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Uniform Exponential Stability for a Schrödinger
Equation and its Semi-Discrete Approximation

Bao-Zhu Guo and Fu Zheng

Abstract—In this paper, we investigate the uniform exponential
stability of a semi-discrete scheme for the Schrödinger equation
under boundary stabilizing feedback control within the natural s-
tate space L2(0,1). This research holds significant value, as a time
domain energy multiplier that validates the exponential stability
of this continuous Schrödinger system remains elusive, posing
a significant mathematical challenge to the uniform exponential
stability of its corresponding semi-discretization systems, a long-
standing open problem. While the potent frequency domain
energy multiplier approach has been successfully applied to prove
exponential stability for PDEs since the 1980s, its extension to
the uniform exponential stability of semi-discrete schemes for
PDEs remains unexplored. The challenge of achieving uniformity
lies in the need to simultaneously consider an infinite number of
matrices across various state spaces, stemming from the step size
parameter. Drawing inspiration from the Huang-Prüss frequency
domain criterion for the uniform exponential stability of a family
of C0-semigroups in Hilbert spaces, we tackle this problem
for the first time by establishing the uniform boundedness of
all resolvents of these matrices on the imaginary axis. The
proof closely follows the procedure for the exponential stability
of its continuous counterpart, underscoring the merit of this
discretization method.

Index Terms—Schrödinger equation, boundary damping, fre-
quency domain multiplier, semi-discretization, uniform exponen-
tial stability.

I. INTRODUCTION

Control systems described by partial differential equation-
s (PDEs) are infinite-dimensional. Consequently, controllers
such as observer-based feedback control are also infinite-
dimensional. Therefore, discretization is essential in almost all
implementations of PDE controls [12], [17]. Among various
discretization methods, the finite-difference method stands
out as the most popular due to its simplicity and appeal to
engineers. One of the most commonly employed discretization
methods is the semi-discrete scheme, which maintains time
continuity while discretizing the spatial variable. This scheme
has been extensively studied in the literature. Its primary
advantage lies in converting an infinite-dimensional system
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into infinitely many ordinary differential equation systems,
which are well-known to control researchers. However, it has
long been recognized that the uniform exponential stabili-
ty with respect to the spatial discrete step size cannot be
maintained in the classical semi-discrete scheme for PDEs,
primarily due to the presence of high-frequency spurious
components. In addition, several other crucial control prop-
erties, such as uniform observability and uniform exact con-
trollability, are not guaranteed in this context. The primary
reason for this is that spurious modes are weakly damped
during the semi-discretization process. A detailed explanation
of this phenomenon can be found in [25]. To address this
challenge in wave equations, several solutions have been
proposed, including Tichonoff regularization [7], mixed-finite
elements [2], [19], high-frequency filtering [10], and non-
uniform meshes [3]. Specifically, [6] examines time semi-
discrete approximations for a class of exponentially stable
infinite-dimensional systems. It also discusses a fully discrete
approximation scheme under a CFL-type assumption for the
space and time discretization parameters. A similar scheme to
the one presented in this paper was proposed in [17]. The paper
[12] explores the observability of space semi-discrete beam
equations, which share some similarities with the Schrödinger
equation. Among these remedies, the numerical viscosity
damping introduced in [21], [22], [6] is particularly popular.
However, this approach artificially introduces a viscosity term
into the classical discrete scheme. The coefficients of this
numerical viscosity damping vary depending on the specific
PDE [18]. Recently, a novel natural semi-discrete scheme
based on an order reduction finite difference method was
introduced in [13] and has been applied to various systems
[8], [24]. This approach offers several advantages, including
preserving uniform exponential stability. As a natural semi-
discrete scheme, it enables one to prove uniform exponential
stability in a manner analogous to its continuous PDE coun-
terpart.

Constructing a suitable Lyapunov functional for a partial
differential equation (PDE) typically relies on a time-domain
energy multiplier, which is not always readily available and
often involves intricate technical details. In the 1980s, a
frequency-domain energy multiplier approach was pioneered
for analyzing exponential stability, initially applied to a single
PDE ([15]). This method is based on a frequency-domain
characterization of exponential stability for C0-semigroups in
Hilbert spaces. Originally developed independently in [9] and
[20], the result was later proven in [1], [16] to be valid for
uniform exponential stability of families of C0-semigroups in
Hilbert spaces. Furthermore, uniform admissibility and observ-
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ability for finite element space semi-discretizations of abstract
Schrödinger systems and second-order infinite-dimensional
vibrating systems have also been established [4], [5].

In this paper, we investigate the uniform exponential sta-
bility of an order reduction semi-discrete scheme for the
Schrödinger equation under boundary control, utilizing the fre-
quency domain multiplier approach. This approach is crucial
as finding a suitable time-domain Lyapunov functional for both
the continuous PDE and its discrete counterpart is challenging.
Consequently, existing methods presented in [14], [13], [8],
[24] are not applicable here. In fact, to employ the Lyapunov
method, the work in [14] had to consider the Schrödinger
system in the higher-order state space H1(0,1), whereas our
state space is the standard L2(0,1). The stability problem in
L2(0,1) has remained unresolved for a considerable period.
Therefore, this paper offers a novel approach to proving
the uniform exponential stability of semi-discrete schemes
for PDEs. Furthermore, it is noteworthy that the proofs for
both the continuous PDE and its discrete counterpart exhibit
analogous structures, once again highlighting the merits of the
order reduction semi-discretization approach.

We proceed as follows. In the next section, Section II, we
prove the exponential stability of the continuous PDE using the
frequency domain multiplier method. Although this PDE has
been extensively studied in the literature, it serves as a useful
starting point in constructing a frequency domain multiplier for
its semi-discrete counterpart. In Section III, we design a semi-
discretized scheme and derive a family of finite-dimensional
systems. In Section IV, we establish the uniform exponential
stability by employing the frequency domain multiplier ap-
proach. We introduce the concept of shadow elements to aid
in understanding the numerical approximating scheme, which
plays a pivotal role in the proof of uniform stability. Finally,
Section V contains some concluding remarks.

II. STABILITY OF SCHRÖDINGER SYSTEM VIA FREQUENCY
DOMAIN MULTIPLIER

Consider the following closed-loop Schrödinger equation
with proportional boundary feedback control:

wt(x, t) =−iwxx(x, t), t > 0, x ∈ (0,1),

w(0, t) = 0, t ≥ 0,

wx(1, t) =−ikw(1, t), k > 0, t ≥ 0,

w(x,0) = w0(x), x ∈ [0,1],

(1)

where the boundary condition wx(1, t) = U(t) is actually the
control input U(t) set as U(t) = −ikw(1, t). We analyze the
system (1) in the natural state space L2(0,1). Define the system
operator of (1) as follows:{

A f =−i f ′′, ∀ f ∈ D(A) = { f ∈ L2(0,1)|

f ∈ H2(0,1), f (0) = 0, f ′(1) =−ik f (1)}.
(2)

Then, (1) can be written as an evolution equation in L2(0,1):

ẇ(·, t) = Aw(·, t), w(x,0) = w0(x). (3)

It is observed that

Re〈A f , f 〉L2(0,1) = Re
∫ 1

0
−ik f ′′(x) f (x)dx =−k| f (1)|2, (4)

which implies that the operator A is dissipative. Furthermore,
the operator A is invertible and

A−1 f (x) =
−kx

∫ 1
0 τ f (τ)dτ

1+ ik

− i
∫ 1

x
(x− τ) f (τ)dτ− i

∫ 1

0
τ f (τ)dτ,

(5)

which is bounded in L2(0,1). Consequently, due to the
Lumer-Phillips theorem ([23, Theorem 3.8.4]), the operator
A generates a C0-semigroup of contractions on L2(0,1). Since
A−1 is compact, the spectrum of A comprises only isolated
eigenvalues.

Furthermore, we define the system energy for the system
(1) as

E(t) =
1
2

∫ 1

0
|w(x, t)|2dt, (6)

which is non-increasing as a consequence of (4):

Ė(t) =−k|w(1, t)|2. (7)

We note that a variant of system (1) was examined in
[14]. However, (1) represents a rather uncommon system,
and as of yet, no time-domain energy multiplier has been
identified for it. The first exponential stability result for (1)
was established in [11] using the Riesz basis approach. While
the Riesz basis method is potent and often yields deeper
insights than the multiplier method, for instance, the spectrum-
determined growth condition is often a consequence of the
Riesz basis approach, this is not typically the case with the
multiplier method. Unfortunately, applying the Riesz basis
method to achieve uniform exponential stability for the semi-
discrete model of (1) presented in this paper is currently highly
challenging.

A well-known result from the Hung-Prüss theorem [9], [20]
establishes that the C0-semigroup generated by an operator A
is exponentially stable if and only if it satisfies the following
two properties:

1) Every imaginary number belongs to the resolvent set of
A, that is, iR⊂ ρ(A).

2) The inverse operator of iω−A is uniformly bounded for
all imaginary numbers, that is,

sup
ω∈R
‖(iω−A)−1‖< ∞. (8)

The first property is proved in Lemma 2.1 following.
Lemma 2.1: Let A be defined as in (2). Then, iR ⊂ ρ(A),

where ρ(A) denotes the resolvent set of A.
Proof. If there exist β ∈ R with β 6= 0 and a nonzero f ∈

D(A) such that iβ f = A f , then{
iβ f (x) =−i f ′′(x),

f ′(1) =−ik f (1), f (0) = 0.
(9)

By taking the inner product of both sides of the first equation
in (9) with f (·) over [0,1], we arrive at

iβ‖ f‖2 =−k| f (1)|2 + i
∫ 1

0
| f ′(x)|2dx, (10)
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which gives f (1) = 0 and hence f ′(1) = 0. This demonstrates
that (9) only has the zero solution, which is a contradiction.

Theorem 2.1: Let A be defined by (2). Then, (8) holds
true. Consequently, the C0-semigroup eAt generated by A is
exponentially stable in L2(0,1).

Proof. We prove by assuming the contrary of (8) that there
exists a sequence ωn→∞, and fn ∈D(A) with ‖ fn‖= 1 such
that

lim
n→∞
‖(iωn−A) fn‖= 0,

i.e.,
iωn fn + i f ′′n → 0 in L2(0,1). (11)

Since

Re〈(iωn−A) fn, fn〉L2(0,1) = k| fn(1)|2→ 0, (12)

by the boundary condition f ′n(1) =−ik fn(1), it has

f ′n(1)→ 0. (13)

From (11) and ‖ fn‖ = 1, it follows that f ′′n (·)
ωn

is bounded in
L2(0,1). Using the inequality | f ′n(x)− f ′n(1)| ≤ ‖ f ′′n ‖, com-
bined with (13) and ωn→ ∞, we can deduce that

f ′n(·)
ωn

is bounded in L2(0,1). (14)

Since

Re
〈

ωn fn + f ′′n ,
x f ′n
ωn

〉
L2(0,1)

=
| fn(1)|2

2
− 1

2

∫ 1

0
| fn(x)|2dx

+
1

2ωn
| f ′n(1)|2−

1
2ωn

∫ 1

0
| f ′n(x)|2dx,

and 〈
ωn fn + f ′′n ,

x f ′n
ωn

〉
L2(0,1)

→ 0,

we have by (12) and (13) that∫ 1

0
| fn(x)|2dx+

1
ωn

∫ 1

0
| f ′n(x)|2dx→ 0, (15)

which shows that when ωn > 0, ‖ fn‖2→ 0, which contradicts
to ‖ fn‖= 1. On the other hand, since from (11) and ωn→∞,
we have

which indicates that when ωn > 0, ‖ fn‖2→ 0. However, this
contradicts the given condition that ‖ fn‖ = 1. On the other
hand, considering (11) and the fact that ωn→ ∞, we have∫ 1

0

∣∣∣∣ fn(x)+
f ′′n (x)
ωn

∣∣∣∣2 dx

=
∫ 1

0

[
| fn(x)|2 +

| f ′′n (x)|2

ω2
n

]
dx

+
1

ωn

∫ 1

0
[ fn(x) f ′′n (x)+ fn(x) f ′′n (x)]dx

=
∫ 1

0

[
| fn(x)|2 +

| f ′′n (x)|2

ω2
n

]
dx

+
1

ωn
[ fn(x) f ′n(x)+ fn(x) f ′n(x)]

1
0

− 2
ωn

∫ 1

0
| f ′n(x)|2dx→ 0,

(16)

Substituting f ′n(1) = −ik fn(1) and fn(0) = 0 into (16), and
utilizing (12) and (13), we obtain∫ 1

0
| fn(x)|2dx+

∫ 1

0

| f ′′n (x)|2

ω2
n

dx− 2
ωn

∫ 1

0
| f ′n(x)|2dx→ 0. (17)

This indicates that when ωn < 0, ‖ fn‖2 → 0 which is also a
contradiction.

III. SEMI-DISCRETE SCHEME OF SCHRÖDINGER EQUATION

In this section, we utilize the order reduction method to
derive a semi-discrete scheme for (1). To achieve this, we
introduce an intermediate variable v(x, t) = wx(x, t) to reduce
the order of the spatial derivative in (1). By doing so, the
Schrödinger equation (1) can be rewritten into the following
equivalent form:

wt(x, t)+ ivx(x, t) = 0, t > 0, x ∈ (0,1),
v(x, t) = wx(x, t), t > 0, x ∈ (0,1),
w(0, t) = 0, t > 0,
v(1, t) =−ikw(1, t), t > 0,
w(x,0) = w0(x),x ∈ [0,1].

(18)

We omit certain details of the semi-discretization process
as they are analogous to those in [14]. Instead, we focus on
the semi-discretized finite difference scheme of (18), which is
given as follows:

w′
j+ 1

2
(t)+ iδxv j+ 1

2
(t) = 0, 0≤ j ≤ N,

v j+ 1
2
(t) = δxw j+ 1

2
(t), 0≤ j ≤ N,

vN+1(t) =−ikwN+1(t), t ≥ 0
w0(t) = 0,
w j(0) = w0

j , 0≤ j ≤ N +1,

(19)

where v j(t) ≈ v(x j, t) and w j(t) ≈ w(x j, t) are grid functions
evaluated at grid points x j (with 0 ≤ j ≤ N + 1), w j+ 1

2

represents the average operator defined as w j+ 1
2

:= w j+1+w j
2 ,

δxw j+ 1
2

is the difference operator given by δxw j+ 1
2

:= w j+1−w j
h

with h(N + 1) = 1 and N being a positive integer, and w0
j is

the approximation of the initial value w0(x j).
Now, we eliminate v j(t) from (19). To achieve this, let

Wh(t) = (w1(t), · · · ,wN+1(t))> be the unknown variable of
(19), and Vh(t) = (v0(t), · · · ,vN(t))> be the auxiliary variable.
We express (19) in vector form as:

DhW ′h(t) =−iMhVh(t)− kh−1wN+1(t)eh,

D>h Vh(t) =−M>h Wh(t)+ i2−1kwN+1(t)eh,

Wh(0) = (w0
0,w

0
1, · · · ,w0

N)
>,

(20)

where eh = (0,0, · · · ,0,1)> ∈ CN+1 and Dh, Mh are given by

Dh =
1
2


1
1 1

. . . . . .
1 1


(N+1)×(N+1)

,
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Mh =
1
h


−1 1

−1
. . .
. . . 1

−1


(N+1)×(N+1)

. (21)

Obviously, both Dh and Mh are invertible. System (20) System
(20) is naturally discussed in the state space Yh = CN+1. To
establish a relationship between Yh in (20) and the step size,
we define a new inner product for Yh:〈

Yh,Ỹh

〉
Yh

= h
〈

DhYh,DhỸh

〉
,∀Yh,Ỹh ∈ Yh,

where 〈·, ·〉 is the standard inner product of CN+1. For
Yh = (y1, · · · ,yN+1)

> ∈ Yh, we choose the vector Zh =
(z0, · · · ,zN)

> ∈ Yh satisfying D>h Zh =−M>h Yh +2−1ikyN+1eh.
We refer to Zh as the shadow element of Yh as it significantly
simplifies the notation in the subsequent proofs.

System (19) or (20) can be expressed as a system of ordinary
differential equations in Yh:{

W ′h(t) = AhWh(t), Wh(t) ∈ Yh,

Wh(0) = (w0
1,w

0
2, · · · ,w0

N+1)
> ∈ Yh,

(22)

where the matrices Ah are defined as

AhYh = D−1
h

[
iMh

(
D>h
)−1(

M>h Yh− i2−1kyN+1eh

)]
− kh−1yN+1D−1

h eh, ∀Yh = (y1, · · · ,yN+1)
> ∈ Yh.

(23)

The classical semi-discrete scheme is similar to (22), where
the average operator Dh = IN+1, i.e.,{

W ′h(t) = ˆAhWh(t), Wh(t) ∈ Yh,

Wh(0) = (w0
1,w

0
2, · · · ,w0

N+1)
> ∈ Yh,

(24)

in which the ˆAh is defined by

ˆAhYh = iMh

(
D>h
)−1(

M>h Yh− i2−1kyN+1eh

)
− kh−1yN+1D−1

h eh.

(25)

At the end of this section, we highlight the importance of
the discrete scheme (22). To illustrate this, we present two
figures in Figure 1. The left figure depicts the maximum real
parts of the eigenvalues of the classical semi-discrete scheme
(22) with the step size h. From this figure, we observe that
the real parts of the eigenvalues tend towards zero. The right
figure shows the maximum real parts of the eigenvalues of
the order reduction semi-discrete scheme (22) using the same
step sizes. Here, we see that the real parts of the eigenvalues
approach a negative number. For both figures, we set k = 1.

IV. PROOF OF UNIFORM EXPONENTIAL STABILITY

This section focuses on proving the uniform exponential
stability of (22). To initiate the proof, we first establish Lemma
4.1, which is partallel to (4).

Lemma 4.1: For the matrix Ah defined by (23), there holds

Re〈AhYh,Yh〉Yh
=−k|yN+1|2, ∀ Yh ∈ Yh. (26)

N
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Fig. 1. Maximal real parts of eigenvalues of the semi-discrete scheme.

Proof. For Yh = (y1, · · · ,yN+1)
> ∈Yh, let Zh = (z0 · · · ,zN)

>

be the shadow element of Yh:{
D>h Zh =−M>h Yh + i2−1kyN+1eh,

AhYh = D−1
h [−iMhZh− kh−1yN+1eh].

(27)

Set y0 = 0 and zN+1 = −ikyN+1 and introduce Ỹh =
(ỹ1, · · · , ỹN+1)

> ∈ Yh such that AhYh = Ỹh with ỹ0 = 0. Then,
we have D>h Zh +2−1zN+1eh =−M>h Yh, which is equivalent to

z j+ 1
2
= δxy j+ 1

2
, j = 0,1, · · · ,N, (28)

and DhỸh =−iMhZh− ih−1zN+1eh, which is equivalent to

ỹ j+ 1
2
=−iδxz j+ 1

2
, j = 0,1, · · · ,N. (29)

Taking the inner product between AhYh and Yh in Yh by
considering (28) and (29), we obtain

Re〈AhYh,Yh〉Yh
= Re

〈
Ỹh,Yh

〉
Yh

=
h
2

〈
DhỸh,DhYh

〉
+

h
2

〈
DhYh,DhỸh

〉
=

h
2

N

∑
j=0

ỹ j+ 1
2
y j+ 1

2
+

h
2

N

∑
j=0

y j+ 1
2
ỹ j+ 1

2
, (using (29))

=− ih
2

N

∑
j=0

[
δxz j+ 1

2
y j+ 1

2
+ z j+ 1

2
δxy j+ 1

2

]
+

ih
2

N

∑
j=0

[
y j+ 1

2
δxz j+ 1

2
+δxy j+ 1

2
z j+ 1

2

]
. (using (28))

(30)

A simple calculation reveals that

− ih
2

N

∑
j=0

[
δxz j+ 1

2
y j+ 1

2
+ z j+ 1

2
δxy j+ 1

2

]
+

ih
2

N

∑
j=0

[
y j+ 1

2
δxz j+ 1

2
+δxy j+ 1

2
z j+ 1

2

]
=− i

2

N

∑
j=0

[z j+1y j+1− z jy j]+
i
2

N

∑
j=0

[y j+1z j+1− y jz j]

=
i
2
[z0y0− zN+1yN+1]+

i
2
[yN+1zN+1− y0z0]

=−k|yN+1|2.

(31)

Using (30) and (31), we can derive (26).

Define the energy of (22) as

Eh(t) =
h
2

N

∑
j=0

∣∣∣w j+ 1
2
(t)
∣∣∣2 = 1

2
〈Wh(t),Wh(t)〉Yh

. (32)
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which is the discretized version of the continuous energy (6).
The following Lemma 4.2 is the discrete counterpart of (7),
stemming from (26).

Lemma 4.2: The discrete energy Eh(t) defined by (32)
satisfies

Ėh(t) =−k|wN+1(t)|2. (33)

The dissipativity of Ah ensures that the spectral set σ(Ah)
of Ah lies within the closed left half-plane of the complex
plane C. However, we can strengthen this result. Specifically,
for any 0 < h < 1, the spectral set σ(Ah) of Ah is contained
entirely within the open left half-plane of C. This finding
serves as a discrete counterpart of Lemma 2.1.

Lemma 4.3: For every h ∈ (0,1), iR⊂ ρ(Ah).
Proof. If there exist β ∈ R and nonzero Yh ∈ Yh such that

iβYh = AhYh, then it follows from (26) that

0 = Re〈iβYh, Yh〉Yh
= Re〈AhYh, Yh〉Yh

=−k|yN+1|2. (34)

From AhYh = iβYh, we obtain βy j+ 1
2
+δxz j+ 1

2
= 0, 0≤ j ≤ N,

z j+ 1
2
−δxy j+ 1

2
= 0, 0≤ j ≤ N,

(35)

where Zh is the shadow element of Yh defined in (27),
with y0 := 0 and zN+1 := −ikyN+1. From (34), we have
zN+1 = yN+1 = 0. Substituting j = N into (35) gives βhyN =
2zN , zN =− 2

h yN . It follows that yN = zN = 0 whenever βh2+4
is nonzero. Under the condition βh2 +4 6= 0, z j+1 = y j+1 = 0
and (35) imply that z j = y j = 0 for all j. This leads to Yh = 0 by
induction, which is a contradiction. On the other hand, when
βh2 +4 = 0, it follows from (35) that

1
h
(y j+1 + y j) =

1
2
(z j+1− z j), j = 0,1, · · · ,N,

1
h
(y j+1− y j) =

1
2
(z j+1 + z j), j = 0,1, · · · ,N.

(36)

which implies that y j = 2−1hz j for j = 1, · · · ,N + 1 and
y j =−2−1hz j for j = 0, · · · ,N, respectively. This, together with
y0 = 0 and yN+1 = 0, gives y j = 0 ( j = 1,2, · · · ,N) which is
also a contradiction.

Lemma 4.4 is brought from [13].
Lemma 4.4: Let {ui}i, {vi}i and {wi}i be the sequences of

complex numbers. Then,

h
N

∑
i=0

δxui+ 1
2
vi+ 1

2
wi+ 1

2
+

h3

4

N

∑
i=0

δxui+ 1
2
δxvi+ 1

2
δxwi+ 1

2

+h
N

∑
i=0

ui+ 1
2
δxvi+ 1

2
wi+ 1

2
+h

N

∑
i=0

ui+ 1
2
vi+ 1

2
δxwi+ 1

2

= uN+1vN+1wN+1−u0v0w0.

The following uniform stability criterion, which was pre-
sented in [15] or [1], will be utilized in the proof of our main
result, Theorem 4.2, subsequently.

Theorem 4.1: Let h∗ > 0 and let {Sh(t)}h∈(0,h∗) be a family
of semigroups of contractions on the Hilbert space Hh, and let
Ãh be the corresponding infinitesimal generators. The family
{Sh(t)} is uniformly exponentially stable if and only if the
following two conditions are fulfilled:

• For every h ∈ (0,h∗), iR⊂ ρ(Ãh);
• suph∈(0,h∗),β∈R ‖(iβ I− Ãh)

−1‖< ∞.
Now, we are in a position to give the main result of this

paper.
Theorem 4.2: For the matrices Ah defined by (23), the

associated family of C0-semigroups Th(t) generated by Ah is
uniformly exponentially stable. Specifically, there exist two
constants M > 0 and ω > 0, both independent of h ∈ (0,1),
such that

‖Th(t)‖ ≤Me−ωt , ∀t ≥ 0. (37)

Proof. By virtue of Lemma 4.1, for every h ∈ (0,1), Th(t)
is a C0-semigroup of contractions. Lemma 4.3 has already
established that Ah satisfies the first condition of Theorem
4.1. To demonstrate that the family Ah also satisfies the second
condition of Theorem 4.1, we proceed by contradiction. If the
second condition of Theorem 4.1 is false, then there exists
a sequence {(βn,hn,Y n

hn
)}n∈N+ with βn ∈ R, hn ∈ (0,1), and

Y n
hn
∈ Yhn such that

‖Y n
hn
‖Yhn

= 1,

Un
hn

:= (iβnIhn −Ahn)Y
n
hn
,

‖Un
hn
‖Yhn

≤ n−1.

(38)

Utilizing the Cauchy-Schwarz inequality, we deduce from (38)
and (26) that

k|yn
Nn+1|2 = Re

〈
Un

hn
,Y n

hn

〉
Yhn
≤ n−1. (39)

Let Zn
hn

= (zn
0, · · · ,zn

Nn
)> ∈ Zhn be the shadow element of

Y n
hn
= (yn

1, · · · ,yn
Nn+1)

> with Nn+1 = [1/hn] (where [a] denotes
the largest integer less than or equal to the real number a).
The vector Un

hn
is given by Un

hn
= (un

1, · · · ,un
Nn+1)

>. To unify
the notation for un

j+ 1
2

and δxzn
j+ 1

2
from j = 0,1, · · · ,Nn, we

artificially set un
0 = yn

0 = 0 and zn
Nn+1 =−ikyn

Nn+1. Then, from
the second identity of (38), we have{

DhnUn
hn
= iβnDhnY n

hn
+ iMhnZn

hn
+ ih−1zn

Nn+1ehn ,

−M>hn
Y n

hn
= D>hn

Zn
hn
+2−1zn

Nn+1ehn ,
(40)

or in vector form:


un

0+ 1
2

...
un

Nn+
1
2

 = iβn


yn

0+ 1
2

...
yn

Nn+
1
2

+ i


δxzn

0+ 1
2

...
δxzn

Nn+
1
2

 ,


zn

0+ 1
2

...
zn

Nn+
1
2

 =


δxyn

0+ 1
2

...
δxyn

Nn+
1
2

 .

(41)
The proof will be split into three claims. Claim 1 corre-

sponds to ωn→ ∞ in the proof of Theorem 2.1.
Claim 1: |βn| ≥C′ > 0 for some constant C′ independent

of n ∈ N+.
Assuming the contrary, let us suppose that the sequence

{βn} contains a subsequence, which we shall denote by {βn}
itself for simplicity, that converges to zero. Since we can
always extract a subsequence with any desired convergence
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rate from a sequence converging to zero, we may further
assume, without loss of generality, that |βn| ≤ n−1. Given that
‖Y n

hn
‖Yhn

= 1 and ‖Un
hn
‖Yhn

≤ n−1, it follows from (41) that

hn

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2 = hn

Nn

∑
j=0

∣∣∣un
j+ 1

2
− iβnyn

j+ 1
2

∣∣∣2
≤ 2hn

Nn

∑
j=0

∣∣∣un
j+ 1

2

∣∣∣2 +2β
2
n hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2
= 2‖Un

hn
‖2
Yhn

+2β
2
n ‖Y n

hn
‖2
Yhn

≤ 4n−2.

(42)

On the other hand, through some simple operations, we obtain

|zn
j − zn

Nn+1|2 = |zn
j − zn

j+1 + zn
j+1− zn

j+2 + · · ·− zn
Nn+1|2

=

∣∣∣∣∣ Nn

∑
l= j

(zn
l+1− zn

l )

∣∣∣∣∣
2

≤

(
Nn

∑
l= j
|1|2
)(

Nn

∑
l= j

∣∣zn
l+1− zn

l

∣∣2)

≤ (Nn +1)

(
Nn

∑
l=0

∣∣zn
l+1− zn

l

∣∣2)

≤hn

Nn

∑
j=1

∣∣∣δxzn
j+ 1

2

∣∣∣2 , j = 0,1, · · · ,Nn,

(43)
where hn(Nn + 1) ≤ 1 was used in the last step, and for j =
0,1, · · · ,Nn

|zn
j | ≤ |zn

j − zn
Nn+1|+ |zn

Nn+1| ≤

√√√√hn

Nn

∑
j=1
|δxzn

j+ 1
2
|2 + |zn

Nn+1|.

This inequality, along with zn
Nn+1 = −ikyn

Nn+1 and equations
(39)-(42), implies that for each j = 0,1, · · · ,Nn, we have
|zn

j |2 = O(n−1). Here, the notation sn = O(n−1) signifies
that there exists a positive constant C such that |sn| ≤ Cn−1

holds for all n ∈ N+. Therefore, considering the fact that
hn(Nn +1)≤ 1 and equation (42), we arrive at

hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2 ≤ hn

2

Nn

∑
j=0

(∣∣zn
j+1
∣∣2 + ∣∣zn

j
∣∣2)

≤

∣∣∣∣∣∣
√√√√hn

Nn

∑
j=1
|δxzn

j+ 1
2
|2 + |zn

Nn+1|

∣∣∣∣∣∣
2

= O(n−1).

(44)

The deduction from equation (42) leads us to the conclusion
that

hn

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2 = O(n−2),

which, in turn, suggests that

hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2 = O(n−1).

Observing the second identity in (41), we obtain

hn

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2 = hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2 ,

which, by virtue of (44), implies that

hn

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2 = O(n−1).

Similarly, by replicating the steps from (42) to (44) for Y n
hn

,
we arrive at

‖Y n
hn
‖2
Yhn

= hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2 = O(n−1/2),

which introduces a contradiction. Consequently, the sequence
{βn} cannot possess a subsequence converging to zero. There-
fore, we can confidently assert that |βn| ≥ C′ > 0 for some
constant C′ that is independent of n ∈ N+.

The second claim, which plays a crucial role in our proofs,
is the discrete counterpart of (15), albeit with two additional
terms

h3
n

4βn

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2 + h3
n

4

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2 .
Claim 2: The following (45) holds true:

‖Y n
hn
‖2
Yhn

+
1
βn

hn‖Σhn Ẑn
hn
‖2
CNn+2

+
h2

n

4βn
hn‖∆hn Ẑn

hn
‖2
CNn+2 +

h2
n

4
hn‖∆hnŶ n

hn
‖2
CNn+2

= hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2 + hn

βn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2
+

h3
n

4βn

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2 + h3
n

4

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2
= O(n−1), (45)

where ‖ · ‖CNn+2 denotes the standard norm of CNn+2 and

Ẑn
hn
= (z0,z1, · · · ,zNn+1)

> =
(
(Zn

hn
)>,zNn+1

)>
,

Ŷ n
hn
= (0,y1, · · · ,yNn+1)

> =
(

0,(Y n
hn
)>
)>

,

Σhn =
1
2


1 1

. . . . . .
1 1

1 1


(Nn+2)×(Nn+1)

,

∆hn =
1
h


−1 1

−1 1
. . . . . .

−1 1


(Nn+2)×(Nn+1)

.

(46)

In fact, using (38), (41), and the fact that ‖Y n
hn
‖Yhn

= 1, we can
deduce that β−2

n hn ∑
Nn
j=0 |δxzn

j+ 1
2
|2 is uniformly bounded with

respect to n ∈ N+ because

1
βn


δxzn

0+ 1
2

...
δxzn

Nn+
1
2

=−


yn

0+ 1
2

...
yn

Nn+
1
2

− i
βn


un

0+ 1
2

...
un

Nn+
1
2

 .
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Using (44) and Claim 1, we can conclude that
β−2

n hn ∑
Nn
j=0 |zn

j+ 1
2
|2 is also uniformly bounded with respect

to n ∈ N+. Now, let xn
j = jhn for j = 0,1, · · · ,Nn + 1 and

consider the following estimates:∣∣∣∣∣hn

Nn

∑
j=0

xn
j+ 1

2
(βnyn

j+ 1
2
+δxzn

j+ 1
2
)

zn
j+ 1

2

βn

∣∣∣∣∣
2

=

∣∣∣∣∣hn

Nn

∑
j=0

xn
j+ 1

2
un

j+ 1
2

zn
j+ 1

2

βn

∣∣∣∣∣
2

≤

(
Nn

∑
j=0

∣∣∣√hnun
j+ 1

2

∣∣∣ ∣∣∣∣∣√hn

zn
j+ 1

2

βn

∣∣∣∣∣
)2

≤

(
hn

Nn

∑
j=0

∣∣∣un
j+ 1

2

∣∣∣2)(β
−2
n hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2)

= ‖Un
hn
‖2
Yhn

(
β
−2
n hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2)
= O(n−2), (47)

where (38) and (41) were utilized. Additionally, by the second
identity in (41), we obtain

hn

Nn

∑
j=0

xn
j+ 1

2
(βnyn

j+ 1
2
+δxzn

j+ 1
2
)

zn
j+ 1

2

βn

= hn

Nn

∑
j=0

xn
j+ 1

2

[
yn

j+ 1
2
δxyn

j+ 1
2
+β

−1
n δxzn

j+ 1
2
zn

j+ 1
2

]
.

(48)

By applying Lemma 4.4 to the two terms on the right-hand
side of (48) and observing that xn

Nn+1 = 1, xn
0 = 0, xn

j+1−xn
j =

hn, it is straightforward to derive

2Re

(
hn

Nn

∑
j=0

xn
j+ 1

2
yn

j+ 1
2
δxyn

j+ 1
2

)

= hn

Nn

∑
j=0

xn
j+ 1

2
yn

j+ 1
2
δxyn

j+ 1
2
+hn

Nn

∑
j=0

xn
j+ 1

2
yn

j+ 1
2
δxyn

j+ 1
2

= |yNn+1|2−hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2− h3
n

4

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2 ,
and

2Re

(
hn

Nn

∑
j=0

xn
j+ 1

2
zn

j+ 1
2
δxzn

j+ 1
2

)

= hn

Nn

∑
j=0

xn
j+ 1

2
zn

j+ 1
2
δxzn

j+ 1
2
+hn

Nn

∑
j=0

xn
j+ 1

2
zn

j+ 1
2
δxzn

j+ 1
2

= |zNn+1|2−hn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2− h3
n

4

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2 .
Using (48) and the two inequalities above, we can deduce that

hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2 + h3
n

4

Nn

∑
j=0

∣∣∣δxyn
j+ 1

2

∣∣∣2

+
hn

βn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2 + h3
n

4βn

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2
=−2Re

(
hn

Nn

∑
j=0

xn
j+ 1

2
(βnyn

j+ 1
2
+δxzn

j+ 1
2
)

zn
j+ 1

2

βn

)
+|yNn+1|2 +β

−1
n |zNn+1|2, (49)

which verifies (45) by virtue of (39), (47), and the fact that
zNn+1 =−ikyNn+1.

The third claim is indeed the precise discrete counterpart of
(17).

Claim 3: The following (50) holds true:

‖Y n
hn
‖2
Yhn

+
1

β 2
n

hn‖∆hn Ẑn
hn
‖2
CNn+2 −

2
βn

hn‖Σhn Ẑn
hn
‖2
CNn+2

= hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2 + hn

β 2
n

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2− 2hn

βn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2
= O(n−2),

(50)
where Σhn and ∆hn are defined in (46).

Actually, from (41), we have

‖Un
hn
‖2
Yhn

β 2
n

=
hn

β 2
n

Nn

∑
j=0

∣∣∣un
j+ 1

2

∣∣∣2 = hn

Nn

∑
j=0

∣∣∣∣∣yn
j+ 1

2
+

δxzn
j+ 1

2

βn

∣∣∣∣∣
2

= hn

Nn

∑
j=0

∣∣∣yn
j+ 1

2

∣∣∣2 + hn

β 2
n

Nn

∑
j=0

∣∣∣δxzn
j+ 1

2

∣∣∣2
+

hn

βn

Nn

∑
j=0

(yn
j+ 1

2
δxzn

j+ 1
2
+ yn

j+ 1
2
δxzn

j+ 1
2
). (51)

On the other hand, utilizing the second identity in (41), we
obtain zn

j+ 1
2
= δxyn

j+ 1
2

and

hn

βn

Nn

∑
j=0

(yn
j+ 1

2
δxzn

j+ 1
2
+ yn

j+ 1
2
δxzn

j+ 1
2
)+

2hn

βn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2

=
hn

βn

Nn

∑
j=0

(yn
j+ 1

2
δxzn

j+ 1
2
+δxyn

j+ 1
2
zn

j+ 1
2
)

+
hn

βn

Nn

∑
j=0

(δxyn
j+ 1

2
zn

j+ 1
2
+ yn

j+ 1
2
δxzn

j+ 1
2
)

=
1

2βn

Nn

∑
j=0

[(yn
j+1 + yn

j)(z
n
j+1− zn

j)+(yn
j+1− yn

j)(z
n
j+1 + zn

j)]

+
1

2βn

Nn

∑
j=0

[(yn
j+1 + yn

j)(z
n
j+1− zn

j)+(yn
j+1− yn

j)(z
n
j+1 + zn

j)]

=
1
βn

Nn

∑
j=0

(yn
j+1zn

j+1− yn
jz

n
j)+

1
βn

Nn

∑
j=0

(yn
j+1zn

j+1− yn
jz

n
j)

=
1
βn

[yn
Nn+1zn

Nn+1 + yn
Nn+1zn

Nn+1− yn
0zn

0− yn
0zn

0] = 0,
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where zn
Nn+1 =−ikyn

Nn+1 and yn
0 = 0 were used in the last step.

Hence

hn

βn

Nn

∑
j=0

(yn
j+ 1

2
δxzn

j+ 1
2
+ yn

j+ 1
2
δxzn

j+ 1
2
) =−2hn

βn

Nn

∑
j=0

∣∣∣zn
j+ 1

2

∣∣∣2 . (52)

Substituting (52) into (51) and utilizing the bounds ‖Un
hn
‖Yhn
≤

n−1 and Claim 1, we arrive at the desired conclusion (50).
Finally, if βn > 0, we obtain ‖Y n

hn
‖2
Yhn

= O(n−1) from (45),
which contradicts the given condition ‖Y n

hn
‖Yhn

= 1. Similarly,
when βn < 0, we have ‖Y n

hn
‖Yhn

= O(n−1) due to (50), which
is also a contradiction. Thus, we have successfully completed
the proof of the theorem.

V. CONCLUDING REMARKS

In this paper, we explore the uniform approximation of ex-
ponential stability for a one-dimensional Schrödinger equation.
We introduce an order-reduced, space semi-discretized finite
difference scheme to uniformly approximate the exponentially
stable closed-loop system. While this scheme has been applied
to certain partial differential equations (PDEs) in previous
studies, a common feature is the ability to find a suitable
Lyapunov functional for both the continuous and discretized
closed-loop systems. However, for the system considered
here, it has been a long-standing challenge to find a time-
domain energy multiplier, even for the continuous system in
the natural state space L2(0,1). This has long prevented the
convergence of the semi-discrete scheme for this PDE from
being established. Our work is the first to apply the frequency-
domain multiplier approach to demonstrate the uniform expo-
nential convergence of a semi-discretized PDE system. The
convergence of the discrete scheme to the continuous system
is not included here, as it follows a standard procedure and
can be analogously derived from previous works, such as [14]
and others. Given the difficulty in finding time-domain energy
multipliers for many other PDEs, the approach presented in
this paper has the potential to be widely applicable to other
PDE systems.
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