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a b s t r a c t

In this paper, we investigate a nonlinear extended state observer (ESO) constructed from piece-wise
smooth functions consisted of linear and fractional power functions. This structure of ESO was first
proposed in the 1990’s and has been widely used in active disturbance rejection control for engineering
controls. Its convergence, however, has remained an open problem up to this day. The main objective of
this paper is to provide a convergence theorywith explicit error estimation. The performances of this type
ESO are studied by numerical simulation and compared with linear ESO. The numerical results show that
the ESO proposed in this paper enjoys the advantages of smaller peaking value and better measurement
noise tolerance.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Due to its ability to deal with vast internal and external
uncertainty, the active disturbance rejection control (ADRC) (Han,
2009) is becoming an emerging technology in control engineering.
The last two decades have witnessed ADRC’s success in many
industrial applications including DC–DC power converter (Sun
& Gao, 2005), flight vehicles control (Xia & Fu, 2013), Gasoline
Engines (Xue et al., 2015), hydraulic systems control (Yao, Jiao, &
Ma, 2014). The ADRC’s characteristics of energy saving has also
been demonstrated. For example, a 30% improvement in product
performance capability index (Cpk) and 50% reduction in energy
consumption were concluded in the test conducted in Parker
Hannifin Parflex hose extrusion plant for over a period of eight
months (Zheng & Gao, 2012).

The extended state observer (ESO) is central to ADRC. Note
that the effect of the so-called ‘‘total disturbance’’ of system,
which may contain internal uncertainty, external disturbance, and
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anything that is hard to model or deal with, can be exhibited in
the observablemeasured output. Through aproperly designed ESO,
the ‘‘total disturbance’’ can be estimated. Then, it can be naturally
canceled in the feedback loop.

A first ESO was proposed by J.Q. Han in late 1980’s (Han,
2009) where there are multiple tuning parameters to be tuned
to estimate system state and total disturbance. For easy use, Gao
(2003) proposed a one-parameter tuning linear ESO in terms of
bandwidth, where the high-gain approach is incorporated. The
convergence of linear ESO, also known as extended high-gain
observer in other context (Praly & Jiang, 2004; Freidovich & Khalil,
2008), is discussed in Zheng, Gao, and Gao (2007). Other types of
linear ESO are subsequently proposed for various systems such
as control and disturbance unmatched systems (Li, Yang, Chen, &
Chen, 2012), and the systemwithout a prior knowledge of nominal
control parameter (Jiang, Huang, & Guo, 2015). Very recently, a
linear ESO with adaptive gain is investigated in Xue et al. (2015).

In addition to these ESO aforementioned, the nonlinear function
commonly used in ESO in practice is of the following form:

fal(τ , α, δ) =

 τ

δ1−α
, |τ | ≤ δ,

|τ |
αsign(τ ), |τ | > δ,

(1.1)

where 0 < α < 1 and δ > 0 are constants. Based on numerous
computer simulations and engineering practices, Han (2009)
claimed that the ESO with nonlinear function of type (1.1) is quite
effective for state and ‘‘total disturbance’’ estimation, leading to
good performance including small peaking value. For nonlinear
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ESO on the other hand, although some progresses have been made
in recent papers (Guo & Zhao, 2011; Zhao & Guo, 2015), none
of them considers the nonlinear function (1.1). A fundamental
theoretical question for this type of ESO is how to choose α and δ
so that the convergence is guaranteed. Despite its importance, little
is done toward answering this question since (1.1) was proposed.
In this paper, we aim at providing an answer to this question
by investigating convergence of ESO constructed from nonlinear
function (1.1).

For the sake of exposition, we suppose in this paper that
δ = 1 since other cases can be similarly dealt with. Consider the
following lower triangle nonlinear system with vast uncertainty:

ẋ1(t) = x2(t) + φ1(t, u(t), x1(t)),
...

ẋn−1(t) = xn(t) + φn−1(t, u(t), x1(t), . . . , xn−1(t)),
ẋn(t) = f (t, x(t), w(t)) + φn(t, u(t), x(t)),
y(t) = x1(t),

(1.2)

where x(t) = (x1(t), . . . , xn(t)) ∈ Rn is the state, φi ∈ C(Ri+2, R)
are known system functions, f ∈ C(Rn+2, R) is an unknown
system function, y(t) is the measured output, u(t) is the control
input, w(t) is the external disturbance. The ‘‘total disturbance’’ or
‘‘extended state’’ is denoted by

xn+1(t) , f (t, x(t), w(t)). (1.3)

We propose the following ESO for system (1.2):

˙̂x1(t; r) = x̂2(t; r) +
k1

rn−1
G1(rn(x1(t) − x̂1(t; r)))

+ φ1(t, u(t), x1(t)),
...

˙̂xn(t; r) = x̂n+1(t; r) + knGn(rn(x1(t) − x̂1(t; r)))
+ φn(t, u(t), x1(t), x̂2(t; r), . . . , x̂n(t; r)),

˙̂xn+1(t; r) = rkn+1Gn+1(rn(x1(t) − x̂1(t; r))),

(1.4)

where r is a constant gain, ki’s are constants to be chosen so that
the following matrix is Hurwitz:

K =


−k1 1 0 · · · 0

...
...

...
. . .

...
−kn 0 0 · · · 1

−kn+1 0 0 · · · 0


(n+1)×(n+1)

, (1.5)

and {Gi}
n
i=1 is of the form:

Gi(τ ) = fal(τ , θi, 1) (1.6)

with θi ∈ (0, 1), i = 1, 2, . . . , n + 1, being positive constants to
be specified later.

The remaining part of the paper is organized as follows. In
Section 2, we present convergence result of the ESOwith fractional
power function Gi(·)’s defined in (1.6). State observer reduced
from ESO is also introduced. Since the proof of the main result is
lengthy and needs somemathematical techniques, it is carried out
separately in Section 3. The numerical simulations are presented
in Section 4 to demonstrate the convergence as well as other
properties including peaking value reduction and measurement
noise tolerance.

2. Main results

In this section, we present the convergence of ESO (1.4) based
on fractional power function (1.6). To this purpose, we make some
basic assumptions on the plant.
Assumption A1. All the functions including the disturbance w(t)
and its derivative ẇ(t), and the solution of (1.2) are supposed to be
uniformly bounded. The unknown function is supposed to be f ∈

C1(Rn+2, R) and there exists continuous function f̃ : Rn+1
→ R

such that |f (t, ξ)| +

 ∂ f (t,ξ)

∂t

 ≤ f̃ (ξ), ∀ t ∈ [0, ∞), ξ ∈ Rn+1.

For the known functions φi ∈ C(Ri+2, R), there exist continuous
bounded function L ∈ C(R2, R) and continuous functions φ̃i ∈

C(Ri, R) such that
|φi(t, u, ν1, ν2, . . . , νi) − φi(t, u, ν1, ν̃2, . . . , ν̃i)|

≤ L(t, u)∥(ν2 − ν̃2, . . . , νi − ν̃i)∥
αi ,

|φi(t, u, ν1, . . . , νi)| ≤ φ̃i(ν1, . . . , νi),
αi ∈ (0, 1], νi, ν̃i ∈ R, i = 1, 2, . . . ,m.

(2.1)

Remark 2.1. It is important to stress that we focus only on
convergence of ESO for open loop system. The boundedness of
state is used for estimation of state-dependent total disturbance.
If the ‘‘total disturbance’’ is state-independent or only the state
is estimated, the boundedness of the state can be removed, see
Theorem 2.1 and Corollary 2.1 later. In addition, the state is
bounded in most practical control systems such as those for faults
diagnosis (Yan, Tian, Shi, & Wang, 2008). Finally, since the ESO
is designed for control purpose, in case that the system is not
bounded, we can also use feedback to make the system bounded,
which will be investigated in the forthcoming paper.

Let

α = max
1≤i≤n

(n + 1 − i)(1 − αi), α∗
= min

1≤i≤n
αi. (2.2)

The main result is stated as Theorem 2.1.

Theorem 2.1. Suppose that in system (1.2), αi ∈ (0, 1], α < 1,
and Assumption A1 holds. Let θi = iθ −(i−1), i = 1, 2, . . . , n+1 in
ESO (1.4). Then there exist θ∗

∈ (n/(n + 1), 1) and r∗ > 0 such that
for any θ ∈ [θ∗, 1), r > r∗, and any initial state (x10, x20, . . . , xn0) of
system (1.2) and initial state (x̂10, x̂20, . . . , x̂n0, x̂(n+1)0) of ESO (1.4),
the observer errors satisfy, for any t > tr , i = 1, 2, . . . , n + 1, that

|xi(t) − x̂i(t; r)| ≤ Γ (1/r)n+1−i+ 1
(1−α)(2−α∗) , (2.3)

where tr > 0 is r-dependent and satisfies limr→∞ tr = 0, xn+1(t)
is the total disturbance defined in (1.3), and Γ is an r-independent
constant defined in (3.56).

Moreover, if the ‘‘total disturbance’’ (1.3) is independent of the
state, that is, f (·) = w(t), then (2.3) holds without assuming the
boundedness of the system state.

We first point out two features of ESO (1.4) where Gi(τ )′s
play the role of somehow saturation-like behaviors. The other
two merits of peaking value reduction and noise tolerance will be
discussed at the end of Section 4.

It is seen from (2.3) that the error between the state of ESO (1.4)
and state of system (1.2) including total disturbance can be made
as small as desired by tuning gain parameter r to be large enough.
In fact, (2.3) together with limr→∞ tr = 0 implies that for any
T > 0, i = 1, 2, . . . , n + 1,

lim
r→∞

sup
t∈[T ,∞)

|xi(t) − x̂i(t; r)| = 0. (2.4)

Generally speaking, to make state of ESO approximate state
and total disturbance to an acceptable small error, the gain
parameter r should be tuned according to variation speed of
the total disturbance: The smaller the variation speed of the
total disturbance, the smaller tuning parameter r . If the total
disturbance is not varying with time (a constant: f (·) = d̄ ∈ R),
then a small tuning gain can guarantee asymptotic convergence.
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Corollary 2.1. Suppose that in system (1.2), (2.1) holds with αi ∈

(0, 1] and α < 1, f (·) = d̄. Let θi = iθ − (i−1), i = 1, 2, . . . , n+1
in ESO (1.4). Then there exist θ∗

∈ (0, 1) and r∗ > 0, such that for any
θ ∈ [θ∗, 1), r > r∗, initial state (x10, x20, . . . , xn0) of system (1.2),
and initial state (x̂10, x̂20, . . . , x̂n0, x̂(n+1)0) of ESO (1.4), the observer
errors satisfy

(i) If α∗ < 1, then for any t > tr , i = 1, 2, . . . , n + 1,

|xi(t) − x̂i(t, r)| < Γ̃ (1/r)n+1−i+ 1
(1−α)(2−α∗) , (2.5)

where tr > 0 is an r-dependent constant satisfying limt→∞ tr =

0, xn+1(t) = d̄, and Γ̃ is given by (3.61);
(ii) If α∗

= 1, then

lim
t→∞

|xi(t) − x̂i(t, r)| = 0, i = 1, 2, . . . , n + 1, (2.6)

where α and α∗ are defined in (2.2) and xn+1(t) = d̄.

When the uncertainty term f (·) ≡ 0, the total disturbance
estimation is not necessary and ESO (1.4) is therefore reduced to
a state observer by removing the (n+1)th equation in (1.4). In this
case, we can prove that the observer error satisfies

(i) If α∗ < 1, then ∀ t > tr , i = 1, 2, . . . , n,

|xi(t) − x̂i(t, r)| < Γ̂ (1/r)n−i+ 1
(1−α)(2−α∗) , (2.7)

where tr is an r-dependent constant satisfying limt→∞ tr = 0,
and Γ̂ is a constant independent of r .

(ii) If α∗
= 1, then

lim
t→∞

|xi(t) − x̂i(t, r)| = 0, i = 1, 2, . . . , n, (2.8)

whereα andα∗ are defined in (2.2). In this case,we do not need
to suppose that the solution is bounded.

The main contribution of this paper is proving convergence for
‘‘fal(·)’’ based ESO under the Hölder continuous assumption on a
class of open-loop systems with vast uncertainty, a long standing
problem in ADRC. It is indicated numerically that the advantages of
ESO constructed from ‘‘fal(·)’’ are smaller peaking value and better
performance under measurement noise. Recently, some nonlinear
functions such as homogeneous functions are adopted in observer
design for Hölder continuous nonlinear systems such as Andrieu,
Praly, and Astolfi (2008), Levant (2003) and Yang and Lin (2004).
However, to the best of our knowledge, no observer is constructed
from the piecewise smooth function composed of fractional power
function and linear function like fal(·), and no observer is designed
for the general Hölder continuous nonlinear system satisfying (2.1)
up to date.

3. Proof of main results

The difficulty in proving Theorem 2.1 lies in the fact that ESO
(1.4) switches between the linear ESO (Guo & Zhao, 2011, Corollary
2.1) and fractional power ESO (Guo & Zhao, 2011, Corollary 2.2).
It is intractable to examine the switching times on the two
switching hypersurfaces {(z1, z2, . . . , zn+1) ∈ Rn+1

| z1 = 1} and
{(z1, z2, . . . , zn+1) ∈ Rn+1

| z1 = −1}. And it seems impossible to
derive the exact solution of the nonlinear ESO.

The main steps of the proof are outlined below:

(1) Let

ηi(t; r) = rn+1−i(xi(t) − x̂i(t; r)), i = 1, 2, . . . , n + 1 (3.1)

be the re-scaled errors between solutions of system (1.2) and
ESO (1.4). A straightforward computation shows that

η(t; r) = (η1(t; r), η2(t; r), . . . , ηn+1(t; r))
satisfies the following equation:

dη(t; r)
dt

= rG (η(t; r)) + Φ(t; r), (3.2)

where G (·) is given in (3.4) and

Φ(t; r) = (Φ1(t; r), . . . , Φn+1(t; r))⊤

Φi(t; r) = rn+1−i(φi(t, u(t), x1(t), . . . , xi(t))
− φi(t, u(t), x1(t), . . . , x̂i(t; r))), i = 1, 2, . . . , n,

Φn+1(t; r) = ẋn+1(t). (3.3)

(2) Construct two Lyapunov functions Vθ (·) and VL(·) according to
fractional power and linear functions in fractional power ESO,
respectively.

(3) By analyzing the derivative of Vθ (·) and VL(·) along the error
Eq. (3.2), we show that the state of (3.2) enters and will be
staying in a compact set that contains the original state and
lies in the domain between two switching hypersurfaces. This
step is the most difficult part.

(4) The proof of the theorem is accomplished by analyzing the
derivative of VL(·) along the error Eq. (3.2).

In what follows, we give the detailed proof of the theorem. First
of all, we introduce two auxiliary vector fields and an auxiliary
system. Let

G (z) = (z2 − k1G1(z1), . . . ,−kn+1Gn+1(z1))⊤,

F(z) = (F1(z), . . . , Fn+1(z))⊤,

= (z2 − k1[z1]θ1 , . . . ,−kn+1[z1]θn+1)⊤, (3.4)

and

ż(t) = F(z(t)), z = (z1, z2, . . . , zn+1)
⊤

∈ Rn+1. (3.5)

Now we show that system (3.5) is homogeneous of degree d =

θ − 1 with weights {ri = (i − 1)θ − (i − 2)}n+1
i=1 . The details of

weighted homogeneity can be found in Bhat and Bernstein (2005).
Let matrix K in (1.5) be Hurwitz. By Bhat and Bernstein

(2005), Perruquetti, Floquet, andMoulay (2008), and Rosier (1992),
there exists a positive definite, and radially unbounded Lyapunov
function Vθ : Rn+1

→ R which is homogeneous of degree γ > 1
with weights {ri}n+1

i=1 . Moreover, the Lie derivative of Vθ (z) along
the vector field F(z) is negative definite.

It follows from the homogeneity of Vθ (·) that LF (Vθ (z)) and
∂Vθ (z)

∂zi
are also weighted homogeneous functions. Let χi(z1, z2, . . . ,

z(n+1)) = |zi|. For any λ > 0, χi(λ
r1z1, λr2z2, . . . , λrn+1zn+1) =

λri |zi| = λriχi(z1, z2, . . . , zn+1). Hence χi(z1, z2, . . . , z(n+1)) = |zi|
is homogeneous of degree ri with weights {ri}n+1

i=1 .

Lemma 3.1 (Lemma 4.2 of Bhat & Bernstein, 2005). Suppose that
V1(z) and V2(z) are continuous real-valued functions over Rn+1,
homogeneous of degrees d1 and d2 respectively with weights {ri}n+1

i=1 .
Assume that V1(z) is positive definite. Then, for every z ∈ Rn+1,

min
z∈{ν∈Rn+1| V1(ν)=1}

V2(z)


(V1(z))
d2
d1 ≤ V2(z)

≤


max

z∈{ν∈Rn+1| V1(ν)=1}
V2(z)


(V1(z))

d2
d1 . (3.6)

By (3.6), together with the homogeneity of ∂Vθ (z)
∂zi

, LFVθ (z), and
|zi|, we have∂Vθ (z)

∂zi

 ≤ B1(Vθ (z))
γ−ri

γ ,

(LF (Vθ ))(z) ≤ −B2(Vθ (z))
γ+d
γ ,

|zi| ≤ B3(Vθ (z))
ri
γ , z ∈ Rn+1, Bi > 1.

(3.7)
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Let

VL(z) = z⊤Pz, z ∈ Rn+1, (3.8)

and

Vmax(z) = max
θ∈[θ∗

1 ,1]
Vθ (z), Vmin(z) = min

θ∈[θ∗
1 ,1]

Vθ (z). (3.9)

By the properties of Vθ (z), Vmax(z) and Vmin(z) are continuous,
positive definite and radially unbounded. Therefore there exist
class K∞ functions (Khalil, 2002) κθ i, κi, κ̃i(i = 1, 2) : [0, ∞) →

[0, ∞) such that

κθ1(∥z∥) ≤ Vθ (z) ≤ κθ2(∥z∥),
κ1(∥z∥) ≤ Vmax(z) ≤ κ2(∥z∥),

κ̃1(∥z∥) ≤ Vmin(z) ≤ κ̃2(∥z∥), ∀ z ∈ Rn+1.

(3.10)

In addition, the Lyapunov function VL(z) satisfies

λmin(P)∥z∥2
≤ VL(z) ≤ λmax(P)∥z∥2. (3.11)

The above arguments are about properties of the constructed
Lyapunov functions. Now we estimate the bound of norm of
Φ(t; r) given by (3.3). From now on, we shall use ei to denote
an i-dimensional vector ei = (e1, e2, . . . , ei), ei ∈ R, i ∈ N+.
By Assumption A1, there exists M1 such that |ẋn+1(t)| ≤ M1. If
f (·) = w(t), |ẋn+1(t)| is also uniformly boundedwithout requiring
the boundedness of system state and control input. By using
Assumption A1 again, there existsM2 > 0 such that |L(t, u(t))| ≤

M2 for all t ∈ [0, ∞). Hence for r > 1,

rn+1−i
|φi(t, u(t), x1(t), x2(t), . . . , xi(t))

− φi(t, u(t), x1(t), x̂2(t; r), . . . , x̂i(t; r))|

≤ M2r (n+1−i)(1−αi)∥ηi(t; r)∥αi . (3.12)

This, together with (3.3), yields

∥Φ(t; r)∥ ≤ M1 + M2

n
i=1

r (n+1−i)(1−αi)∥η(t; r)∥αi . (3.13)

Now we estimate the bound of ∥F(·) − G (·)∥. By the definition
of Gi defined in (1.6), for any e = (e1, e2, . . . , en+1) ∈ Rn+1, if
|e1| > 1, then G (e) = F(e), and when |e1| ≤ 1,

∥G (e) − F(e)∥ ≤ max
1≤i≤n+1,|e1|≤1

e1 − [e1]θi
 ∥kn+1∥, (3.14)

where F(e) and G (e) are defined in (3.4). Hence (3.14) are valid on
whole Rn+1.

By

lim
θ→1

max
τ∈[−1,1]

[τ ]
θi − τ

 = 0, (3.15)

for

δ̃1 = B2/(2B1(n + 1)∥kn+1∥), (3.16)

there exists θ∗

2 ∈ [θ∗

1 , 1) such that for any θ ∈ [θ∗

2 , 1),

max
1≤i≤n+1,|e1|≤1

e1 − [e1]θi
 < δ̃1. (3.17)

Nowwe introduce the following auxiliary weighted homogeneous
function Ψ : Rn+1

→ R to estimate the bound of Vθ (η(0, r)):

Ψ (z1, z2, . . . , zn+1) = |z1|
γ
r1 + · · · + |zn+1|

γ
rn+1 . (3.18)

It is easy to verify that Ψ (z) is positive definite, homogeneous of
degree γ with weights {ri}n+1

i=1 . By Lemma 3.1, there exists c1 > 0
such that Vθ (e) ≤ c1Ψ (e) for all e ∈ Rn+1 and θ > (n − 1)/n.
Therefore

Vθ (η(0; r)) ≤ Arnγ , A = c1
n+1
i=1

|x1(0) − x̂1(0)|
γ
ri . (3.19)

Let

D1 =


e ∈ Rn+1

 Vθ (e) ≤ Arnγ


, (3.20)

D2 =


e ∈ Rn+1

 Vmin(e) ≤ max{κ̃2(1), 1}


, (3.21)

and

D3 =


e ∈ Rn+1

 VL(e) ≤ min

1,

λmin(P)

2


, (3.22)

where VL(e) is defined by (3.8) and Vmin(e) by (3.9). It is seen that
D3 ⊂ U(1/2) ⊂ U(1) ⊂ D2, U(ρ) = {e ∈ Rn+1

| ∥e∥ ≤

ρ}, ρ > 0. It is also seen from (3.19) that η(0; r) ∈ D1. Since
limr→∞ D1 = Rn+1 and D2 is an r-independent compact set, there
exists r∗

1 > 0 such that D2 ⊂ D1 and D2 ≠ D1 for any r > r∗

1 . Let
η(t; r) be defined in (3.1). By (3.2),

η̇(t; r) = rF(η(t; r)) + r(G (η(t; r)) − F(η(t; r))) + Φ(t; r),
(3.23)

where Φ(t; r) is given by (3.3).
The proof of Theorem 2.1 is mainly based on ultimate

boundedness of the state of system (3.23) by the compact set D3
defined in (3.22).

Proposition 3.1. Let η(t; r) be the solution of system (3.23). Then
there exists r̂∗ > 1 such that

η(t; r) ∈ D3, ∀ r > r̂∗, t > t2r , (3.24)

where t2r is an r-dependent constant and t2r → 0 as r → ∞.

Proof. Finding the derivative of Vθ (η(t; r)) with respect to t along
the error system (3.23), we obtain

dVθ (η(t; r))
dt


(3.23)

= r(LF (Vθ ))(η(t; r))

+ rL(G−F)Vθ (η(t; r)) +

n+1
i=1

∂Vθ

∂ηi
(η(t; r))Φi(t; r). (3.25)

It follows from (3.3), (3.12), and (3.7) that

dVθ (η(t; r))
dt


(3.23)

≤ −rB2(Vθ (η(t; r)))
γ+d
γ

+ r δ̃1∥kn+1∥B1

n+1
i=1

Vθ (η(t; r))
γ−ri

γ

+ B1M2rα
n

i=1

(Vθ (η(t; r)))
γ+αiri−ri

γ

+ B1M1(Vθ (η(t; r)))
γ−rn+1

γ . (3.26)

The proof will be accomplished by splitting separately into three
different cases.
Case 1: For any i = 1, 2, . . . , n, αi < 1 and α = max(n+1− i)(1−

αi) < 1.
For any θ ∈ ((i − 1)/i, 1), it is easy to verify that 1 − θ ≤

(i − 1)θ − (i − 2) = ri, and hence

(γ − 1 + θ)/γ ≥ (γ − ri)/γ . (3.27)
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For any θ ∈ ((1 + (1 − αi)(i − 2))/(1 + (1 − αi)(i − 1)), 1), we
can obtain 1 − θ ≤ (1 − αi)((i − 1)θ − (i − 2)) = (1 − αi)ri. It
then follows that

(γ − 1 + θ)/γ ≥ (γ + (αi − 1)ri)/γ . (3.28)

Let

Dθ =

e ∈ Rn+1

| Vθ (e) ≤ 1

. (3.29)

By the definition of Dθ , Vθ (e) > 1 for any e ∈ D1 − Dθ . This
combines (3.26), (3.27), and (3.28) to obtain that if η(t; r) ∈ D1 −

Dθ ,

dVθ (η(t; r))
dt


(3.23)

≤ −(rB2 − r δ̃1nB1∥kn+1∥ − B1M1

− (nB1B3M2)rα)(Vθ (η(t; r)))
γ+d
γ . (3.30)

Let

r∗

2 = max


8B1M1

B2
,


8nB1B3M2

B2

 1
1−α


.

By (3.16) and (3.30), it follows that for any θ ∈ [θ∗

2 , 1) and r > r∗

2 ,

dVθ (η(t; r))
dt


(3.23)

≤ −


rB2 −

rB2

2
−

rB2

8
−

rB2

8


(Vθ (η(t; r)))

γ+d
γ

≤ −
r
4
(Vθ (η(t; r)))

γ+d
γ

≤ −
r
4

min
e∈D1−Dθ

(Vθ (e))
γ+d
γ < 0. (3.31)

Case 2: α1 = α2 = · · · = αn = 1. In this case, we can obtain that

dVθ (η(t; r))
dt


(3.23)

≤ −rB2(Vθ (η(t; r)))
γ+d
γ

+ r δ̃1B1∥kn+1∥

n+1
i=1

(Vθ (η(t; r)))
γ−ri

γ

+ nB1B3M2Vθ (η(t; r)) + B1M1(Vθ (η(t; r)))
γ−rn+1

γ . (3.32)

Similarly with Case 1, when η(t; r) ∈ D1 − Dθ , we can obtain

dVθ (η(t; r))
dt


(3.23)

≤ nB1B3M2Vθ (η(t; r))

− (rB2 + r δ̃1nB1∥kn+1∥

+ B1M1)(Vθ (η(t; r)))
γ+d
γ . (3.33)

For any r > r∗

2 ,

dVθ (η(t; r))
dt

≤ −
3r
8

(Vθ (η(t; r)))
γ+d
γ + nB1B3M2Vθ (η(t; r)).(3.34)

For any e = (e1, e2, . . . , en+1)
⊤

∈ D1, it follows from (3.20) that
Vθ (e) ≤ Arnγ .

Let

θ∗
= max


θ∗

2 ,
n − 1
n


,

r∗

3 = max

r∗

2 ,


8nB1B3M2A(1−θ)/γ

B2

 1
nθ−(n−1)

 .

(3.35)
For any θ ∈ (θ∗, 1), 1−n(1−θ) = nθ−(n−1) > 0. For any r > r∗

3 ,
a simple computation shows thatB2r1−n(1−θ) > 8nB1B3M2A(1−θ)/γ .
This, together with Vθ (e) ≤ Arnγ , ∀ e ∈ D1, shows that if
η(t; r) ∈ D1, then

B2r ≥ 8nB1B3M2(Vθ (t; r))
1−θ
γ . (3.36)

Since d = θ − 1, we have arrived at

rB2

8
(Vθ (t; r))

γ+d
γ ≥ nB1B3M2Vθ (t; r). (3.37)

This together with (3.34) concludes that if η(t; r) ∈ D1 − Dθ , then
(3.31) holds true for any r > r∗

3 ,
Case 3:αi1 = αi2 = · · · = αim = 1,αij ∈ (0, 1), j = m+1, . . . , n. In
this case, similarly with Cases 1 and 2, we can also prove that there
exists r∗

4 > 0 such that (3.31) holds true for η(t; r) ∈ D1 − Dθ , for
any r > r∗

4 ,
Let r∗

5 = max{r∗

3 , r∗

4 }. With the same arguments above, we can
also show that for any r > r∗

5 , (3.31) holds true if η(t; r) ∈ D1−Dθ ,
nomatter αi < 1 or αi = 1, or even some of these numbers are less
than one and some equal to one.

From (3.31), we know that for any θ ∈ [θ∗

2 , 1) and r > r∗,
Vθ (η(t; r)) is strictly decreasing in D1 − Dθ . So there exists t1r > 0
such that {η(t; r)| t > t1r} ⊂ Dθ ⊂ D2. In what follows, we
estimate the time t1r . Let ζ (t) be a nonnegative function and satisfy
the following initial value problem:

ζ̇ (t) = −
r
4
(ζ (t))

γ+d
γ , ζ (0) = Vθ (η(0; r)).

A direct computation shows that

ζ =




−
|d|r
4γ

t + (ζ (0))
|d|
γ

 γ
|d|

, t ≤
4γ
|d|

(ζ (0))
|d|
γ

r
,

0, t >
4γ
|d|

(ζ (0))
|d|
γ

r
.

(3.38)

By (3.31) and applying the comparison principle of ordinary
differential equations, we have

t1r ≤
4γ
|d|

r(ζ (0))
|d|
γ ≤

4γ
1 − θ

A
1−θ
γ


1
r

nθ−(n−1)

. (3.39)

Let

τ ∗
= max

e∈D2
|e1| < ∞,

δ̃2 =

min
e∈D2

∥e∥

4λmax(P)∥kn+1∥max
e∈D2

∥e∥
.

(3.40)

For every τ ∈ [−τ ∗, τ ∗
] and each 1 ≤ i ≤ n+1, since |Gi(τ )−τ | is

continuous in θ , maxi=1,...,n+1,τ∈[−τ∗,τ∗] |Gi(τ )−τ | is θ-continuous
as well. Considering maxi=1,...,n+1,τ∈[−τ∗,τ∗] |Gi(τ ) − τ | = 0 for
θ = 1, we can derive that there exists θ∗

3 ∈ [θ∗

2 , 1) such that for
any θ ∈ [θ∗

3 , 1),

max
i=1,...,n+1,τ∈[−τ∗,τ∗]

|Gi(τ ) − τ | < δ̃2. (3.41)

Next, finding the derivative of VL(η(t; r)) along the solution
η(t; r) of (3.23) in the compact set D2, where VL(·) is defined by
(3.8), yields

dVL(η(t; r))
dt


(3.23)

≤ 2λmax(P)∥Φ(t; r)∥ ∥η(t; r)∥

+ 2rλmax(P)∥G (η(t; r)) − Kη(t; r)∥ ∥η(t; r)∥ − r∥η(t; r)∥2.

(3.42)
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This together with (3.13) and (3.41) gives that for any θ ∈ [θ∗

3 , 1),
r > r∗

5 , and t > t1r , if η(t; r) ∈ D2 − D3, then

dVL(η(t; r))
dt


(3.23)

≤ −r min
e∈D2−D3

∥e∥2
+ 2M1λmax(P) max

e∈D2−D3
∥e∥

+ 2r δ̃2λmax(P)∥kn+1∥ max
e∈D2−D3

∥e∥

+ 2rαM2λmax(P) max
e∈D2−D3

n
i=1

∥e∥αi+1, (3.43)

where α is given in (2.2). Let

r6∗ = max

r∗

5 ,

16M1λmax(P) max
e∈D2−D3

∥e∥

min
e∈D2−D3

∥e∥
,

×

16M2λmax(P) max
e∈D2−D3

n
i=1

∥e∥αi+1

min
e∈D2−D3

∥e∥2


1

1−α
 . (3.44)

Notice (3.40). For any θ ∈ [θ∗

3 , 1), r > r∗

6 , and t > t1r , if η(t; r) ∈

D2 − D3, the derivative of VL(η(t; r)) along the solution η(t; r) of
(3.23) is estimated as

dVL(η(t; r))
dt


(3.23)

≤ −r min
e∈D2−D3

∥e∥2
+

r
2

min
e∈D2−D3

∥e∥2

+
r
4

min
e∈D2−D3

∥e∥2 < −
r
4

min
e∈D2−D3

∥e∥2 < 0. (3.45)

This, with the definition of D2, shows that there exists

t2r = t1r +
8λmax(P)(κ̃−1

1 (max{κ̃2(1), 1}))2

min
e∈D2−D3

∥e∥2

1
r

such that {η(t; r)| t > t2r} ⊂ D3 for all θ ∈ [θ∗

3 , 1) and r > r∗

6 . By
(3.39)

lim
r→∞

t2r ≤ lim
t→∞


4γ

1 − θ
A

1−θ
γ (1/r)nθ−(n−1)

+
8λmax(P)(κ̃−1

1 (max{κ̃2(1), 1}))2

min
e∈D2−D3

∥e∥2

1
r


= 0. (3.46)

This completes the proof of the proposition. �

Proof of Theorem 2.1. For any ∀ e = (e1, . . . , en+1) ∈ D3, by
definition of D3, we have

|e1| ≤ ∥e∥ ≤
VL(e)

λmin(P)
≤ 1/2 < 1. (3.47)

This together with the definition of Gi shows that Gi(e) = e for all
e ∈ D3, i = 1, 2, . . . , n+1. Therefore, G(e) = Ke for all e ∈ D3. We
thus conclude that for any θ ∈ [θ∗

3 , 1), r > r∗

6 , and t > t2r , (3.23)
can be rewritten as

η̇(t; r) = rKη(t; r) + Φ(t; r). (3.48)
Finding the derivative of VL(η(t; r)) along the solution η(t; r) of
(3.48) yields

dVL(η(t; r))
dt


(3.48)

≤ −r∥η(t; r)∥2
+ 2λmax(P)

× ∥η(t; r)∥


M1 + M2

n
i=1

r (n+1−i)(1−αi)∥η(t; r)∥αi


. (3.49)

From (2.2) and assumptions on α and α∗, we have 0 ≤ (n + 1 −

i)(1 − αi) ≤ α < 1 and 0 < α∗
≤ αi ≤ 1, where i = 1, 2, . . . , n.

Hence for any r > 1 and i ∈ {1, 2, . . . ,m}, r (n+1−i)(1−αi) ≤ rα . By
Proposition 3.1, for any t > t2r , η(t; r) ∈ D3. By (3.47), ∥η(t; r)∥ <
1. Hence ∥η(t; r)∥ ≤ ∥η(t; r)∥α∗

and ∥η(t; r)∥αi ≤ ∥η(t; r)∥α∗

,
i = 1, 2, . . . , n. Therefore,

dVL(η(t; r))
dt


(3.48)

≤ −
r

λmax(P)
VL(η(t; r))

+
2rα(M1 + nM2)λmax(P)

(λmin(P))α
∗/2

V
α∗

2
L (η(t; r)). (3.50)

If

VL(η(t; r)) >


4(M1 + nM2)(λmax(P))2

(λmin(P))α
∗/2

 2
2−α∗


1
r

 2
(1−α)(2−α∗)

,

(3.51)

then

dVL(η(t; r))
dt


(3.48)

< −
r

2λmax(P)
VL(η(t; r)).

For any t > t2r . By the comparison principle of the ordinary
differential equations, we have

VL(η(t; r)) ≤ exp


−
r

2λmax(P)
(t − t2r)


VL(η(t2r; r)).

From Proposition 3.1, η(t; r) ∈ D3 for any t > t2r , and hence
VL(η(t; r)) ≤ 1. So if VL(η(t; r)) satisfies (3.51), then for any t >
tr = t2r + 1/r1/2,

VL(η(t; r)) ≤ exp


−
r

2λmax(P)
(t − t2r)


≤ exp


−

r1/2

2λmax(P)


. (3.52)

Since

lim
r→∞

r
2

(1−α)(2−α∗) exp


−
r1/2

2λmax(P)


= 0, (3.53)

there exists r∗

7 > r∗

6 such that for any θ ∈ [θ∗

3 , 1), r > r∗

7 , and
t > tr ,

VL(η(t; r)) ≤ e−
r1/2

2λmax(P)

≤


4(M1 + nM2)(λmax(P))2

(λmin(P))α
∗/2

 2
2−α∗


1
r

 2
(1−α)(2−α∗)

,

(3.54)

and so

∥η(t; r)∥ ≤


VL(η(t; r))
λmin(P)

1/2

≤ Γ


1
r

 1
(1−α)(2−α∗)

, (3.55)
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(a) x1(t) and x̂1(t; 50). (b) x2(t) and x̂2(t; 50).

(c) x3(t) and x̂3(t; 50).

Fig. 1. The numerical results for system (4.1) by fractional power ESO.
where

Γ =
1

√
λmin(P)


4(M1 + nM2)(λmax(P))2

(λmin(P))α
∗/2

 1
2−α∗

. (3.56)

The transient time tr satisfies that

lim
r→∞

tr ≤ lim
r→∞


4γ

1 − θ
A

1−θ
γ


1
r

nθ−(n−1)

+
4κ2θ ◦ κ̃−1

1 (max{κ̃2(1), 1})
min

e∈D2−D3
∥e∥2

1
r

+
1

r1/2


= 0. (3.57)

Theorem 2.1 then follows by combining (3.55), (3.1) and (3.57).
�

Proof of Corollary 2.1. Let

η(t; r) = (η1(t; r), . . . , ηn+1(t; r))

and let ηi(t; r) be defined by (3.1) with xn+1(t) = d̄, and let
the Lyapunov function VL(z) be defined by (3.8). We can easily
verify that (3.23) also holds. Similarly with (3.49) in the proof of
Theorem 2.1, we can obtain that there exist θ∗

∈ (0, 1), r∗

1 > 1,
and t1r > 0 (limr→∞ t1r = 0) such that VL(η(t; r)) < 1 for any
θ ∈ [θ∗, 1), r > r∗

1 , and t > t1r . Hence the derivative of VL(η(t; r))
along the solution η(t; r) of (3.23) satisfies

dVL(η(t; r))
dt


(3.48)

≤ −
r

λmax(P)
VL(η(t; r))

+
2rαnM2λmax(P)

(λmin(P))1+α∗
(VL(η(t; r)))

1+α∗

2 . (3.58)
If α∗ < 1 and

VL(η(t; r)) >


4nM2λmax(P)2

λmin(P)1+α∗

 2
1+α∗ 

1
r

 2
(1−α)(1−α∗)

, (3.59)

then

dVL(η(t; r))
dt


(3.48)

≤ −
r

2λmax(P)
VL(η(t; r)).

By the comparison principle of ordinary equation, we have

VL(η(t; r)) ≤ exp


−
r

2λmax(P)
(t − t1r)


VL(η(t1r; r))

≤ exp


−
r1/2

2λmax(P)


, t > tr = t1r +

1
r1/2

.

Considering (3.53), there exists r∗ > r∗

1 such that for any r > r∗

VL(η(t; r)) ≤ exp


−
r1/2

2λmax(P)



≤


4nM2(λmax(P))2

λmin(P)1+α∗

 2
1+α∗ 

1
r

 2
(1−α)(1−α∗)

, (3.60)

and hence

∥η(t; r)∥ ≤

√
VL(η(t; r))
√

λmin(P)
≤ Γ̃


1
r

 1
(1−α)(1−α∗)

,

Γ̃ =


4nM2(λmax(P))2

 1
1+α∗

λmin(P)
. (3.61)
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(a) x1(t) and x̂1(t; 50). (b) x2(t) and x̂2(t; 50).

(c) x3(t) and x̂3(t; 50).

Fig. 2. The numerical results for system (4.1) by linear ESO.
If α∗

i = 1 then α = 0, and so

dVL(η(t; r))
dt


(3.48)

≤ −
(r − 2nM2λmax(P))

λmax(P)
VL(η(t; r)) < 0. (3.62)

This gives limt→∞ ∥η(t; r)∥ = 0. �

4. Numerical simulations

Example 4.1. Consider the following uncertain nonlinear system:
ẋ1(t) = x2(t) + φ1(t, u(t), x1(t)),
ẋ2(t) = f (t, x(t), w(t)) + φ2(t, u(t), x1(t), x2(t)),

(4.1)

where φ1(t, u, x1) = (1 + sin t) sin x1 and φ2(t, u, x1, x2) =

(1 + sin(t)) sin x2 − 4x2 + u are known functions, u(t) the control
input, and y(t) = x1(t) the output. The total disturbance x3(t) ,
f (t, x(t), w(t)) is completely unknown, with w(t) the external
disturbance.

In numerical simulations, we take w(t) and f (·) in system (4.1)
as w(t) = sin(2t + 1), f (t, x, w) = sin t +w + cos(x1 + x2 +w).
The solution of system (4.1) may not be bounded. However, we
apply direct output feedback u(t) = −2y(t) + v(t) where v(t)
is the new control input and for simplicity, we just take v(t) = 0.
In this case, system (4.1) satisfies Assumption A1. Since the total
disturbance is uniformly bounded, the solution of system (4.1) is
bounded as well.

In fractional power ESO (1.4), let n = 2, the nonlinear functions
Gi(·) are chosen as (1.6) with θ1 = 0.7, θ2 = 0.4, and θ3 = 0.1. The
Euler integral method is adopted with step size of 0.001, the initial
value of the system state is (1, 1), and the initial state of the ESO is
(0, 0, 0). The numerical results for fractional power ESO are plotted
in Fig. 1, wherewe use tuning parameter r = 50 for the simulation.
The three different curves in Fig. 1(a) are x1(t)−x̂1(t; 50), x1(t), and
x̂1(t, 50) respectively. The curves in Fig. 1(b) are x2(t) − x̂2(t; 50),
x2(t), and x̂2(t, 50). and Fig. 1(c) shows x3(t) − x̂3(t; 50), x3(t),
and x̂3(t, 50). The small figure on the right bottom of Fig. 1(c) is
magnification of Fig. 1(c) along the vertical axis. It is seen from
Fig. 1 that convergence of fractional power ESO is satisfactory.

Next we present numerical results for system (1.2) with state
and total disturbance under linear ESO (that is in (1.4), gi(τ ) = τ ).
With the same tuning parameter r = 50, the numerical results
of linear ESO are plotted in Fig. 2. we can see that the linear ESO
can also satisfactorily estimate the state and total disturbance.
However, comparing Figs. 1 and 2, it is evident that the peaking
value of fractional power ESO is much smaller than that of linear
ESO. Precisely, we can see that the peaking value of x̂3(t; 50) of
fractional power ESO is about 10, whereas the peaking value of
x̂3(t; 50) of linear ESO reaches almost 600.

Now we give numerical simulations in the presence of
measurement noise. Suppose that the output y(t) is contaminated
by the noise 0.002N (t), where N (t) is the standard Gaussian
noise generated by the Matlab program command ‘‘randn’’. Let
the other functions and parameters be the same as in Fig. 1.
The numerical results of ESO with fractional power functions G ′

i s
are plotted in Fig. 3. Finally, using the same parameters as in
Fig. 3, the numerical results of linear ESO with measurement noise
0.002N (t) are plotted in Fig. 4.
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(a) x1(t) and estimated value x̂1(t; 50). (b) x2(t) and estimated value x̂2(t; 50).

(c) x3(t) and estimated value x̂3(t; 50).

Fig. 3. The numerical results for system (4.1) with measurement contaminated by random noise by fractional power ESO.
To conclude this section, we discuss the advantage in terms of
peaking reduction andmeasurement noise sensitivity of fractional
power ESO. It can be shown that peaking often occurs in the
initial stage, which is caused by the high-tuning gain and the non-
zero (possibly very large) error x1(0) − x̂1(0). Specifically, the ith
equation of ESO contains a term ki

rn−i Gi(rn(x1(t) − x̂1(t; r))) which
can be very large for some functions Gi(·)’s. These large terms in
the right hand of ESO in the beginning force the state of ESO to
have large chattering. For instance, when Gi(τ ) = τ , that is, ESO
(1.4) is linear ESO, the term ki

rn−i Gi(rn(x1(t) − x̂1(t; r))) becomes
r i(x1(0) − x̂1(0)) which is large when x1(0) − x̂1(0) ≠ 0 and r is
large.

Nonlinear function Gi(·)’s defined by (1.6) possess saturation-
like behavior for large τ . This is the main reason for ESO based
on Gi(·)’s defined by (1.6) to have smaller peaking value than
linear ESO under the same tuning parameter r . Actually, for ESO
with Gi’s defined by (1.6), the r-dependent term at initial time is
rnθi−n+i

|x1(0) − x̂1(0)|θi . Since θi ∈ (0, 1), we have nθi − n + i < i
and hence rnθi−n+i can be smaller than r i in linear ESO for large r .
For example, in ESO (1.4), let n = 2, r = 50, θ = 0.7 (hence
θ3 = 0.1), x1(0) − x̂1(0)=1. In the third equation of (1.4), the
r-related term is rnθi−n+i

|x1(0) − x̂1(0)| = 501.2
≈ 109.3362,

whereas the corresponding term in the third order linear ESO is
r3|x1(0) − x̂1(0)| = 125 000. In Figs. 1 and 2, we use these
data for comparing the peaking value numerically. The peaking
value reduction for fractional power ESO with Gi’s defined by (1.6)
compared over linear ESO is significant.

When the output of the system is contaminated by noise n(t),
that is, y(t) = x1(t) + N (t), the linear ESO is sensitive to the
measurement noise for large r because the noise is magnified to
become r iN (t) in the ith equation of linear ESO. Given the credit
of the saturation function ofG ′

i s again, themagnification coefficient
of N (t) in ESO with Gi’s defined by (1.6) is rnθi−n+i which is much
smaller than r i for large r . This advantage is also shown in Figs. 3
and 4.

Finally,wepoint out that a novel high-gain observer is proposed
recently in Astolfi and Marconi (2015) where good performance
in the presence of measurement noise is obtained by increasing
order of the observer and limiting the power of the gain. The idea
here is similar to Astolfi andMarconi (2015) because our nonlinear
functions Gi(·)’s in ESO (1.4) have saturation-like behavior. When
|rn(x1(t)−x̂1(t; r))| > 1, after being saturated by Gi(·)’s, the power
of gain r becomes smaller. The small power can then help reduce
the peaking value and guarantee good performance in the presence
of measurement noise. When |rn(x1(t) − x̂1(t; r))| ≤ 1, the power
of the gain r is large and render good tracking accuracy, which
are the same as the power of the gain in linear ESO or traditional
high-gain observers. The differences of observer in Astolfi and
Marconi (2015) and ESO in this paper are (a) the observer in
Astolfi andMarconi (2015) is for the state estimation only whereas
ESO here estimates not only the system state but also the ‘‘total
disturbance’’; (b) for an nth order system, the observer in Astolfi
and Marconi (2015) is the (2n − 2)th order whereas ESO here is
(n+1)th order; (c) the power of gain in Astolfi andMarconi (2015)
is reduced in the whole process whereas in this paper, it is reduced
onlywhen rn|x1(t)− x̂1(t)| > 1; (d) it is pointed out by the authors
that the observer in Astolfi and Marconi (2015) is not effective for
peaking value problemwhereas ESO in this paper could reduce the
peaking value.
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(a) x1(t) and estimated value x̂1(t; 50). (b) x2(t) and estimated value x̂2(t; 50).

(c) x3(t) and estimated value x̂3(t; 50).

Fig. 4. The numerical results for system (4.1) with measurement contaminated by random noise by linear ESO.
5. Concluding remarks

In this paper, we investigate the capability of the ESO
constructed from fractional power functions by providing basic
principle of choosing the parameters to ensure convergence, a
long-standing problem in active disturbance rejection control. This
type of ESO has been widely used since the introduction of active
disturbance rejection control to solve engineering problems in the
last two decades. It has been shown that this type of ESO has the
advantages of smaller peaking value and good performance in the
presence of measurement noise when compared with the popular
linear ESO. This paper provided a comprehensive mathematical
investigation for this problem. It establishes the convergence for
this type of ESO. This work represents one step forward in building
convergence theory for active disturbance rejection control based
on fractional power extended state observer.
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