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Performance Output Tracking for
Multidimensional Heat Equation

Subject to Unmatched Disturbance
and Noncollocated Control

Hua-Cheng Zhou , Member, IEEE, Bao-Zhu Guo , Senior Member, IEEE, and Shu-Huang Xiang

Abstract—This paper investigates performance output
tracking for a boundary controlled multidimensional heat
equation. It is assumed that the so-called total disturbance
(which is composed of internal possibly nonlinear uncer-
tainty and external disturbance) the equation is subject to is
on one part of the boundary, and that the control is applied
on the rest of the boundary. Using only partial boundary
measurement, we first propose an extended state observer
to estimate both system state and the total disturbance. This
allows us to design a servomechanism and then an output
feedback controller.Under the condition that both the refer-
ence signal and the disturbance vanish or belong to spaces
H1 (0, ∞; L1 (Γ1)) and L2 (0, ∞; L2 (Γ0)), respectively. We
show that the over-all control strategy achieves three objec-
tives on the system performance: first, exponentially output
tracking for arbitrary given reference signal; second, uni-
formly boundedness of all internal signals; and, third, the
internal asymptotic stability of the closed-loop system. In
addition, the control strategy turns out to be robust to the
measurement noise. We provide numerical experiments to
illustrate the effectiveness of the proposed control strategy.

Index Terms—Active disturbance rejection control
(ADRC), disturbance rejection, heat equation, output track-
ing.
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I. INTRODUCTION

OUTPUT tracking is one of the fundamental issues in con-
trol theory. In many situations, output tracking is the only

major concern for a control system. For this purpose, it is also
required that all loops are uniformly bounded and the system is
internally asymptotically stable. The problem of output tracking
has been studied systematically for lumped parameter systems
under the title of output regulation with modeled disturbance
since from [2], [3], and [6]. Part of the results (notably the
internal model principle) have been generalized to the infinite-
dimensional systems, see, for instance, [1], [4], [5], [16], [21],
[25]–[27], among many others. In these output regulation re-
sults, the reference signal and disturbance are limited to out-
puts generated by exosystems. And in the case of finite number
of harmonic signals, it is also required that the frequencies are
known or determined a priori. This requirement seems quite nat-
ural in the sense that for nonminimal phase systems, arbitrary
reference tracking is not possible unless noncausal feedback
is used. Several surveys dedicates to the frequencies estima-
tion [19] where the order of parameter update law is set to be
the same as the number of frequencies. A first attempt on han-
dling infinite-dimensional signal is [15] where general periodic
signals that has infinitely many frequencies were considered. A
recent interesting work is [22] where the output tracking prob-
lem was considered for a general 2 × 2 system of first-order
linear hyperbolic partial differential equations (PDEs), though
no uncertainty or disturbance were taken into consideration. To
the best of our knowledge, very few work considered general
disturbance rejection in the context of output tracking for PDEs.
In [32], performance output tracking for a one-dimensional (1-
D) wave equation with a general boundary disturbance was
studied, which has been generalized to include both internal
uncertainty and external disturbance in our recent work [34].
In both [32] and [34], a new control method called active dis-
turbance rejection control (ADRC) has been used in achieving
output tracking. In the ADRC, the disturbance is first estimated
by an extended state observer (ESO) and is then compensated in
the feedback loop. A remarkable characteristic of [32] and [34]
is that the control and disturbance can be unmatched. This is
very different from the stabilization using ADRC, where the
control and disturbance need to be matched [8], [9]. Very re-
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cently, a noncollocated output tracking problem was investi-
gated in [12]–[14] by the adaptive control method, which has
also been used in an early effort in [11]. Note that all these works
are limited to 1-D PDEs only.

In this paper, we solve the performance output tracking prob-
lem with general disturbance and reference for an uncertain
multidimensional heat equation by the ADRC approach. This
is a first fruitful effort on output tracking for multidimensional
PDE with arbitrary given reference signal and general uncer-
tainty including internal uncertainty and external disturbance.
In the same spirit of [7] on stabilization of uncertain PDE via
ADRC, here, we do not use high gain for disturbance estimation
and the output feedback control is shown to be robust to mea-
surement noise. This paper is motivated from a recent paper [17],
which considered a similar problem for 1-D heat equation with
general external disturbance only (without internal uncertainty).
We confine ourselves to the case where the control and the per-
formance output are on the same part of the boundary (another
collocated case).

The system we consider in this paper is described by a mul-
tidimensional heat equation with Neumann boundary control
and unknown noncollocated internal nonlinear uncertainty and
external disturbance

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = Δw(x, t), x ∈ Ω, t > 0
∂w (x,t)
∂ν |Γ0 = f(w(·, t)) + d(x, t), t ≥ 0

∂w (x,t)
∂ν |Γ1 = u(x, t), t ≥ 0

w(x, 0) = w0(x)

ym(x, t) = w(x, t)|Γ0 , t ≥ 0

yo(x, t) = w(x, t)|Γ1 , t ≥ 0

(1)

where we denote byw′(x, t) orwx(x, t) the derivative ofw(x, t)
with respect to x and ẇ(x, t) orwt(x, t) the derivative ofw(x, t)
with respect to t, and w0(x) the initial state; Ω ⊂ Rn (n ≥ 2)
is an open bounded domain with a smooth C2-boundary Γ =
Γ0 ∪ Γ1 with Γ0 and Γ1 subsets of Γ satisfying int(Γ0) �= ∅,
int(Γ1) �= ∅, Γ0 ∩ Γ1 = ∅; ν is the unit normal vector of Γ
pointing the exterior of Ω. u(x, t) is the control input, ym(x, t)
is the measured output, yo(x, t) is the performance output signal
to be regulated, f : L2(Ω) → L2(Γ0) is a possibly unknown
nonlinear mapping, which represents internal uncertainty.

A typical example is f(w) = γ(x)
∫

Ω w
2(x)dx where γ ∈

L2(Γ0) and w ∈ L2(Ω). By the state for this example, we have
f(w(·, t)) = γ(x)

∫

Ω w
2(x, t)dx, which depends on the value

of the state in the whole spatial domain, explaining why we
call it the “internal uncertainty.” d(x, t) is the unknown external
disturbance, which comes from outside of the system and is
supposed to satisfy d ∈ L∞(0,∞;L2(Γ0)). Note that the left
boundary side ∂w (x,t)

∂ν |Γ0 represents physically the heat flux on
the boundary Γ0 and the d(x, t) may represents physically the
ambient temperature that affects the heat flux from the boundary
Γ0 . For the sake of simplicity, we denote

F (w, t) := f(w(·, t)) + d(x, t) (2)

as the “total disturbance.” System (1) will be discussed in the
usual state space L2(Ω) and the control space U = L2(Γ1).

Let W 1,∞(0,∞;L2(Γ1)) = {φ : φ ∈ L∞(0,∞;L2(Γ1)),
φt ∈ L∞(0,∞;L2(Γ1))}. Our problem can be stated as fol-
lows: For a given reference signal

r ∈W 1,∞(0,∞;L2(Γ1))

design an output feedback control for uncertain system (1) to
reject the external disturbance and achieve output tracking

‖e(·, t)‖L2 (Γ1 ) = ‖yo(·, t) − r(·, t)‖L2 (Γ1 ) → 0 as t→ ∞.
(3)

We proceed as follows. In Section II, we design for system (1)
an ESO, which serves as an unknown input observer. We show
that this ESO gives an asymptotical approximation of the total
disturbance. This spirit of ADRC can be found in many other
papers [8]–[10], [33] on stabilization of PDEs via ADRC ap-
proach. In Section III, we design a servo system in terms of mea-
sured output and state of ESO, which is used to make the state
of the original system track the state of the servo system. This
results in the boundedness of all-loops while achieving output
tracking (a big challenge in output tracking for PDEs). An out-
put feedback control is then designed after compensation of the
disturbance in the performance output. Section IV is devoted to
well posedness and convergence of the closed-loop system. All
mathematical proofs are arranged in Section V. Some numerical
simulations are presented in Section VI to demonstrate the ef-
fectiveness of the proposed control. Some concluding remarks
are given in Section VII. The well posedness of the open-loop
system is presented in the Appendix.

II. EXTENDED STATE OBSERVER

In this section, we design an ESO that can estimate not only
the state w(x, t) of the controlled system (1) but also the total
disturbance F (w, t). This ESO can, thus, serve as a natural
unknown input observer for system (1). The ESO is designed as
follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ŵt(x, t) = Δŵ(x, t), x ∈ Ω, t > 0
ŵ(x, t)|Γ0 = ym(x, t), t ≥ 0
∂ ŵ (x,t)
∂ν |Γ1 = u(x, t), t ≥ 0

ŵ(x, 0) = ŵ0(x)

(4)

where ŵ0 ∈ L2(Ω) is an arbitrary given initial value of (4). It is
seen that system (4) is completely determined by the measured
output ym(x, t) and the control input u(x, t) of system (1). The
well posedness of (4) is presented in the Appendix.

Let w̃(x, t) = ŵ(x, t) − w(x, t) be the error, which is gov-
erned by

⎧
⎪⎨

⎪⎩

w̃t(x, t) = Δw̃(x, t), x ∈ Ω, t > 0
w̃(x, t)|Γ0 = 0, t ≥ 0
∂ w̃ (x,t)
∂ν |Γ1 = 0, t ≥ 0.

(5)

We consider (5) in the state space L2(Ω) as well.
Lemma II.1: For any initial value w̃(·, 0) ∈ L2(Ω), system

(5) admits a unique solution w̃ ∈ C(0,∞;L2(Ω)) such that
‖w̃(·, t)‖L2 (Ω) ≤ e−t‖w̃(·, 0)‖L2 (Ω) . Moreover, for any given
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positive integer m, there exist constants Mm,μ > 0 such that
∥
∥
∥
∥
∂w̃(·, t)
∂ν

∥
∥
∥
∥
L2 (Γ0 )

≤
(
Mm

tm
+Mme

−μt
)

‖w̃(·, 0)‖L2 (Ω) ∀ t > 0

(6)
and

‖w̃(·, t)‖L2 (Γ1 ) ≤
(
Mm

tm
+Mme

−μt
)

‖w̃(·, 0)‖L2 (Ω) ∀ t > 0.

(7)
In addition, for any fixed T > 0, there exist two constants
M0 , μ0 > 0 depending on T such that
∥
∥
∥
∥
∂w̃(·, t)
∂ν

∥
∥
∥
∥
L2 (Γ0 )

≤M0e
−μ0 t‖w̃(·, 0)‖L2 (Ω) ∀ t ≥ T (8)

and

‖w̃(·, t)‖L2 (Γ1 ) ≤M0e
−μ0 t‖w̃(·, 0)‖L2 (Ω) ∀ t ≥ T. (9)

Remark 1: In general, for a function w̃ ∈ L2(Ω), the Sobolev
trace theorem does not imply ∂ w̃ (·)

∂ν ∈L2(Γ0) and w̃(·)∈L2(Γ0),
and thus, ∂ w̃ (·)

∂ν and w̃(·) do not make sense inL2(Γ0). However,
when w̃(·, t) ∈ L2(Ω) is the (weak) solution of (5), it has some
smoothness for t > 0, which leads to ∂ w̃ (·,t)

∂ν ∈ L2(Γ0) and w̃
(·, t) ∈ L2(Γ0) for t > 0 except t = 0 (hidden regularity).
Moreover, the norms L2(Γ0) and L2(Γ1) in (6)–(9) can be
replaced by the stronger norms L∞(Γ0) and L∞(Γ1), respec-
tively. Actually, take m > n. By (27), the Sobolev embedding
theorem, and the trace theorem, we have ‖w̃(·, t)‖L∞(Γ) , ‖∇w̃
(·, t)‖L∞(Γ) ≤ C4‖w̃(·, t)‖H 2m −1 / 2 (Γ) ≤C4C5‖w̃(·, t)‖H 2m (Ω)

for someC4 , C5 > 0. Since Γ = Γ0 ∪ Γ1 and ∂ w̃ (·,t)
∂ν = ∇w̃ · ν,

by (27), we have furthermore that
∥
∥
∥
∥
∂w̃(·, t)
∂ν

∥
∥
∥
∥
L∞(Γ0 )

≤
(
Mm

tm
+Mme

−μt
)

‖w̃(·, 0)‖L2 (Ω) ∀ t > 0

and

‖w̃(·, t)‖L∞(Γ1 ) ≤
(
Mm

tm
+Mme

−μt
)

‖w̃(·, 0)‖L2 (Ω) ∀ t > 0.

From Lemma II.1, system (4) can be regarded as an unknown
input observer of system (1), and from the fact

∂w̃(·, t)
∂ν

=
∂ŵ(·, t)
∂ν

− ∂w(·, t)
∂ν

=
∂ŵ(·, t)
∂ν

− F (w, t)

(6) and (8), we have, for sufficient large t, that

∂ŵ(x, t)
∂ν

|Γ0 ≈ F (w, t).

Therefore, ∂ ŵ (x,t)
∂ν |Γ0 is an asymptotical estimation of the total

disturbance F (w, t). In other words, system (4) is an ESO for
system (1).

III. SERVOMECHANISM

In this section, we design the following servomechanism
for system (1) in terms of the reference signal r(x, t) and the

boundary values of ESO (4)
⎧
⎪⎨

⎪⎩

vt(x, t) = Δv(x, t), x ∈ Ω, t > 0
∂v (x,t)
∂ν |Γ0 = −c0(v(x, t) − ŵ(x, t))|Γ0 + ∂ ŵ (x,t)

∂ν |Γ0

v(x, t)|Γ1 = r(x, t), t ≥ 0

(10)

where c0 > 0 is a tuning design parameter. It is seen that sys-
tem (10) is completely determined by the measured output of
system (1), the output of ESO (4), and the reference signal r(x, t)
only. The term ∂ ŵ (x,t)

∂ν |Γ0 in (10) is used as a compensation to
the total disturbance F (w, t) in the original system (1). Design
of system (10) is motivated by the facts: 1) it enables us to find
an output feedback control law that allows its perfect tracking
by ESO (4); and 2) once ESO (4) converges asymptotically (or
exponentially) to servo system (10), then, by

e(x, t) = yo(x, t) − r(x, t) = w(x, t)|Γ1 − v(x, t)|Γ1

= [w(x, t)|Γ1 − ŵ(x, t)|Γ1 ] + [ŵ(x, t)|Γ1 − v(x, t)|Γ1 ]

we can expect that ‖e(·, t)‖L2 (Γ1 ) converges to zero as t→
∞ because both [w(x, t)|Γ1 − ŵ(x, t)|Γ1 ] and [ŵ(x, t)|Γ1 −
v(x, t)|Γ1 ] are expected to converge to zero on L2(Γ1). Fur-
thermore, we can show that system (10) is uniformly bounded
for all time t ≥ 0, which guarantees in turn the uniform bound-
edness of ESO (4) and, hence, (1). The last point is crucial in
output regulation for PDEs.

Let ε(x, t) = v(x, t) − ŵ(x, t) be the error between the state
ŵ(x, t) of ESO (4) and the state of servo system (10). Then,
ε(x, t) is governed by

⎧
⎪⎪⎨

⎪⎪⎩

εt(x, t) = Δε(x, t), x ∈ Ω, t > 0
∂ε(x,t)
∂ν |Γ0 = −c0ε(x, t)|Γ0 , t ≥ 0

∂ε(x,t)
∂ν |Γ1 = ∂v (x,t)

∂ν |Γ1 − u(x, t), t ≥ 0.

(11)

We propose the following output feedback control law

u(x, t) =
∂v(x, t)
∂ν

|Γ1 (12)

under which, the resulting closed loop of (11) becomes
⎧
⎪⎪⎨

⎪⎪⎩

εt(x, t) = Δε(x, t), x ∈ Ω, t > 0
∂ε(x,t)
∂ν |Γ0 = −c0ε(x, t)|Γ0 , t ≥ 0

∂ε(x,t)
∂ν |Γ1 = 0, t ≥ 0.

(13)

Lemma III.1: For any initial value ε(·, 0) ∈ L2(Ω), sys-
tem (13) admits a unique solution ε ∈ C(0,∞;L2(Ω)) and
there exist two constants M,μ > 0 such that ‖ε(·, t)‖L2 (Ω) ≤
Me−μt‖ε(·, 0)‖L2 (Ω) and ε ∈ L2(0,∞;L2(Γ0)). Moreover, for
any given positive integer m, there exists a constant Lm > 0
such that

‖ε(·, t)‖L2 (Γ1 ) ≤
(
Lm
tm

+ Lme
−μt

)

‖ε(·, 0)‖L2 (Ω) ∀ t > 0.

(14)
In addition, for any fixed T > 0, there exist two constants
M̃, μ̃ > 0 depending on T such that

‖ε(·, t)‖L2 (Γ1 ) ≤ M̃e−μ̃t‖ε(·, 0)‖L2 (Ω) ∀ t ≥ T. (15)
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In the rest of this section, we show that the solution of system
(10) is uniformly bounded for all time t ≥ 0. To this end, we
separate system (10) into two subsystems p and q, which are
described, respectively, by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pt(x, t) = Δp(x, t), x ∈ Ω, t > 0
∂p(x,t)
∂ν |Γ0 = −c0ε(x, t)|Γ0 + ∂ w̃ (x,t)

∂ν |Γ0

+ F (p+ q − ε− w̃, t), t ≥ 0

p(x, t)|Γ1 = 0, t ≥ 0

(16)

and

⎧
⎪⎨

⎪⎩

qt(x, t) = Δq(x, t), x ∈ Ω, t > 0
∂q(x,t)
∂ν |Γ0 = 0, t ≥ 0

q(x, t)|Γ1 = r(x, t), t ≥ 0.

(17)

Clearly, the relation among the solution of (10) and the solutions
of (16) and (17) is v(x, t) = p(x, t) + q(x, t) and system (17)
is independent of system (16).

Lemma III.2: Suppose that r∈W 1,∞(0,∞;L2(Γ1)). Then,
for any initial value q(·, 0)) ∈ L2(Ω), system (17) ad-
mits a unique solution q ∈ C(0,∞;L2(Ω)), which is uni-
formly bounded for all t ≥ 0, i.e, supt≥0 ‖q(·, t)‖L2 (Ω) <
∞. Moreover, limt→∞ ‖q(·, t)‖L2 (Ω) = 0 whenever r ∈
H1(0,∞;L2(Γ1)).

Now, we claim that system (16) is uniformly bounded for all
time t ≥ 0. To this end, we consider the coupled systems, which
are composed of (16) and (5) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃t(x, t) = Δw̃(x, t), x ∈ Ω, t > 0

w̃(x, t)|Γ0 = 0, ∂ w̃ (x,t)
∂ν |Γ1 = 0, t ≥ 0

pt(x, t) = Δp(x, t), x ∈ Ω, t > 0
∂p(x,t)
∂ν |Γ0 = −c0ε(x, t)|Γ0 + ∂ w̃ (x,t)

∂ν |Γ0

+ F (p+ q − ε− w̃, t), t ≥ 0

p(x, t)|Γ1 = 0, t ≥ 0.

(18)

Let us consider system (18) in the energy Hilbert state space
[L2(Ω)]2 with the usual inner product. System (18) can be
rewritten as an evolution equation in [L2(Ω)]2

d

dt
(w̃(·, t), p(·, t)) = A(w̃(·, t), p(·, t))

+ B[F (p+ q − ε− w̃, t) − c0ε(x, t)]
(19)

where B = (0, δ|Γ0 ) with δ|Γ0 being the Dirac function and the
operator A is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A(φ, ψ) = (Δφ,Δψ) ∀ (φ, ψ) ∈ D(A)

D(A) =
{

(φ, ψ) ∈ H2(Ω) : φ|Γ0 = 0, ∂φ
∂ν |Γ1 = 0

∂ψ
∂ν |Γ0 = ∂φ

∂ν |Γ0 , ψ|Γ1 = 0
}

.

(20)

It is readily found that B∗(φ, ψ) = ψ|Γ0 for all (φ, ψ) ∈ [H1

(Ω)]2 and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A∗(φ, ψ) = (Δφ,Δψ) ∀ (φ, ψ) ∈ D(A∗)

D(A∗) =
{

(φ, ψ) ∈ H2(Ω) : φ|Γ0 = −ψ|Γ0

∂φ
∂ν |Γ1 = 0, ∂ψ

∂ν |Γ0 = 0, ψ|Γ1 = 0
}

.

(21)

Lemma III.3: The operator A given by (20) generates an ex-
ponentially stableC0-semigroup eAt . Moreover, B is admissible
for eAt .

Now we give the existence and boundedness of the solution
to (16).

Lemma III.4: Suppose that r ∈W 1,∞(0,∞;L2(Γ1)), d ∈
L∞(0,+∞;L2(Γ0)), f : L2(Ω) → L2(Γ0) is continuous,
bounded, and satisfies the local Lipschitz condition in L2(Ω).
Let ε(x, t) be the solution of (13). Then, for any initial value
q(·, 0)∈L2(Ω), system (16) admits a unique solution p(·, t)∈ C
(0,∞;L2(Ω)), which is uniformly bounded for all t ≥ 0, i.e,
supt≥0 ‖p(·, t)‖L2 (Ω)<∞. Moreover, limt→∞ ‖p(·, t)‖L2 (Ω)
= 0 whenever f ≡ 0 and d ∈ L2(0,∞;L2(Γ0)).

Next we state the well posedness and boundedness of servo
system (10).

Lemma III.5: Suppose that r ∈W 1,∞(0,∞;L2(Γ1)), d ∈
L∞(0,+∞;L2(Γ0)), f : L2(Ω) → L2(Γ0) is continuous,
bounded, and satisfies the local Lipschitz condition in L2(Ω),
and ∂ ŵ (x,t)

∂ν |Γ0 is determined by (4). Then, for any initial value
v(·, 0) ∈ L2(Ω), system (10) admits a unique solution v ∈ C(0,
∞;L2(Ω)), which is uniformly bounded for all t ≥ 0, i.e.,
supt≥0 ‖v(·, t)‖L2 (Ω)< +∞. Moreover, limt→∞ ‖v(·, t)‖L2 (Ω)
= 0 whenever f ≡ 0, d ∈ L2(0,∞;L2(Γ0)), and r ∈ H1(0,
∞;L2(Γ0)).

IV. CLOSED-LOOP SYSTEM

In this section, we establish the well posedness and perfor-
mance output tracking of the closed-loop system of (1). Under
the control law (12), the closed-loop system is composed of (1),
(4), and (10) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = Δw(x, t), x ∈ Ω, t > 0
∂w (x,t)
∂ν |Γ0 = f(w(·, t)) + d(x, t), t ≥ 0

∂w (x,t)
∂ν |Γ1 = ∂v (x,t)

∂ν |Γ1 , t ≥ 0

ŵt(x, t) = Δŵ(x, t), x ∈ Ω, t > 0

ŵ(x, t)|Γ0 = ym(x, t), t ≥ 0
∂ ŵ (x,t)
∂ν |Γ1 = ∂v (x,t)

∂ν |Γ1 , t ≥ 0

vt(x, t) = Δv(x, t), x ∈ Ω, t > 0
∂v (x,t)
∂ν |Γ0 = −c0(v(x, t) − ŵ(x, t))|Γ0

+ ∂ ŵ (x,t)
∂ν |Γ0

v(x, t)|Γ1 = r(x, t), t ≥ 0.

(22)

We consider system (22) in the state space [L2(Ω)]3 with the
usual inner product.
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Theorem IV.1: Let c0 > 0. Suppose that d ∈ L∞(0,+∞;
L2(Γ0)), r ∈W 1,∞(0,∞;L2(Γ1)), and f : L2(Ω) → L2(Γ0)
is continuous, bounded, and satisfies the local Lipschitz con-
dition in L2(Ω). Then, for any initial value (w(·, 0), ŵ(·, 0),
v(·, 0)) ∈ [L2(Ω)]3 , the closed-loop system (22) admits a
unique solution (w, ŵ, v) ∈ C(0,∞; [L2(Ω)]3), which has the
following properties:

i)

sup
t≥0

(∫

Ω
[w2(x, t) + ŵ2(x, t) + v2(x, t)]dx

)

< +∞.

ii) There exist two constants ML , which depends on the
initial value (w(·, 0), ŵ(·, 0)) only and μL > 0, which is
independent of initial value, such that

∫

Ω
[ŵ(x, t) − w(x, t)]2dx ≤MLe

−μL t ∀ t ≥ 0.

iii) For any given positive integerm, there exist two constants
Mp, μp > 0 such that

‖e(·, t)‖L2 (Γ1 ) = ‖yo(·, t) − r(·, t)‖L2 (Γ1 )

≤ Mp

tm
+Mpe

−μp t ∀ t > 0

and for any fixed T > 0, there exist two constants M ′

which depends on initial value (w(·, 0), ŵ(·, 0), v(·, 0))
only, and μ′ > 0 which is independent of initial value,
such that

‖e(·, t)‖L2 (Γ1 ) = ‖yo(·, t) − r(·, t)‖L2 (Γ1 )

≤M ′e−μ
′t ∀ t ≥ T

where Mp and M ′ depend on the initial value (w(·, 0),
ŵ(·, 0), v(·, 0)).

iv) When f ≡ 0, d ∈ L2(0,∞;L2(Γ0)), r ∈ H1(0,∞;L2

(Γ1)), system (22) is internally asymptotically stable:

lim
t→∞

(∫

Ω
[w2(x, t) + ŵ2(x, t) + v2(x, t)]dx

)

= 0.

v) When f ≡ 0, d ≡ 0, and r ≡ 0, system (22) is internally
exponentially stable, i.e., there exists two constants M ′′,
which depends on initial value only and μ′′ > 0, which is
independent of initial value, such that

∫

Ω
[w2(x, t) + ŵ2(x, t) + v2(x, t)]dx ≤M ′′e−μ

′′t .

Remark 2: From Remark 1, it is seen that the norm L2(Γ1)
in (iii) of Theorem IV.1 can be replaced by the stronger norm
L∞(Γ1).

Remark 3: From Lemmas II.1 and III.1, and the fact w̃(x, t)
= ŵ(x, t) − w(x, t), ε(x, t) = v(x, t) − ŵ(x, t), in the closed-
loop system (22), both the ŵ-part and the v-part are regarded
as the state observer of (1). However, their roles are different in
that the ŵ-part is used to estimate the total disturbance whereas
the v-part is used to be a servo system, which is essentially a
duplicate of the original system.

We point out that in Theorem IV.1, the boundary (surface)
temperature measurement ym(x, t) = w(x, t)|Γ0 is assumed to
be error-free, which is a (part) boundary spatially distributed
noise-free measurement. Note that the surface temperature mea-
surement which in today’s industrial environment encompasses
a wide variety of needs and applications. To meet this wide ar-
ray of needs, the process controls industry has developed a large
number of sensors and devices to handle this demand. Actually,
there are a wide variety of temperature measurement probes
in use today, which include thermometers (such as thermome-
ters), temperature probe (such as thermocouples), and noncon-
tact temperature sensor (such as optical devices). For instance,
the surface temperature of a concrete wall can be measured by
inserting half of a thermocouple into the wall, which is proba-
bly the most-often-used and least-understood of the temperature
measuring device.

The temperature measurement error is often unavoidable.
When the measurement is corrupted by noise, we write ym
(x, t) = w(x, t)|Γ0 by ym(x, t) = w(x, t)|Γ0 + σ(x, t) with the
noise σ ∈W 2,∞(0,∞;L2(Γ0))). Here, we denote W 2,∞(0,
∞;L2(Γ0)) := {φ : φ ∈ L∞(0,∞;L2(Γ0)), φt ∈ L∞(0,∞;
L2(Γ0)), φtt ∈ L∞(0,∞;L2(Γ0))} with the norm given by
‖φ‖W 2 ,∞(0,∞;L2 (Γ0)) =‖φ‖L∞(0,∞;L2 (Γ0)) +‖φt‖L∞(0,∞;L2 (Γ0))
+ ‖φtt‖L∞(0,∞;L2 (Γ0 )) . Then, it turns out that our control is still
working with small tracking error as long as σ(x, t) is small.

Theorem IV.2: Let c0 > 0. Suppose that d ∈ L∞(0,+∞;
L2(Γ0)), r ∈W 1,∞(0,∞;L2(Γ1)), and f : L2(Ω) → L2(Γ0)
is continuous, bounded, and satisfies the local Lipschitz con-
dition in L2(Ω). Suppose that ym(x, t) = w(x, t)|Γ0 + σ(x, t)
with the noise σ ∈W 2,∞(0,∞;L2(Γ0)). Then, for any ini-
tial value (w(·, 0), ŵ(·, 0), v(·, 0)) ∈ [L2(Ω)]3 , the closed-
loop system (22) admits a unique solution (w, ŵ, v) ∈
C(0,∞; [L2(Ω)]3). Moreover, the output tracking is robust with
respect to σ in the sense that for any fixed T > 0, there exist two
constants M1 ,M2 > 0, which depend only on initial value and
T , and μ > 0, which is independent of initial value, such that

‖e(·, t)‖L2 (Γ1 ) = ‖yo(·, t) − r(·, t)‖L2 (Γ1 )

≤M1e
−μt +M2‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) ∀ t ≥ T. (23)

V. PROOF OF MAIN RESULTS

Proof of Lemma II.1 LetA = Δ be the usual Laplacian with
D(A) =

{
φ ∈ H2(Ω) : φ|Γ0 = 0, ∂φ

∂ν |Γ1 = 0
}

. It is easy to
verify that −A is a strongly elliptic operator. It follows from
[24, Th. 2.7, Ch. 7] that A generates an analytic semigroup
S(t), which implies that system (5) admits a unique solution
w̃(·, t) = S(t)w̃(·, 0) ∈ C(0,∞;L2(Ω)).

Next, we claim that S(t) is exponentially stable, for which it
suffices to prove that the solution of (5) is exponentially conver-
gent to zero (we consider the real solution only without loss the
generality). Indeed, let

V0(t) =
1
2

∫

Ω
w̃2(x, t)dx.
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Differentiating V (t) along the solution of (5), and using Green’s
formula and Poincare’s inequality yield

V̇0(t) =
∫

Ω
w̃(x, t)Δw̃(x, t)dx = −

∫

Ω
|∇w̃(x, t)|2dx

≤ −
∫

Ω
w̃2(x, t)dx = −2V0(t)

which gives the exponential stability of S(t), i.e.,

‖w̃(x, t)‖L2 (Ω) = ‖S(t)w̃(·, 0)‖L2 (Ω) ≤ e−t‖w̃(·, 0)‖L2 (Ω) .
(24)

Since S(t) is an analytic semigroup, by [24, Corollary 4.4
and Th. 5.2, Ch. 2], for any positive integer m, S(t)w(·, 0) ∈
D(Am ) for all t > 0, and there exists a constant C1 > 0 such
that

‖AS(t)‖ ≤ C1

t
for all t > 0. (25)

Since AmS(t)w̃(·, 0) = (AS(t/m))m w̃(·, 0), by (25), it fol-
lows that

‖Δmw̃(x, t)‖L2 (Ω) = ‖Amw̃(x, t)‖L2 (Ω)

= ‖AmS(t)w̃(·, 0)‖L2 (Ω) = ‖(AS(t/m))m w̃(·, 0)‖L2 (Ω)

≤ ‖AS(t/m)‖m‖w̃(·, 0)‖L2 (Ω)

≤ Cm
1 m

m

tm
‖w̃(·, 0)‖L2 (Ω) . (26)

Since w̃(·, t) ∈ L2(Ω), it follows from (24), (26), and the
Sobolev embedding theorem that w̃(·, t) ∈ H2m (Ω) and there
exist a constant C2 > 0 such that

‖w̃(·, t)‖H 2m (Ω)

≤ C2
[‖Δm w̃(x, t)‖L2 (Ω) + ‖w̃(x, t)‖L2 (Ω)

]

≤
(C2C

m
1 m

m

tm
+ C2Me−μt

)
‖w̃(·, 0)‖L2 (Ω) (27)

with μ = 1. The Sobolev trace theorem implies that
∥
∥
∥
∥
∂w̃(·, t)
∂ν

∥
∥
∥
∥
L2 (Γ0 )

≤ C3‖w̃(·, t)‖H 2m (Ω)

‖w̃(·, t)‖L2 (Γ0 ) ≤ C3‖w̃(·, t)‖H 2m (Ω) (28)

for some constant C3 > 0. Therefore, (6) and (7) follow from
(27) and (28). It remains to show (8) and (9). By (24)

‖Δm w̃(x, t)‖L2 (Ω) = ‖Amw̃(x, t)‖L2 (Ω)

= ‖AmS(t)w̃(·, 0)‖L2 (Ω) =‖S(t− T )AmS(T )w̃(·, 0)‖L2 (Ω)

≤Me−μ(t−T )‖AmS(T )w̃(·, 0)‖L2 (Ω)

which, together with (24), (28), and the Sobolev embedding
theorem, gives (8) and (9). �

Proof of Lemma III.1: Let A0 = Δ be the usual Laplacian
withD(A0) =

{
φ ∈ H2(Ω) : ∂φ

∂ν |Γ0 = −c0φ|Γ0 ,
∂φ
∂ν |Γ1 = 0

}
.

It is easy to verify that −A0 is a strongly elliptic operator. It
follows from [24, Th. 2.7, Ch. 7] that A0 generates an analytic
semigroup S0(t), which implies that system (5) admits a unique
solution ε(·, t) = S0(t)ε(·, 0) ∈ C(0,∞;L2(Ω)).

Next, we claim that S0(t) is exponentially stable for which
it suffices to prove that the solution of (13) is exponentially
convergent to zero. Indeed, let (again we only consider the real
solution without loss of generality)

V1(t) =
1
2

∫

Ω
ε2(x, t)dx.

Differentiating V (t) along the solution of (5) and using Green’s
formula yield

V̇1(t) =
∫

Ω
ε(x, t)Δε(x, t)dx

= −c0
∫

Γ0

|ε(x, t)|2dx−
∫

Ω
|∇ε(x, t)|2dx. (29)

Since

‖φ‖2
0 = c0

∫

Γ0

|φ(x)|2dx+
∫

Ω
|∇φ(x)|2dx

and

‖φ‖2 =
∫

Ω
|φ(x)|2dx+

∫

Ω
|∇φ(x)|2dx

are two equivalent norms on H1(Ω), there exists a constant
C∗ > 0 such that

C∗
∫

Ω
[|ε(x, t)|2 + |∇ε(x, t)|2 ]dx

≤ c0

∫

Γ0

|ε(x, t)|2dx+
∫

Ω
|∇ε(x, t)|2dx. (30)

It follows from (29) and (30) that

V̇1(t) ≤ −C∗
∫

Ω
[|ε(x, t)|2 + |∇ε(x, t)|2 ]dx

≤ −C∗
∫

Ω
ε2(x, t)dx = −2C∗V1(t)

which gives the exponential stability of S0(t), i.e.,

‖ε(x, t)‖L2 (Ω) = ‖S0(t)ε(·, 0)‖ ≤Me−μt‖ε(·, 0)‖L2 (Ω)
(31)

with M = 1, μ = C∗. From (29) and (31), we obtain

c0

∫ ∞

0

∫

Γ0

ε2(x, t)dx ≤ V1(0) − V1(t) ≤ V1(0)

which gives ε(·, t) ∈ L2(0,∞;L2(Γ0)). The rest of the proof is
exactly the same as the proof of Lemma II.1. We thus omit the
details. �

Proof of Lemma III.2: In order to prove this lemma, we first
introduce the Dirichlet map Υ ∈ L (Hs(Γ1),H1/2+s(Ω)) ([20,
pp. 188–189]), i.e., Υ(r) = z if and only if

{
Δz = 0 in Ω
∂z
∂ν

∣
∣
Γ0

= 0, z|Γ1 = r.
(32)

Since r ∈W 1,∞(0,∞;L2(Γ1)), it is obvious that z ∈W 1,∞(0,
∞;H1/2(Ω)) and

‖z(·, t)‖H 1 / 2 (Ω) ≤ Cq‖r(·, t)‖L2 (Γ1 )

‖zt(·, t)‖H 1 / 2 (Ω) ≤ Cq‖rt(·, t)‖L2 (Γ1 ) (33)
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for some constant Cq > 0. By the Sobolev embedding theorem,
there exists a constant Cp > 0 such that

‖zt(·, t)‖L2 (Ω) = ‖zt(·, t)‖H 0 (Ω) ≤ Cp‖zt(·, t)‖H 1 / 2 (Ω)

≤ CqCp‖rt(·, t)‖L2 (Γ1 ) . (34)

Using the Dirichlet map (32) and letting q̂(x, t) = q(x, t) −
z(x, t), we can verify from (17) that q̂(x, t) is governed by

⎧
⎪⎨

⎪⎩

q̂t(x, t) = Δq̂(x, t) − zt(x, t), x ∈ Ω, t > 0
∂ q̂(x,t)
∂ν |Γ0 = 0, t ≥ 0

q̂(x, t)|Γ1 = 0, t ≥ 0.

(35)

System (35) is then written as

d

dt
q̂(·, t) = A1 q̂(·, t) +B1zt(·, t) (36)

where B1 = −I and the operator A1 is given by
{
A1φ = Δφ ∀ φ ∈ D(A1)
D(A1) =

{
φ ∈ H2(Ω)| ∂φ∂ν |Γ0 = 0, φ|Γ1 = 0

}
.

(37)

It is well known that A1 generates an exponentially stable
C0-semigroup eA 1 t , which, together with (34), r ∈W 1,∞(0,
∞;L2(Γ1)), and [34, Lemma 1.1] implies that system (36) ad-
mits a unique solution that is uniformly bounded for all t ≥ 0.
In particular when r ∈ H1(0,∞;L2(Γ1)), by [34, Lemma 1.1],
limt→∞ ‖q(·, t)‖L2 (Ω) = 0. �

Proof of Lemma III.3: We first show the first assertion. For
this purpose, we define a new inner product in [L2(Ω)]2

〈(φ1 , ψ1)�, (φ2 , ψ2)�〉∗

=
∫

Ω

[

φ1(x)φ2(x) + ψ1(x)ψ2(x)

− 1
2
Re(φ1(x)ψ2(x) + φ2(x)ψ1(x))

]

dx

for (φi, ψi)� ∈ [L2(Ω)]2 , i = 1, 2. The induced norm is given
by

‖(φ, ψ)‖2
∗ =

∫

Ω

[|φ(x)|2 + |ψ(x)|2 − Re(φ(x)ψ(x))
]
dx

(38)
for all (φ, ψ) ∈ [L2(Ω)]2 . Since |Re(φ(x)ψ(x))|≤|φ(x)|2/2 +
|ψ(x)|2/2, it follows that

1
2
‖(φ, ψ)‖2

≤
∫

Ω

[|φ(x)|2 + |ψ(x)|2 − Re(φ(x)ψ(x))
]
dx

≤ 3
2
‖(φ, ψ)‖2 (39)

which implies that (38) is well-defined and is equivalent to the
original norm. For any (φ, ψ) ∈ D(A), by Green’s formula,

Poincare’s inequality, and (39), we have

Re〈A(φ, ψ), (φ, ψ)〉∗

= Re
(∫

Ω
Δφ(x)φ(x) + Δψ(x)ψ(x) − Δφ(x)ψ(x)]dx

)

= −
∫

Ω
|∇φ(x)|2dx−

∫

Ω
|∇ψ(x)|2dx

− Re
∫

Ω
∇φ(x) · ∇ψdx

≤ −1
2

∫

Ω
|∇φ(x)|2dx− 1

2

∫

Ω
|∇ψ(x)|2dx

≤ −1
2

∫

Ω
|φ(x)|2dx− 1

2

∫

Ω
|ψ(x)|2dx

≤ −‖(φ, ψ)‖2
∗/3. (40)

This shows that A + I/3 is dissipative in [L2(Ω)]2 . Now we
show that A−1 ∈ L ([L2(Ω)]2). Solve the equation

A(φ, ψ) = (Δφ,Δψ) = (φ̂, ψ̂) ∈ [L2(Ω)]2

to obtain
{

Δφ(x) = φ̂(x)

φ|Γ0 = 0, ∂φ
∂ν |Γ1 = 0

(41)

and
{

Δψ(x) = ψ̂(x)
∂ψ
∂ν |Γ0 = ∂φ

∂ν |Γ0 , ψ|Γ1 = 0.
(42)

By the elliptic partial differential equation theory, we know that
(41) admits a unique solution φ ∈ H2(Ω) and there exists a
constant CL > 0 such that

‖φ‖H 2 (Ω) ≤ CL‖φ̂‖L2 (Ω) .

By the trace theorem, ∂φ∂ν ∈ H1/2(Γ0) and there exists a constant
CM > 0 such that

∥
∥
∥
∥
∂φ

∂ν

∥
∥
∥
∥
H 1 / 2 (Γ0 )

≤ CM ‖φ‖H 2 (Ω) .

By the elliptic partial differential equation theory again, equation
(42) admits a unique solution φ ∈ H2(Ω) and there exists a
constant CN > 0 such that

‖ψ‖H 2 (Ω) ≤ CN

[

‖ψ̂‖L2 (Ω) +
∥
∥
∥
∥
∂φ

∂ν

∥
∥
∥
∥
H 1 / 2 (Γ0 )

]

≤ CN

[
‖ψ̂‖L2 (Ω) + C1C2‖φ̂‖L2 (Ω)

]
.

Hence A−1(φ̂, ψ̂) = (φ, ψ). It follows from the Lumer–Phillips
theorem [24, Th. 1.4.3] that A + I/3 generates aC0-semigroup
of contractions e(A+I /3)t on [L2(Ω)]2 , which implies that eAt

is an exponentially stable C0-semigroup on [L2(Ω)]2 .
Next, we show that B is admissible for eAt (see [31]). By [29,

Th. 4.4.3], it suffices to show that B∗ is admissible observation
operator for the adjoint semigroup eA∗t . This amounts to show-
ing that a) B∗A∗−1 is bounded from [L2(Ω)]2 to L2(Γ0), and
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b) for every T∗ > 0, there existsMT∗ > 0 depending on T∗ only
such that the system of the following:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃∗
t (x, t) = Δw̃∗(x, t), x ∈ Ω, t > 0

w̃∗(x, t)|Γ0 = −p∗(x, t)|Γ0 ,
∂ w̃ ∗(x,t)

∂ν |Γ1 = 0, t ≥ 0

p∗t (x, t) = Δp∗(x, t), x ∈ Ω, t > 0
∂p∗(x,t)

∂ν |Γ0 = 0, p∗(x, t)|Γ1 = 0, t ≥ 0

w̃∗(x, 0) = w̃∗
0(x), p

∗(x, 0) = p∗0(x), x ∈ Ω

y∗m = p∗(x, t)|Γ0 , t ≥ 0

(43)

satisfies
∫ T∗

0

∫

Γ0

(p∗(x, t))2dxdt ≤MT∗‖(w∗
0 , p

∗
0)‖2

[L2 (Ω)]2 . (44)

According to the first assertion, A generates a C0-semigroup
on [L2(Ω)]2 . Thus, the same is true for A∗. As a result, sys-
tem (43) admits a unique solution (w̃∗, p∗) ∈ C(0,∞; [L2(Ω)]2)
and there exist two constants M̂, μ̂ > 0 such that

∫

Ω
[(w̃∗(x, t))2 + (p∗(x, t))2 ]dx

≤ M̂eμ̂t
∫

Ω
[(w̃∗(x, 0))2 + (p∗(x, 0))2 ]dx. (45)

Define

ρ(t) =
∫

Ω
G(x)w̃∗(x, t)p∗(x, t)dx (46)

where G(x) is the solution of the following PDE
{

ΔG(x) = 0
G|Γ0 = 1, G|Γ1 = 0. (47)

Since 1 ∈ Hn+3/2(Γ0) and 0 ∈ Hn+3/2(Γ1), it follows from
the elliptic partial differential equation theory that (47) has a
unique solutionG ∈ Hn+2(Ω). By the Sobolev embedding the-
orem, G ∈ C1(Ω) and there exists a constant C4 > 0 such that

max{‖G‖L∞(Ω) , ‖∇G‖L∞(Ω)} ≤ C4 . (48)

Thus, (46) is well-defined. Since p∗(x, t)|Γ1 = 0, by Poincare’s
inequality, there exists a constant C5 > 0 such that

∫

Ω
|p∗(x, t)|2 ≤ C5

∫

Ω
|∇p∗(x, t)|2dx. (49)

From the Sobolev embedding theorem and the trace theorem,
there exist constants C6 , C7 > 0 such that
∫

Γ0

(p∗(x, t))2dx ≤ C6‖p∗(·, t)‖2
H 1 / 2 (Γ0 )

≤ C6C7‖p∗(·, t)‖2
H 1 (Ω) = C6C7

∫

Ω
|∇p∗(x, t)|2dx. (50)

Since

‖φ‖2
0 =

∫

Γ0

|φ(x)|2dx+
∫

Ω
|∇φ(x)|2dx

and

‖φ‖2 =
∫

Ω
|φ(x)|2dx+

∫

Ω
|∇φ(x)|2dx

are two equivalent norms on H1(Ω), there exists a constant
C8 > 0 such that

∫

Ω
[|w̃∗(x, t)|2 + |∇w̃∗(x, t)|2 ]dx

≤ C8

∫

Γ0

|w̃∗(x, t)|2dx+ C8

∫

Ω
|∇w̃∗(x, t)|2dx. (51)

By (48)–(51), using the fact that w̃∗(x, t)|Γ0 = p∗(x, t)|Γ0 , we
have

∫

Ω

[ 1
4δ

|∇(G(x)p∗(x, t)|2 + δ|∇(G(x)w̃∗(x, t))|2
]
dx

=
∫

Ω

[
1
4δ

|p∗(x, t)∇G(x) +G(x)∇p∗(x, t)|2

+ δ|w̃∗(x, t)∇G(x) +G(x)∇w̃∗(x, t)|2
]
dx

≤ C2
4

2δ

∫

Ω
[|p∗(x, t)|2 + |∇p∗(x, t)|2 ]dx

+ 2C2
4 δ

∫

Ω
[|w̃∗(x, t)|2 + |∇w̃∗(x, t)|2 ]dx

≤ C2
4 (C5 + 1)

2δ

∫

Ω
|∇p∗(x, t)|2dx+ 2C2

4C8δ

×
∫

Γ0

|p∗(x, t)|2dx+ 2C2
4C8δ

∫

Ω
|∇w̃∗(x, t)|2dx

≤
(
C2

4 (C5 + 1)
2δ

+ 2C2
4C6C7C8δ

)∫

Ω
|∇p∗(x, t)|2dx

+ 2C2
4C8δ

∫

Ω
|∇w̃∗(x, t)|2dx. (52)

By the boundary conditions of (43) and (47), differentiating ρ(t)
along the solution of (43) and using the Green’s formula yield

ρ̇(t) =
∫

Ω
Δw̃∗(x, t)G(x)p∗(x, t)dx

+
∫

Ω
Δp∗(x, t)G(x)w̃∗(x, t)dx

= −
∫

Ω
∇w̃∗(x, t) · ∇(G(x)p∗(x, t))dx

−
∫

Ω
∇p∗(x, t) · ∇(G(x)w̃∗(x, t))dx

+
∫

Γ0 ∪Γ1

∂w̃∗(x, t)
∂ν

G(x)p∗(x, t)dx

+
∫

Γ0 ∪Γ1

∂p∗(x, t)
∂ν

G(x)w̃∗(x, t)dx

= −
∫

Ω
∇w̃∗(x, t) · ∇(G(x)p∗(x, t))dx

−
∫

Ω
∇p∗(x, t) · ∇(G(x)w̃∗(x, t))dx

+
∫

Γ0

∂w̃∗(x, t)
∂ν

p∗(x, t)dx
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≤
∫

Ω

[
δ|∇w̃∗(x, t)|2 +

1
4δ

|∇p∗(x, t)|2
]
dx

+
1
4δ

∫

Ω
|∇(G(x)p∗(x, t)|2dx

+ δ

∫

Ω
|∇(G(x)w̃∗(x, t))|2dx

+
∫

Γ0

∂w̃∗(x, t)
∂ν

p∗(x, t)dx. (53)

In the last step of (53), the inequality ab ≤ δa2 + 1
4δ b

2 was used
and δ was chosen so that

0 < δ <
1

2(2C2
4C8 + 1)

. (54)

Denote

E(t) =:
1
2

∫

Ω
[(w̃∗(x, t))2 + C9(p∗(x, t))2 ]dx (55)

where the constant C9 is chosen so that

C9 >
C2

4 (C5 + 1)
2δ

+ 2C2
4C6C7C8δ +

1
4δ

+ 1. (56)

Differentiating ρ(t) along the solution of (43) gives

Ė(t)

=
∫

Ω
[Δw̃∗(x, t)w̃∗(x, t) + C9Δp∗(x, t)p∗(x, t)]dx

= −
∫

Ω
[|∇w̃∗(x, t)|2 + C9 |∇p∗(x, t)|2 ]dx

+
∫

Γ0

∂w̃∗(x, t)
∂ν

w̃∗(x, t)dx

+ C9

∫

Γ0

∂p∗(x, t)
∂ν

p∗(x, t)dx

+
∫

Γ1

∂w̃∗(x, t)
∂ν

w̃∗(x, t)dx

+ C9

∫

Γ1

∂p∗(x, t)
∂ν

p∗(x, t)dx

= −
∫

Ω
[|∇w̃∗(x, t)|2 + C9 |∇p∗(x, t)|2 ]dx

+
∫

Γ0

∂w̃∗(x, t)
∂ν

w̃∗(x, t)dx. (57)

Let V2(t) = ρ(t) + E(t), where ρ(t) andE(t) are given by (46)
and (55), respectively. SinceC9 > 1, by Cauchy’s inequality and
(48), it follows that

|V2(t)| ≤
(C4

2
+ C9

)∫

Ω
[(w̃∗(x, t))2 + (p∗(x, t))2 ]dx. (58)

Differentiating V2(t) along the solution of (43) and by (53),
(54), (56), and (57), we obtain

V̇2(t)

≤
∫

Ω

[

δ|∇w̃∗(x, t)|2 +
1
4δ

|∇p∗(x, t)|2
]

dx

+
(
C2

4 (C5 + 1)
2δ

+ 2C2
4C6C7C8δ

)∫

Ω
|∇p∗(x, t)|2dx

+
∫

Γ0

∂w̃∗(x, t)
∂ν

p∗(x, t)dx+
∫

Γ0

∂w̃∗(x, t)
∂ν

w̃∗(x, t)dx

−
∫

Ω
[|∇w̃∗(x, t)|2 + C9 |∇p∗(x, t)|2 ]dx

+ 2C2
4C8δ

∫

Ω
|∇w̃∗(x, t)|2dx

≤ −
(

1 − (2C2
4C8 + 1)δ

)∫

Ω
|∇w̃∗(x, t)|2dx

−
(

C9 −
(
C2

4 (C5 + 1)
2δ

+ 2C2
4C6C7C8δ +

1
4δ

))

×
∫

Ω
|∇p∗(x, t)|2dx

≤ −1
2

∫

Ω
|∇w̃∗(x, t)|2dx−

∫

Ω
|∇p∗(x, t)|2dx (59)

which, together with (58) and (45), gives
∫ t

0

∫

Ω
|∇p∗(x, t)|2dxdt ≤ V2(0) − V2(t)

≤
(
C4

2
+ C9

)
(‖(w̃∗(x, t), p∗(x, t))‖2

[L2 (Ω)]2

+ ‖(w̃∗(x, 0), p∗(x, 0))‖2
[L2 (Ω)]2

)

≤
(
C4

2
+ C9

)

M̂(1 + eμ̂t)‖(w̃∗(x, 0), p∗(x, 0))‖2
[L2 (Ω)]2 .

(60)

Combining with (50) and (60), we obtain
∫ t

0

∫

Γ0

(p∗(x, t))2dx ≤ C6C7

(
C4

2
+ C9

)

× M̂(1 + eμ̂t)‖(w̃∗(x, 0), p∗(x, 0))‖2
[L2 (Ω)]2 . (61)

A direct computation shows that

A∗−1(φ̂, ψ̂) = (φ, ψ), B∗A∗−1(φ̂, ψ̂) = ψ|Γ0 (62)

where (φ, ψ) satisfies the following PDEs:
{

Δφ(x) = φ̂(x)

φ|Γ0 = −ψ|Γ0 ,
∂φ
∂ν |Γ1 = 0

(63)

and
{

Δψ(x) = ψ̂(x)
∂ψ
∂ν |Γ0 = 0, ψ|Γ1 = 0.

(64)
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By the elliptic partial differential equation theory, we know that
(64) admits a unique solution ψ ∈ H2(Ω) and that there exists a
constant C10 > 0 such that ‖ψ‖H 2 (Ω) ≤ C10‖ψ̂‖L2 (Ω) . By the
trace theorem, ψ ∈ H3/2(Γ0) and there exists a constant C11 >

0 such that ‖ψ‖H 3 / 2 (Γ0 ) ≤ C11‖ψ‖H 2 (Ω) ≤ C11C12‖ψ̂‖L2 (Ω) .
By the elliptic partial differential equation theory again, we
have that (63) admits a unique solution φ ∈ H2(Ω) and that
there exists a constant C12 > 0 such that

‖φ‖H 2 (Ω) ≤ C12
[‖φ̂‖H 3 / 2 (Γ0 ) + ‖φ̂‖L2 (Ω)

]

≤ C12
[‖C11C12‖ψ̂‖L2 (Ω) + ‖φ̂‖L2 (Ω)

]
.

By the Sobolev embedding theorem and the trace theorem,
H2(Ω) ↪→ L2(Γ0). Since ψ ∈ H2(Ω) and (62), we know that
B∗A∗−1 is bounded from [L2(Ω)]2 to L2(Γ0), which, together
with (61), implies that B is admissible for eAt . �

Proof of Lemma III.4: By Lemma III.3, eAt is exponen-
tially stable and B is admissible for eAt . Note that F =
f(p+ q − ε− w̃, t) + d(x, t) satisfies the local Lipschitz con-
dition with respect to (w̃, p). By the same argument used in [34,
Proposition 1.1], we know that (19) has a global solu-
tion (w̃, p) ∈ C(0,∞; [L2(Ω)]2). Thus, F = f(p+ q − ε−
w̃, t) + d(x, t) makes sense for all t ≥ 0. Since f(·) is bounded
and d ∈ L∞(0, +∞;L2(Γ0)), F ∈ L∞(0, +∞;L2(Γ0)).
Rewrite (19) as

d

dt
(w̃(·, t), p(·, t))=A(w̃(·, t), p(·, t))+ BF (p+ q − ε− w̃, t)

+ B(−c0ε(x, t)). (65)

Since ε(·, t) ∈ L2(0,∞;L2(Γ0)) by virtue of Lemma III.1, it
follows from [34, Lemma 1.1] or [35, Lemma 2.1] that the so-
lution of (65) is uniformly bounded for all t ≥ 0. Next, suppose
f≡0 and d∈L2(0,∞;L2(Γ0)). Then, F ∈L2(0,∞;L2(Γ0))
and by [34, Lemma 1.1] again, we know that limt→∞ ‖(w̃
(·, t), p(·, t))‖[L2 (Ω)]2 = 0. �

Proof of Lemma III.5: Since system (10) can be written as
the sum of p-system (16) and q-system (17), the result follows
immediately from Lemmas III.2 and III.4. �

Proof of Theorem IV.1: Let w̃(x, t) = ŵ(x, t) − w(x, t),
ε(x, t) = v(x, t) − ŵ(x, t). Then, it is readily shown that the
closed-loop system (22) is equivalent to the one following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃t(x, t) = Δw̃(x, t), x ∈ Ω, t > 0

w̃(x, t)|Γ0 = ∂ w̃ (x,t)
∂ν |Γ1 = 0, t ≥ 0

εt(x, t) = Δε(x, t), x ∈ Ω, t > 0
∂ε(x,t)
∂ν |Γ0 = −c0ε(x, t)|Γ0 ,

∂ ε(x,t)
∂ν |Γ1 = 0, t ≥ 0

vt(x, t) = Δv(x, t), x ∈ Ω, t > 0
∂v (x,t)
∂ν |Γ0 = −c0(v(x, t) − ŵ(x, t))|Γ0

+ ∂ ŵ (x,t)
∂ν |Γ0

v(x, t)|Γ1 = r(x, t), t ≥ 0.

(66)

By Lemmas II.1 and III.1, the “(w̃, ε)-part” of (66) has a unique
solution and for any fixed T > 0 and integer m > 0, there exist

six constants M1 ,M2 ,M3 , μ1 , μ2 , μ3 > 0 such that
∫

Ω
[w̃2(x, t) + ε2(x, t)]dx ≤M1e

−μ1 t ∀ t ≥ 0 (67)

∫

Γ1

[w̃2(x, t) + ε2(x, t)]dx ≤ M2

tm
+M2e

−μ2 t ∀ t > 0

(68)
and

∫

Γ1

[w̃2(x, t) + ε2(x, t)]dx ≤M3e
−μ3 t ∀ t ≥ T. (69)

It is seen from Lemmas II.1 and III.1 that M1 , M2 , and
M3 depend on (w̃(·, 0), ε(·, 0)) yet μi, i = 1, 2, 3, do not. By
Lemma III.5, the “v-part” of (66) has a unique solution and
there exists a constant M4 > 0 depending on (v(·, 0), ŵ(·, 0))
such that

∫

Ω
v2(x, t)dx ≤M4 ∀ t ≥ 0. (70)

Note that
⎛

⎝
w(x, t)
ŵ(x, t)
v(x, t)

⎞

⎠ =

⎛

⎝
−I −I I
0 −I I
0 0 I

⎞

⎠

⎛

⎝
w̃(x, t)
ε(x, t)
v(x, t)

⎞

⎠. (71)

The (w(x, t), ŵ(x, t), v(x, t)) is well-defined for all t ≥ 0.
Thus, (22) admits a unique solution. The claim (i) follows from
(67) and (71). The claim (ii) follows from (67). Since e(x, t) =
yo(x, t) − r(x, t) = −w̃(x, t)|Γ1 − ε(x, t)|Γ1 , the claim (iii)
follows from (68) and (69). By the last assertion of Lemma III.5,
(67), (68), and (71), we can see that (iv) holds as well.

Now suppose f ≡ 0, d ≡ 0, and r ≡ 0. Since A1 given by
(37) and A given by (20) generate two exponentially stable
C0-semigroups eA 1 t and eAt , respectively, which are proved in
Lemmas III.2 and III.3, we see that when r ≡ 0, the “v-part” of
(66) is exponentially stable, which, together with (67) and (71),
implies that (v) holds. �

Proof of Theorem IV.2: Let w̃(x, t) = ŵ(x, t) − w(x, t) be
the error, which is governed by

⎧
⎪⎨

⎪⎩

w̃t(x, t) = Δw̃(x, t), x ∈ Ω, t > 0

w̃(x, t)|Γ0 = σ(x, t), t ≥ 0
∂ w̃ (x,t)
∂ν |Γ1 = 0, t ≥ 0.

(72)

Then, ε(x, t) = v(x, t) − ŵ(x, t) satisfies (13). Clearly, the
closed-loop system (22) is equivalent to a coupled system com-
posed of (10), (13), and (72). Since the proof of well posedness
of the closed-loop system is similar to that of Theorem IV.1,
we only prove the robustness of the output tracking. For
this purpose, we introduce a Dirichlet map Υ1 ∈ L (Hs(Γ0),
H1/2+s(Ω)) ([20, pp. 188–189]): Υ1(σ) = z if and only if

{
Δz = 0 in Ω

z|Γ0 = σ, ∂z
∂ν

∣
∣
Γ1

= 0.
(73)
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Since σ ∈W 2,∞(0,∞;L2(Γ0)), it is obvious that z ∈W 2,∞

(0,∞;H1/2(Ω)) and

‖z(·, t)‖H 1 / 2 (Ω) ≤ C1‖σ(·, t)‖L2 (Γ0 )

‖zt(·, t)‖H 1 / 2 (Ω) ≤ C1‖σt(·, t)‖L2 (Γ0 )

‖ztt(·, t)‖H 1 / 2 (Ω) ≤ C1‖σtt(·, t)‖L2 (Γ0 ) (74)

for some constant C1 > 0. By the Sobolev embedding theorem,
there exists a constant C2 > 0 such that

‖zt(·, t)‖L2 (Ω) = ‖zt(·, t)‖H 0 (Ω) ≤ C2‖zt(·, t)‖H 1 / 2 (Ω)

≤ C1C2‖σt(·, t)‖L2 (Γ0 )

≤ C1C2‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) (75)

and

‖zt(·, t1) − zt(·, t2)‖L2 (Ω) = |t1 − t2 |‖ztt(·, ξ)‖H 0 (Ω)

≤ C2 |t1 − t2 |‖ztt(·, ξ)‖H 1 / 2 (Ω)

≤ C1C2 |t1 − t2 |‖σtt(·, ξ)‖L2 (Γ0 )

≤ C1C2 |t1 − t2 |‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) . (76)

Using the Dirichlet map (73) and setting W (x, t) = w̃(x, t) −
z(x, t), we can verify from (72) that W (x, t) is governed by

⎧
⎪⎨

⎪⎩

Wt(x, t) = ΔW (x, t) − zt(x, t), x ∈ Ω, t > 0

W (x, t)|Γ0 = 0, t ≥ 0
∂W (x,t)

∂ν |Γ1 = 0, t ≥ 0.

(77)

System (77) is then written as

d
dtW (·, t) = AW (·, t) − zt(·, t) (78)

where A = Δ is the usual Laplacian with D(A) =
{
φ ∈

H2(Ω) : φ|Γ0 = 0, ∂φ
∂ν |Γ1 = 0

}
. From the proof of Lemma II.1,

A generates an analytic semigroup S(t) and there exist
M0 , μ0 > 0 such that ‖S(t)‖ ≤M0e

−μ0 t . By [24, Th. 3.2,
p. 111] and its proof, it follows from (75) and (76) that for
any W (·, 0) ∈ L2(Ω), the mild solution of (78) given by

W (·, t) = S(t)W (·, 0) −
∫ t

0
S(t− s)zs(·, s)ds

=: S(t)W (·, 0) +W1(t) (79)

is the classical solution, that is, W1(t) ∈ D(A) and AW1(t) is
continuous in t over (0,+∞). From (75), we obtain

‖W1(t)‖L2 (Ω) ≤
∫ t

0
M0e

−μ0 (t−s)‖zs(·, s)‖L2 (Ω)ds

≤ M0C1C2

μ0
‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) (80)

and

‖AW1(t)‖L2 (Ω) ≤
∥
∥
∥
∥

∫ t

0
AS(t− s)zs(·, s)ds

∥
∥
∥
∥
L2 (Ω)

=
∥
∥
∥
∥

∫ t

0
S(t− T − s)AS(T )zs(·, s)ds

∥
∥
∥
∥
L2 (Ω)

≤
∫ t

0
M0e

−μ0 (t−T −s)‖AS(T )|‖zs(·, s)‖L2 (Ω)ds

≤ M0e
μ0 T ‖AS(T )‖C1C2

μ0
‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) . (81)

Since for any t ≥ T

‖Δ(S(t)W (·, 0))‖L2 (Ω) = ‖AS(t)W (·, 0)‖L2 (Ω)

= ‖S(t− T )AS(T )W (·, 0)‖L2 (Ω)

≤M0e
−μ0 (t−T )‖AS(T )‖‖W (·, 0)‖L2 (Ω)

it follows from (79), (80), (81) and the Sobolev embedding
theorem that W (·, t) ∈ H2(Ω) and that there exist a constant
C3 > 0 such that

‖W (·, t)‖H 2 (Ω)

≤ C3
[‖ΔW (x, t)‖L2 (Ω) + ‖W (x, t)‖L2 (Ω)

]

≤ C4e
−μ0 t‖W (·, 0)‖L2 (Ω) + C5‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) (82)

with C4 =C3M0 +C3M0e
μ0 T ‖AS(T )‖, C5 =(M0C1C2C3 +

M0e
μ0 T ‖AS(T )‖C1C2C3)/μ0 . Furthermore, by the Sobolev

trace theorem, it follows from (82) that

‖W (·, t)‖L2 (Γ1 ) ≤ C6‖W (·, t)‖H 2 (Ω)

≤ C4C6e
−μ0 t‖W (·, 0)‖L2 (Ω) + C5C6‖σ‖W 2 ,∞(0,∞;L2 (Γ0 ))

(83)

for some C6 > 0. Since z ∈W 2,∞(0,∞;H1/2(Ω)), by the
Sobolev trace theorem and (74), we obtain

‖z(·, t)‖L2 (Γ1 ) ≤ C7‖z(·, t)‖H 1 / 2 (Ω)

≤ C1C7‖σ‖W 2 ,∞(0,∞;L2 (Γ0 )) (84)

for some constant C7 > 0. Since

e(x, t) = yo(x, t) − r(x, t) = −w̃(x, t)|Γ1 − ε(x, t)|Γ1

= −W (x, t)|Γ1 − z(x, t)|Γ1 − ε(x, t)|Γ1

the (23) then follows from (83), (84), and (15). �
From the proof of Theorem IV.2, we see that the assumption

that the measurement noise σ(x, t) is in W 2,∞(0,∞;L2(Γ0))
is used to guarantee (76) so that the mild solution of (78) is the
classical solution (see [24, Th. 3.2, p. 111]).

VI. NUMERICAL SIMULATION

In this section, we present numerical simulations for the
closed-loop system (22) to illustrate the effectiveness of the
proposed feedback control. For numerical computations, we
take Ω = {(x1 , x2) ∈ R2 | 1 < x2

1 + x2
2 < 4}, Γ = ∂Ω, Γ0 =

{(x1 , x2) ∈ R2 | x2
1 + x2

2 = 1},Γ1 = Γ \ Γ0 . The parameter is
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taken as c0 = 1. The external disturbance, the internal uncer-
tainty, and the reference signal are taken, as d(x1 , x2 , t) =
sin(x1t), f(w) = 0.1 sin(

∫

Ω w(x, t)dx), and r(x1 , x2 , t) =
sin(x2t). The initial values are taken as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(x1 , x2 , 0) = 4x3
1

(x2
1 +x2

2 )1 . 5 − 3x1√
x2

1 +x2
2

ŵ(x1 , x2 , 0) = 3x2√
x2

1 +x2
2

− 4x3
2

(x2
1 +x2

2 )3 / 2

v(x1 , x2 , 0) = 4x3
1 −4x3

2
(x2

1 +x2
2 )3 / 2 + −3x1 +3x2√

x2
1 +x2

2

(85)

where (x1 , x2) ∈ R2 satisfies 1 ≤ x2
1 + x2

2 ≤ 4. Since the spa-
tial domain consists of a 2-D annulus, it is easier to solve (22)
in the polar coordinate (γ, θ). The results can then be converted
back to the original coordinate for some figures if necessary.
Under the polar coordinate, system (22) can be written as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w (γ ,θ,t)
∂ t = ∂ 2w (γ ,θ,t)

∂γ 2 + 1
γ
∂w (γ ,θ,t)

∂γ

+ 1
γ 2

∂ 2w (γ ,θ,t)
∂θ2 , 1 < γ < 2, 0 < θ < 2π

∂w (1,θ ,t)
∂γ = f(w(·, t)) + d(cos(θ), sin(θ), t)

∂w (2,θ ,t)
∂γ = ∂v (2,θ ,t)

∂γ , 0 ≤ θ ≤ 2π, t ≥ 0
∂ ŵ (γ ,θ,t)

∂ t = ∂ 2 ŵ (γ ,θ,t)
∂γ 2 + 1

γ
∂ ŵ (γ ,θ,t)

∂γ

+ 1
γ 2

∂ 2 ŵ (γ ,θ,t)
∂θ2 , 1 < γ < 2, 0 < θ < 2π

ŵ(1, θ, t) = w(1, θ, t), 0 ≤ θ ≤ 2π, t ≥ 0
∂ ŵ (2,θ ,t)

∂γ = ∂v (2,θ ,t)
∂γ , 0 ≤ θ ≤ 2π, t ≥ 0

∂v (γ ,θ,t)
∂ t = ∂ 2 v (γ ,θ,t)

∂γ 2 + 1
γ
∂v (γ ,θ,t)

∂γ

+ 1
γ 2

∂ 2 v (γ ,θ,t)
∂θ2 , 1 < γ < 2, 0 < θ < 2π

∂v (1,θ ,t)
∂γ = −c0(v(1, θ, t) − ŵ(1, θ, t)) + ∂ ŵ (1,θ ,t)

∂γ

v(2, θ, t) = r(2 cos(θ), 2 sin(θ), t), 0 ≤ θ ≤ 2π, t ≥ 0
(86)

where we still usew, ŵ, and v to denote the states under the polar
coordinate for notation simplicity (the exact coordinate should
be clear from the context). The corresponding initial value (85)
is transformed into
⎧
⎪⎨

⎪⎩

w(γ, θ, 0) = cos(3θ), 1 ≤ γ ≤ 2, 0 ≤ θ ≤ 2π

ŵ(γ, θ, 0) = sin(3θ), 1 ≤ γ ≤ 2, 0 ≤ θ ≤ 2π

v(γ, θ, 0) = cos(3θ) + sin(3θ), 1 ≤ γ ≤ 2, 0 ≤ θ ≤ 2π.

The backward Euler method in time and the Chebyshev spectral
method for polar variables are used to discretize system (86).
Here, we take the grid sizes γN = 30 for γ and θN = 50 for θ,
and dt = 5 × 10̃−4 for the time step. The numerical algorithm
is programmed in MATLAB [28] and the numerical results are
plotted in Figs. 1–5.

Fig. 1 plots the tracking errors for the output signal to be
regulated and the reference for θ ∈ [0, 2π]. The convergence of
tracking error is clearly observed from the particular direction
θ = π/4 in the polar coordinate in Fig. 2. The numerical results
for w(x, t), ŵ(x, t), and v(x, t) are shown in Figs. 3–5 for
direction θ = π/4. It is seen that states w(x, t), ŵ(x, t), and
v(x, t) are all bounded.

Fig. 1. Tracking error e(x, t) = yo (x, t) − r(x, t) (for interpretation of
the references to color of the figure’s legend in this section, we refer to
the PDF version of this paper).

Fig. 2. Tracking error e(x, t) = yo (x, t) − r(x, t) in the radial direction
of θ = 1

4 π (for interpretation of the references to color of the figure’s
legend in this section, we refer to the PDF version of this paper).

Fig. 3. Evolution of w(γ, 1
4 π, t) under the polar coordinate (for inter-

pretation of the references to color of the figure’s legend in this section,
we refer to the PDF version of this paper).
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Fig. 4. Evolution of ŵ(γ, 1
4 π, t) under the polar coordinate (for inter-

pretation of the references to color of the figure’s legend in this section,
we refer to the PDF version of this paper).

Fig. 5. Evolution of v(γ, 1
4 π, t) under the polar coordinate (for interpre-

tation of the references to color of the figure’s legend in this section, we
refer to the PDF version of this paper).

VII. CONCLUDING REMARKS

In this paper, we present for the first time the ADRC for
performance output tracking to a boundary controlled multidi-
mensional PDE. A new infinite-dimensional ESO is proposed to
asymptotically estimates both unknown nonlinear internal un-
certainty and external disturbance for a multidimensional heat
equation. The speciality of this problem lies in the following
three points:

1) the uncertainty and control are not matched;
2) the boundary observation is almost minimal in the sense

that the signal makes system approximately observable
only;

3) the performance output is not used in the control design.
A servomechanism is designed by virtue of the measured

output and the reference signal after compensation of the total
disturbance from its estimation obtained from the ESO. The
following three major control objectives are achieved.

1) The performance output exponentially tracks the refer-
ence signal.

2) All internal-loops are bounded.
3) When the disturbance and reference signal belong to
L2(0,∞;L2(Γ0)) and H1(0,∞;L2(Γ1)), respectively,
the closed-loop is asymptotically stable.

In particular, The last point states that in the absence of dis-
turbance and reference, the closed loop is exponentially stable,
that is, the overall system is internally asymptotically stable.
In addition, the feedback control is shown to be robust to the
measurement noise.

An related important problem in the ADRC control of PDEs
arises when the control and the performance output are not
on the same part of the boundary (noncollocated). This is a
difficult problem because the control must go through the whole
spatial domain to exert its force from one part to another part of
the boundary. A possible approach could be the backstepping
design, which has been applied systematically to 1-D problems
in [18] and to the domain of Rn balls in [30]. Moreover it would
be more intriguing to develop ADRC configuration for general
framework of state-space representation of uncertain infinite-
dimensional systems to cover more 1-D and multidimensional
PDEs.

APPENDIX

WELL POSEDNESS OF OBSERVER (4)

Theorem A.1: Suppose that the input and measured output
of system (1) satisfy the following smoothness conditions:

u ∈ H1
loc(0,∞;L2(Γ1)), ym ∈ H1

loc(0,∞;L2(Γ0)).

Then, for any ŵ(·, 0) ∈ L2(Ω), there exists a unique solution
ŵ ∈ C(0,∞;L2(Ω)) to (4). Furthermore, if u ∈W 1,∞(0,∞;
L2(Γ1)), ym ∈W 1,∞(0,∞;L2(Γ0)), then

sup
t≥0

‖ŵ(·, t)‖L2 (Ω) <∞.

Proof: Let ŵ(x, t) denote the solution of (4) and write
ŵ(x, t) = Y (x, t) + Z(x, t), where Y (x, t) and Z(x, t) are de-
scribed, respectively, by

⎧
⎪⎨

⎪⎩

Yt(x, t) = ΔY (x, t), x ∈ Ω, t > 0

Y (x, t)|Γ0 = ym(x, t)|Γ0 , t ≥ 0
∂Y (x,t)
∂ν |Γ1 = 0, t ≥ 0

(87)

and
⎧
⎪⎨

⎪⎩

Zt(x, t) = ΔZ(x, t), x ∈ Ω, t > 0

Z(x, t)|Γ0 = 0, t ≥ 0
∂Z (x,t)
∂ν |Γ1 = u(x, t), t ≥ 0.

(88)

First, by Lemma III.2 and exchanging Γ0 and Γ1 , we can
obtain the well posedness of system (87): For any Y (·, 0) ∈
L2(Ω), system (87) admits a unique solution Y ∈ C(0,∞;L2

(Ω)) whence ym ∈ H1
loc(0,∞;L2(Γ0)), which is uniformly

bounded for all t ≥ 0, i.e, supt≥0 ‖Y (·, t)‖L2 (Ω) <∞ if ym ∈
W 1,∞(0,∞;L2(Γ0)).

Next we discuss the well posedness of system (88). To
this purpose, we introduce a Neumann map Υ0 ∈ L (Hs(Γ1),
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H3/2+s(Ω)) (see[23, p. 668]): Υ0(r) = z if and only if
{

Δz = 0 in Ω

z|Γ0 = 0, ∂ z
∂ν

∣
∣
Γ1

= u.

Since u ∈W 1,∞(0,∞;L2(Γ1)), it is obvious that z ∈W 1,∞(0,
∞;H3/2(Ω)) and

{
‖z(·, t)‖H 3 / 2 (Ω) ≤ C1‖u(·, t)‖L2 (Γ1 )

‖zt(·, t)‖H 3 / 2 (Ω) ≤ C1‖ut(·, t)‖L2 (Γ1 )

for some constant C1 > 0. By the Sobolev embedding theorem,
there exists a constant C2 > 0 such that

‖zt(·, t)‖L2 (Ω) = ‖zt(·, t)‖H 0 (Ω) ≤ C2‖zt(·, t)‖H 3 / 2 (Ω)

≤ C1C2‖ut(·, t)‖L2 (Γ1 ) .

Using the Neumann map Υ0(r) = z and setting Ẑ(x, t) =
Z(x, t) − z(x, t), we can verify that Ẑ(x, t) is governed by

⎧
⎪⎪⎨

⎪⎪⎩

Ẑt(x, t) = ΔẐ(x, t) − zt(x, t), x ∈ Ω, t > 0

Ẑ(x, t)|Γ0 = 0, t ≥ 0
∂ Ẑ (x,t)
∂ν |Γ1 = 0, t ≥ 0

which can be written as

d

dt
Ẑ(·, t) = AẐ(·, t) − zt(·, t)

where A = Δ is the usual Laplacian with D(A) =
{
φ ∈

H2(Ω) : φ|Γ0 = 0, ∂φ
∂ν |Γ1 = 0

}
. The rest proof is exactly the

same as the proof of Lemma III.2, from which we can conclude
that for u ∈ H1

loc(0,∞;L2(Γ1)) and Z(·, 0) ∈ L2(Ω), the sys-
tem (87) admits a unique solution Z ∈ C(0,∞;L2(Ω)), which
is uniformly bounded for all t ≥ 0 if u ∈W 1,∞(0,∞;L2(Γ1)),
i.e, supt≥0 ‖Z(·, t)‖L2 (Ω) <∞. �

In Theorem A.1, the output smoothness condition ym ∈
H1

loc(0,∞;L2(Γ0)) for open-loop system (1) can be further
guaranteed by some conditions of system (1), which is a pure
mathematical problem, less relevant to control problem dis-
cussed in this paper. We only address this problem for linear
case of f ≡ 0. The nonlinear case is much complicated.

Theorem A.2: Suppose that u ∈ L2
loc(0,∞;L2(Γ1)), d ∈

L2
loc(0,∞;L2(Γ0)), f : L2(Ω) → L2(Γ0) is continuous,

bounded, and satisfies the local Lipschitz condition in L2(Ω).
Then, for any w0 ∈ L2(Ω), the open-loop system (1) ad-
mits a unique local solution w ∈ C(0, τ ;L2(Ω)) for some
τ > 0. Moreover, if f(·) satisfies the global Lipschitz condi-
tion, then (1) admits a global solution w ∈ C(0,∞;L2(Ω))
and ym ∈ L2

loc(0,∞;L2(Γ0)). For the linear case of f ≡ 0,
if u ∈ H1

loc(0,∞;L2(Γ1)) and d ∈ H1
loc(0,∞;L2(Γ0)), then

ym ∈ H1
loc(0,∞;L2(Γ0)).

Proof: We first write system (1) as

d

dt
w(·, t) = A w(·, t) + B1 [f(w) + d(·, t)] + B2u(·, t)

(89)
where A = Δ is the Laplacian with domain D(A ) = {φ ∈
H2(Ω) : ∂φ

∂ν |∂Ω = 0}, and B1 = δ|Γ0 , B2 = δ|Γ1 are two Dirac
functions. It is well known that A = A ∗ and A generates

a C0-semigroup eA t = eA ∗t . Now we show that B1 and
B2 are admissible for eA t . By [29, Th. 4.4.3], it suffices to
show that B∗

1 and B∗
2 are admissible observation operators

for the adjoint semigroup eA ∗t . This amounts to showing that
a) B∗

1(A
∗ − I)−1 : L2(Ω) → L2(Γ1) and B∗

2(A
∗ − I)−1 :

L2(Ω) → L2(Γ0) are bounded, respectively; and b) for every
T ∗ > 0, there exists MT ∗ > 0 depending on T ∗ only such that
the system of the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w∗
t (x, t) = Δw∗(x, t), x ∈ Ω, t > 0

∂w ∗(x,t)
∂ν

∣
∣
∂Ω = 0, t ≥ 0

w∗(x, 0) = w∗
0(x), x ∈ Ω

y∗m = w∗(x, t)|∂Ω , t ≥ 0

(90)

satisfies

∫ T ∗

0

∫

∂Ω
(w∗(x, t))2dxdt ≤MT ∗‖w∗

0‖2
L2 (Ω) .

A simple computation shows that (A ∗ − I)−1 φ̂ = φ, and

B∗
1(A

∗ − I)−1 φ̂ = φ|Γ0 , B∗
2(A

∗ − I)−1 φ̂ = φ|Γ1 (91)

where φ satisfies the following PDEs

Δφ(x) − φ(x) = φ̂(x), x ∈ Ω,
∂φ

∂ν

∣
∣
∣
∣
∂Ω

= 0. (92)

From the elliptic partial differential equation theory, it is seen
that (92) admits a unique solution φ ∈ H2(Ω) and there exists
a constant Ĉ1 > 0 such that ‖φ‖H 2 (Ω) ≤ Ĉ1‖φ̂‖L2 (Ω) . By the
trace theorem, φ ∈ H1/2(Γ0), φ ∈ H1/2(Γ1), and there exists
a constant Ĉ2 > 0 such that max{‖φ‖H 1 / 2 (Γ0 ) , ‖φ‖H 1 / 2 (Γ1 )}
≤ Ĉ2‖φ‖H 2 (Ω) ≤ Ĉ1Ĉ2‖φ̂‖L2 (Ω) . This implies that B∗

1(A
∗

− I)−1 and B∗
2(A

∗ − I)−1 are bounded.
Since A ∗ generates a C0-semigroup on L2(Ω), system (90)

admits a unique solution w∗ ∈ C(0,∞;L2(Ω)) and there exist
two constants M̂, μ̂ > 0 such that

∫

Ω
(w∗(x, t))2dx ≤ M̂eμ̂t

∫

Ω
(w∗(x, 0))2dx. (93)

LetE(t) =
∫

Ω(w∗(x, t))2dx. DifferentiatingE(t) along the so-
lution of (90) gives Ė(t) = − ∫

Ω |∇w∗(x, t)|2dx, which yields

∫ T ∗

0

∫

Ω
|∇w∗(x, t)|2dxdt ≤ E(0). (94)

Since by the Sobolev embedding theorem and the trace theorem

∫

∂Ω
ψ2(x)dx ≤ C1‖ψ‖2

H 1 / 2 (∂Ω)

≤ C1C2‖ψ‖2
H 1 (Ω) = C1C2 [‖ψ‖2

L2 (Ω) + ‖|∇ψ|‖2
L2 (Ω)]

(95)
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for some C1 , C2 > 0, it follows from (93) and (94) that

∫ T ∗

0

∫

∂Ω
(w∗(x, t))2dxdt

≤ C1C2

[∫ T ∗

0

∫

Ω
(w∗(x, t))2dxdt+

∫ T ∗

0

∫

Ω
|∇w∗(x, t)|2dxdt

]

≤ C1C2 [M̂T ∗eμ̂T
∗
+ T ∗]‖w∗

0‖2
L2 (Ω) .

Hence, B1 and B2 are admissible for eA t . Therefore, similar to
the proof of [33, Proposition 1.2], one can get the local solution
and global solution of system (89).

Next, we claim ym ∈ L2
loc(0,∞;L2(Γ0)). Since w ∈

C(0,∞;L2(Ω)), for any fixed T > 0, ‖w(·, t)‖L2 (Ω) ≤MT for
some MT > 0. Since f(·) is bounded, ‖f(w)‖L2 (Γ0 ) ≤M0 for
someM0 > 0. LetV (t) = 1

2

∫

Ω w
2(x, t)dx. Finding V̇ (t) along

the solution of (1) gives

V̇ (t) = −
∫

Ω
[|∇w(x, t)|2dx+

∫

Γ0

w(x, t)(f(w) + d(x, t))dx

+
∫

Γ1

w(x, t)u(x, t)dx

≤ −
∫

Ω
[|∇w(x, t)|2dx+ κ

∫

∂Ω
w2(x, t)dx

+
1
2κ

∫

Γ0

[M 2
0 + d2(x, t)]dx+

1
4κ

∫

Γ1

u2(x, t)dx

where κ > 0 is chosen so that κC1C2 = 1/2. This produces

∫ T

0

∫

Ω
[|∇w(x, t)|2dx ≤ κ

∫ T

0

∫

∂Ω
w2(x, t)dx

+ V(0) +
T

2κ
M 2

0 +
1
2κ

‖d‖2
L2 (0,T ;L2 (Γ0))

+
1
4κ

‖u‖2
L2 (0,T ;L2 (Γ1 ))

which, together with (95) and ‖w(·, t)‖L2 (Ω) ≤MT , yields

∫ T

0

∫

∂Ω
w2(x, t)dxdt

≤ C1C2

[ ∫ T

0

∫

Ω
(w(x, t))2dxdt+

∫ T

0

∫

Ω
|∇w(x, t)|2dxdt

]

≤ C1C2M
2
T +

1
2

∫ T

0

∫

∂Ω
w2(x, t)dx+ C1C2V (0)

+
C1C2T

2κ
M 2

0 +
C1C2

2κ
‖d‖2

L2 (0,T ;L2 (Γ0 ))

+
C1C2

4κ
‖u‖2

L2 (0,T ;L2 (Γ1 )) .

This implies w|∂Ω ∈ L2
loc(0,∞;L2(∂Ω)) and, hence, ym ∈

L2
loc(0,∞;L2(Γ0)).
Finally, we claim the last assertion. When f ≡ 0, u ∈

H1
loc(0,∞;L2(Γ1)), and d ∈ H1

loc(0,∞;L2(Γ0)), we can see

that ẇ(x, t) is governed by
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẇt(x, t) = Δẇ(x, t), x ∈ Ω, t > 0
∂ ẇ (x,t)
∂ν |Γ0 = ḋ(x, t), t ≥ 0

∂ ẇ (x,t)
∂ν |Γ1 = u̇(x, t), t ≥ 0

ẏm = ẇ(x, t)|Γ0

(96)

where u̇ ∈ L2
loc(0,∞;L2(Γ1)) and ḋ ∈ L2

loc(0,∞;L2(Γ0)).
However, for system (96), we have shown that ẏm ∈
L2

loc(0,∞;L2(Γ0)). This gives ym ∈ H1
loc(0,∞;L2(Γ0)). �
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