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In this paper, we consider performance output tracking for a boundary controlled one-dimensional wave
equation with possibly unknown internal nonlinear uncertainty and external disturbance. We first show
that the open-loop system is well-posed and then propose a disturbance estimator. It is shown that the
disturbance estimator can estimate successfully the total disturbance that consists of internal uncertainty
and external disturbance. An servomechanism based on the estimated total disturbance is then designed.
It is shown that the closed-loop system is well-posed. Three control objectives are achieved: (a) the out-
put is tracking the reference signal; (b) all the internal signals are uniformly bounded; (c) the closed-loop
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93B51 trol is first time applied to a system described by the partial differential equation for complete general
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Keywords: use the high-gain to estimate total disturbance for unmatched system. The numerical experiments are

. carried out to illustrate effectiveness of the proposed control law.
Wave equation

Boundary control
Performance output tracking
Disturbance rejection
stabilization

© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider performance output tracking for a
one-dimensional wave equation with Neumann boundary control
and unknown internal nonlinear uncertainty and external distur-
bance. The system is governed by the following partial differential
equation:

Wee (X, t) = w(x,t), x€(0,1), t>0,

wx(0,6) = qwe (0,t) + f(W(-, £)) +d(t), t=0,

wy(1,t) = u(t), t>0, (1)
w(x,0) =wo(x), we(x,0) =w(x), xe(0,1),

Ym(t) ={w(0,t), w¢(1,0)}, t=0,

Yo(t) =w(1,0), t>0,
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where we denote by w/(x,t) or wy(x,t) the derivative of w(x,t)
with respect to x and by w(x,t) or w(x,t) the derivative of
w(x,t) with respect to t. The u(t) is the control input, yn(t) the
measured output, y,(t) the performance output signal to be reg-
ulated, f:H'(0,1) - R an unknown possibly nonlinear mapping
that represents internal uncertainty. Examples include like f(w) =
sin(w2(0,t)), f(w) = sin(fl%2 w(x, t)dx). These nonlocal boundary
condition arises mainly when the data on the boundary can-
not be measured directly [1]. The d(t) is the unknown external
disturbance which is only supposed to satisfy deL>(0, o), and
q>0(#1)is a constant.

For a given reference signal r(t), we are expected to design an
output feedback control for uncertain system (1.1) to reject the ex-
ternal disturbance so that

e(t) =yo(t) —r(t) > 0ast— oo. (1.2)

System (1.1) is a typical non-collocated Neumann control prob-
lem: Control is on the one end and the disturbance is on the other
end, which was first investigated in [12] where no internal uncer-
tainty is concerned and the external disturbance is of harmonic
disturbance only, ie, d(t)= Z’}L] (0 sin(ajt) 4 ¥ cos(at)).

0947-3580/© 2017 European Control Association. Published by Elsevier Ltd. All rights reserved.
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Except the general external disturbance, another point that is
different from [12] is that for asymptotic stability of the closed-
loop system, we only assume that the disturbance and reference
signal belong to L2(0, oo) and H2(0, co), respectively, which does
not necessarily vanish at infinity required in [12]. This paper is a
non-trivial generalization of the results from [12]. The boundary
condition in (1.1) implies that system (1.1) suffers from the exter-
nal disturbance and the internal uncertainty and system (1.1) is
exponentially stable when there are no disturbance and control
input involved.

The above problem is a special kind of output regulation prob-
lem where the disturbance is not limited to special class. It is well
known that the output regulation is one of the fundamental is-
sues in control theory. There are many works dedicated to the
output regulation for finite-dimensional systems since from [3,4,9],
and the related results have been generalized to the infinite-
dimensional systems, see, for instance, [2,5,6,14,17-20], among
many others. These results are based on the internal model prin-
ciple where reference signal and disturbance are generated by ex-
osystem. For finite harmonic signals, this requires the frequencies
to be known. A few surveys are contributed to estimate the fre-
quencies [16] where the order of parameter update law is huge as
the number of frequencies increase. A first attempt on an infinite-
dimensional signal is [13] where a general periodic signal that
has infinitely many frequencies is considered. However, it does not
cover general disturbance considered in this paper. A recent inter-
esting work is [15] where output tracking problem is considered
for a general 2 x 2 system of first order linear hyperbolic PDEs but
no uncertainty and disturbance are taken into consideration.

To the best of our knowledge, the general disturbance signals
are not considered in output tracking problems for PDEs. In this
paper, we solve the performance output tracking problem with
general disturbance by designing a new disturbance estimator that
can estimate the total disturbance yet does not use high-gain in es-
timation. For external disturbance estimation/cancellation only, we
refer to [10,11] via active disturbance rejection control.

We consider system (1.1) in the state Hilbert space H =
H'(0,1) x L2(0, 1) with the inner product given by

1
((¢1,¢1)T,(¢2,W2)T)uﬂ=/0 (1 (X)95 (%) + Y1 (x) Y2 (x)]dx

+¢1(0)$2(0), ¥ (¢, ¥i)" € H, (13)
Define the operators A : D(A)(C H) — H and Bq,B, : R — H as
A Y) = 9", V(9. ¥)" D),
D(A) = {(¢.¥)" e H*(0,1) x H'(0,1)
1§/(0) = q¥r (0) +¢(0). /(1) =0},
By =(0,80)". By=(0.81)", D(By) =D(B;) =R,

where §, is the Dirac distribution which satisfies §,(¢) = ¢(a) for
all ¢ e H'(0, 1). It is readily found that

AP Y) = (=, —¢")T. VY (9.¥)" e DAY,

i=1,2.

(1.4)

D(a*) = {(¢,¥)" e H*(0,1) x H'(0,1) (15)
1¢'(0) = —q¥(0) +¢(0), ¢'(1)=0}.
The system (1.1) can be rewritten as
i(%i%) - A(X(('.’ﬁ))) +B1(f(W(-. 1))
—w(0,t) +d(t)) + Byu(t). (1.6)

Before stating Proposition 1.1, we introduce some terminology. Let
X and U be Hilbert spaces. Suppose that A generate a Cy-semigroup
et on X. Let X_; be the completion of X with respect to the norm
lIx||_1 = ||(BI — A)~'x||, where B is some element in the resolvent

set p(A). An operator B € L(U,X_1) is an admissible control opera-
tor to et if for some (hence for any) T >0 and for every ueL%(]0,
o0); U),

T
d.u =/ AT Bu(o)do € X
0

(the integral is computed in X_;). Then, this integral gives the
strong solution of z(t) = Az(t) + Bu(t) in the space X, correspond-
ing to z(0) =0, evaluated at the time 7. B is called bounded if
BeL(U, X), and unbounded otherwise. If B is admissible and « > 0,
then there exists My >0 such that

M,
(I —A)'Bllyyx) < ——— for Res>a.

Res —«a
For more admissibility and its properties, we refer the reader to
[21, Chapter 4].

Proposition 1.1. The operator A defined by (1.4) generates a Cy-
group e on H and B, and B, are admissible to e*!. Suppose that
f:H'(0,1) - R is continuous and satisfies local Lipschitz condi-
tion in H'(0, 1). Then, for any (wp,w;)T € H, u eLIZOC(O,oo), and
de LIZOC(O, 00), there exists a unique local solution to (1.1) such that
w(-, t),w(-,t))T €C(0,T; H) for some T>0 and for te[0, T),

w(., )\ _ gue(Wo()
we (-, t) w1 ()
+ / t e EIB [ f(w(-,5)) —w(0,t) +d(s)]ds
0

t
+/ e =B, u(s)ds. (1.7)
0
Moreover, if f:H'(0,1) — R satisfies the uniform Lipschitz condi-
tion

[f(w1) = fwo)| < LIwi —Wallgo1y. Y wi,wa e H'(0, 1),

for some L>0 or f:H'(0,1) - R is bounded. Then, there ex-
ists a unique global solution (w, w)" € C(0, oco; H) to (1.1) satisfying
(1.7) with T = +oo.

Proof. By Lemma 6.1 in Appendix, A generates a Cy-group eA! on
H. We now show that B; and B, are admissible to eA!. By [21, The-
orem 4.4.3], it suffices to show that B} and B} are admissible ob-
servation operators for the adjoint semigroup eA"t. This is equiva-
lent to showing that a) B{A*~! and B5A*~! are bounded from H
to C, and b) for every T > 0, there exists Mr, > 0 depending on T
only such that the system of the following:

wi(x, t) =wi (x,t), x€(0,1), t>0,
wi(0,t) = —qw;(0,t) + w*(0,t), t>0,
wi(1,t) =0, t>0, (1.8)
WX 0) = wj(x), Wi(x.0)=wi®x). xe(0.1).
yw = (Wi (0,t), w; (1,1)), t>0,
satisfies
T,
[ 100,02+ G (1,021t < Mr W W) Tl (19)

By Lemma 6.1 in Appendix, it is easy to see that (1.8) admits
a unique solution (W*(-,t), wj(-,t))T € C(0, o0; H) and there exist
two constants M« > 0, and w, € R such that for all t>0,

1
/0 [(Wy (x, )%+ (W7 (x, ) ]dx+ (w* (0, £))* < M.e®* || (W, wi) T l1.

(1.10)
Let

pu(t) = /Ol(ZX— 1YW (x, W (x, £)dx. (111)
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Then
1 ! * 2 * 2 d
1.0 = 5 [ 100 + (w0, 0))2 .

Finding the derivative of p+(t) along the solution of (1.8), we ob-
tain

() = WH0, )2 + Wi (1,6)2 + (W30, ) + Wi(1.1))2
1

- / (W2 (x. £))% + (Wi (x, £))?dx.
0

which, together with (1.10) and (1.12), gives

(112)

(1.13)

T,
/0 (W (0. £)) + (Wi (1,0)°]dE < p.(£) — p.(0)

T, 1
5 2 ok 2
+ /O /0 (W (x. £))% + (W (x. £))?]dx

1 1 o,
< (5 + (i + T*>>M*e

A direct computation shows that
1
K@) = (400 + 1+ [ veods

—/Ox<x—s>w(s>ds,—¢<x>)i
BiA (¢, )" = —¢(0), B3A* (P Y)T =-0(1)

By the Sobolev embedding theorem, H!(0, 1)—>C(0, 1). By
¢ <eH'(0, 1) and (1.15), we know that B{A*~! and BjA*~! are
bounded from H to C, which, together with (1.14), implies that B,
and B, are admissible to eAl. Therefore, for any fixed T> 0, and for

any given u,d € L? (0, c0), we have

W w "Il (1.14)

(1.15)

t
/ eA=9B,d(s)ds € C(0, T; H), and
0

t
/ M 9B,u(s)ds e C(0, T; H). (1.16)

0

Denote by F(w(-,t)) = f(w(-,t)) —w(0,t). Since f:H'(0,1) > R
satisfies the local Lipschitz condition, so does F. For any initial
value (wo, wy)T € H, let (11(t), n2(t))" = e (wp(-), wy(-))T. For
any given o > maxg<t<1 |71 () ||y .1y > 0 and for te[0, 1], define

a set A; given by
Ae={z:(zz)eH, |z-mOlme1 =<0}

Then there exists a constant L, > 0 independent of t such that

|[F(z1) —F(2)| < Lo llz1 = 22llm0,1). V¥ 21,22 € Ar. (117)
The admissibility of B; implies that for all t> 0,
t
” /O eA(T*S)Blf(s)dsH <Gl o < GtIC 0.0 (118)
H

for some constant C; which is independent of ¢. By [22, Proposi-
tion 2.3], we know that C; is nondecreasing with respect to t. Let
T <1. Then C; <Cy. Choose T >0 so that C;7Ls <1 and

() rmane
: 0

<aQ.
C(0,1;H)

(@ 0.0 (0)" €CO, T:H) : (-, 0) = wo ("),
@ (-,0) =wi ()

O= 1@ _ (W) .
” (%lr(ﬁ) N (w?c)) — Jo e B d(s)ds

- eA(“S)Bzu(s)ds”H <o

C1 TLg (O’ =+

t
+ / A9 1 (s)ds (119)
0

Let

be a closed subset of C(0, t; H). Define the nonlinear map F from
® to C(0,T; H) by

f(pi2) = ()« o
+ /0 eA=9B,u(s)ds

t
+ / AR F (o (- 5))ds. (120)
0
It follows from (1.17), (1.18), and (1.20) that for any (@1, @1)7, (@2,
©2)" €0,

01O _of 920.0)
F(02) (@),
t
/0 e IB[F(@1(.8)) — F(@2(-,5))]ds

< GtlIF(@1(-,8)) = F(@2(-.$) l1=(0,0)
<GT|F(@1(..8)) = F(@2 (. ) =0,
<Gl ll@1(.8) = @2(. ) i< (0,z:H10.1))

‘/71 ('75) _ (/)2('75)
©1¢(-.8) @2 (-, 5)

which, together with C;tLs <1, implies that F is a strict contrac-
tion on ©. Letting (¢, )T = (0,0)T in (1.21), by (1.19), we can
see that F® c ©. By the contraction mapping theorem, (1.20) has
a unique fixed point (w,w)T € C(0, T;H), which is a solution of
(1.7).

Now, we claim the second assertion. Suppose that f{ -) satisfies
the uniform Lipschitz condition with constant L. So does F(-) with
constant L+ 1. Let [0, T) be the maximal interval of existence of
the solution of (1.1). Obviously, it suffices to show that T = +oc.
Assuming T < oo, it follows from (1.18) that for te [0, T),

H

<Grls , (1.21)

C(0,7;H)

t 2
H /0 e IBFw(.9)ds| = QIFWC )
H

=< C72' ”F(W(! S)) ”%2(0’[)
= C72' (L + 1)2 ||W(, 5) ”%2(0,[;1-11 0,1))

t
= LA 17 [ Iy
‘ W(‘*S)
Wt('vs) H
(1.22)
Since the solution on [0, T) satisfies (1.7), by (1.22), we have

t
(G, et o

wi ()

2
ds.

t

<L+ 1)2/

0

2
<2

H

2
t

+ / eA=9B,u(s)ds
0

H
2

+2

t
‘/ e*=9B, F(w(., s))ds
0

H

et (sz?ED + / eh -9, (5)ds
. 0

2

< 2 max
tel0,T]

t
+ / e 9B, u(s)ds
0

H

W('7 S)
we (-, 8)

2
ds,

H

t
+2c%(L+1)2/
0
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which, by using Gronwall’s inequality, yields

2
w(, 1) ar (Wo() /t A=)
2 Byd(s)d
” (Wrﬁf)) e (W1(~) + ), ¢ Bid(s)ds
t 2
+/ eM[‘S)IB%zu(s)ds eZC%(L-H)ZT’
0 H

that is, (w,w)T is uniformly bounded on H over [0, T]. Thus, if
T < oo, similar to the proof of the existence of local solution, we
can prove that (1.1) has a unique solution on [0, T + o) for some
0o >0. This is a contradiction. When f: H1(0,1) — R is bounded,
similar contradiction also happens. Therefore, (1.1) admits a unique
global solution. O

Remark 1.1. By Proposition 1.1, we can assume that f: H1(0,1) —
R is continuous, and system (1.1) admits a unique solution
(w,Ww)T € C(0, oo; H).

The next Lemma 1.1 is well-known and is not difficult to prove
by using the results of [21] and [22]. For the reader’s convenience,
we give a simple proof.

Lemma 1.1. Let A be the generator of exponentially stable Cy-
semigroup e on the Hilbert space X. Assume that B e £L(U,X_1) is an
admissible control operator for eAl. Then, the initial value problem

x(t) = Ax(t) + Bu(t), x(0) = xo,

admits a unique solution x < C(0, oo; X), which tends to zeros as
t— oo if uel?(0, co; U) or lim_, o |lu(t)|ly =0, and is bounded if
uelL>(0, oo; U).

Proof. Since Be £(U,X_7) is an admissible control operator, by
[21, Proposition 4.2.5.], the solution can be represented as

t
X(t) = eMxg + / A-9By(s)ds € X. (123)
0
Since A generates an exponentially stable Cy-semigroup e, there
exist two constants M, ;>0 such that ||eAf|| < Me#{. Suppose
that ueL>(0, oo; U). By [22, Remark 4.7], the admissibility of B
implies that there exists a constant L; > 0 independent of u(s) such
that

t
Hf f—’A(H)BU(S)dSH < Lillull i< (0,00:0)»
0 X

which, together with (1.23) and the exponential stability of e, im-
plies that the solution x(t) is bounded. Next, suppose that u € L2(0,
oo; U). For any given o > 0, there exists t; > 0 such that

(1.24)

1l 2ty 000) < O (1.25)
It follows from the admissibility of B and [22, Remark 2.6] that

/t A9 Bu(s)ds

to

=
X

/t A9B0 o u(s))ds
0 to

X

=< L2”u”L2(t0,oc:U) < Lo, (126)

where L, is a constant that is independent of u(s), and

ov)(©) = {ﬁg;;

Using the exponential stability of A’ again, we have

to to
HeA“-tw / Ato-9By(s)ds| < At H / A= By (s5)ds
0 X 0

O<t<r,
t>T.

X

to
< Me~H(t=to) f A=) By (s)ds (1.27)
0

X
Rewriting (1.23) as

X(t) = e xg+eA—o) / © A9 By (s)ds + [ ' ACIBu(s)ds, (128)
0 to

it follows from (1.26) and (1.27) that

“X(t) ” =< M67Mt||X()|| + Me*l/«(ffto)

to
/ eA(fO*S)Bu(s)dsH + Lyo.
0 X

(1.29)

This shows that lim;_, ||x(t)|| <Lyo. By the arbitrariness of o,
x(t)— 0 as t— oo.

Finally, suppose that lim;_, ||u(t)|ly = 0. For any given o >0,
there exists ty > 0 such that

lull i~ g 0000y < O (1.30)

It follows from the admissibility of B and [22, Remark 4.7] that

/t A= Bu(s)ds

to

=
X

/ " ACOB0 6 (s))ds
0 to

X

< L] I|u||L°°(tg.oo;U) < L]U. (131)

The rest of the proof is similar to (1.27)-(1.29). This ends the proof
of the lemma. O

Remark 1.2. Consider the control problem: x(t) = Ax(t) + B(u(t) +
d(t)), x(0) =xg, where d(t) is the disturbance. By Lemma 1.1, if
del?(0, oo; U), it does not affect the asymptotic stability of the
system. When d ¢1%(0, co; U), if we can find estimate d(t) of d(t)
so that (d —d) € L%(0, co0; U), we do not need to construct distur-
bance estimator likewise [10,11] such that ||d(t) —d(t)|ly — O as
t— oo which is usually stronger than (d — d) € L2(0, oo; U).

We proceed as follows. In Section 2, we design a total distur-
bance estimator which estimates the total disturbance that consists
of internal uncertainty and the external disturbance. Section 3 is
devoted to design of servomechanism and output tracking of the
closed-loop system. Some numerical simulations are presented in
Section 4 for illustration.

2. Estimator design

In this section, we design a disturbance estimator in terms of
input and output (u(t), ym(t)) for system (1.1):

Zee (X, t) =z (x, ), x€(0,1), t>0,
2x(0,t) = qz:(0,t) + c1[z(0, t) —w(0, )], t>0,
zx(1,t) = u(t), t>0,
die(x,t) = dy(x, 1), x€(0,1), t >0,
d(0,t) =z(0,t) — w(0,1t), t>0,
d(1,t) = —cldc(1.6) — (1. 6) + we(1.D)]. £ =0,
z(x,0) =z0(x), 2z(x,0) =2z1(x), xe[0,1],
d(x.0) = do(x). dr(x.0) = dy(x), x [0, 1],

(21)

where cq, ¢; > 0 are the design parameters. We will show that this
estimator can estimate the total disturbance f(w(.,t)) +d(t). It is
seen that system (2.1) is completely determined by the measured
output yn,(t) of system (1.1) and the control input u(t).

Let Z(x, t) = z(x,t) — w(x, t). Then Z(x, t) is governed by

Zu(x,t) = Zw(x,8), x€(0,1), t>0,
Z¢(0,t) = ¢12(0,t) + Z: (0, t) — f(w(-,t)) —d(t), t=0,
Zx(1,t) =0, t=>0,
Z(x,0) =Z(x), 7 (x,0) =71 (x). xe[0,1].

(2.2)
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We consider system (2.2) in the state space H = H'(0,1) x L%(0, 1)
with the inner product given by

1
(1Y) (2. ¥2)T) = /0 [, (), () + ¥ (X) P2 (X) ldx
+¢101(0)2(0), V (¢, ¥i)T e H,

System (2.2) can be written as an evolutionary equation in H:

i=12.

i(;f(‘ft))) — (;Zf('fft))> FBSWC0) —d©),  (23)
where the operator B; is given by (1.4) and A, given by
AT = (W), V(6. ¥)T € D(Ay),
D(h:) = (@, ¥)7 € H2(0.1) x H'(0.1) (2.4)

£ ¢/(0) = 1(0) + qy (0), ¢’<1):0}.

Lemma 2.1. Suppose that d e L>(0, o), f: H'(0,1) — R is contin-
uous and that (1.1) admits a unique solution (w,w)T e C(0, oo; H)
which is bounded. For any initial value (zZg,Z;)T € H'(0,1) x
12(0,1), there exists a unique solution (Z,Z;)™ € C(0, co; H'(0, 1) x
12(0,1)) to (2.2) such that

Stl>1(1)3 G0, Ze o)l 0.1)<120.1) < +00. (2.5)
Proof. By Lemma 6.1 in Appendix, A, generates an exponentially
stable Cy-semigroup e®zf. By Proposition 1.1, B; is admissible to
eAt Since f: H'(0,1) — R is continuous and (w, W)™ e C(0, co; H)
is bounded, f(w) e L*(0,c0) and hence (f(w)+d) e L*(0, c0).
Thus, it follows from Lemma 1.1 that system (2.2) admits a unique
bounded solution. O

Let dN(ic, ) =d(x,t) —2(x,t) = d(x, t) —z(x,t) + w(x, t). We can
see that d(x, t) satisfies

die(x, 1) = dw(x, 1), x€(0,1), t>0,

d(0,t) =0, t>0,

0.6) ~ = (2.6)
dy(1,t) = —codi (1, 1), t>0,

d(x,0) =do(x), d(x,0)=d;(x), xe[0,1].

We consider (2.6) in the energy space H} (0,1) x [?(0, 1), where
H}(0,1) = {¢ eNle(O, 1) : ¢(0) = 0}. It is well known that for any
initial value (do,d;) € H}(0,1) x [2(0,1), system (2.6) admits a
unique solution and there exist two constants My, (g4 > 0 such that

1 o ~ ~ ~
[ 1@ 077 4+ @, 0)1x < Mall o, ) .00 000"
2.7)

Lemma 2.2. For any initial value (do,d;) € H!(0,1) x [2(0,1), the
solution of (2.6) satisfies

/ @(0, t)dt < +oo. (2.8)
0
Proof. Let
1 ~ ~
Q(t):/ (x = 1)d, (x, O)d, (x, £)dx. (2.9)
0
Then,
11 >
o)l = 5 [ 1d 0+ @ x 0)lax
1 ~ ~
= jMd”(dOvdl)”[Z.ILI(OJ)XLZ(OJ)e_Md[ (210)

Finding the derivative of o(t) along the solution of (2.6) yields

- 15 1t ™
0(0) = 5&0.0) - 5/0 (@ (x, t) + A (x, t)]dx. (211)

Integrating from 0 to T with respect to t for (2.11), we have
T T p1 ~

%/ @2(0, t)dt = %/ / [ (x, £)+d2 (x, £)|dxdt+0(T)—0(0)
0 0 Jo

1 ~ o~
=< %Md”(do, d1)”HL1(0y1)><L2(0,1)(1 _e*lJ-dT)

1 T a2 —uqT
+ EMCIH (dOv dl)”H'}(()J)XLZ(O.])e Ha® — Q(O),
(2.12)
which, passing to the limit as T— oo, yields d~X(0, ) el?(0,00). O

Remark 2.1. If we take ¢, =1, then (J(x, t),d:(x, t)) = (0,0) for
t>2. Thus, dx(0,t) =0 for t> 2. In this case, the total disturbance
is exactly estimated.

Remark 2.2. By (2.2) and (2.6), a simple computation shows that

de(0,t) = f(W(-, 1)) +d(t) — (—dx(0, t) + ¢1d(0, £) + qd; (0, 1)).
(2.13)

By Lemma 2.2, —cTX(O, t) +clcT(0, t) +qut(O,t) can be regarded as
an estimate of the total disturbance f(w(-,t)) +d(t).

3. Servomechanism design

Denote W2%°(0,00) = {¢p : ¢ € L®(0,0), ¢’ € (0, 0), ¢” €
L*®(0, c0)}. For the reference signal r(t), we design the following
reference model:

Ve (X, t) = U (X, ), x€(0,1), t>0,
V(0. 8) = que (0, £) —dy (0, £) +¢;d(0, £) +qd; (0.£), =0,
v(1,t) =r(t), t>0,
v(x,0) =19(x), v:(x,0) =v1(X), xe|0,1].
(3.1)

It is seen that system (3.1) is completely determined by the mea-
sured output of system (1.1), the output of estimator (2.1), and the
reference signal r(t) only.

Let e(x,t) =w(x,t) —v(x,t) be the error between system
(1.1) and state reference system (3.1). Then &(x, t) is governed by

g (x,t) = exx(x,t), x€(0,1), t>0,
£x(0, ) = gec (0, ) + dx (0, 1), t>0,
ex(1,t) = u(t) — vx(1,1t), t>0,
e(x,0) =wo(x)-vp(x), & (x,0) =wi(x)-v1(x), x€][0,1],
(3.2)

where ¢(1,t) =w(1,t) —r(t) =e(t) is the performance output
tracking error. We propose the following output feedback con-
trol:

u(t) = vx(1,t) —cze(1,t) = v,(1,t) — cs(w(l,t) —r(t))

=1x(1,t) — cse(t), (3.3)
where c3 >0 is a design parameter.
Under control (3.3), the resulting closed-loop of (3.2) is
en(X,t) =ex(x,t), x€(0,1), t >0,
£:(0.1) = qec (0. 1) + dy(0. 1), t=>0, -
ex(1,t) = —c3e(1,0), t>0,

e(x,0) =¢eo(x), &, 0)=¢e1(x), x¢][0,1].
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We consider system (3.4) in the state space H = H'(0, 1) x L2(0, 1)
with the inner product given by

1
(1. D)7, (P2, ¥2)T) =/0 [ ()5 (x) + Y1 (X) P2 (%) [dx
+pr (D@ (1), Y (¢, ¥i)" € H,

Theorem 3.1. Suppose that dNX(O, -) € L2(0, 00). For any initial value
(e(-,0),&:(-,0))T € H, there exists a unique solution to (3.4) such
that (¢, &:)" € C(0, oo; H) satisfying

i=1,2.

(3.5)

t—o0

lim </1[sf(x, ) +&2(x,t)]dx + 2(1, t)) =0.
0
Proof. Define an operator A; : D(A¢)(c H) — H by
A: (¢, 'ﬂ//)T = (Wvd)//)-r: V(. d’)T e D(Ay),
D(Ae) = {(¢.¥)T e HNH?*(0,1) x H'(0,1)
19'(0) =qy(0), ¢'(1)=-c3p(1)}.

We can write (3.4) into operator form of the following:

(3.6)

%(du D). 8.0 =Ac(e(. 1), & 1) +B1de(0.1), (3.7)

where B4 is given by (1.4). It is readily found that
A (p.Y)T = (=¥, —9")T, Y(¢,¥)T e DA}),
D) = {@.¥)T e HN(H2(0.1) x H'(0.1)

L §'(0) = —q¥ (0), ¢'(1) = —c3¢><1)}.

By Lemma 6.2 in Appendix, A; generates an exponentially stable
Co-semigroup e’<! on H. Now we show that B; is admissible to
ef. Once again, this is equivalent to showing that a) IB%*]‘A’;’] is
bounded from H to C, and b) for every T- > 0, there exists My, > 0
depending on T: only such that the system of the following:

(3.8)

gh(x, t) =¢e5Kx,t), xe(0,1), t>0,
£:(0,t) = —quvi (0,¢t), t>0,
g (1,t) = —c3e*(1, 1), t>0, (3.9)
e (x,0) =¢g5(x), & (x,0)=¢e5(x), xe[0,1],
¥e = £7(0,0),
satisfies
T.
[ ero.niar < my e en IR, (310)
A direct computation shows that
1
AT @) = (Cl (—q¢(0><c3 +1+ [ v
3 0
+ ey (1= 6y €)ds ) (311)

+qp0)x — [f(x =&)Y (E)dE, —p(0)T,
BiA; ™ (6. 9)T = —9(0).
Thus, IB%”{A;’1 is bounded from H to C. By Lemma 6.2 in Appendix,
it is easy to see that (3.9) admits a unique solution (¢*,&;)7T

C(0, co; H) and there exist two constants M« >0 and w, € R such
that for all t>0,

1
EX(t) : = fo [(e3(x. ) + (7 (x.)?]dx + c3(£*(1. 1))?
(&5 &)1

On the other hand, differentiating E; (t) with respect to t along the
solution to (3.9) gives

Ex(t) = 2q(; (0, 1))

< M* ea),,t

(3.12)

(3.13)

Integrating from 0 to T- with respect to t and by (3.12), we
obtain

T.
2q /0 (70, £))2dt = Ex(T.)—EZ (0) < M. (e* " + 1) (g3 &) |13
(3.14)

This, together with (3.11), implies that B; is admissible to efet,
Therefore, (3.7) admits a unique solution. Since dx(0, -) € L2(0, o),
it follows from Lemma 1.1 that system (3.7) admits a unique solu-
tion that tends to zeros as t goes to infinity, i.e., (3.5) holds. O

Remark 3.1. By Remark 2.1, if we take c; =1 in (2.1), then sys-
tem (3.4) is exponentially stable. In this case, we can see that the
performance output tracking is exponentially convergent.

Now we consider the reference model (3.1) in the state space
H=H'(0,1) x L2(0, 1) with the inner product given by

1
(1. 91T (2. ¥2)T) = /O [ ()5 (%) + Y1 (X) P2 (¥) I

+¢1(Mp2 (1), YV (¢ )" € H,

Lemma 3.1. Suppose that d e L®(0,+o00), Te W2 (0, o0), f:
H'(0,1) — R is continuous and bounded, and system (1.1) admits a
unique solution (w, wy) € C(0, oo; H). For any initial value (vg, 1) €
H, there exists a unique solution to (3.1) such that (v,v)7" e
C(0, co; H). Moreover, there exists a constant M > 0 such that

i=1,2.

sup (/01 [2(x, t) + 2 (x, ) ]Jdx + 12 (1, t)) <M (3.15)

t>0
Suppose additionally that f(w)+d e L?(0,00) and reH?(0, oo).
Then,

lim </1 (V2 (x,£) + 12 (x, O)Jdx + 12 (1, r)) -0 (3.16)
—00 0

Proof. Introducing the transformation 7(x, t) = v(x, t) — x2r(t), we
can transform system (3.1) into an equivalent system:

Ve (X, t) =T (X, t) — X2F(t) + 2r(t), x€(0,1), t>0,
0(0.1) = g0 (0. £) ~d (0. 1) +¢1d(0, ) +qd; (0.1). >0,
7(1,t) =0, t>0,
T(x,0) = v9(x)—x*r(0), T, (x,0) =v;(x)—x*(0), x€]0,1].
(3.17)

Since re W2 (0, o0), it suffices to prove that there exists a con-
stant M > 0 such that

1
sup | [P2(x,t) + D2 (x,t)]dx <M. (3.18)
0

t=0

We consider system (3.17) in the state space #H = H}z 0,1) x
12(0,1), where H}(0,1) = {¢ € H'(0,1) : ¢(1) = 0}, with the in-
ner product given by

1
(1Y) (2 ¥2)T) = /0 [, (OB, (0) + v () P2 (V) |d.

V(YT eH, i=1,2. (3.19)
Define the operator A, : D(Ay)(C H) — H by
Av(@, Iﬂ)T = (d’s ¢//)T’ Y (¢, W)T e D(Ay),
D(Ay) = {(#. )" e H*(0,1) x H'(0,1) (3.20)

1 ¢9'(0)=qy¥(0), ¢(1)=0}.
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We can write (3.17) into an operator form of the following:

%(ﬁ(-, 0.0 =A@ 0, T (L 0))" + 10, —x*F(t)
+2r(t)" + Baig(t). (3.21)

where [ is an identity operator and g(t) = —CTX(O, t) +c2dA(0, t) +
qd: (0, t). It is readily found that

A DY) =Y. -9, V¥ (.9¥) eD@A)),
D(Ay) = {(¢.¥)" € H*(0,1) x H'(0, 1)
1¢'(0) =—-qy(0). ¢(1)=0}.

By Lemma 6.3 in Appendix, A, generates an exponentially stable
Co-semigroup et on H. Since I is a bounded operator, I is admis-
sible to efv!, Now we show that B; is admissible to ef!. This is
equivalent to showing that a) IB’{A,’;” is bounded from H to C ,
and b) for any T- >0, there exists My, > 0 depending on T- only
such that the system of the following:

(3.22)

vi(x, t) = v (x,t), xe(0,1), t>0,

U3(0,t) = —qui (0, 1), t>0,

v*(1,t) =0, t>0, (3.23)

v(x,0) =v5(x), v:(x,0)=v;(x), xel[01],

Yu =V{(0,1), t>0,
satisfies

T.
[ @iy < w5 7)1 (3.24)
A direct computation shows that

1
AN (@ Y)T = (Q¢(0)(X— 1) +/O (1 -8y (§)d§
(3.25)

- /Ox<x—s)n//(s>ds,—¢<x>)i

BiA; (9. )" = —¢(0).

Thus, IB%”{A;;’1 is bounded from H to C. By Lemma 6.3 in Appendix,
it is easy to see that (3.23) admits a unique solution (v*,v})T e
C(0, c0; H) and there exist two constants M >0, and w, € R such
that for all t>0,

W v 1%
(3.26)

On the other hand, differentiating E;; () with respect to t along the
solution to (3.23), we obtain

E;(t) = 2q(v; (0,1))*. (3.27)
Integrating from O to T- with respect to t and by (3.26), we have

1
Ei(t) = /0 [V (%, )% + (U7 (x. £))]dx < M, et

T.
2 /O (W (0, £))2dt =E3 (T.)~E2(0) < M, (e + 1) (w5 v) |12

(3.28)

This, together with (3.25), implies that B; is admissible to eAv,
Therefore, the solution of (3.17) can be written as

V0.0 (L))" =M @(,0).7(-.0)"
+ /teA“(“S)I(O, —x*F(s) + 2r(s)) "ds
0

t
+ / M-I, g(5)ds (3.29)
0

Since re W2 (0, o0), we have (—x%i+ 2r) € L*°(0, co) and since I
is admissible control operator to efvf, by Lemma 1.1,

sup
t>0

/ "M 10, () + 2r(S))TdSH < +oo. (3.30)
0

By assumption d € L*(0, +o0) and f(w) being bounded on [0, co),
it follows from the admissibility of B; and Lemma 1.1 that

t
sup / M-I, (F(w(-,5)) +d(s))ds| < +oo. (3.31)
t>0 0
From Lemma 2.2, dy(0, -) € [2(0, 00), and by Lemma 1.1,

t -
lim / MR, (—dy (0, ~))dsH 0. (3.32)
—00 0

On the other hand, by Remark 2.2, g(t) = f(w(..t))+d(t) -
dx (0, t). This, together with (3.31) and (3.32), yields

sup (3.33)

t>0

t
/ eAv(f’s)Blg(s)dSH < 400.
0

It then follows from (3.29), (3.30), and (3.33) that (V(-, t), V¢ (-, t))T
is bounded on H, that is, (3.15) holds.

Suppose that (f(w) +d) € [2(0, 00) and reH%(0, co). It is ob-
served that (—x2f + 2r) € L%(0, c0). By Lemma 1.1,

lim </1[6§(x, t) + 72 (x, )]dx + 7% (1, t)) =0. (3.34)
t—o00 0

Now, we show that (3.16) can be reduced to (3.34). To do this,
we claim that 7 € H1(0, oo) will lead to lim;_, |F(t)| = 0. Actually,
since 7 € [%(0, 00), ¥ € [%(0, 00), for any t;, t; >0,

[i2(t) = (t2)| = 2

/ % oot

t t
< 2\// fz(t)dt\// 2(t)dt — 0 as ty. ty — o.
t t

So for any given & >0, there exists a T>0 such that for all t;,
ty >T,

[72(t1) — ()| < €.

This shows that lim¢_, . 72(t) exists. But since 7 e L2(0, 00), this
limit must be zero. Hence, lim;_, 7%(t) = 0 and so lim;_, |F(t)| =
0. In an analogue way, we can obtain lim;_ |r(t)| = 0. Since
v(x,t) =V(x, t) + x21(t),

t—o00

lim (/1[1/,2( (x,©) + V2 (x, 0)]dx + 2 (1, t))
0
1
<21im (/ [2(x, £) + D2 (x, £)]dx +ﬁ2(1,t)>
t—oo 0

+2]im (/1 [4x2r2 () + X472 (6)|dx + 12 (1, t)) —o.
—00 0

i.e., (3.16) holds. This ends the proof of the lemma. O
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Now we turn to the closed-loop which is composed of (1.1),
(2.1), and (3.1) as follows:

Wi (X, 1) = wee(x,£), x€(0,1), t >0,
Wy (0, t) = qwe (0, ) + f(w(x, t)) +d(t), t>0,
wy(1,8) = vx(1,t) — c3(w(1,t) —1(t)), t>0,
Zie (X, 1) =zw(x,t), x€(0,1), t>0,
2¢(0,t) = qz: (0, t) 4 ¢2[2(0, t) — w(0, )], t>0,
zx(1,t) = vx(1, ) — c3(w(1,t) —r(t)), t=>0,
de(x.6) = dw(x, 1), x € (0,1), t>0,
d(0,t) =z(0,t) — w(0,t), t>0,
de(1.1) = —c3[de(1.) =z (1.6) + we (1,0)], t=0,
Ve (X, t) = (x, 1), xe(0,1), t>0,
12(0,6) =que (0, £) —dy (0, ) +¢;d (0, £) +qd; (0.1), >0,
v(1,t) =r(t), t>0,
w(x,0) =wo(x), we(x,0)=w;(x), xe[0,1],
z(x,0) =z9(x), z(x,0)=2z;(x), xe0,1],
d(x.0) = do(x). de(x.0) = di(x), xe[0.1],
v(x,0) =19(x), v:(x,0) =v1(X), xe[0,1].
(3.35)

We consider system (3.35) in the state space X = (H'(0,1) x
12(0,1))4.

Theorem 3.2. let c¢;, ¢c3>0 and cy,=1. Suppose that de
L*(0, +00), TeW2%(0, oo0), f:H'(0,1)— R is continuous,
bounded, and satisfies the local Lipschitz condition in H(0, 1).
Then, for any initial value (wg,ws,2g,21,dg,dq1,V9,V1) € X with
compatible boundary conditions

do(0) — 2(0) + wo(0) =0, ve(1) =r(0),

There exists a unique solution to (3.35) such that
(W, W, z,2,d,de, v, 1) € C(0, 00; X). Moreover, the closed-loop
system solution has the following properties:

(i)

(3.36)

1
sup (/ W2(x, t) + W2 (x, t) + Z2(x. ) + 22 (x. t) + EIZ(x, t)
t>0 0

1
@R 0Jdx+ /O [12(x 0) + 12 (x, £)]dx + w2 (0, £)

1 22(0,t) +d2(0, t) + 12 (1, t)) < +o0;
(ii) There exist two constants M, @ > 0 such that

/0] ([ox(x. £) = wx (X, O + [V (X, 1) — we (x, 1)]?)dx
+[v(0,t) —w(0,t)]?> < Me ™, Vt>0;

(iii) There exist two constants M, > 0 such that

le(®)] = [w(1,t) —r(®)] < Me™™,  Vt=0;

(iv) When f=0, deL2(0, oo), re H*(0, oo), especially when d(t)=0,
r(t)=0,

1
tlim (/ W2(x, t) + W2 (x, t) + Z22(x, ) + Z2(x, t) + &z(x, t)
— 00 0
1
+R(x, t)]dx—i—/ [2(x, ) + 12(x, )]dx + w2(0, £) + 22(0, £)
0

+d2(0,0) +v2(1,t)> —0.

Proof. Let Z(x,t) =z(x.t) —w(x.t), d(xt)=d(x t)—z(x,t)+
wx,t), e t)=wkxt)—vxt), V(xt)=vxt)—x2r(t), and
p(x.t) =V(x,t) —w(x,t). It is easy to verify that (Z(x.t),
d(x,t),e(x,t)) satisfies

Zie(X.t) =Zw(x, 1), x€(0,1), t>0,
Z¢(0,t) = ¢12(0,t) + gz (0, t) — f(w(x, 1)) —d(t), t=0,
zx(1,t) =0, t>0,
dee(x.t) = dx(x. 1), x € (0,1), t>0,
d(0.t) =0, t >0,
d(1.0) = —codi (1.1), £>0,
(X, t) = exx(x,t), x€(0,1), t>0,
£4(0.1) = qer (0, £) + dx (0. 1), t>0,
ex(1,t) = —c3e(1,t), t>0,
(3.37)
and (p(x,t),V(x,t)) is governed by
Pee (%, ) = pxx (X, t) — x%7(t) + 2r(t), x€(0,1), t>0,
px(0, ) = qpe(0, 1) — dx(0, 1), £=0,
px(1,t) = —c3p(1,t) — (c3 + 2)r(t), t >0,
Tee (X, 1) =D (x, ) — X2F(t) + 2r(t), x€(0,1), t>0,
(0. 1) = g0 (0. 0) ~d (0, )+ f@(-, )~ p(-. ) +d(t),  £>0,
v(1,t) =0, t>0.
(3.38)

Note that ¢, =1. By the compatible boundary condition (3.36),
(2.7), Lemma 2.2, Theorem 3.1 and Remark 3.1, the “(d, ¢)-part”
of (3.37) admits a unique solution such that

1 o ~
/0 [, )% + (d: (. )% + £2(x. £) + £2(x. £)]dx

+&2(1,t) < Mge ™, V>0, (3.39)

with some M, pq>0. Moreover, By Lemma 2.2, (TX(O, t) e
12(0, 00). Next, we rewrite “p-part” and “D-part” of (3.38) into op-
erator form of the following:

TPC0. )T = A0, P )T 451 (-du(0.)
+(c3+ 2)By (—r(t)) + g(t), (3.40)

where A¢ is given by (3.6), B; and B, are given by (1.4), and g(t) =
(0, =X2F(t) + 2r(t)).

%(ﬁ(-, 0.0 0)" =A@ 0,0, 0) +B1 (fW(. ) ~p(- 1))

+d(t) —de(0,)) +g(1), (3.41)

where A, is given by (3.20). Similar to the proof of Lemma 3.1,
we can prove that system (3.40) admits a unique solution (p, pt) €
C(0, co; H) and

sup I(pC.6), pe ()T lla < +oo. (3.42)

Moreover, similar to the proof of Proposition 1.1, by the assump-
tion on f(-), we know that system (3.41) admits a unique solution
W,7;) € C(0, 00; H). By wi(x,t) =v(x,t) — p(x,t), it follows that
the “w-part” of (3.35) has a unique solution (w,w;) € C(0, oo; H),
which, together with Lemma 2.1, implies that the “Z-part” of
(3.35) has a unique solution (Z,Z) € C(0, co; H) and satisfies

sup I 6),Ze () i < +oo. (3.43)
t>

Since  v(x,t) =V(x, t) +x2r(t), z(x,t) =Z(x,t) +£(x,t) + v(x, 1),
and d(x,t) = d(x,t) +Z(x,t), we know that system (3.35) is well-
posed. Obviously, (ii) and (iii) follow from the second equation
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w(z,t)

Fig. 1. The state w(x, t).

Z(®,10)

Fig. 2. The state z(x, t).

of (3.39). Since re W2 (0, o), by (3.39), (3.42), and (3.43), we
can conclude (i) and from Theorem 3.1, (iv) is concluded as
well. O

Remark 3.2. In Theorem 3.2, we have supposed c; =1. When
¢y >0(#1), by virtue of Lemmas 1.1 and 2.2, it is easy to verify
that the expressions in (ii) and (iii) are asymptotically convergent
to zero. By Theorem 3.2, the reference model (3.1) can be regarded
as a state observer of (1.1). Alteratively, based on estimation of the
total disturbance, we can also design the following state observer
of (1.1):

Wi (%, 1) = Wi (x, 1), x€(0,1), t>0,

Wy (0, 1) = qWe (0, t) 4+ ¢ [W(0,t) —w(0,t)] t=0,
—dx(0,6) +¢d(0,1) + qd; (0, 1),

Wy (1,1) = u(t), t>0,

w(x,0) =wo(x), Wi(x,0)=w;(x), xe[0,1].

(3.44)

Indeed, let W(x,t) = W(x,t) —w(x,t). A direct computation shows
that w(x, t) satisfies

Wi (%, 1) = Wi (x, 1), x€(0,1), t>0,

Wy (0, 1) = qie (0, t) + W (0, t) — d(0, £), t>0,

wy(1,t) =0, t>0,

wW(x, 0) = Wo(x) —wp(x), We(x,0) =w;(x)—w;(0), xel0,1].
(3.45)

Similarly to the proof in Theorem 3.1, and by Lemmas 6.1 and 1.1,
we can obtain

1

f [W2 (%, €) + W2 (x, £)]dx + W2 (0, £) — 0 as £ — oc.
0

Thus, (3.44) is a state observer of (1.1).

4. Numerical simulation

In this section, we present some numerical simulations for
system (3.35) for illustration. For numerical computations, we
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Fig. 3. The state E(X, t).

v(z,t)

Fig. 4. The state v(x,t).

choose reference signal r(t) = 2sin(t) — 0.45cos(2nt) + 1, the in-
ternal nonlinear uncertainty f(w(-,t)) = sin(w2(0,t)) and the ex-
ternal disturbance d(t) = 2sin(t) + 0.7 cos(2rrt) — 1. The other pa-
rameters are taken as g =1.1, ¢; =1, ¢; = 1.1, ¢3 = 1. The initial
values are taken as:

w(x, 0) = 2x — x2,
Z:(x,0) = —x + X2,
d(x,0) =x, di(x,0)=—x, v(x,0)=2x—x*—045,

Ve (x,0) = 2x — x%. (4.1)

It is clear that the above initial value satisfies the compatible con-
dition (3.36). The backward Euler method in time and the Chebv-
shev spectral method for space variable are used to discretize sys-
tem (3.35). Here, we take the grid size N =20 for x and the time
step dt =5 x 0.001. The solution of system is plotted in Figs. 1-4.
Fig. 5 shows that the reference model (3.1) can be regarded
as a state observer of (1.1). Fig. 6 shows that the total distur-
bance F(w,t)= sin(wzio, t)) +2sin(t) +0.7cos(27t) — 1 and its
estimate —dx (0, t) +¢1d(0,t) + qd:(0,t). It is seen that the distur-
bance is estimated effectively. The convergence is very fast and
smoothly. Fig. 7 shows that w(1,t) tracks asymptotically the ref-
erence signal r(t). Fig. 8 displays the feedback control in time.

we(x,0) = —=2x + X2,  z(x,0) = x — x?,

5. Concluding remarks

In this paper, we present a new infinite-dimensional distur-
bance estimator to estimate unknown nonlinear internal uncer-
tainty and external disturbance for a one-dimensional wave equa-
tion. An servomechanism is designed by the measured output and
the reference signal where the estimation mechanism of unknown
total disturbance is presented. Five control objectives are achieved:
(a) The performance output tracks exponentially the reference
signal; (b) All the internal-loops are bounded; (c) The system
state is recovered from input and output; d) The unknown to-
tal disturbance can be estimated in the sense that the estima-
tion error belongs to L%(0, co0); (e) When the disturbance and ref-
erence signal belong to L2(0, co) and H2(0, o), respectively, the
closed-loop is asymptotically stable. The last point shows partic-
ularly that when the disturbance and reference are disconnected
to the system, the closed-loop is asymptotically stable, that is,
the system is internally asymptotically stable. This paper is a gen-
eralization of a recent work [24]| where only boundary external
disturbance was considered. Here we use a different estimator
compared with [24] to deal with the nonlinearity for which the
treatment for output tracking is different to stabilization like a re-
cent paper [8].
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Fig. 5. The error £(x,t) = w(x,t) — v(x,t).
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Fig. 6. The total disturbance and its estimation.

Appendix

In this appendix, we present several lemmas concerning the
operators being able to generate Cy-groups on the state space.
These results are crucial to establishment of the main results of
the present paper.

Let H:=H'(0,1) x [2(0,1) with the inner product given by
(1.3). Define the operator A; : D(A;)(C H) — H as follows:

A1(¢’ lﬁ)T = (W’d’”)i V (¢? W)T S D(Al)a
D(A)) = {<¢,W e HN (H2(0.1) x H'(0,1))
£ ¢/(0) =y (0) + ¢ (0), ¢'(1>=0}.

(6.1)

Lemma 6.1. For any c € R and c# +1, A; generates a Cy-group on
H. Moreover, if c>0 and c+#1, then A, generates an exponentially
stable Cy-semigroup on H.

Proof. We first show that A; generates a Cy-group on H. A direct
computation shows that

1
A @ )T = (cp0)+ (1+) /0 ¥ (x)dx

X
- [ -5 o). (62)
By the Sobolev embedding theorem, A1_1 is compact on H, and
thus o(A;) consists of eigenvalues of A; only. It is easily seen that
L eo(Ay) if and only if there exists ¢(x)# 0 satisfying

{d)”(X) = A (x), 63)
#'(0) = Acg(0) +¢(0), ¢'(1) =0, '
and the associated eigenfunction is (A~1¢(x), p(x)). Solving
(6.3) gives
_c—1
(0 =cosh(A(x—1)) with A satisfying % = ———%_ (6.4)
14+c+ x
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Fig. 7. The reference signal r(t) and the output w(1,t).
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Fig. 8. The control law u(t).

Furthermore, the eigen-pairs are found to have the following
asymptotic expression:

(1" n, #n) = (5 cosh(un(x = 1)), cosh(un(x — 1))

+0m™), An=pn+0Mm"),
where w, is given by
1. |1—c| . |[n le] <1,
Hn = Eln‘ch‘ +J”{n+;, lc] > 1
where j2 = —1. By the method in [23, Section 4], one can show

that { (4 ¢n. )T :n=0,1,2,...} forms a Riesz basis for H. Thus,
A, with D(A;) generates a Cy-semigroup on H. Noticing that
the eigenvalues and corresponding eigenfunctions of —A; are just
{(~An:n=0,1,2,...} and (u;'¢n.¢n)T. So, —A; with D(-A;) =
D(A;) is also a generator of a Cy-semigroup. It follows from [7,
Page 79] that A; generates a Cy-group on H.

Next, we show that if ¢ > 0 satisfying c#1, A; generates an ex-
ponentially stable Cy-semigroup on H. Since the eigenfunctions of
A, form a Riesz basis for H, the spectrum-determined growth con-
dition holds. In order to show that eAi! is an exponentially stable
semigroup, it suffices to prove that ReA <0 for any A eo(A;). Ac-
tually, a simple computation gives, for any (¢, ¥)T € H, that
Re(A1 (9, ¥) 7. (¢, ¥) )i = —c|¥ (0)* <0, (6.5)
which implies that for any A€o (A;) must satisfy ReA <0. Since
A7 1 is compact, we only need to show that there is no eigenvalue
on the imaginary axis. Let A = jt2 € 0 (A;) with T ¢ RT and the
corresponding eigenfunction (¢, ¥)" € D(A1), by (6.5), we have

Re(A1 (9. ¥)", (@, ¥) )i = Re(jT2 (@, ¥) . (9. ¥)
= —cly (O =0,

(6.6)
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and hence ¥ (0) = 0. Furthermore, A; (¢, V)T = jt2(¢,¥)T gives

that ¥ = jT2¢ with ¢ satisfying

{¢”(X) =-tip®X),
$(0)=¢'(0)=0, ¢'(1)=0,

It is clear that the above equation admits only zero solution. Thus,
there is no eigenvalue on the imaginary axis. O

(6.7)

Let H := H'(0, 1) x L%(0, 1) with the inner product given by

1
(1. Y1) (d2.92)T) =/0 [#1 ()5 (%) + Y1 () Y2 (%) |dx

+api(M)g(1), V (pu¥i)' eH, i=12.
Define the operator A, : D(A,)(c H) — H as follows:

As(p.¥)T = (V. ¢")T. V($.¥)T e D(Ay).
D(Az>={(qb,w)TeHn(HZ(o,nxH1<o,1>)
£ ¢/(0) = 1 (0), ¢’(1)=—cz¢(1)},

Lemma 6.2. For any c1,¢c; e R and ¢ # £1, ¢ #0, Ay generates a
Co-group on H. Moreover, if ¢q, ¢c; >0 and ¢ #1, A, generates an
exponentially stable Cy-semigroup on H.

(6.8)

Proof. We first show that A, generates a Cy-group on H. A direct
computation shows that

A (. v) = (f—z(clqs(oxcz 1)
1 1
+/ w(s)ds+cz/ (1 —E)w(S)dé)—mS(O)x
0 0

- /ox<x—s>1/f(5)ds,—¢<x))i (69)

By the Sobolev embedding theorem, Az‘1 is compact on H, and
thus o(A,) consists of eigenvalues of A, only. Let A be any eigen-
value of (A,) and the associated eigenfunction is (A~1¢, ¢). Sim-
ilar to the proof in Lemma 6.1, we derive

¢ (x) = cosh(Ax) + ¢; sinh(Ax), (6.10)
and A satisfies
o2 M- -a) (611)

At )d+a)
Further, we obtain the eigenfunctions and eigenvalues with the fol-
lowing asymptotic expression:
(I @, n) = (' [cosh(unX) + c1 sinh(unx)],

cosh(inx) + ¢q sinh(upx)) + O(n1),
hn = pn+0(n7h),

where w, is given by

—1ln1_c1 . n, lc] <1,
R e S CT AR}
By the method in [23, Section 4], one can show that

{(7'pn. pn)T :n=0,1,2,...} forms a Riesz basis for H. By
the asymptotic expression of eigenvalues, A, generates a Cy-group
on H as well.

Next, we show that if c¢q, c; >0 and c; #1, A, generates an ex-
ponentially stable Cy-semigroup on H. Since the eigenfunctions of
A, form a Riesz basis for H, the spectrum-determined growth con-
dition holds. In order to show that ef2! is a exponentially stable
semigroup, it suffices to prove that ReA <0 for any A o (Ay). Ac-
tually, a simple computation gives

Re(Az(¢. )", (@, ¥) )u = —c1l¥ (0)]* < 0, (6.12)

which implies that for any A e o(A;) must satisfy ReA <0. Since
AZ‘1 is compact, we only need to show that there is no eigenvalue
on the imaginary axis. Let A = jt2 € 0 (A;) with 7 € Rt and the
corresponding eigenfunction (¢, ¥)" € D(Ay). By (6.12),

Re(Aa (¢, ¥)", (9. ¥) " )m = Re(jT* (9. ¥) . (9. ¥) )&

= —c1|¥(0)]? =0, (6.13)

and hence ¥ (0) = 0. Furthermore, Ay (¢, )T = jT2(¢, ¥)T gives
that v = jT2¢ with ¢ satisfying

{‘f’”(x) =T (x),

$(0)=¢'(0) =0, ¢'(1) =—-cp(1),

It is clear that the above equation admits only zero solution. Thus,
there is no eigenvalue on the imaginary axis. O

(6.14)

Let #:=H'(0,1) x [>(0,1) with the inter product given by
(3.19). Define the operator Az : D(A3)(c H) — # as follows:

As($. )T = (. ¢")T. V(. ¥)T € D(As).
D(A3) = {<¢>, Y)T e HN (H20.1) x H'(0. 1))
L ¢/(0) = cr(0), $(1) =o},

Lemma 6.3. For any c ¢ R and c# +1, Ay generates a Cy-group on
‘H. Moreover, if c¢> 0 satisfying c#1, A, generates an exponentially
stable Cy-semigroup on H.

(6.15)

Proof. We first show that A; generates a Cy-group on #. A direct
computation shows that the eigenvalues A, of As is given by

lc| <1,
lc| > 1,

1, (1-c| . [n+1.
An_zln‘1+c‘+]n{n’

and the corresponding eigenfunctions (f;(x), gn(x))" of A3 are given

by
1 T
(Faog)T = (w,smhxm—w) .
n

It follows from [23, Section 4] that {(fs.gn)' :n=0,1,2,...}
forms a Riesz basis for #. Thus, A3 with D(A3) generates a Cy-
semigroup on . By the asymptotic expression of eigenvalues, A3
generates a Cy-group on A as well.

Next, we show that if c> 0, A3 generates an exponentially sta-
ble Cy-semigroup on #. Since the eigenfunctions of A; form a Riesz
basis for #, the spectrum-determined growth condition holds.
Noticing ¢>0 and c#1, ReA <O for all A €o(A3), we conclude that
efst is an exponentially stable Co-semigroup. [

n=0,+1,+£2,...,
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