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BOUNDARY FEEDBACK STABILIZATION FOR AN UNSTABLE
TIME FRACTIONAL REACTION DIFFUSION EQUATION∗
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Abstract. In this paper, we consider boundary feedback stabilization for unstable time fractional
reaction diffusion equations. New state feedback controls with actuation on one end are designed
by the backstepping method for both Dirichlet and Neumann boundary controls. By the Riesz
basis approach and the fractional Lyapunov method, we prove the existence and uniqueness and the
Mittag–Leffler stability for the closed-loop systems. For both cases, the observers and the observer-
based output feedback are designed to stabilize the systems.

Key words. time fractional reaction diffusion equation, boundary control, output feedback,
stabilization

AMS subject classifications. 35R11, 35K57, 37L15, 37B25, 47B06, 93D15, 93B51, 93B52

DOI. 10.1137/15M1048999

1. Introduction. Output feedback stabilization is one of the fundamental is-
sues in control theory. The key idea in output feedback design is that the control and
output should be as few in number as possible. For stabilization purpose, the control
should make the system stabilizable, and the output should make the system de-
tectable. However, stabilizability and detectability are very difficult to be checked for
systems described by partial differential equations (PDEs). They are replaced usually
by controllability and observability in PDEs. There are extensive studies on output
feedback stabilization for PDEs, yet few results are available even on state feedback
stabilization for fractional differential equations. In [22, 29], output feedback controls
are designed for finite dimensional fractional order systems by linear matrix inequal-
ity and the direct Lyapunov approach. For controllability and observability aspects,
there are some results for fractional PDEs. In [7], approximate controllability for frac-
tional diffusion equations with Dirichlet boundary control was considered. In [17, 21],
approximate controllability for abstract fractional equations was discussed, which can
be applied to fractional diffusion equations but is not applicable to boundary control
because the control operator there was supposed to be bounded while the boundary
control leads usually unbounded control operator. A first attempt on boundary sta-
bilization for time fractional diffusion-wave equations was investigated in [19], where
mainly numerical simulations were presented to illustrate the effectiveness of bound-
ary control and no rigorous mathematical proof was presented. The backstepping
method was first applied to control of fractional ordinary differential equations in [6].
In this respect, a recent development can be found in [5]. In [25], stabilization for
a one-dimensional wave equation via boundary fractional derivative control was dis-
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76 HUA-CHENG ZHOU AND BAO-ZHU GUO

cussed. Recently, stabilization for a fractional order linear system subject to input
saturation has been discussed in [24]. However, to the best of our knowledge, the
backstepping method has not been applied for fractional PDEs. In this paper, we
adopt the backstepping approach to achieve output feedback stabilization for a class
of unstable time fractional reaction diffusion equations.

We begin with the Mittag–Leffer function Eα(z) with α > 0, which is defined by
the following series representation, valid in the whole complex plane:

(1.1) Eα(z) =
∞∑
j=0

zj

Γ(αj + 1)
, α > 0, z ∈ C,

where Γ(·) is the gamma function. The two-parameter Mittag–Leffler function Eα,β(z),
α, β > 0 is defined by the following series representation:

(1.2) Eα,β(z) =
∞∑
j=0

zj

Γ(αj + β)
, α > 0, z ∈ C.

The most interesting properties of the Mittag–Leffer function are associated with
its asymptotic property as z → ∞ in various sectors of the complex plane. These
properties can be summarized as follows (see, e.g., [16, p. 41]). For 0 < α ≤ 1,

Eα(z) ∼ 1
α

exp(z1/α)−
∞∑
j=1

z−j

Γ(1− αj)
, |z| → ∞, |Argz| < απ

2
(1.3)

Eα(z) ∼ −
∞∑
j=1

z−j

Γ(1− αj)
, |z| → ∞, απ

2
< |Argz| ≤ π.(1.4)

The following Lemma 1.1 is brought from [27, Chapter 1, Theorem 1.6].

Lemma 1.1. For α ∈ (0, 2), arbitrary real number β, and π
2α < η < min{π, πα},

there exists an M > 0 such that

(1.5) |Eα,β(z)| ≤ M

1 + |z|
, η ≤ |arg(z)| ≤ π, |z| ≥ 0.

In this paper, we consider stabilization for the following time fractional reaction
diffusion equation (TFRDE) with Dirichlet boundary control and Neumann boundary
control, respectively:

(1.6)



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t)

+
∫ x

0
f(x, y)w(y, t)dy, x ∈ (0, 1), t ≥ 0,

wx(0, t) = −qw(0, t), t ≥ 0,

w(1, t) = u(t), t ≥ 0,

w(x, 0) = w0(x), 0 ≤ x ≤ 1,

yo(t) = w(0, t), t ≥ 0,
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STABILIZATION OF FRACTIONAL EQUATIONS 77

and

(1.7)



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t)

+
∫ x

0
f(x, y)w(y, t)dy, x ∈ (0, 1), t ≥ 0,

wx(0, t) = −qw(0, t), t ≥ 0,

wx(1, t) = u(t), t ≥ 0,

w(x, 0) = w0(x), 0 ≤ x ≤ 1,

yo(t) = w(1, t), t ≥ 0,

where q ≥ 0, α ∈ (0, 1] is the order of the fractional derivative, u(t) is the input
(control), yo(t) is the output (measurement), w(x, t) is the state, ε > 0 is the dif-
fusion coefficient, and g, λ ∈ C[0, 1] and f ∈ C(F), where F := {(x, y) ∈ R2 :
0 ≤ y ≤ x ≤ 1}. The C

0 D
α
t w(x, t) is the Caputo derivative, which is also called

Caputo–Dzhrbashyan derivative, and is a regularized fractional derivative of w(x, t)
with respect to time variable t, that is,

C
0 D

α
t w(x, t) =

1
Γ(1− α)

[
∂

∂t

∫ t

0
(t− s)−αw(x, s)ds− t−αw(x, 0)

]
.

The time fractional reaction diffusion equation is perhaps one of the most important
fractional order linear PDEs for description of the “memory” occurring in physics such
as plasma turbulence [4], where Caputo–Dzhrbashyan derivative accounts for the trap-
ping effect of the turbulent eddies. Fractional diffusion can also arise in finance [26]
and hydrology [3] and in the context of levy flights [32]. In a physical model presented
in [32], the fractional diffusion corresponds to a diverging jump length variance in the
random walk, and a fractional time derivative arises when the characteristic waiting
time diverges. It is well known that

lim
α→1−

C
0 D

α
t w(x, t) =

∂w(x, t)
∂t

.

In other words, when α = 1, the systems (1.6) and (1.7) are reduced to the classic
reaction diffusion equations. For more about fractional calculus and fractional PDEs,
we refer to the monographs [16, 20, 27] and the references therein. For notational sim-
plicity, we drop the domains of time t and spatial variable x for associated equations
in the rest of the paper.

The objective of this paper is to design output feedback controls to stabilize
systems (1.6) and (1.7), respectively. First of all, we present examples to show that
systems (1.6) and (1.7) can be unstable without control.

Example 1.2. Let g(x) = 0 on [0, 1], f(x, y) = 0 on F , λ(x) = π2ε
2 , and q = 0.

Let the initial value be w0(x) = sin(π2 (x − 1)). Then, system (1.6) without control
admits a solution w(x, t) = Eα(π

2ε
4 tα) sin(π2 (x−1)) satisfying ‖w(·, t)‖L2(0,1) →∞ as

t→∞.

Example 1.3. Let g(x) = 0 on [0, 1], f(x, y) = 0 on F , λ(x) = 5π2ε
4 , and q = 0.

Let the initial value be w0(x) = cos(πx). Then, system (1.7) without control admits
a solution w(x, t) = Eα(π

2ε
4 tα) cos(πx) satisfying also ‖w(·, t)‖L2(0,1) →∞ as t→∞.

In general, for large positive q, λ(x), g(x), or f(x, y), the systems (1.6) and (1.7)
are unstable. This is because the operator A given by
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78 HUA-CHENG ZHOU AND BAO-ZHU GUO
(Aφ)(x) = εφ′′(x) + λ(x)φ(x) + g(x)φ(0) +

∫ x

0
f(x, y)φ(y)dy,

D(A) = {φ ∈ H2(0, 1)|φ′(0) = −qφ(0), φ(1) = 0}, or

D(A) = {φ ∈ H2(0, 1)|φ′(0) = −qφ(0), φ′(1) = 0}

has at least one positive eigenvalue whenever q, λ(x), g(x), or f(x, y) are sufficiently
large.

Definition 1.4. (Mittag–Leffler stability). The solution of (1.6) or (1.7) is said
to be Mittag–Leffler stable if

‖w(·, t)‖L2(0,1) ≤ {m(‖w(·, 0)‖L2(0,1))Eα(−λtα)}b,

where α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(s) ≥ 0, and m(s) is locally Lipschitz on
s ∈ R with Lipschitz constant m0.

The Mittag–Leffler stability implies the asymptotic stability. This is because by (1.4)
and Lemma 1.1,

Eα(−λtα) ≤ M

1 + λtα
for all t ≥ 0 and Eα(−λtα) = O

(
1
λtα

)
as t→∞.(1.8)

Thus, the Mittag–Leffler stability is actually polynomial stability when α ∈ (0, 1).
From (1.8), we can see that the parameter λ can be used to regulate the convergence
speed.

Consider the following Cauchy problem in a Banach space H:{
C
0 D

α
t X(t) = A0X(t),

X(0) = x,
(1.9)

where A0 is a closed linear operator in H.

Definition 1.5. A function X ∈ C(R+;H) is called a strong solution to (1.9) if
X ∈ C(R+;D(A0)),

∫ t
0 (X(s) − X(0))/(t − s)αds ∈ C1(R+;H), and (1.9) holds on

R+. The problem (1.9) is called well-posed if for any x ∈ D(A0) there exists a unique
strong solution X(t, x) of (1.9), and xn → 0 as n → ∞ implies X(t, xn) → 0 as
n→∞ in H, uniformly on compact intervals.

The following lemma which can be found in [2] plays an important role in estab-
lishing the well-posedness of fractional PDEs.

Lemma 1.6. Suppose that α ∈ (0, 1). Let A0 be a closed linear operator densely
defined in a Banach space H. If A0 generates a C0-semigroup on H, then Cauchy
problem (1.9) admits a unique strong solution X ∈ C(0,∞;H).

The study of the stabilization of fractional time derivative PDEs has just begun
to catch researchers’ attention. This paper provides one of the early results. Precisely,
the main contributions of this paper are (1) to introduce a backstepping method for
fractional reaction and diffusion equations which has potential applications to other
equations and (2) to achieve the Mittag–Leffler stability for the closed-loop systems
for both the Dirichlet control and the Neumann control problems by utilizing the
measured outputs only. We proceed as follows. In section 2, we consider stabilization
for an unstable time fractional reaction diffusion equation with the Dirichlet boundary
control. Section 3 is about the stabilization via the Neumann boundary control. Some
concluding remarks are presented in section 4.
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STABILIZATION OF FRACTIONAL EQUATIONS 79

Original TFRDE system

wx(0, t) = −qw(0, t)

w(1, t) = u(t)

Observer TFRDE system

ŵ(x, t) to be designed

�

w(0, t)

Controller
u(t) -

-

6

ŵ(x, t)

Fig. 1. Block diagram of output feedback for time fractional reaction diffusion equation with
Dirichlet boundary control (1.6).

2. Backstepping with Dirichlet boundary control. In this section, we ap-
ply the backstepping approach to design an output feedback stabilizing for system
(1.6) as depicted in Figure 1 in the sense of Mittag–Leffler stability.

2.1. Target system. We introduce a target system,

(2.1)


C
0 D

α
t z(x, t) = εzxx(x, t)− cz(x, t),

zx(0, t) = z(1, t) = 0,

z(x, 0) = z0(x),

where the parameter c is used to regulate the convergence speed, which is seen from
Lemma 2.1.

Lemma 2.1. For any initial value z0 ∈ L2(0, 1), system (2.1) admits a unique
solution z ∈ C(0,∞;L2(0, 1)). Moreover, the solution is Mittag–Leffler stable in
L2(0, 1):

(2.2) ‖z(·, t)‖2L2(0,1) ≤ E
2
α

(
−
[
c+ ε

π2

4

]
tα
)
‖z0‖2L2(0,1).

Proof. Define the operator AD : D(AD)(⊂ L2(0, 1))→ L2(0, 1) as follows:

(2.3)

{
[ADf ](x) = εf ′′(x)− cf(x),

D(AD) = {f ∈ H2(0, 1)|f ′(0) = 0, f(1) = 0}.

It is well known that AD is a generator of C0-semigroup. By Lemma 1.6, we know
that (2.1) has a unique solution z ∈ C(0,∞;L2(0, 1)). Moreover, a simple compu-
tation shows that AD is self-adjoint in L2(0, 1) with the eigenvalues {µj} and the
corresponding eigenfunctions {ej(x)} given by

(2.4) µj = −c− ε
(
j +

1
2

)2
π2, ej(x) =

√
2 sin

((
j +

1
2

)
π(x− 1)

)
, j = 0, 1, 2, . . . .

Moreover, {ej(x)} forms an orthnormal basis for L2(0, 1). Therefore, the solution of
(2.1) can be represented as

z(x, t) =
∑
j≥0

ϕj(t)ej(x) with z0(x) =
∑
j≥0

ajej(x),
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80 HUA-CHENG ZHOU AND BAO-ZHU GUO

where {aj} ∈ l2 and ϕj ∈ C(0,∞; R) satisfies the following linear fractional differential
equation:

C
0 D

α
t ϕj(t) = µjϕj(t), ϕj(0) = aj .

By [16, Chapter 4, Theorem 4.3], ϕj(t) = ajEα(µjtα). Thus,

(2.5) z(x, t) =
∑
j≥0

ajEα(µjtα)ej(x).

Moreover, since {ej(x)} is an orthonormal basis for L2(0, 1), it follows from (2.5) that

‖z(·, t)‖2L2(0,1)=
∑
j≥0

a2
jE

2
α(µjtα)≤E2

α(µ1t
α)
∑
j≥0

a2
j=E

2
α

(
−
[
c+ε

π2

4

]
tα
)
‖z0‖2L2(0,1).

This completes the proof of the lemma.

Remark 2.2. For stability of system (2.1), we can also apply alternatively frac-
tional version of the Lyapunov method without solving equation (2.1). Actually, by
following inequality [1, Lemma 1],

C
0 D

α
t z

2(t) ≤ 2z(t)C0 D
α
t z(t) for all z ∈ C(0,∞)

and Wirtinger’s inequality [15, p. 182]∫ 1

0
f2(x)dx ≤ 4

π2

∫ 1

0
(f ′(x))2dx for f ∈ H1(0, 1) with f ′(0) = f(1) = 0,

we have

C
0 D

α
t

∫ 1

0
z2(x, t)dx ≤ 2

∫ 1

0
z(x, t)C0 D

α
t z(x, t)dx

= 2
∫ 1

0
z(x, t)[εzxx(x, t)− cz(x, t)]dx

= −2ε
∫ 1

0
z2
x(x, t)dx− 2c

∫ 1

0
z2(x, t)dx ≤ −2

(
c+ ε

π2

4

)∫ 1

0
z2(x, t)dx.

It follows from the fractional Lyapunov method [23, Theorem 5] that the solution of
(2.1) is Mittag–Leffler stable with

(2.6) ‖z(·, t)‖2L2(0,1) ≤ Eα
(
−2
[
c+ ε

π2

4

]
tα
)
‖z0‖2L2(0,1).

By (1.8), for sufficiently large t, we have

E2
α

(
−
[
c+ ε

π2

4

]
tα
)
< Eα

(
−2
[
c+ ε

π2

4

]
tα
)
.

This shows that, comparing to (2.6), the estimation (2.2) is better and cannot be
improved since for z0(x) = e1(x),

‖z(·, t)‖2L2(0,1) = E2
α

(
−
[
c+ ε

π2

4

]
tα
)
‖z0‖2L2(0,1).
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STABILIZATION OF FRACTIONAL EQUATIONS 81

Remark 2.3. When α = 1, the target system (2.1) becomes a classic heat equa-
tion, which is exponentially stable. This is because by (1.1) and (2.2),

‖z(·, t)‖2L2(0,1) ≤ E
2
1

(
−
[
c+ ε

π2

4

]
t1
)
‖z0‖2L2(0,1) = e

−2
[
c+επ2

4

]
t‖z0‖2L2(0,1).

However, when α ∈ (0, 1), the system (2.1) is never exponentially stable but only
Mittag–Leffler stable. Furthermore, by Lemma 1.1,

‖z(·, t)‖2L2(0,1) ≤ E
2
α

(
−
[
c+ ε

π2

4

]
tα
)
‖z0‖2L2(0,1) ≤

1(
1 +

[
c+ επ

2

4

]
tα
)2 ‖z0‖2L2(0,1).

This is exactly the polynomial stability, and the parameter c is used to regulate the
speed of convergence.

Remark 2.4. Generally speaking, we cannot expect exponential stability for a
fractional PDE. Actually, even for fractional ordinary differential equations, since
there is a memory effect in the equation due to the tail of time fractional derivative,
there is no exponential stability. A typically example can be constructed as

(2.7) C
0 D

α
t x(t) = −λx(t), x(0) = x0

with λ > 0. The solution of (2.7) is explicitly found to be x(t) = x0Eα(−λtα), which,
by (1.8), is asymptotically stable but not exponentially stable when α ∈ (0, 1).

2.2. Backstepping transform via state feedback. To find a state feedback
control law for system (1.6), we introduce a transformation w → z [31],

(2.8) z(x, t) = w(x, t)−
∫ x

0
k(x, y)w(y, t)dy,

to transform system (1.6) into the target system (2.1), for which the stability is clearly
presented in Lemma 2.1. When the transformation is invertible, stability for original
system (1.6) can be obtained from the target system (2.1).

Taking Caputo’s fractional derivative for (2.8) and using the first equation of
(1.6), through performing the integration by parts, we obtain

C
0 D

α
t z(x, t) = C

0 D
α
t w(x, t)−

∫ x

0
k(x, y)C0 D

α
t w(y, t)dy

= C
0 D

α
t w(x, t)−

∫ x

0
k(x, y)

(
εwyy(y, t) + λ(y)w(y, t) + g(y)w(0, t)

+
∫ y

0
f(y, ξ)w(x, ξ)dξ

)
dy

= C
0 D

α
t w(x, t)− ε

(
k(x, x)wx(x, t)− k(x, 0)wx(0, t)

− [ky(x, x)w(x, t)−ky(x, 0)w(0, t)]
)
−
∫ x

0
(kyy(x, y)+λ(y)k(x, y))w(y, t)dy

− w(0, t)
∫ x

0
k(x, y)g(y)dy −

∫ x

0
w(y, t)

(∫ x

y

k(x, ξ)f(ξ, y)dξ
)

dy(2.9)

and

zxx(x, t) = wxx(x, t)− d

dx
(k(x, x))w(x, t)− k(x, x)wx(x, t)

− kx(x, x)w(x, t)−
∫ x

0
kxx(x, y)w(y, t)dy.

(2.10)
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Substituting (2.9) and (2.10) into (2.1), it follows that the kernel function k(x, y)
should satisfy the following PDE:

(2.11)



εkxx(x, y)−εkyy(x, y)=(λ(y) + c)k(x, y)− f(x, y)+
∫ x

y

k(x, ξ)f(ξ, y)dξ,

εky(x, 0) + εqk(x, 0) = g(x)−
∫ x

0
k(x, y)g(y)dy,

k(x, x) = −q − 1
2ε

∫ x

0
(λ(y) + c)dy.

By [30, Theorem 2.1], the PDE (2.11) has a unique solution k ∈ C2(F̄).
To find the inverse of transform (2.8), suppose

(2.12) w(x, t) = z(x, t) +
∫ x

0
l(x, y)z(y, t)dy.

Similarly, taking Caputo’s fractional derivative for (2.12) and using the first equation
of (2.1) through performing the integration by parts, we have

C
0 D

α
t w(x, t) = C

0 D
α
t z(x, t) +

∫ x

0
l(x, y)C0 D

α
t z(y, t)dy

= C
0 D

α
t z(x, t) +

∫ x

0
l(x, y)

(
εzxx(y, t)− cz(y, t)

)
dy

= ε
(
l(x, x)zx(x, t)− l(x, 0)zx(0, t)− [ly(x, x)z(x, t)− ly(x, 0)z(0, t)]

)
+
∫ x

0
(lyy(x, y)− c)z(y, t)dy + εzxx(x, t)− cz(x, t)(2.13)

and

wxx(x, t) = zxx(x, t) +
d

dx
(l(x, x))z(x, t) + l(x, x)zx(x, t)

+ lx(x, x)z(x, t) +
∫ x

0
lxx(x, y)z(y, t)dy.(2.14)

Substituting (2.12), (2.13), and (2.14) into (1.6), it follows that the kernel function
l(x, y) satisfies the following PDE:

(2.15)



εlxx(x, y)− εlyy(x, y) =−(λ(x) + c)l(x, y)− f(x, y)−
∫ x

y

l(ξ, y)f(x, ξ)dξ,

εly(x, 0) + εql(x, 0) = g(x),

l(x, x) = −q − 1
2ε

∫ x

0
(λ(y) + c)dy.

Once again, by [30, Theorem 2.2], the PDE (2.15) has a unique solution l ∈ C2(F̄).
Now, we design a state feedback for system (1.6) as follows:

(2.16) u(t) =
∫ 1

0
k(1, y)w(y, t)dy.
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STABILIZATION OF FRACTIONAL EQUATIONS 83

Under this state feedback, the closed loop of system (1.6) is



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t) +

∫ x

0
f(x, y)w(x, y)dy,

wx(0, t) = −qw(0, t),

w(1, t) =
∫ 1

0
k(1, y)w(y, t)dy,

w(x, 0) = w0(x),

(2.17)

which is shown to be equivalent to the target system (2.1). We thus have
Proposition 2.5.

Proposition 2.5. For any initial value w0 ∈ L2(0, 1), the closed-loop system
(2.17) admits a unique solution w ∈ C(0,∞;L2(0, 1)) given by

w(x, t) =
∑
j≥0

ajEα

(
−

[
c+ ε

(
j +

1
2

)2

π2

]
tα

)
φj(x),

where

aj =
√

2
∫ 1

0

(
w0(x)−

∫ x

0
k(x, y)w0(y)dy

)
sin
((

j +
1
2

)
π(x− 1)

)
dx, j ≥ 0,

φj(x) =
√

2 sin
((

j+
1
2

)
π(x−1)

)
+
√

2
∫ x

0
l(x, y) sin

((
j+

1
2

)
π(y−1)

)
dy, j ≥ 0,

and hence is Mittag–Leffler stable in L2(0, 1).

2.3. Observer design. To design an output feedback control, we need to recover
the state w(x, t) of system (1.6), which is used in the feedback control (2.16), through
an observer.

We design the following observer for system (1.6):

(2.18)



C
0 D

α
t ŵ(x, t) = εŵxx(x, t) + λ(x)ŵ(x, t) + p1(x)(ŵ(0, t)− yo(t))

+g(x)yo(t) +
∫ x

0
f(x, y)ŵ(x, y)dy,

ŵx(0, t) = −qyo(t) + p0(ŵ(0, t)− yo(t)),

ŵ(1, t) = u(t),

ŵ(x, 0) = ŵ0(x).

This observer is designed similarly as that in [31] for a parabolic system.
Let w̃(x, t) = ŵ(x, t)−w(x, t) be the observer error. Then w̃(x, t) is governed by

the following fractional PDE:


C
0 D

α
t w̃(x, t) = εw̃xx(x, t) + λ(x)w̃(x, t) + p1(x)w̃(0, t) +

∫ x

0
f(x, y)w̃(x, y)dy,

w̃x(0, t) = p0w̃(0, t), w̃(1, t) = 0,

w̃(x, 0) = ŵ0(x)− w0(x).

(2.19)
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It is noticed that the observer gains p1(x) and p0 should be designed to stabilize
system (2.19).

We investigate the stability of (2.19) by similar integral transformation for the
state feedback. The difference is that here we introduce z̃ → w̃ by

w̃(x, t) = z̃(x, t)−
∫ x

0
p(x, y)z̃(y, t)dy,(2.20)

which is expected to transform (2.19) into the following Mittag–Leffler stable system
for c̃ > −επ

2

4 : 
C
0 D

α
t z̃(x, t) = εz̃xx(x, t)− c̃z̃(x, t),

z̃x(0, t) = z̃(1, t) = 0,

z̃(x, 0) = z̃0(x).

(2.21)

The parameter c̃ is set to regulate the observer convergence speed, which is seen from
Lemma 2.1 and is generally different from the analogous coefficient c in control design
if one expects convergence of the closed-loop system via output feedback to be as
good as via state feedback, referred to by (2.31) later.

Substituting (2.20) into (2.19), we obtain the following fractional PDE for z̃(x, t):

C
0 D

α
t z̃(x, t) =

∫ x

0
p(x, y)C0 D

α
t z̃(y, t)dy + ε

(
z̃(x, t)−

∫ x

0
p(x, y)z̃(y, t)dy

)
xx

+ λ(x)
(
z̃(x, t)−

∫ x

0
p(x, y)z̃(y, t)dy

)
+ p1(x)z̃(0, t)

+
∫ x

0
f(x, y)

(
z̃(y, t)−

∫ y

0
p(y, ξ)z̃(ξ, t)dξ

)
dy

= εz̃xx(x, t) + ε

∫ x

0
p(x, y)z̃yy(y, t)dy − ε

(∫ x

0
p(x, y)z̃(y, t)dy

)
xx

−
∫ x

0
(c̃+ λ(x))p(x, y)z̃(y, t)dy

+
∫ x

0
z̃(y, t)

(
f(x, y)−

∫ x

y

f(x, ξ)p(ξ, y)dξ
)

dy+λ(x)z̃(x, t)+p1(x)z̃(0, t)

= εz̃xx(x, t)+
∫ x

0
[εpyy(x, y)−εpxx(x, y)−c̃p(x, y)− λ(x)p(x, y)]z̃(y, t)dy

+
∫ x

0
z̃(y, t)

(
f(x, y)−

∫ x

y

f(x, ξ)p(ξ, y)dξ
)

dy+(εpy(x, 0)+p1(x))z̃(0, t)

+
(
λ(x)− 2ε

d

dx
p(x, x)

)
z̃(x, t)− εz̃x(0, t)p(x, 0)(2.22)

and

z̃x(0, t) = w̃x(0, t) + p(0, 0)z̃(0, t) = w̃x(0, t) + p(0, 0)w̃(0, t)
= (p0 + p(0, 0))w̃(0, t),

z̃(1, t) =
∫ 1

0
p(1, y)z̃(y, t)dy.(2.23)
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Comparing the fractional PDE (2.22) and boundary conditions (2.23) with (2.21), it
follows that p(x, y) needs to satisfy the following PDE:

εpyy(x, y)− εpxx(x, y) =(c̃+ λ(x))p(x, y)− f(x, y) +
∫ x

y

f(x, ξ)p(ξ, y)dξ,

2ε
d

dx
p(x, x) = λ(x) + c̃,

p(1, y) = 0,

(2.24)

and the observer gains should be chosen as

p1(x) = −εpy(x, 0), p0 = −p(0, 0).(2.25)

Once again we seek the inverse of transformation (2.20) by setting

z̃(x, t) = w̃(x, t) +
∫ x

0
r(x, y)w̃(y, t)dy.(2.26)

Notice that the form of system (2.1) and (2.21) and the form of system (1.6) and
(2.19) are similar to the system (2.1) converting into system (1.6) by replacing g(x),
q, and c in (2.15) with p1(x), −p0, and c̃, respectively. We then have that r(x, y)
satisfies the following PDE:

εrxx(x, y)−εryy(x, y)=−(λ(x) + c̃)r(x, y)−f(x, y)−
∫ x

y

r(ξ, y)f(x, ξ)dξ,

εry(x, 0)− εp0r(x, 0) = p1(x),

r(x, x) = p0 −
1
2ε

∫ x

0
(λ(y) + c̃)dy,

(2.27)

where p1(x) and p0 are given by (2.25).
It is shown in [30, Theorem 4.1] that (2.24) and (2.27) have a unique solution

p, r ∈ C2(F̄). With the transforms (2.20) and (2.26), system (2.19) is equivalent
to system (2.21). Thus, we have immediately the following convergence for observer
(2.18).

Theorem 2.6. For any control input u ∈ L2
loc(0,∞) and initial value (w0, ŵ0) ∈

L2(0, 1) × L2(0, 1), the observer error system (2.19) admits a unique solution w̃ ∈
C(0,∞;L2(0, 1)) given by

w̃(x, t) =
∑
j≥0

ajEα

(
−

[
c̃+ ε

(
j +

1
2

)2

π2

]
tα

)
φj(x),(2.28)

where

aj=
√

2
∫ 1

0

(
(ŵ0(x)−w0(x)) +

∫ x

0
r(x, y)(ŵ0(y)−w0(y))dy

)
sin
((

j+
1
2

)
π(x−1)

)
dx,

φj(x)=
√

2 sin
((

j+
1
2

)
π(x−1)

)
−
√

2
∫ x

0
p(x, y) sin

((
j+

1
2

)
π(y−1)

)
dy, j ≥ 0,

and hence is Mittag–Leffler stable in L2(0, 1).
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2.4. Observer-based output feedback. Since we obtain an approximated
state ŵ(x, t) from the output by observer (2.18), it follows from the state feedback
(2.16) that an observer-based feedback should be designed naturally as

(2.29) u(t) =
∫ 1

0
k(1, y)ŵ(y, t)dy.

Under feedback (2.29), we have the closed-loop system of (1.6):



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t) +

∫ x

0
f(x, y)w(x, y)dy,

wx(0, t) = −qw(0, t),

w(1, t) =
∫ 1

0
k(1, y)ŵ(y, t)dy,

C
0 D

α
t ŵ(x, t) = εŵxx(x, t) + λ(x)ŵ(x, t) + p1(x)(ŵ(0, t)− yo(t))

+g(x)yo(t) +
∫ x

0
f(x, y)ŵ(x, y)dy,

ŵx(0, t) = −qyo(t) + p0(ŵ(0, t)− yo(t)),

ŵ(1, t) =
∫ 1

0
k(1, y)ŵ(y, t)dy,

w(x, 0) = w0(x), ŵ(x, 0) = ŵ0(x).

(2.30)

Theorem 2.7. For any initial value (w0, ŵ0) ∈ H := L2(0, 1) × L2(0, 1), the
closed-loop system (2.30) admits a unique solution (w, ŵ) ∈ C(0,∞;L2(0, 1)×L2(0, 1)).
Moreover, there exists a constant C > 0 such that

‖(w(·, t), ŵ(·, t))‖H ≤ CEα
(
−min

{[
c+ ε

π2

4

]
,

[
c̃+ ε

π2

4

]}
tα
)
‖(w0, ŵ0)‖H.

(2.31)

Proof. Since w̃(x, t) = ŵ(x, t) − w(x, t) is an observer error, it is obvious that
system (2.30) is equivalent to the following system:



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t) +

∫ x

0
f(x, y)w(x, y)dy,

wx(0, t) = −qw(0, t),

w(1, t) =
∫ 1

0
k(1, y)(w(y, t) + w̃(y, t))dy,

C
0 D

α
t w̃(x, t) = εw̃xx(x, t) + λ(x)w̃(x, t) + p1(x)w̃(0, t) +

∫ x

0
f(x, y)w̃(x, y)dy,

w̃x(0, t) = p0w̃(0, t), w̃(1, t) = 0,

w(x, 0) = w0(x), w̃(x, 0) = ŵ0(x)− w0(x).

(2.32)
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Under transforms (2.8) and (2.26), (2.32) is equivalent to the following system:

C
0 D

α
t z(x, t) = εzxx(x, t)− cz(x, t),

zx(0, t) = 0,

z(1, t) =
∫ 1

0
k(1, y)

(
z̃(y, t)−

∫ x

0
p(y, ξ)z̃(ξ, t)dξ

)
dy,

C
0 D

α
t z̃(x, t) = εz̃xx(x, t)− c̃z̃(x, t),

z̃x(0, t) = z̃(1, t) = 0,

z(x, 0) = z0(x), z̃(x, 0) = z̃0(x).

(2.33)

Define the operator AD : D(AD)(H)→ H as follows:

[AD(f, g)](x) = (εf ′′(x)− cf(x), εg′′(x)− c̃g(x)),

D(AD) =

{
(f, g) ∈ H2(0, 1)×H2(0, 1) : f ′(0) = 0, g′(0) = 0, g(1) = 0,

f(1) =
∫ 1

0
k(1, y)

(
g(y)−

∫ y

0
p(y, ξ)g(ξ)dξ

)
dy

}
.

(2.34)

We compute the eigenvalues and the corresponding eigenfunctions of AD. Solve
AD(f, g) = µ(f, g), where µ ∈ σ(AD) and (f, g) ∈ D(AD), to obtain

εf ′′(x)− cf(x) = µf(x),

εg′′(x)− c̃g(x) = µg(x),

f ′(0) = 0, g′(0) = 0, g(1) = 0,

f(1) =
∫ 1

0
k(1, y)

(
g(y)−

∫ y

0
p(y, ξ)g(ξ)dξ

)
dy.

(2.35)

There are two cases.
Case I: g(x) ≡ 0. In this case, (2.35) becomes{

εf ′′(x)− cf(x) = µf(x),

f ′(0) = 0, f(1) = 0,
(2.36)

which has nontrivial solutions (µ1n, f1n(x)):

µ1n = −c− ε
(
nπ +

π

2

)2
, f1n(x) = cos

(
nπ +

π

2

)
x, n = 0, 1, 2, . . . .(2.37)

Hence, (µ1n, F1n(x)) = (µ1n, (f1n, 0)) is an eigenpair of AD.
Case II: g(x) 6= 0. In this case,{

εg′′(x)− c̃g(x) = µg(x),

g′(0) = 0, g(1) = 0,
(2.38)

which has nontrivial solutions (µ2n, g2n(x)):

µ2n = −c̃− ε
(
nπ +

π

2

)2
, g2n(x) = cos

(
nπ +

π

2

)
x, n = 0, 1, 2, . . . .(2.39)

D
ow

nl
oa

de
d 

01
/1

3/
18

 to
 2

18
.7

6.
29

.1
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Substituting (µ2n, g2n(x)) into the equation
εf ′′(x)− cf(x) = µ2nf(x),

f ′(0) = 0, f(1) =
∫ 1

0
k(1, y)

(
g2n(y)−

∫ y

0
p(y, ξ)g2n(ξ)dξ

)
dy,

(2.40)

we have the solution f2n(x) given by

(2.41)

f2n(x) =

∫ 1

0
k(1, y)

(
cos
(
nπ +

π

2

)
y −

∫ y

0
p(y, ξ) cos

(
nπ +

π

2

)
ξdξ
)

dy

cos
(√

(nπ + π
2 )2 + c̃−c

ε

)

× cos

(√(
nπ +

π

2

)2
+
c̃− c
ε

)
x.

We thus have another eigenpair: (µ2n, F2n(x)) = (µ2n, (f2n(x), g2n(x))) of AD.
Now we show that {F1n(x), F2n(x)} forms a Riesz basis for L2(0, 1) × L2(0, 1).

First, since {cos(n+ π
2 )x, n = 0, 1, 2, . . .} forms a Riesz (orthogonal) basis for L2(0, 1),

{F ∗1n(x) = (cos(n+π
2 )x, 0), n = 0, 1, 2, . . .}∪{F2n(x) = (0, cos(n+π

2 )x), n = 0, 1, 2, . . .}
forms a Riesz basis for L2(0, 1)× L2(0, 1). Moreover,
∞∑
n=0

‖F1n(x)− F ∗1n(x)‖2H +
∞∑
n=0

‖F2n(x)− F ∗2n(x)‖2H

=
∞∑
n=0

∣∣∣∣∫ 1

0
k(1, y)

(
cos
(
nπ +

π

2

)
y −

∫ y

0
p(y, ξ) cos

(
nπ +

π

2

)
ξdξ
)

dy
∣∣∣∣2

∥∥∥∥∥∥
cos
√

(nπ + π
2 )2 + c̃−c

ε x

cos
√(

nπ + π
2

)2 + c̃−c
ε

∥∥∥∥∥∥
2

L2(0,1)

≤
∞∑
n=0

2
∣∣∣∣∫ 1

0
k(1, y)

(
cos
(
nπ +

π

2

)
y −

∫ y

0
p(y, ξ) cos

(
nπ +

π

2

)
ξdξ
)

dy
∣∣∣∣2

1 + cos
(

2
√

(nπ + π
2 )2 + c̃−c

ε

)

=
∞∑
n=0

2
∣∣∣∣∫ 1

0
k(1, y) cos

(
nπ+

π

2

)
ydy−

∫ 1

0

(∫ 1

y

k(1, ξ)p(ξ, y)dξ
)

cos
(
nπ+

π

2

)
ydy

∣∣∣∣2
1 + cos

(
2
√

(nπ + π
2 )2 + c̃−c

ε

) .

Since

lim
n→∞

ε

(
2

√(
nπ +

π

2

)2
+
c̃− c
ε

+ (2nπ + π)

) 1 + cos
(

2
√

(nπ + π
2 )2 + c̃−c

ε

)
4(c̃− c)

= lim
n→∞

1 + cos
(

2
√(

nπ + π
2

)2 + c̃−c
ε

)
2
√(

nπ + π
2

)2 + c̃−c
ε − (2nπ + π)

= 2,
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there exists a positive integer N > c̃−c
ε such that for all n ≥ N + 1,

1 + cos(2

√(
nπ +

π

2

)2
+
c̃− c
ε

) ≥ 4(c̃− c)

ε

(
2
√(

nπ + π
2

)2 + c̃−c
ε + (2nπ + π)

) .
It follows that

∞∑
n=0

‖F1n(x)− F ∗1n(x)‖2H +
∞∑
n=0

‖F2n(x)− F ∗2n(x)‖2H

≤
∞∑
n=0

4
∣∣∣∣∫ 1

0
k(1, y)cos

(
nπ+

π

2

)
ydy

∣∣∣∣2+ ∣∣∣∣∫ 1

0

(∫ 1

y

k(1, ξ)p(ξ, y)dξ
)

cos
(
nπ +

π

2

)
ydy

∣∣∣∣2
1 + cos

(
2
√(

nπ + π
2

)2 + c̃−c
ε

)

≤
N∑
n=0

4
∣∣∣∣∫ 1

0
k(1, y)cos

(
nπ+

π

2

)
ydy

∣∣∣∣2+ ∣∣∣∣∫ 1

0

(∫ 1

y

k(1, ξ)p(ξ, y)dξ
)

cos
(
nπ+

π

2

)
ydy

∣∣∣∣2
1 + cos

(
2
√(

nπ + π
2

)2 + c̃−c
ε

)

+ε
∞∑

n=N+1

5
(
nπ +

π

2

)2
∣∣∣∣∫ 1

0
k(1, y) cos

(
nπ +

π

2

)
ydy

∣∣∣∣2

+ε
∞∑

n=N+1

5
(
nπ +

π

2

)2
∣∣∣∣∫ 1

0

(∫ 1

y

k(1, ξ)p(ξ, y)dξ
)

cos
(
nπ +

π

2

)
ydy

∣∣∣∣2 .
Since k, p ∈ C2(F), k(1, ·) ∈ C1[0, 1] and

∫ 1
y
k(1, ξ)p(ξ, y)dξ ∈ C1[0, 1], by [18, p. 25,

Theorem], {(
nπ +

π

2

)∫ 1

0
k(1, y) cos

(
nπ +

π

2

)
ydy

}∞
n=0
∈ l2

and {(
nπ +

π

2

)∫ 1

0

(∫ 1

y

k(1, ξ)p(ξ, y)dξ
)

cos
(
nπ +

π

2

)
ydy

}∞
n=0

∈ l2.

By the classical Bari theorem, {F1n(x), F2n(x), n = 0, 1, 2, . . .} forms a Riesz basis for
L2(0, 1)×L2(0, 1). So AD generates a C0-semigroup in L2(0, 1)×L2(0, 1). Next, the
solution of (2.33) can be expressed as

(z(x, t), z̃(x, t)) =
∑
n≥0

ϕ1n(t)F1n(x) + ϕ2n(t)F2n(x)(2.42)

and the initial value

(z0(x), z̃0(x)) =
∑
n≥0

a1nF1n(x) + a2nF2n(x),(2.43)
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90 HUA-CHENG ZHOU AND BAO-ZHU GUO

where {a1n}, {a2n} ∈ l2, and ϕ1n, ϕ2n ∈ C(0,∞; R) satisfy the following linear frac-
tional differential equations

C
0 D

α
t ϕ1n(t) = µ1nϕ1n(t), C

0 D
α
t ϕ2n(t) = µ2nϕ2n(t), n = 0, 1, 2, . . . ,(2.44)

with the initial values

ϕ1n(0) = a1n, ϕ2n(0) = a2n, n = 0, 1, 2, . . . .(2.45)

By [16, Theorem 4.3], the solutions of (2.44) with the initial values (2.45) are found to
be ϕ1n(t) = a1nEα(µ1nt

α) and ϕ2n(t) = a2nEα(µ2nt
α). Thus, the solution of (2.33)

is finally represented by

(z(x, t), z̃(x, t)) =
∑
n≥0

a1nEα(µ1nt
α)F1n(x) + a2nEα(µ2nt

α)F2n(x).(2.46)

Since {F1n(x), F2n(x), n = 0, 1, 2, . . .} forms a Riesz basis for L2(0, 1)×L2(0, 1), there
exists constants C1, C2 > 0 such that for all ξ1n, ξ2n ∈ R,

C1

∑
n≥0

(ξ2
1n + ξ2

2n) ≤ ‖ξ1nF1n(x) + ξ2nF2n(x)‖2H ≤ C2

∑
n≥0

(ξ2
1n + ξ2

2n).(2.47)

It then follows from (2.46) and (2.47) that

‖ (z(·, t), z̃(·, t)) ‖2H ≤ C2

∑
n≥0

(
a2

1nE
2
α(µ1nt

α) + a2
2nE

2
α(µ2nt

α)
)

≤ C2E
2
α (max {µ10, µ20} tα)

∑
n≥0

(
a2

1n + a2
2n
)

≤ C2

C1
E2
α (max{µ10, µ20}tα)2 ‖(z0, z̃0‖2H.(2.48)

Since

(2.49)

(
w
ŵ

)
=
(
I 0
I I

)(
w
w̃

)
=
(
I 0
I I

)(
I + P1 0

0 I + P2

)(
z
z̃

)
=
(
I + P1 0
I + P1 I + P2

)(
z
z̃

)
,

where P1 and P2 are Volterra transformations, which, in terms of (2.12) and (2.20),
are given by

P1f(x) =
∫ x

0
l(x, t)f(x)dx, P2f(x) = −

∫ x

0
p(x, t)f(x)dx, ∀ f ∈ L2(0, 1),

the inequality (2.31) then follows from (2.48) for some constant C > 0.

Remark 2.8. In the proof of Theorem 2.7, we actually give an explicit expression
of solution of the closed-loop system (2.30). Indeed, by (2.46) and (2.49), we have

w(x, t) =
∑
n≥0

(a1nEα(µ1nt
α)(I + P1)f1n(x) + a2nEα(µ2nt

α)(I + P1)f2n(x)),

ŵ(x, t) =
∑
n≥0

(a1nEα(µ1nt
α)(I + P1)f1n(x) + a2nEα(µ2nt

α)(I + P1)f2n(x))

+
∑
n≥0

a2nEα(µ2nt
α)(I + P2)g2n(x),

where f1n(x), g2n(x), and f2n(x) are given in (2.37), (2.39), and (2.41), respectively.
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STABILIZATION OF FRACTIONAL EQUATIONS 91

Original TFRDE system

wx(0, t) = −qw(0, t)

wx(1, t) = u(t)

Observer TFRDE system

ŵ(x, t) to be designed

�

w(1, t)

Controller
u(t) -

-

6

ŵ(x, t)

Fig. 2. Block diagram of output feedback for time fractional reaction diffusion equations with
Neumann boundary control (1.7).

3. Backstepping with Neumann boundary control. In this section, we
apply the backstepping approach to design an output feedback stabilizer for system
(1.7) as depicted in Figure 2.

3.1. Target system. We introduce a target system,

(3.1)


C
0 D

α
t z(x, t) = εzxx(x, t)− cz(x, t),

zx(0, t) = zx(1, t) = 0,

z(x, 0) = z0(x),

where the parameter c is used to regulate the convergence speed, which is seen from
Lemma 3.1.

Lemma 3.1. For any initial value z0 ∈ L2(0, 1), system (3.1) admits a unique
solution z(·, t) ∈ C(0,∞;L2(0, 1)). Moreover, the solution is Mittag–Leffler stable in
L2(0, 1):

‖z(·, t)‖2L2(0,1) ≤ E
2
α (−ctα) ‖z0‖2L2(0,1).(3.2)

Proof. Define the operator AN : D(AN )(⊂ L2(0, 1))→ L2(0, 1) as follows:{
[ANf ](x) = εf ′′(x)− cf(x),

D(AN ) = {f ∈ H2(0, 1)|f ′(0) = 0, f ′(1) = 0}.
(3.3)

A simple computation shows that AN is self-adjoint in L2(0, 1) with the eigenpairs
{µj , ej(x)} given by

µ0 = −c, e0(x) = 1, and µj = −c− εj2π2, ej(x) =
√

2 cos jπx, j = 1, 2, . . . .(3.4)

Since {ej(x)} forms an orthnormal basis for L2(0, 1), we can express the solution of
(2.1) as

z(x, t) =
∑
j≥0

ϕj(t)ej(x) with z0(x) =
∑
j≥0

ajej(x),(3.5)

where {aj} ∈ l2 and ϕj ∈ C(0,∞; R) satisfies the following linear fractional differential
equation:

C
0 D

α
t ϕj(t) = µjϕj(t), ϕj(0) = aj .(3.6)
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92 HUA-CHENG ZHOU AND BAO-ZHU GUO

By [16, Theorem 4.3], the solution of (3.6) is found to be ϕj(t) = ajEα(µjtα). Thus,
the solution of (3.1) is finally given by

z(x, t) =
∑
j≥0

ajEα(µjtα)ej(x).

Therefore,

‖z(·, t)‖2L2(0,1) =
∑
j≥0

a2
jE

2
α(µjtα) ≤ E2

α(µ1t
α)
∑
j≥0

a2
j = E2

α(−ctα)‖z0‖2L2(0,1).

This proves (3.2).

Remark 3.2. Since for z0(x) = e1(x),

‖z(·, t)‖2L2(0,1) = E2
α(−ctα)‖z0‖2L2(0,1).

So (3.2) gives the optimal estimation for the solution of (3.1).

By the backstepping transforms (2.8) and (2.12) and the analysis in subsection
2.2 as well, we can design a state feedback control for system (1.7) as follows:

u(t) = k(1, 1)w(1, t) +
∫ 1

0
kx(1, y)w(y, t)dy.(3.7)

Under the feedback control (3.7), the closed-loop of system (3.7) is



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t) + g(x)w(0, t) +

∫ x

0
f(x, y)w(x, y)dy,

wx(0, t) = −qw(0, t),

wx(1, t) = k(1, 1)u(1, t) +
∫ 1

0
kx(1, y)w(y, t)dy,

w(x, 0) = w0(x).

(3.8)

Since the transforms (2.8) and (2.12) are invertible, system (1.7) is equivalent to the
target system (3.1). Thus, we have Proposition 3.3.

Proposition 3.3. For any initial value w0 ∈ L2(0, 1), the closed-loop system
(3.8) admits a unique solution w ∈ C(0,∞;L2(0, 1)) given by

(3.9) w(x, t) =
∑
j≥0

ajEα
(
−
[
c+ εj2π2] tα)φj(x),

where

a0 =
∫ 1

0

(
w0(x)−

∫ x

0
k(x, y)w0(y)dy

)
dx,

φ0(x) = 1 +
∫ x

0
l(x, y)dy,

aj =
√

2
∫ 1

0

(
w0(x)−

∫ x

0
k(x, y)w0(y)dy

)
cos jπxdx, j ≥ 1,

φj(x) =
√

2 cos jπx+
√

2
∫ x

0
l(x, y) cos jπydy, j ≥ 1,

and hence is Mittag–Leffler stable in L2(0, 1).
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3.2. Observer design. In this section, we design an observer for system (1.7)
to recover the state w(x, t) by the output yo(t) = w(1, t). To do this we suppose that
f(x, y) ≡ 0, g(x) ≡ 0. The general case seems complicated to find the corresponding
kernel functions in what follows.

The model we consider in this section is described by the fractional PDE of the
following: 

C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t), x ∈ (0, 1), t ≥ 0,

wx(0, t) = −qw(0, t), t ≥ 0,

wx(1, t) = u(t), t ≥ 0,

w(x, 0) = w0(x), 0 ≤ x ≤ 1,

yo(t) = w(1, t), t ≥ 0.

(3.10)

We design the following observer:

C
0 D

α
t ŵ(x, t) = εŵxx(x, t) + λ(x)ŵ(x, t) + p1(x)(ŵ(1, t)− yo(t)),

ŵx(0, t) = −qŵ(0, t),

ŵx(1, t) = p0(ŵ(1, t)− yo(t)) + u(t),

ŵ(x, 0) = ŵ0(x).

(3.11)

Let

w̃(x, t) = ŵ(x, t)− w(x, t)(3.12)

be the observer error. Then, by (3.10) and (3.11), w̃(x, t) satisfies



C
0 D

α
t w̃(x, t) = εw̃xx(x, t) + λ(x)w̃(x, t) + p1(x)w̃(1, t),

w̃x(0, t) = −qw̃(0, t),

w̃x(1, t) = p0w̃(1, t),

w̃(x, 0) = ŵ0(x)− w0(x).

(3.13)

We look for the transformation,

w̃(x, t) := (1 + P3)z̃(x, t) = z̃(x, t)−
∫ 1

x

p(x, y)z̃(y, t)dy,(3.14)

that transforms (3.13) into the following Mittag–Leffler stable system for c̃ > 0:


C
0 D

α
t z̃(x, t) = εz̃xx(x, t)− c̃z̃(x, t),

z̃x(0, t) = z̃x(1, t) = 0,

z̃(x, 0) = z̃0(x).

(3.15)D
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Substituting (3.14) into (3.13) gives the equation satisfied by z̃(x, t):

C
0 D

α
t z̃(x, t) =

∫ 1

x

p(x, y)C0 D
α
t z̃(y, t)dy + ε

(
z̃(x, t)−

∫ 1

x

p(x, y)z̃(y, t)dy
)
xx

+ λ(x)
(
z̃(x, t)−

∫ 1

x

p(x, y)z̃(y, t)dy
)

+ p1(x)z̃(1, t)

= εz̃xx(x, t) + ε

∫ 1

x

p(x, y)z̃yy(y, t)dy − ε
(∫ 1

x

p(x, y)z̃(y, t)dy
)
xx

−
∫ 1

x

(c̃+ λ(x)) p(x, y)z̃(y, t)dy + λ(x)z̃(x, t) + p1(x)z̃(1, t)

= εz̃xx(x, t) +
∫ 1

x

[εpyy(x, y)−εpxx(x, y)−c̃p(x, y)− λ(x)p(x, y)] z̃(y, t)dy

+
(
λ(x) + 2ε

d

dx
p(x, x)

)
z̃(x, t) + εz̃x(1, t)p(x, 1)

+ (p1(x)− εpy(x, 1))z̃(0, t)(3.16)

and

z̃x(0, t) = −(p(0, 0) + q)z̃(0, t) +
∫ 1

0
(px(0, y) + qp(0, y))z̃(y, t)dy,

z̃x(1, t) = w̃x(1, t)− p(1, 1)z̃(1, t) = w̃x(0, t)− p(1, 1)w̃(1, t)
= (p0 − p(1, 1))w̃(1, t).(3.17)

Comparing (3.16) and boundary conditions (3.17) with (3.15), it follows that p(x, y)
satisfies the following PDE:

εpyy(x, y)− εpxx(x, y) = (c̃+ λ(x))p(x, y),

p(x, x) = −q +
1
2ε

∫ x

0
(λ(ξ) + c̃)dξ,

px(0, y) = −qp(0, y).

(3.18)

The observer gains should be chosen as

p1(x) = εpy(x, 1), p0 = p(1, 1).(3.19)

To give existence of the solution of (3.18) and the invertibility of transform (3.14), we
introduce new variables:

x̄ = y, ȳ = x, p̄(x̄, ȳ) = p(x, y).(3.20)

Then (3.18) becomes
εp̄x̄x̄(x̄, ȳ)− εp̄ȳȳ(x̄, ȳ) = (c̃+ λ(ȳ))p̄(x̄, ȳ),

p̄(x̄, x̄) = −q +
1
2ε

∫ x̄

0
(λ(ξ) + c̃)dξ,

p̄ȳ(x̄, 0) = −qp̄(x̄, 0).

(3.21)

It is noticed that (3.21) is exactly the same as (2.11) for k(x, y) with f(x, y) = 0,
g(x) = 0, and c being replaced by c̃. Thus, (3.18) admits a unique solution p ∈ C2(F̄),
and the transformation (3.14) is invertible. With this invertible transform (3.14), we
have immediately the following convergence for observer (3.11).
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Theorem 3.4. For any control input u ∈ L2
loc(0,∞) and initial value (w0, ŵ0) ∈

L2(0, 1)×L2(0, 1), the closed-loop system (3.13) admits a unique solution w̃ ∈ C(0,∞;
L2(0, 1)) given by

w̃(x, t) =
∑
j≥0

ajEα
(
−
[
c̃+ εj2π2] tα)φj(x),(3.22)

where

a0 =
∫ 1

0
(I + P3)−1(ŵ0(x)− w0(x))dx, φ0(x) = 1−

∫ 1

x

p(x, y)dy,

aj =
√

2
∫ 1

0
(I + P3)−1(ŵ0(x)− w0(x)) cos jπxdx, j ≥ 1,

φj(x) =
√

2 cos jπx−
√

2
∫ 1

x

p(x, y) cos jπydy, j ≥ 1.

Moreover, the solutions is Mittag–Leffler stable:

‖w̃(·, t)‖2L2(0,1) ≤ CE
2
α (−c̃tα) ‖w̃0‖2L2(0,1) for some C > 0.(3.23)

3.3. Observer-based output feedback. In this section, we discuss output
feedback stabilization of system (3.10). Since by observer (3.11) we obtain an approx-
imate ŵ(x, t) of the state w(x, t), a natural output feedback control, inspired by state
feedback (3.7), should be

u(t) = k(1, 1)ŵ(1, t) +
∫ 1

0
kx(1, y)ŵ(y, t)dy.(3.24)

Under feedback (3.24), we have the following closed loop of (3.10):

(3.25)



C
0 D

α
t w(x, t) = εwxx(x, t) + λ(x)w(x, t),

wx(0, t) = −qw(0, t),

wx(1, t) = k(1, 1)ŵ(1, t) +
∫ 1

0
kx(1, y)ŵ(y, t)dy,

C
0 D

α
t ŵ(x, t) = εŵxx(x, t) + λ(x)ŵ(x, t) + p1(x)(ŵ(1, t)− yo(t)),

ŵx(0, t) = −qŵ(0, t),

ŵx(1, t) = p0(ŵ(1, t)− yo(t)) + k(1, 1)ŵ(1, t) +
∫ 1

0
kx(1, y)ŵ(y, t)dy,

w(x, 0) = w0(x), ŵ(x, 0) = ŵ0(x).

Theorem 3.5. For any initial value (w0, ŵ0) ∈ L2(0, 1) × L2(0, 1), the closed-
loop system (3.25) admits a unique solution (w, ŵ) ∈ C(0,∞;L2(0, 1) × L2(0, 1)).
Moreover, there exist two positive constants C, µ > 0 such that

‖(w(·, t), ŵ(·, t))‖L2(0,1)×L2(0,1) ≤ CEα(−µtα)‖(w0, ŵ0)‖L2(0,1)×L2(0,1).(3.26)
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Proof. Using the error variables w̃(x, t) defined in (3.12), we can write an equiv-
alent system of (3.25) as follows:

(3.27)



C
0 D

α
t ŵ(x, t) = εŵxx(x, t) + λ(x)ŵ(x, t) + p1(x)(ŵ(1, t)− yo(t)),

ŵx(0, t) = −qŵ(0, t),

ŵx(1, t) = p0(ŵ(1, t)− yo(t)) + k(1, 1)ŵ(1, t) +
∫ 1

0
kx(1, y)ŵ(y, t)dy,

C
0 D

α
t w̃(x, t) = εw̃xx(x, t) + λ(x)w̃(x, t) + p1(x)w̃(1, t),

w̃x(0, t) = −qw̃(0, t),

w̃x(1, t) = p0w̃(1, t),

ŵ(x, 0) = ŵ0(x), w̃(x, 0) = ŵ0(x)− w0(x).

Under the transformation (3.14) and

ẑ(x, t) = ŵ(x, t)−
∫ x

0
k(x, y)ŵ(y, t)dy,(3.28)

system (3.27) is transformed into the following system:

(3.29)



C
0 D

α
t ẑ(x, t) = εẑxx(x, t)− cẑ(x, t) +G1(x)z̃(1, t),

ẑx(0, t) = 0,

ẑx(1, t) = p0z̃(1, t),
C
0 D

α
t z̃(x, t) = εz̃xx(x, t)− c̃z̃(x, t),

z̃x(0, t) = z̃x(1, t) = 0,

ẑ(x, 0) = ẑ0(x), z̃(x, 0) = z̃0(x),

where

G1(x) = p1(x)−
∫ x

0
k(x, y)p1(y)dy.

To show well-posedness and Mittag–Leffler stability for system (3.29), let us introduce
a new variable, z̄(x, t) = ẑ(x, t) − p0x

2(x − 1)z̃(x, t). The purpose of this change of
variables is to make boundary conditions be homogeneous. In this way, z̄(x, t) satisfies

(3.30)



C
0 D

α
t z̄(x, t) = εz̄xx(x, t)− cz̄(x, t) +G1(x)z̃(1, t)

+G2(x)z̃(x, t) +G3(x)z̃x(x, t),

z̄x(0, t) = z̄x(1, t) = 0,

z̄(x, 0) = z̄0(x),

where

G2(x) = εp0(6x− 2)− p0x
2(x− 1)(c− c̃), G3(x) = εp0(3x2 − 2x).

We now prove the well-posedness and the Mittag–Leffler stability for system (3.30)
coupled with “z̃-part” of (3.29). To this end, we introduce an equivalent inner product
induced norm in H = L2(0, 1)× L2(0, 1):

‖(f, g)‖2 =
∫ 1

0
f2(x)dx+ κ

∫ 1

0
g2(x)dx,

D
ow

nl
oa

de
d 

01
/1

3/
18

 to
 2

18
.7

6.
29

.1
14

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILIZATION OF FRACTIONAL EQUATIONS 97

where κ > 0 is a constant to be determined later in (3.37). Define operators A and
B as follows:

(3.31)



[A(f, g)](x) = (−εf ′′(x)− cf(x),−εg′′(x)− c̃g(x)),

D(A) = {(f, g) ∈ [H2(0, 1)]2 : f ′(0) = f ′(1) = g′(0) = g′(1) = 0},

[B(f, g)](x) = (G1(x)g(1) +G2(x)g(x) +G3(x)g′(x), 0),

D(B) = H1(0, 1)×H1(0, 1).

We claim that for any given sufficiently small a > 0, there exists positive constant
ba > 0 such that

(3.32) ‖B(f, g)‖H ≤ a‖A(f, g)‖H + ba‖(f, g)‖H.

Actually,

‖B(f, g)‖2H =
∫ 1

0
(G1(x)g(1) +G2(x)g(x) +G3(x)g′(x))2 dx

≤ 3G2
10|g(1)|2 + 3G2

20

∫ 1

0
g2(x)dx+ 3G2

30

∫ 1

0
(g′(x))2dx

≤
(
6G2

10 + 3G2
20
) ∫ 1

0
g2(x)dx+

(
6G2

10 + 3G2
30
) ∫ 1

0
(g′(x))2dx,(3.33)

whereG10 = maxx∈[0,1]|G1(x)|, G20 = maxx∈[0,1]|G2(x)|, andG30 = maxx∈[0,1]|p0(3x2−
2x)|. Since for any given σ > 0 there exists Cσ > 0 such that for all g ∈ H2(0, 1),∫ 1

0
(g′(x))2dx ≤ σ

∫ 1

0
(g′′(x))2dx+ Cσ

∫ 1

0
g2(x)dx

and

‖A(f, g)‖2H =
∫ 1

0
[εf ′′ + cf ]2dx+ κ

∫ 1

0
[εg′′ + c̃g]2dx

≥ κε
2

2

∫ 1

0
(g′′(x))2dx− κc̃2

∫ 1

0
g2(x)dx,

we have

‖B(f, g)‖2H ≤
(
6G2

10 + 3G2
20
)
σ

∫ 1

0
(g′′(x))2 dx+

(
6G2

10 + 3G2
20 + Cσ

) ∫ 1

0
g2(x)dx

≤
(
12G2

10 + 6G2
20
)

κε2 σ‖A(f, g)‖2H

+
(

6G2
10 + 3G2

20 + Cσ +
(12G2

10 + 6G2
20)

ε2 σc̃2
)∫ 1

0
g2(x)dx.

This, together with (3.33), shows that (3.32) holds by arbitrariness of σ. Since A
generates an analytic C0-semigroup on H, it follows from [28, Theorem 2.1] that
A+ B generates an analytic C0-semigroup on H as well. By Lemma 1.6, the system
(3.30) coupled with “z̃-part” of (3.29) is well-posed.

Next, we show that system (3.30) coupled with “z̃-part” of (3.29) is Mittag–Leffler
stable. Let

V1(t) =
1
2

∫ 1

0
z̄2(x, t)dx.
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Then

C
0 D

α
t V1(t) =

1
2

∫ 1

0

C
0 D

α
t z̄

2(x, t)dx ≤
∫ 1

0
z̄(x, t)C0 D

α
t z̄(x, t)dx

=
∫ 1

0
z̄(x, t)

[
εz̄xx(x, t)− cz̄(x, t) +G1(x)z̃(1, t)

+G2(x)z̃(x, t) +G3(x)z̃x(x, t)
]
dx

= −ε
∫ 1

0
z̄2
x(x, t)dx− c

∫ 1

0
z̄2(x, t)dx

+
∫ 1

0
z̄(x, t)[G1(x)z̃(1, t) +G2(x)z̃(x, t) +G3(x)z̃x(x, t)]dx.(3.34)

Since∣∣∣∣∫ 1

0
z̄(x, t)G1(x)z̃(1, t)dx

∣∣∣∣ ≤ G10

∫ 1

0
z̄2(x, t)dx|z̃(1, t)|2

≤ ε

6

∫ 1

0
z̄2(x, t)dx+

3G2
10

2ε
|z̃(1, t)|2

≤ ε

6

∫ 1

0
z̄2(x, t)dx+

3G2
10

ε

(∫ 1

0
z̃2
x(x, t)dx+

∫ 1

0
z̃2(x, t)dx

)
and ∣∣∣∣∫ 1

0
z̄(x, t)G2(x)z̃(x, t)dx

∣∣∣∣ ≤ ε

6

∫ 1

0
z̄2(x, t)dx+

3G2
20

2ε

∫ 1

0
z̃2(x, t)dx,∣∣∣∣∫ 1

0
z̄(x, t)G3(x)z̃x(x, t)dx

∣∣∣∣ ≤ ε

6

∫ 1

0
z̄2(x, t)dx+

3G2
30

2ε

∫ 1

0
z̃2
x(x, t)dx,

we estimate the solution of (3.34) as

C
0 D

α
t V1(t) ≤ −ε

2

∫ 1

0
z̄2
x(x, t)dx− c

∫ 1

0
z̄2(x, t)dx

+
(

3G2
10

ε
+

3G2
30

2ε

)∫ 1

0
z̃2
x(x, t)dx+

(
3G2

10

ε
+

3G2
20

2ε

)∫ 1

0
z̃2(x, t)dx.(3.35)

Let

V2(t) =
1
2

∫ 1

0
z̃2(x, t)dx.

Then,

C
0 D

α
t V2(t) ≤ −ε

∫ 1

0
z̃2
x(x, t)dx− c̃

∫ 1

0
z̃2(x, t)dx.(3.36)

Let V (t) = V1(t) + κV2(t) be the Lyapunov function, where κ > 0 is the design
parameter. It follows from (3.35) and (3.36) that

C
0 D

α
t V (t) ≤ −ε

2

∫ 1

0
z̄2
x(x, t)dx− c

∫ 1

0
z̄2(x, t)dx

−
(
κc̃− 3G2

10

ε
− 3G2

30

2ε

)∫ 1

0
z̃2
x(x, t)dx

−
(
κε− 3G2

10

ε
− 3G2

20

2ε

)∫ 1

0
z̃2(x, t)dx.
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Choose κ > 0 so that

κc̃ >
3G2

10

ε
+

3G2
30

2ε
, κε >

3G2
10

ε
+

3G2
20

2ε
.(3.37)

Then C
0 D

α
t V (t) ≤ −C1V (t), where

C1 = min
{

2c,
2
κ

(
κε− 3G2

10

ε
− 3G2

20

2ε

)}
.

By fractional version of the Lyapunov method [23, Theorem 5], we can obtain that
V (t) ≤ V (0)Eα(−C1t

α). Since z̄(x, t) = ẑ(x, t)− p0x
2(x− 1)z̃(x, t) and system (3.29)

is equivalent to system (3.25), there exist two constants C, µ > 0 such that (3.26)
holds. This completes the proof of the theorem.

Remark 3.6. From the explicit expression of the solution of closed-loop system
(2.30), it is clearly seen how the parameters c and c̃ influence the convergence speed
of system energy. However, in Theorem 3.5, we use operator method and Lyapunov
method instead of the Riesz basis method to show stability for the closed-loop system
(3.25). This is because it seems hard to prove that the operator A defined by (3.31)
is a Riesz spectral operator, and hence the explicit expression of the solution is not
available.

Remark 3.7. From the analysis, we see that to stabilize an unstable time frac-
tional reaction diffusion system, the control design can be borrowed from those for
the classical reaction diffusion equations in [30] and [31]. However, the stability anal-
yses rely on the Riesz basis method for (1.6) and the fractional Lyapunov method for
(1.7), which are very different from those of [30] and [31]. The Riesz basis method
leads to an optimal decay estimation which was not given in [30] and [31]. The derived
asymptotic stability for the closed-loop system is of polynomial type with respect to
time and cannot be exponential. It is worth noting that due to the memory effect
and complexity of the fractional derivative, the fractional Lyapunov method, which
is different from the classical Lyapunov method, was not developed until 2009 in [23],
and the applicability of the fractional Lyapunov method was not available until 2014
in [1]. The results here could provide some insights into the qualitative analysis of
fractional PDEs. Finally, when the fractional order α = 1, our results recover the re-
sults of [30] and [31]. In particular, our results provide the optimal decay estimation
for the case α = 1, which was not available in [30] and [31].

Remark 3.8. As indicated in Remark 3.7, when the parameters in (1.6) and (1.7)
are known, the design used in [30] and [31] can be applied. However, the design method
of [30] and [31] is not always applicable for the time fractional reaction diffusion
equations. This happens when the parameters in (1.6) and (1.7) are uncertain. In
this case, the computation of the fractional derivatives for composite functions is
complicated, and boundary control for (1.6) and (1.7) with uncertainty is never trivial
and should be considered in further study.

To end this paper, we mention the physical feasibility of feedback control pre-
sented in the closed-loop systems (2.30) and (3.25). Since in both (1.6) and (1.7)
only the boundary temperature w(0, t) or w(1, t) is measured, it is easily physically
implementable. The observers (2.18) and (3.11) can be implemented by discretization
technique presented in [33].
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4. Concluding remarks. This paper is a first effort to attempt boundary feed-
back stabilization for fractional PDE systems. Both Dirichlet and Neumann boundary
controls are discussed. In the Neumann case, we use collocated control and observa-
tion to showcase the different technique with the Dirichlet case. The backstepping
transformation is used in designing the state feedback laws. The observers are de-
signed and the observer-based feedback control is obtained based on the stabilizing
state feedback. However, the observer for the Neumann control is only considered
for a simplified model. The Mittag–Leffler stability is concluded in each case for the
closed loop. The idea is potentially promising for treating other fractional PDEs.
There are some other interesting problems that are not touched in the field. One of
them is stabilization for uncertain fractional PDE systems, which has been discussed
for classic PDE systems in [8, 9, 10, 11, 12, 13, 14, 34, 35] and the abundant references
therein.

REFERENCES

[1] N. Aguila-Camacho, M. Duarte-Mermoud, and J. A. Gallegos, Lyapunov functions for
fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), pp. 2951–2957.

[2] E. Bazhlekova, The abstract Cauchy problem for the fractional evolution equation, Fract. Calc.
Appl. Anal., 1 (1998), pp. 255–270.

[3] D. Benson, M. Meerschaert, and S. Wheatcraft, Application of a fractional advectiondis-
persion equation, Water Resour. Res., 36 (2000), pp. 1403–1412.

[4] D. del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, Nondiffusive transport in
plasma turbulene: A fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003.

[5] D. S. Ding, D. L. Qi, Y. Meng, and L. Xu, Adaptive Mittag–Leffler stabilization of commen-
surate fractional-order nonlinear systems, IEEE Conference on Decision and Control, Los
Angeles, CA, 2014, pp. 6920–6926.

[6] M. Efe, Application of Backstepping Control Technique to Fractional Order Dynamic Systems,
Springer-Verlag, New York, 2012, pp. 33–47.

[7] K. Fujishiro, Approximate controllability for fractional diffusion equations by Dirichlet bound-
ary control, arXiv:1404.0207v3.

[8] B. Z. Guo and J. J. Liu, Sliding mode control and active disturbance rejection control to the
stabilization of one-dimensional Schrödinger equation subject to boundary control matched
disturbance, Internat. J. Robust Nonlinear Control, 24 (2014), pp. 2194–2212.

[9] B. Z. Guo and F. F. Jin, Sliding mode and active disturbance rejection control to stabilization of
one-dimensional anti-stable wave equations subject to disturbance in boundary input, IEEE
Trans. Automat. Control, 58 (2013), pp. 1269–1274.

[10] B. Z. Guo and F. F. Jin, The active disturbance rejection and sliding mode control approach
to the stabilization of Euler-Bernoulli beam equation with boundary input disturbance, Au-
tomatica J. IFAC, 49 (2013), pp. 2911–2918.

[11] B. Z. Guo and W. Kang, Lyapunov approach to the boundary stabilization of a beam equation
with boundary disturbance, Internat. J. Control, 87 (2014), pp. 925–939.

[12] B. Z. Guo and H. C. Zhou, The active disturbance rejection control to stabilization for multi-
dimensional wave equation with boundary control matched disturbance, IEEE Trans. Au-
tomat. Control, 60 (2015), pp. 143–157.

[13] B. Z. Guo and H. C. Zhou, Active disturbance rejection control for rejecting boundary distur-
bance from multidimensional Kirchhoff plate via boundary control, SIAM J. Control Optim.,
52 (2014), pp. 2800–2830.

[14] B. Z. Guo, H. C. Zhou, A. S. Alfahaid, A. M. Younas, and A. Asiri, Stabilization of
Euler-Bernoulli beam equation with boundary moment control and disturbance by active
disturbance rejection control and sliding mode control approaches, J. Dyn. Control Syst.,
20 (2014), pp. 539–558.

[15] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical
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