L∗,
which is therefore regarded as a biased estimation of the observer (5).

Theorem 1 is significant in the sense that it gives a quantitative estimation error of the observer (5). To achieve unbiased
estimations, S−1Δ should be a zero vector. From this fact, condition (11) specified in last section is considered as not only
a sufficient condition but also a necessary one for the convergence of the observer (5), which is shown in the following
Theorem 2.

Theorem 2. For the observer (5), suppose that (A,C) is observable and Assumptions 1 and 2 are satisfied. Then, there
always exists an (n + 1)-dimensional gain vector L such that the observer (5) is convergent if and only if condition (11) is
satisfied.

Proof. Sufficiency: Since (A,C) is observable, there exists an (n + 1)-dimensional gain vector L such that (P1) is
satisfied. If condition (11) is satisfied, from (18), we have Δ ≡ 0. It then follows from Theorem 1 that (P2) holds.

Necessity: Suppose that (P1) and (P2) are satisfied. Then, for any 𝜀 ∈ (0, 1] and T > 0, there exists an
(n + 1)-dimensional gain vector L such that 𝜎(A−LC) ⊂ C−, and when we choose the gain L′ such that 𝜎(A−L′C) =
1
𝜀
𝜎(A − LC), we have ||𝜂(t)|| ≤ Γ1𝜀,∀ t > T, (43)

for some 𝜀-independent constant Γ1. Suppose that there is an integer 0 ≤ i ≤ n − 2 such that

cAi
0bd ≠ 0,

which yields Δ ≢ 0 for the uncertainty f satisfying f (1) ≢ 0.
Since (A,C) is observable and Assumptions 1 and 2 are satisfied, it follows from Theorem 1 that||𝜂(t) + S−1Δ|| ≤ Γ2𝜀,∀ t > T, (44)

for some 𝜀-independent constant Γ2 with the choice of the gain L′. Now,||S−1Δ|| − ||𝜂(t)|| ≤ ||𝜂(t) + S−1Δ|| ≤ Γ2𝜀, (45)

which yields ||𝜂(t)|| ≥ ||S−1Δ|| − Γ2𝜀. (46)

It is easy to see that there exists 𝛾 > 0 such that 𝜃∗ ≜ mint∈[T,T+𝛾]||S−1Δ|| > 0, and we suppose that 0 < 𝜀 <

min{ 𝜃∗

2Γ2
,

𝜃∗

3Γ1
, 1}. This, together with (46), yields

||𝜂(t)|| ≥ 𝜃∗

2
,∀ t ∈ [T,T + 𝛾], (47)

which contradicts with (43). Therefore,
cAi

0bd = 0, 0 ≤ i ≤ n − 2. (48)

In addition, since (A,C) is observable, S is nonsingular. Thus, we have cAn−1
0 bd ≠ 0. This shows condition (11) finally.

Theorem 2 gives the necessary and sufficient condition (11), which is about the system structure for convergence of the
observer (5). It should be noted that the integral cascade system, which is widely discussed in ESO and EHGO, definitely
satisfies (11). This is the reason why ESO and EHGO show good estimation performance for uncertain systems.

The Assumptions 1 and 2 in Theorem 2 can be replaced by the following weaker Assumption 3 as a sufficient condition
about the unknown function f to guarantee the convergence of the observer (5), which is substantially required for the
boundedness of f (1).

Assumption 3. The state X(t) and the input u(t) of system (1) are supposed to be bounded in the sense that

sup
t≥0

||X(t)|| + sup
t≥0

|u(t)| ≤ M1, (49)
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and the external disturbance d(t) satisfies
sup
t≥0

||(d(t), .
d(t))|| ≤ M2, (50)

where Mi(i = 1, 2) are some positive constants;
There exists a nonnegative continuous function 𝜍 ∈ C(Rn+1; [0,∞)), such that

|𝑓 (X , d, t)| + ‖∇𝑓 (X , d, t)‖ ≤ 𝜍(X , d),∀ t ∈ [0,∞),X ∈ R
n, d ∈ R. (51)

Proposition 1. Suppose that (A,C) is observable, condition (11) and Assumption 3 are satisfied. Then, there exists an
(n + 1)-dimensional gain vector L such that the observer (5) is convergent.

Proof. Since condition (11) is satisfied, it follows from (20) that

F = −
[

0n×1
1

]
cAn−1

0 bd𝑓
(1). (52)

Since Assumption 3 is satisfied, a direct computation easily shows that f (1) is bounded and then F is bounded. Similar
to the proof of Theorem 1, we can conclude that there exists an (n + 1)-dimensional vector L̄ such that (P1) is satisfied.
Besides, for any 𝜀 ∈ (0, 1] and T > 0, ||𝜂(t) + S−1Δ|| ≤ Γ𝜀,∀ t > T, (53)
provided we choose the gain matrix L so that 𝜎(A−LC) = 1

𝜀
𝜎(A−L̄C). SinceΔ ≡ 0, there exists an (n + 1)-dimensional

gain vector L such that (P1) and (P2) are satisfied. This completes the proof of the proposition.

Remark 3. Theorem 2 and Proposition 1 indicate that for general uncertainty f(·), condition (11) is essentially the
structural condition to ensure the convergence of the observer (5). Nevertheless, condition (11) is often neglected in
previous observer studies. It seems that as long as (A,C) is observable and f (1) is bounded, the estimation errors can
always be tuned small enough through 𝜎(A − LC). However, it turns out that the convergence of the observer (5)
is not only related to the observability of (A,C) and the boundedness of f (1) but also depends on which channel the
uncertainty exists in as stated in condition (11).

In the next section, it will be further revealed that condition (11) is the fundamental one to ensure the observability of
uncertain systems.

4 OBSERVABILITY FOR UNCERTAIN SYSTEMS

Up to present, we have studied the convergence of the observer (5). However, a basic question may be ignored: does
the output contains the information of uncertainty? If it does, whether the output uniquely determines the state and
uncertainty? Motivated by this question, we discuss the observability of the uncertain systems.

For exactly known linear/nonlinear systems, observability of the state means that the continuous dependence of the
output with respect to the initial value, ie,

𝑦(t) ≡ 0,u(t) ≡ 0,∀ t ∈ [0,∞) ⇒ X(0) = 0. (54)

This is because with the initial value and the exactly known model, the state X(t) will be uniquely determined by the out-
put. However, this may not hold true for uncertain systems. With uncertain dynamics, the state of an uncertain system
may not be uniquely determined by the output even if (54) is satisfied. Hence, observability for uncertain nonlinear sys-
tems not only requires the continuous dependence of the output with respect to the initial value but also with respect to
the uncertainty. For this, we give a definition.

Definition 1 (Observability for uncertain nonlinear systems).
The state X(t) and uncertainty f(·) of system (1) are said to be observable, if for any unknown initial state value X(0)
and T > 0, the state X(t) and uncertainty f(X(t), d(t), t)(t ∈ [0,T]) can be uniquely determined by the output y(t) and
the control input u(t)(t ∈ [0,T]).

Observability for uncertain nonlinear systems is well defined by Definition 1, which means that the output not only
contains all information of the state but also the uncertainty as well. In particular, if f ≡ 0 or bd = 0, system (1) is reduced
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to be linear time-invariant one, and Definition 1 is line with the observability of linear time-invariant systems.31,32 The
necessary and sufficient condition for observability of system (1) is presented in the following Theorem 3.

Theorem 3. For n ≥ 2, system (1) is observable under Definition 1 if and only if (A,C) is observable and condition (11)
is satisfied.

Proof. The first n-order derivatives of y satisfy⎡⎢⎢⎢⎢⎣
𝑦

𝑦(1)

𝑦(2)

⋮
𝑦(n)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
c 0 0 … 0

cA0 cbd 0 … 0
cA2

0 cA0bd cbd ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 0

cAn
0 cAn−1

0 bd cAn−2
0 bd … cbd

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

X
𝑓

𝑓 (1)

⋮
𝑓 (l−1)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
0 0 … 0

cbu 0 … 0
cA0bu cbu ⋱ ⋮
⋮ ⋮ ⋱ 0

cAn−1
0 bu … … cbu

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u
u(1)

u(2)

⋮
u(n−1)

⎤⎥⎥⎥⎥⎦
.

(55)

Sufficiency: Since (A,C) is observable, S is nonsingular. This, together with condition (11), gives

[
X
𝑓

]
= S−1

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

𝑦

𝑦(1)

⋮
𝑦(n)

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣

0
0
⋮

cAn−1
0 buu.

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ . (56)

It follows from (56) that the state X(t) and the uncertainty f(X(t), d(t), t) on [0,T] can be uniquely determined by the
output y(t) and the control input u(t) on [0,T].

Necessity: Consider a constant disturbance: f ≡ D for some constant D. In this case, f (i) ≡ 0(i ≥ 1) and system (1)
is reduced to the following linear time-invariant one:⎧⎪⎪⎨⎪⎪⎩

[ .
X(t)
𝑓 (1)

]
= A

[
X(t)
𝑓

]
+

[
bu

0

]
u(t),

𝑦(t) = C

[
X(t)
𝑓

]
.

(57)

By observability for linear time-invariant systems, the observability condition for this special case is that the pair (A,C)
is observable. For general disturbance f, assuming

ī = min
i≥0

{
i|cAibd ≠ 0, i ∈ Z

}
, l > 0, (58)

we can get

⎡⎢⎢⎢⎢⎣
𝑦

𝑦(1)

𝑦(2)

⋮
𝑦(ī+l)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
0 0 … 0

cbu 0 … 0
cAbu cbu ⋱ ⋮
⋮ ⋮ ⋱ 0

cAī+l−1bu … … cbu

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u
u(1)

u(2)

⋮
u(ī+l−1)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c 0 0 … 0
cA ⋮ ⋮ ⋮ ⋮
⋮ 0 0 ⋮ ⋮

cAī+1 cAībd 0
cAī+2 cAī+1bd cAībd
⋮ ⋮ ⋮ ⋱

cAī+l cAī+l−1bd cAī+l−2bd … cAībd

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
X
𝑓

𝑓 (1)

⋮
𝑓 (l−1)

⎤⎥⎥⎥⎥⎦
, (59)

where {X, f, f (1)
, … , f (l− 1)} are unknown variables to be determined. To get {X, f, f (1)

, … , f (l− 1)} from the
Equation (59), it is necessary to require ī ≥ n − 1. Moreover, since (A,C) is observable, S is nonsingular, and thus we
can get ī ≤ n − 1. Hence ī = n − 1. In conclusion, the pair (A,C) is observable and condition (11) is satisfied. This
completes the proof of the theorem.

Remark 4. If n = 1, system (1) is definitely observable.

Theorem 3 gives a necessary and sufficient condition for system (1) to be observable. Moreover, according to Theorems 2
and 3, we can get the following Theorem 4.
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Theorem 4. Suppose that Assumptions 1 and 2 are satisfied. Then, the following three assertions are equivalent:

(i). The observer (5) is convergent.
(ii). System (1) is observable.

(iii). (A,C) is observable and condition (11) is satisfied.

Remark 5. Condition (11) is often neglected in the literature, which essentially reveals the nature of observability for
the uncertain system (1). More importantly, the combination of observability of (A,C) and condition (11) is an explicit
observability criterion that is easily to be verified. With the observability criterion for uncertain nonlinear systems,
it is easy to check whether the uncertain nonlinear systems are observable before we design observers. On the other
hand, we can also use the observability criterion to choose the least feasible output to ensure the convergence. If the
observability criterion is not satisfied, one may make the uncertain nonlinear systems to be observable by seeking
more output information according to the observability criterion (iii) of Theorem 4.

Remark 6. For unobservable uncertain nonlinear systems, the estimation error for each state and uncertainty, which
actually reflects the degree of observability for each state and uncertainty, is quantitatively presented in (38) of
Theorem 1. According to the estimation error, the estimation accuracy for the state and uncertainty can be evaluated
through the structure of the uncertain nonlinear systems and the bound of the derivatives of uncertainty. For the state
or uncertainty with high estimation accuracy, the estimations of the state and the uncertainty are almost “reliable,”
which can be treated as the approximation of the corresponding state and uncertainty although the uncertain sys-
tems are unobservable. As a result, (38) in Theorem 1 can be used as an evaluation of the observability degree, or in
other words the estimation accuracy, of each state and uncertainty for unobservable uncertain systems, which will be
shown in details in example 5.2 of Section 5 later. The above theorem will be verified by three benchmark examples
in the next section.

5 APPLICATION EXAMPLE AND SIMULATIONS

5.1 Numerical simulation examples
1. Observable uncertain nonlinear systems. Consider the following observable uncertain system:⎧⎪⎨⎪⎩

.x1(t) = x2(t),

.x2(t) = d(t),
𝑦(t) = x1(t),

(60)

where (x1, x2)T ∈ R2, 𝑦 ∈ R, and 𝑓 (·, t) = d(t) ∈ R are the state, the measurement output, and the external disturbance,
respectively. The initial states are chosen as

x1(0) = 0, x2(0) = −1. (61)

The observer (5) is used to estimate the state (x1, x2) and the external disturbance d(t) = sin(t) and the parameters of
observer are selected as [

X̂x(0)
𝑓 (0)

]
=

[ 0
0
0

]
, L =

[ 3𝜔o
3𝜔o

2

𝜔o
3

]
, 𝜔o = 80, (62)

which satisfies the bandwidth design of observers presented in the work of Gao.33 The estimates X̂x = (x̂1, x̂2) and 𝑓 (t) of
the state (x1, x2) and the uncertainty d(t) are depicted in Figure 1. The results indicate that the observer (5) estimates both
state and uncertainty accurately. Notice that system (60) is observable according to the observability conditions given by
Theorem 4. The simulation results in Figure 1 validate that the observability for uncertain systems is a sufficient condition
for observer to achieve satisfactory estimation performance.

2. Unobservable uncertain nonlinear systems. Consider the following unobservable uncertain system:⎧⎪⎨⎪⎩
.x1(t) = x2(t) + d(t),
.x2(t) = d(t),
𝑦(t) = x1(t),

(63)
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FIGURE 1 The states, disturbance, and their estimates from the example one [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 The states, disturbance, and their estimates from example two [Colour figure can be viewed at wileyonlinelibrary.com]

where (x1, x2)T ∈ R2, 𝑦 ∈ R, and 𝑓 (·, t) = d(t) ∈ R are the state, the measurement output, and the external disturbance,
respectively. The initial state (x1(0), x2(0)) and the external disturbance d(t) are chosen the same as (61) and d(t) = sin(t),
respectively.

The observer (5) is designed with the same initial values and bandwidth such that

L =

[ 3𝜔o
3𝜔o

2 − 𝜔o
3

𝜔o
3

]
, (64)

and both X̂x(0) and 𝜔o are the same as (62). The simulation results are depicted in Figure 2. Figure 2 shows that the
observer (5) fails to estimate the state component x2 and the uncertainty f(·, t) = d(t) accurately no matter how to tune
the gain matrix L. The estimations are always biased.

From Theorem 1, in the second example, the observer (5) actually gives the estimations of the following observable
group of state and uncertainty, in other words,[

X̂x
𝑓

]
−−−−−−→|𝜔o|→∞

X̃ ≜
[ x1

x2 − 𝑓 (1)

𝑓 + 𝑓 (1)

]
, ∀ t > 0. (65)

The estimates
[

X̂x
𝑓

]
and X̃ are plotted in Figure 3, which shows that each component of

[
X̂x
𝑓

]
is almost coincident with

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 3 The observable group X̃ and their estimates from example two [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Two-mass-spring system with uncertain parameters

corresponding component of X̃ . This validates that only the observable group of states and uncertainty can be estimated
accurately by the designed observer.

These two examples show that the observability condition for uncertain systems is a sufficient and necessary condition
for the observer to achieve satisfactory estimations of state and uncertainty.

5.2 Application Example
A benchmark two-mass-spring system was considered in the work of Zhang et al34 and its schematic is given in Figure 4.
The system consists of two masses m1 and m2 that are free to slide over a frictionless horizontal surface. The masses
are attached to one and another by means of a light horizontal spring of spring constant k. The states of the system are
defined as the displacements and velocities of the two masses, respectively, where x1(t) and x3(t) denote the displacement
and velocity of mass m1, and x2(t) and x4(t) denote those of the mass m2. The control signal u(t) is the force applied to
the object one. By Newton's second law and Hooke's law, the two-mass-spring system dynamics can be described by the
following equation:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

.x1(t)

.x2(t)

.x3(t)

.x4(t)

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− k
m1

k
m1

0 0
k

m2
− k

m2
0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

cx1(t)
x2(t)
x3(t)
x4(t)

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

0
0
1

m1

0

⎤⎥⎥⎥⎥⎥⎦
[u(t) + b1w1(t)] +

⎡⎢⎢⎢⎢⎢⎣

0
0
0
1

m2

⎤⎥⎥⎥⎥⎥⎦
b2w2(t),

𝑦(t) =
[

c1 c2

][ x1(t)
x2(t)

]
,

(66)

where w1(t) and w2(t) are two external disturbance forces applied to the masses m1 and m2, respectively. When w1(t) is
considered only, b1 = 1 and b2 = 0, and when w2(t) is considered only, b1 = 0 and b2 = 1. In the same way, c1 = 1 and
c2 = 0 means that the position of the mass that m1 is measured, and c1 = 0 and c2 = 1 means that the m2 is measured.

http://wileyonlinelibrary.com


BAI ET AL. 2973

We mainly consider the uncertainty observing problem for multiple uncertainties w1(t) and w2(t) with the measure-
ments y(t) = x1(t) or y(t) = x2(t). For this system, the general observer is designed as (5) with the control input to be set
as u(t) = −k1x1(t) − k2x2(t) − k3x3(t) − k4x4(t) to stabilize.

When both w1(t) and w2(t) are considered,

bd =

⎡⎢⎢⎢⎢⎣
0 0
0 0
b1
m1

0

0 b2
m2

⎤⎥⎥⎥⎥⎦
.

A calculation shows that (A,C) is unobservable no matter x1(t) or x2(t) is measured. The following four cases are
considered:

• Case 1: b1 = 1, b2 = 0, c1 = 1, c2 = 0;
• Case 2: b1 = 0, b2 = 1, c1 = 1, c2 = 0;
• Case 3: b1 = 1, b2 = 0, c1 = 0, c2 = 1; and
• Case 4: b1 = 0, b2 = 1, c1 = 0, c2 = 1.

According to observability conditions for uncertain systems in Theorem 4, the observability for uncertain system (66) for
these different four cases is listed in Table 1. It follows from Table 1 that although (A,C) for four cases are all observ-
able, the uncertain system for Cases 1 and 4 is unobservable for condition (11) is not satisfied. Next, we investigate the
estimation performance of the observer (5) for four cases. For the sake of simplicity and easy tuning, the observer gain
L =

[
l1 l2 l3 l4 l5

]⊤ for four cases are designed so that all eigenvalues of A − LC would be placed at the observer band-
width −𝜔o. The coefficients of L for four cases are listed in Table 2, where a = (m1 + m2)∕(m1m2). The coefficients of
the controller gain can be chosen as

k1 = 6𝜔2
c m1 − (m1 + m2)∕m2, k2 = m1m2𝜔

4
c − k1, k3 = 4𝜔cm1, k4 = 4𝜔3

c m1m2 − k3,

to place all closed-loop poles at −𝜔c. The observability for uncertain system is tested by the two-mass-spring system with
the parameters chosen to be

m1 = 0.1kg,m1 = 0.1kg, k = 1N∕m, 𝜔o = 100, 𝜔c = 10, 𝜔1 = sin(t), 𝜔2 = sin(0.5t).

The real and estimated states and uncertainty for four cases are depicted in Figures 5 to 8.
It is observed from Figures 6 to 7 that the estimates of both state and the uncertainty exactly track the real values in

Cases 2 and 3 while certain deviations exist between the real and estimated values of state and uncertainty in Cases 1
and 4, which are shown in Figures 5 and 8. The estimation performances of Figures 5 to 8 are rightly consistent with the
observability results of Table 2, which means that the observability for uncertain systems is a sufficient and necessary
condition for observer (5) to achieve unbiased estimations.

TABLE 1 The observability of two-mass-spring system with four cases of uncertainty and
measurements

(A,C) is observable (11) is satisfied The uncertain system is observable

Case 1 Yes No No
Case 2 Yes Yes Yes
Case 3 Yes Yes Yes
Case 4 Yes No No

TABLE 2 Coefficients in L in four cases of uncertainty and measurements

Case 1 Case 2 Case 3 Case 4

l1 5𝜔o 5𝜔o (10𝜔3
om1m2 − l2m2)∕m1 (10𝜔3

om1m2 − l5m1 − l2m2)∕m1

l2 (10𝜔3
om1m2 − l5m2 − l1m1)∕m2 (10𝜔3

om1m2 − l1m1)∕m2 5𝜔o 5𝜔o

l3 10𝜔2
o − a 10𝜔2

o − a (5𝜔4
om1m2 − l4m2)∕m1 (5𝜔4

om1m2 − l4m2)∕m1

l4 (5𝜔4
om1m2 − l3m1)∕m2 (5𝜔4

om1m2 − l3m1)∕m2 10𝜔2
o − a 10𝜔2

o − a
l5 𝜔5

om1m2 𝜔5
om1m2 𝜔5

om1m2 𝜔5
om1m2
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FIGURE 5 The real and estimated values of states and uncertainty for Case 1 (example three) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 The real and estimated values of states and uncertainty for Case 2 (example three) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 7 The real and estimated values of states and uncertainty for Case 3 (example three) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 8 The real and estimated values of states and uncertainty for Case 4 (example three) [Colour figure can be viewed at
wileyonlinelibrary.com]

Moreover, it follows from Table 2 and Figures 5 to 8 that when x1(t) is measured, the uncertain system with w1(t) is
observable, while the uncertain system with w2(t) is unobservable. Conversely, when x2(t) is measured, the uncertain
system with w2(t) is observable whereas the uncertain system with w1(t) is unobservable. Thus, for given measurement,
observability corresponding to different uncertainties may be opposite. Fortunately, the observability criterion (iii) in
Theorem 4 clearly tells us the case of uncertainty that can be accurately estimated before we try to design an observer
to estimate the uncertainty. This is of great significance both theoretically and practically. On the other hand, for certain
uncertainty, different measurements have different observability properties. How to choose the least “feasible” output
to achieve unbiased estimation of uncertain systems is an important problem to be solved. The observability criterion
(iii) rightly gives the intuitional answer to this problem. For instance, Table 1 indicates that if we want to estimate w1(t),
x2(t) needs to be measured, and similarly, if we want to estimate w2(t), x1(t) needs to be measured, which is verified by
Figures 6 to 7.

A comparison of Figures 5 and 8 shows that although the estimations for Cases 1 and 4 are both biased, the deviation
for Case 4 is much smaller than that for Case 1. According to (53) in Theorem 1, the estimation error of unobservable
system is S−1Δ, which is calculated as the following values for two cases:

Case 1:
S−1Δ =

[
0 −ẅ1(t) 0 .w1(t) ẅ1(t)

]⊤ =
[

0 sin(t) 0 cos(t) − sin(t)
]⊤;

Case 4:

S−1Δ =
[
−0.1ẅ2(t) 0 .w2(t) 0 0.1ẅ2(t)

]
⊤ =

[
0.025 sin(0.5t) 0 0.5 cos(0.5t) 0 −0.025 sin(0.5t)

]⊤
.

The (53) in Theorem 1 quantitatively gives an estimation error of unobservable Cases 1 and 4, which helps to explain why
the deviation for Case 4 is smaller than that of Case 1. Since the estimation value is almost coincident with the true value
of w2(t) for Case 4, the estimate of w2(t) can be treated as “reliable” one, which can be used to approximate the true value
of w2(t) although the uncertain system in Case 4 is unobservable.

6 CONCLUSIONS

This paper analyzes the performance of observer for a large class of uncertain nonlinear systems and proposes a structural
condition, which is proved to be essential to ensure the convergence of the observer. It is shown that the combination of
the structural condition and the observability for the augment matrix pair is a necessary and sufficient condition for the
observer to be convergent. By defining observability for uncertain nonlinear systems, it is further proved that the uncer-
tain nonlinear systems are observable if and only if both the structural condition and the observability of the augment
matrix pair are satisfied. In addition, for unobservable uncertain nonlinear systems, which do not satisfy this necessary
and sufficient condition, it presents explicitly a biased estimation error, which can be used to evaluate the estimation
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performance of the proposed observer. The numerical simulations for three typical examples are carried out to validate
the theoretical analysis.
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