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Output Regulation for a Wave Equation With
Unknown Exosystem

Ren-Xi Zhao and Bao-Zhu Guo , Senior Member, IEEE

Abstract—In this article, the output regulation for a 1-D
wave equation where the disturbances generated from an
unknown finite-dimensional exosystem appear in all possi-
ble channels is studied. The system is first transformed into
a new system for which the disturbance appears in track-
ing error only. An adaptive observer approach is adopted
in investigation to estimate all possible unknown frequen-
cies that have entered into a transformed new system. By
the estimates of the unknown frequencies, we are able to
design a tracking-error-based feedback control to achieve
output regulation and disturbance rejection for this partial
differential equations (PDEs) in two different cases. In the
first case, the derivative of the tracking error is allowed
to be used in the control design, which leads to the ex-
ponential convergence of the tracking error. In the second
case, the tracking error is solely used and the asymptotic
convergence is achieved. A remarkable characteristic of
the problem lies in the fact that the control operator is
unbounded and is noncollocated with the regulated output,
which represents a difficult situation for output regulation
on PDEs. The proposed approach is potentially applicable
to other PDEs.

Index Terms—Adaptive internal model, disturbance re-
jection, output regulation, wave equation.

I. INTRODUCTION

OUTPUT regulation is one of the most fundamental prob-
lems in the control theory. The main objective of the prob-

lem is designing a tracking error feedback control to regulate the
output to track the reference signal asymptotically in the pres-
ence of disturbance. If both the reference signal and the distur-
bance are generated from a linear autonomous system, which is
called exosystem, the problem can be solved perfectly for linear
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time invariant systems by the internal model principle developed
in the 1970s from [2] and [5]. The internal model principle
has been applied to nonlinear lumped parameter systems [12]
and abstract distributed parameter systems first on systems with
bounded control and observation operators [1], [25] and later on
systems with unbounded control and observation operators [24],
[26]. In particular, the systems considered in [24] and [26] are a
large class of abstract linear infinite-dimensional systems called
well-posed and regular linear systems. On the other hand, some
progresses on output tracking from partial differential equation
(PDE) point of view have also been made over the years. In [3]
and [4], the backstepping method was applied to the output regu-
lation of parabolic PDEs. In [3], the regulated output is different
from the measured output, which has rarely been discussed
abstractly for infinite-dimensional systems yet is important in
engineering applications. An output tracking problem for 1-D
wave equation were considered in [9] by means of the adaptive
control method, where the disturbance and reference signals are
sinusoidal signals with known frequencies. A recent article [8]
proposed an observer-based control by the trajectory planning
approach for output regulation of a wave equation. All these
problems in [8] and [9] have been treated systematically by an
observer-based internal model principle in recent works [6], [7].
However, in all these articles aforementioned, the frequencies
of sinusoidal disturbances were supposed to be known. To the
best of our knowledge, only a few studies have been carried
out for the output tracking of the infinite-dimensional systems
with unknown frequencies like those in [29] and [30] where the
control and observation operators were assumed to be bounded,
and the systems were assumed to be transformable into canonical
form.

On the other hand, there are many works attributed to output
regulation for systems described by finite-dimensional linear
system [ordinary differential equations (ODEs)] with unknown
exosystem. When the frequencies of the sinusoidal disturbances
are unknown but the number of frequencies is known, solutions
were presented in terms of adaptive internal model in [19]. Later
studies focused on the case where the number of the frequencies
is also unknown, which can be found in [20], [21], and [22]. In
particular, for the minimum phase linear systems, [20] proposed
an elegant solution. For the nonminimum phase systems, some
progress has also been made in [21] and [22] where the adaptive
algorithms were proposed to estimate the number of unknown
frequencies. A recent progress was made in [23] where the
disturbance rejection problem was solved for stable plant with
both the exosystem and plant being unknown.

1558-2523 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on April 27,2024 at 08:14:32 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0003-7003-0184
https://orcid.org/0000-0001-9078-0001
mailto:zhaorenxi@amss.ac.cn
mailto:bzguo@iss.ac.cn


ZHAO AND GUO: OUTPUT REGULATION FOR A WAVE EQUATION WITH UNKNOWN EXOSYSTEM 3067

Motivated from works aforementioned for lumped parameter
systems, we proposed an adaptive internal model for a 1-D heat
equation in [10] where only the asymptotic convergence could be
achieved when the number of frequencies of the exosystem was
unknown. Since heat equation has naturally high regularity and
is not very typical infinite-dimensional system for it has only
finitely many unstable poles, we continue to use the adaptive
internal model approach to solve noncollocated output tracking
problems for a PDE system described by 1-D wave equation
where the matrix of the exosystem is unknown. The wave
equation is essentially infinite dimensional for its infinitely many
unstable poles and has many engineering applications in wharf
gantry cranes carrying cargo in marine industry [14], container
cranes in port automation, and flexible links in gantry robots.
In particular, an output tracking problem of the anticollocat-
edly disturbed cage in an ascending cable elevator was studied
in [28], where the ascending cable elevator was modeled as
a wave equation, and the system was disturbed by sinusoidal
disturbances with unknown frequencies. However, in [28], the
unknown sinusoidal disturbances entered one channel only in
the system, whereas we allow the disturbances entering all
possible channels. Other engineering problems of output track-
ing of the wave equation can be found in piezoelectric stack
actuators [18] and moving string systems with tip payload [13].
Furthermore, compared with asymptotic convergence in [10],
we pursuit exponential convergence for tracking error in this
article by using a new adaptive observer to estimate the number
and frequencies of the sinusoidal disturbances. In addition, this
article is different from [10] in other two aspects. First, to achieve
exponential convergence, we use additionally the derivative of
the tracking error in the control design, which is likewise the
PD control, and hence, is not a standard tracking error feedback
problem. At the same time, the convergence of the derivative
of the tracking error is also considered. The approach used in
this article can make the convergence of [10] from asymptotic
convergence to exponential convergence. In the second case,
we also consider solely the tracking error feedback. In this
case, since the observation operator is compact, only asymptotic
convergence can be achieved (see [11]). This makes our control
design much trickier than [10].

The system that we are concerned with is described by the
following 1-D wave equation:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ytt(x, t) = yxx(x, t) + Δ(x)w1(t), x ∈ (0, 1), t > 0

yx(0, t) = w2(t), t ≥ 0

yx(1, t) = u(t) + w3(t), t ≥ 0

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1)

Y (t) = y(0, t), t ≥ 0

(1)

where u(t) is the control input, Y (t) is the performance output
to be regulated, Δ(·) ∈ L2((0, 1);R) is an unknown function,
and wi(t)(i = 1, 2, 3) represent the external disturbances.

The disturbances wi(·) and the reference signal r(·) are as-
sumed to be generated by an exosystem of the form⎧⎨

⎩
v̇(t) = Sv(t), v(0) = v0 ∈ R

n

wi(t) = Fiv(t), i = 1, 2, 3
r(t) = F4v(t)

(2)

where all S ∈ R
n×n, Fi ∈ R

1×n for i = 1, 2, 3, 4 and the initial
value v0 are unknown. We consider system (1) in the standard
energy state spaceH = H1(0, 1)× L2(0, 1). The tracking error
is denoted by e(t) = Y (t)− r(t). The control aim is to design
a tracking error feedback control so that

lim
t→∞ |e(t)| = lim

t→∞ |Y (t)− r(t)| = 0. (3)

The following assumption is made throughout this article.
Assumption A: The spectrum of S is {0,±jωi, 1 ≤ i ≤ r}

with n = 2r + 1, where ω1 < ω2 < . . . < ωr are positive dis-
tinct unknown parameters. It is supposed that the unknown r has
an upper bound: r ≤ m for a known positive integer m.

From Assumption A, the general solution of the exosystem
(2) contains no more thanm sinusoidal functions with unknown
frequencies depending on the eigenvalues of S. More precisely,
the reference signal and the disturbance signals are of the forms

r(t) =
m∑
i=1

(ai4 cosωit+ bi4 sinωit) + c4

wj(t) =

m∑
i=1

(aij cosωit+ bij sinωit) + cj , j = 1, 2, 3

for some unknown coefficients {ωi}, {aij}, {bij}, and {cj}.
Compared with ODE problems developed in [19], [21], and

[22] where a key step is to convert the coupled systems of plant
and exosystem into an observable canonical form and design
an adaptive observer for the coupled systems, this article is
technically to separate the PDE part from the exosystem through
a transformation and design observers for PDE and ODE part
separately. This is because there is no observable canonical form
for infinite-dimensional systems.

The rest of this article is organized as follows. In Section II,
we discuss the case where both the tracking error e(t) and its
derivative ė(t) can be used to the control design. Since both
e(t) and ė(t) are used in the control design, by the internal
model principle, we are only able to regulate e(t) independently.
For ė(t), we consider it as the derivative of e(t) not as an
independent output. In this sense, we regulate both e(t) and
ė(t) simultaneously that

lim
t→∞ |e(t)| = 0,

∫ ∞

0

eβt|ė(t)|2 dt <∞ for some β > 0.

The first convergence is exponentially and the second conver-
gence is quite weak like those in [24] but stronger than [26]
because ė(t) is usually very unbounded for general initial
states in the state space. Section III is devoted to the case
where only tracking error e(t) is measurable and we achieve
limt→∞ |e(t)| = 0, which might be the best result to be expected
since the observation operator is compact in this case. Some nu-
merical simulations are presented in Section IV for illustration,
and finally, Section V concludes this article.

A. Notations and Useful Lemmas

Throughout this article, ‖ · ‖ and 〈·, ·〉 denote the norm and
the inner product of L2(0, 1). The H = H1(0, 1)× L2(0, 1) is
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a Hilbert space with the inner product given by

〈(f1, g1), (f2, g2)〉H

=

∫ 1

0

[f ′1(x)f ′2(x) + g1(x)g2(x)]dx+ f1(0)f2(0).

In order to analyze the stability of coupled PDE systems, we
need the following Lemma 1.1.

Lemma 1.1: (See [31, lemma 2.1]) Let A be the generator of
an exponentially stable operator semigroup eAt on the Hilbert
space X . Assume that Bi ∈ L(Ui, X−1), i = 1, 2, . . . , n, are
admissible control operators for eAt with control Hilbert space
Ui, where X−1 = [D(A∗)]′ is the dual space of D(A∗) with the
pivot space X . Then, the initial problem

ẋ(t) = Ax(t) +

n∑
i=1

Biui(t), x(0)

= x0 ∈ X, ui ∈ L2
loc([0,∞);Ui)

admits a unique solution x ∈ C([0,∞);X), and if ui ∈
L∞([0,∞);Ui), i = 1, 2, . . . , n, then x(·) is bounded. If for
each index i, either ui ∈ L2(0,∞;Ui) or limt→∞ ‖ui(t)‖Ui

=
0, then limt→∞ x(t) = 0. Moreover, if there exist constants
M0, μ0, α > 0 such that ‖ui(t)‖U ≤M0e

−μ0t or eα·ui ∈
L2(0,∞;Ui), then ‖x(t)‖ ≤Me−μt for some M,μ > 0.

There are similar conclusions for linear time-varying systems,
which will be used later for analysis of the convergence of the
adaptive observer.

Lemma 1.2: (See [16, ch. 9]) Let A(·) ∈ L∞(0,∞;Rn×n),
f ∈ L1

loc([0,∞);Rn), and the origin of the nominal system
ż(t) = A(t)z(t), z(0) = z0 ∈ R

n is exponentially stable. Then,
the initial problem

ẋ(t) = A(t)x(t) + f(t), x(0) = x0 ∈ R
n

admits a unique solution x ∈ C([0,∞);Rn). Moreover
1) if limt→∞ f(t) = 0, then limt→∞ x(t) = 0;
2) if there exist constants M0, μ0 > 0 such that ‖f(t)‖ ≤

M0e
−μ0t, then ‖x(t)‖ ≤Me−μt for some M,μ > 0.

Lemma 1.3: (See [15, Lemma 4.8.3]) Let f, g : [0,∞) → R
n

be piecewise continuous, and f(·) be persistently exciting (PE),
that is, there exist constants α0, α1, T0 > 0 such that

α1I ≥ 1

T0

∫ t+T0

t

f(τ)f�(τ)dτ ≥ α0I∀t ≥ 0.

If limt→∞ g(t) = 0 or g ∈ L2(0,∞;Rn), then f(·) + g(·) is PE
also.

II. REGULATION OF BOTH TRACKING ERROR AND ITS

DERIVATIVE

In this section, we suppose that both the tracking error e(t)
and its derivative ė(t) are measurable, aiming at designing an
error feedback regulator to regulate both tracking error and its
derivative. To simplify the structure of the coupled system (1)
and (2), we introduce a transformation for the system (1)

z(x, t) = y(x, t) + g(x)v(t) (4)

where g : [0, 1] → R
1×(2r+1) satisfies⎧⎪⎨

⎪⎩
g′′(x) = g(x)S2 + F1Δ(x)

g′(0) = g(0)[c0+c1S]−F2+c0F4+c1F4S, c0, c1 > 0

g′(1) = −F3.
(5)

Lemma 2.1: The boundary value problem (5) admits a unique
solution g� ∈ H2((0, 1);R2r+1).

Proof: Let g1(·) be the solution of the following boundary
value problem:⎧⎪⎨
⎪⎩
g′′1(x) = 0

g′1(0) = g1(0)[c0 + c1S]− F2 + c0F4 + c1F4S

g′1(1) = −F3

(6)

which obviously admits a unique solution g1 ∈
C∞((0, 1);R2r+1). Consider the following boundary value
problem:⎧⎪⎨

⎪⎩
h′′(x) = h(x)S2 + (g1(x)S

2 + F1Δ(x))

h′(0) = h(0)[c0 + c1S]

h′(1) = 0.

(7)

Let {ψi}2r+1
i=1 be eigenvectors of S corresponding to the eigen-

values {λi}2r+1
i=1 , respectively. Right multiply by ψi in (7) to

obtain ⎧⎪⎨
⎪⎩
h′′i (x) = hi(x)λ

2
i +Δi(x)

h′i(0) = hi(0)[c0 + c1λi]

h′i(1) = 0

(8)

wherehi(x) = h(x)ψi, andΔi(x) = (g1(x)S
2 + F1Δ(x))ψi.

For λi �= 0, the solution of (8) can be found as

h2i−1(x) = k1ie
λix + k2ie

−λix +
1

2λi

∫ x

0

eλi(x−ξ)Δi(ξ) dξ

− 1

2λi

∫ x

0

e−λi(x−ξ)Δi(ξ)dξ

where k1i and k2i are determined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩
[−c0 − c1λi + λi]k1i − [c0 + c1λi + λi]k2i = 0

λie
λik1i − λie

−λik2i

=
1

2

∫ 1

0

eλi(1−ξ)Δi(ξ) dξ +
1

2

∫ 1

0

e−λi(1−ξ)Δi(ξ) dξ.

(9)
It is a trivial exercise to check that the determinant of (9)
for unknown variables k1i and k2i, that is, the determinant of

the matrix
(−c0 − c1λi + λi −[c0 + c1λi + λi]

λie
λi −λie

−λi

)
is nonzero. For the

eigenvalue λi = 0, we have{
h′′i (x) = Δi(x)

h′i(0) = c0hi(0), h
′
i(1) = 0

which has solution

hi(x) = −
(
x+

1

c0

)∫ 1

0

Δi(ξ) dξ +

∫ x

0

(x− ξ)Δi(ξ) dξ.
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This shows that the solution of (7) always exists for any c0, c1 >
0 and

h(x) = (h1(x), . . . , h2r+1(x))[ψ1, . . . , ψ2r+1]
−1

∈ H2((0, 1);R2r+1).

Therefore, g(x) = g1(x) + h(x) is the unique solution of (5).�
The extended system of (z(·, ·), v(·)) is then governed by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ztt(x, t) = zxx(x, t)
zx(0, t) = c0[z(0, t)− e(t)] + c1[zt(0, t)− ė(t)]
zx(1, t) = u(t)
v̇(t) = Sv(t)
e(t) = z(0, t)− (g(0) + F4)v(t)
ė(t) = zt(0, t)− (g(0) + F4)Sv(t).

(10)

A remarkable feature of the system (10) is that the disturbance
appears in tracking error only. In addition, the system (10) is
composed of two decoupled subsystems of the PDE-subsystem
and the ODE-subsystem. The PDE-subsystem of (10) has damp-
ing at x = 0. This is the reason why we make the transformation
(4).

By Assumption A, the term (g(0) + F4)v(t) contains the
sinusoids of no more than m distinct frequencies, which can
be expressed without loss of generality as

(g(0)+F4)v(t)=

l∑
i=1

(Ai cosωit+Bi sinωit)+C, l ≤ r ≤ m

(11)
where Ai, Bi, and C are unknown parameters and A2

i +B2
i >

0, i = 1, . . . , l.
Lemma 2.2: The (g(0) + F4)v(t) can be generated by the

exosystem of the following:{
ḋ(t) = Sc(θ)d(t) = Acd(t)−

∑m

i=1
θiE2id1(t)

(g(0) + F4)v(t) = d1(t)
(12)

where d(t) = (d1(t), d2(t), . . . , d2m+1(t))
� ∈ R

2m+1

Ac=

⎡
⎢⎢⎢⎢⎣
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ , Sc(θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

−θ1 0 1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0 · · · 1 0

−θm 0 0 · · · 0 1

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2i is the 2ith column of the (2m+ 1)× (2m+ 1) identity
matrix, and θ = [θ1, . . . , θm]� = [θ1, . . . , θl, 0, . . . , 0]

� ∈ R
m

with θ1, . . . , θl being chosen so that

s2 l + θ1 s
2(l−1) + · · ·+ θl �

l∏
i=1

(s2 + ω2
i ). (13)

Proof: By (11), (g(0) + F4)v(t) can be generated by the
following exosystem:{

η̇(t) = Sηη(t), η(t) ∈ R
2l+1

(g(0) + F4)v(t) = γηη(t)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sη = blockdiag{ω1S0, ω2S0, . . . , ωlS0, 01×1}
S0 =

[
0 1

−1 0

]

γη = [1, 0, . . . , 1, 0, 1]

η(0) = (A1, B1, . . . , Al, Bl, C)
�.

It is a trivial exercise that the pair (Sη, γη) is observable that
guarantees that there exists a coordinate transformation

ηE(t) = T1η(t), η
E(t) = (ηE1 (t), . . . , η

E
2l+1(t))

�

where T1 is a nonsingular (2l + 1)× (2l + 1)matrix, to convert
the observable pair (Sη, γη) into a canonical form{

η̇E(t) = SE(θ)η
E(t)

(g(0) + F4)v(t) = ηE1 (t)

with

SE(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

−θ1 0 1 · · · 0 0
...

...
. . .

. . .
...

...

0 0 0 · · · 1 0

−θl 0 0 · · · 0 1

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since the characteristic polynomial of Sη is the same as SE , the
θ1, . . . , θl can be chosen such that

s2l+1 + θ1 s
2l−1 + · · ·+ θl−1s

3 + θls � s

l∏
i=1

(s2 + ω2
i ).

(14)
Next, let T2 = [I2l+1 0(2l+1)×(2m−2 l)]

� and d(t) = T2η
E(t).

A direct computation shows that d(·) satisfies (12). �
We therefore write (z(·, t), d(·)) to be governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt(x, t) = zxx(x, t)

zx(0, t) = c0[z(0, t)− e(t)] + c1[zt(0, t)− ė(t)]

zx(1, t) = u(t)

ḋ(t) = Sc(θ)d(t)

e(t) = z(0, t)− Ccd(t)

ė(t) = zt(0, t)− CcSc(θ)d(t)

(15)

where Cc = [1, 0, . . . , 0] ∈ R
1×(2m+1). From now on, we only

need to design error feedback control for the transformed system
(15), which is much simpler than systems (1) and (2).

A. Feedforward Control Design

In this subsection, we design a feedforward control for the
system (15). Let f0(x, θ) = f0(x) ∈ R

1×(2m+1) be the solution
of the following equation:⎧⎪⎨

⎪⎩
f ′′0 (x) = f0(x)S

2
c (θ)

f ′0(0) = c0Cc + c1CcSc(θ)

f0(0) = Cc.

(16)

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on April 27,2024 at 08:14:32 UTC from IEEE Xplore.  Restrictions apply. 



3070 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 5, MAY 2024

Lemma 2.3: The initial value problem (16) admits a unique
solution, which is continuously differentiable with respect to x
and the parameter θ.

Proof: It is clear that (16) admits a unique solution

(f0(x, θ), f
′
0(x, θ)) = (f0(0), f

′
0(0))e

⎛
⎜⎝0 S2

c (θ)

I 0

⎞
⎟⎠x

.

Let F1(x, θ) = f0(x, θ)− f0(0), F2(x, θ) = f ′0(x, θ)− f ′0(0).
Then, (F1, F2) is governed by⎧⎪⎨

⎪⎩
F ′
1(x) = F2(x) + c0Cc + c1CcSc(θ)

F ′
2(x) = (F1(x) + Cc)S

2
c (θ)

F1(0) = F2(0) = 0.

(17)

Let F = (F1, F2). We can write (17) as

F ′ =
(
F2 + c0Cc + c1CcSc(θ), (F1 + Cc)S

2
c (θ)

)
:= F(F, θ).

It is easy to check that F(F, θ) is continuously differentiable
with respect to the components F and θ. Therefore, the solution
of (16) or (17) is continuously differentiable with respect to
(x, θ). �

Let ε(x, t) = z(x, t)− f0(x)d(t). Then⎧⎪⎪⎪⎨
⎪⎪⎪⎩
εtt(x, t) = εxx(x, t)

εx(0, t) = 0, εx(1, t) = u(t)− f ′0(1)d(t)
ḋ(t) = Sc(θ)d(t)

e(t) = ε(0, t).

(18)

It can be seen that the output regulation problem of z(·, t) →
f0(·)d(t) has been transformed into a stabilization problem
of ε(·, t) → 0 (t→ ∞) in H . We can thus design naturally a
feedforward control as follows:

u(t) = −c2ε(1, t)− c3εt(1, t) + f ′0(1, θ)d(t)

= −c2z(1, t)− c3zt(1, t) + f ′0(1, θ)d(t)

+ c2f0(1, θ)d(t) + c3f0(1, θ)Sc(θ)d(t), c2, c3 > 0
(19)

and the closed-loop of the system (18) under control (19) reads⎧⎪⎨
⎪⎩
εtt(x, t) = εxx(x, t)

εx(0, t) = 0,

εx(1, t) = −c2ε(1, t)− c3εt(1, t).

(20)

Set ε̃(x, t) = ε(1− x, t). Then, ε̃(·, ·) satisfies⎧⎪⎨
⎪⎩
ε̃tt(x, t) = ε̃xx(x, t)

ε̃x(0, t) = c2ε̃(0, t) + c3ε̃t(0, t)

ε̃x(1, t) = 0.

(21)

Lemma 2.4: System (21), and hence, the system (20) is ex-
ponentially stable in H , ε̃(0, ·), ε̃(1, ·) ∈ C([0,∞);R) and

lim
t→∞ |ε̃(0, t)| = 0, lim

t→∞ |ε̃(1, t)| = 0 (22)

exponentially. Moreover∫ ∞

0

eα̃t|ε̃t(1, t)|2dt <∞. (23)

for some α̃ > 0.
Proof: The existence of the C0-semigroup solution to (21) is

straightforward and we omit the details here. We only prove in
the real spaceH because the imaginary part is exactly the same.
Define the energy of system (21) as

E(t) =
1

2

∫ 1

0

[
ε̃2x(x, t) + ε̃2t (x, t)

]
dx+

c2
2
ε̃2(0, t).

The derivative of E(t) along (21) satisfies

Ė(t) = −c3ε̃2t (0, t). (24)

We construct the energy multiplier as

ρ(t)=

∫ 1

0

(x−1)ε̃x(x, t)ε̃t(x, t)dx+2pε̃(0, t)

∫ 1

0

ε̃t(x, t)dx

+ pc3ε̃
2(0, t)

where p is a positive real to be determined later. Obviously,
|ρ(t)| ≤ C1E(t) for some constant C1 > 0. Next, it is found
that

ρ̇(t)=
1

2
ε̃2t (0, t)+

1

2
ε̃2x(0, t)−

1

2

∫ 1

0

[
ε̃2x(x, t)+ε̃

2
t (x, t)

]
dx

+ 2pε̃t(0, t)

∫ 1

0

ε̃t(x, t)dx− 2pc2ε̃
2(0, t)

≤
(
1

2
+ c23

)
ε̃2t (0, t) + c22ε̃

2(0, t)

− 1

2

∫ 1

0

[
ε̃2x(x, t) + ε̃2t (x, t)

]
dx

+ 4p2ε̃2t (0, t) +
1

4

∫ 1

0

ε̃2t (x, t)dx− 2pc2ε̃
2(0, t)

≤ C2ε̃
2
t (0, t)− C3E(t)

where p is chosen so that p ≥ c2
2

, and Ci > 0, i = 2, 3 are

constants. Let

L(t) = E(t) +
ε0
C1
ρ(t), ε0 > 0.

Then

(1−ε0)E(t)≤L(t)≤(1+ε0)E(t), L̇(t)≤− C3ε0
C1(1+ε0)

L(t)

for all sufficiently small ε0 > 0. This shows that

E(t) ≤ 1 + ε0
1− ε0

e
− C3ε0

C1(1+ε0)
t
E(0). (25)

This, together with the Sobolev embedding theorem, advises the
exponential stability (22). Finally, let

ξ(t) = eα̃t
∫ 1

0

xε̃x(x, t)ε̃t(x, t)dx

where α̃ < C3

1+ε0
. Then, ξ(t) decays exponentially to zero as

t→ ∞. Since it is well known that ε̃t(1, ·) ∈ L2
loc([0,∞);R),

we can write

ξ̇(t)= α̃ξ(t)+
1

2
eα̃tε̃2t (1, t)−

1

2
eα̃t
∫ 1

0

[ε̃2x(x, t)+ε̃
2
t (x, t)]dx
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which implies that ξ(t) is absolutely continuous. Integrating
over (0,∞) from both sides of the aforementioned equality and
taking (25) into account, we arrive at∫ ∞

0

eα̃tε̃2t (1, t)dt <∞

which is (23). �

B. Error-Based Observer Design

In this subsection, we design an observer for the system (15)
to recover the state (z(·, t), d(t)) and estimate online the θ by
the output measurement (e(t), ė(t)). Since the system (15) may
have unknown initial value, an observer for the z-subsystem of
(15) is just a copy of the plant as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = c0[ẑ(0, t)− e(t)] + c1[ẑt(0, t)− ė(t)]

ẑx(1, t) = u(t)

(ẑ(·, 0), ẑt(·, 0)) = (ẑ0(·), ẑ1(·)) ∈ H.

(26)

Define the observer error z̃(x, t) = z(x, t)− ẑ(x, t). Then⎧⎪⎨
⎪⎩
z̃tt(x, t) = z̃xx(x, t)

z̃x(0, t) = c0z̃(0, t) + c1z̃t(0, t)

z̃x(1, t) = 0

(27)

which is similar to (21), and hence, is exponentially stable
in H by virtue of Lemma 2.4. In particular, z̃(0, ·), z̃(1, ·) ∈
C([0,∞);R), limt→∞ |z̃(0, t)| = 0, limt→∞ |z̃(1, t)| = 0 ex-
ponentially, and∫ ∞

0

eαt|z̃t(1, t)|2dt <∞ for some α > 0.

We next introduce a known function

yd(t) = −e(t) + ẑ(0, t) = Ccd(t)− z̃(0, t)

and consider the following system:{
ḋ(t) = Sc(θ)d(t) = Acd(t)−

∑m

i=1
θiE2id1(t)

yd(t) = Ccd(t)− z̃(0, t).
(28)

Motivated by [21], we first introduce two cascaded filters to
detect the number of the exosystem’s frequencies⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R

2 m

μi(t) = [1 0 . . . 0]ξi(t), 1 ≤ i ≤ m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, Ω(t) ∈ R

m×m

Ωi(t) = [Ii, 0i×(m−i)]Ω(t)[Ii, 0i×(m−i)]
�, 1 ≤ i ≤ m

(29)
where μ(t) = [μ1(t), . . . , μm(t)]�, λb, λc > 0, and b =
[b1, . . . , b2 m]� is chosen so that Γ is a Hurwitz matrix

Γ =

⎡
⎢⎢⎢⎢⎣

−b1 1 · · · 0
...

...
. . .

...

−b2m−1 0 · · · 1

−b2 m 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

By means of the change of coordinates[
χ1(t)

φ(t)

]
= d(t)−

[
0∑m

i=1 ξi(t)θi + bCcd(t)

]
(30)

with φ(t) ∈ R
2 m, χ1(t) = Ccd(t) ∈ R, we obtain{
χ̇1(t) = φ1(t) + b1χ1(t) + θ�μ(t)
φ̇(t) = Γφ(t) + βχ1(t)− z̃(0, t)M2θ

where M2 is a constant 2m×m matrix, and β is a 2m× 1
matrix

β =
[
b2 − b21, · · · , b2 m − b2m−1b1, −b2 mb1

]�
.

Motivated by [22], we design an adaptive observer for (28)
according to the output yd(t) as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̂χ1(t)= φ̂1(t)+b1yd(t)+
∑m

i=1 μi(t)θ̂i(t)+ko(yd(t)−χ̂1(t))
˙̂
φ(t) = Γφ̂(t) + βyd, φ̂(t) ∈ R

2 m

d̂(t) =

[
χ̂1(t)

φ̂(t)

]
+

[
0∑m

i=1 ξi(t)θ̂i(t) + bχ̂1(t)

]
(31)

with the parameter adaptive law{
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), e

−|det(Ωi)|1/it ≤ 1
2

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

(32)

for 1 ≤ i ≤ m, where α, g, k0 > 0 can be arbitrarily chosen.
Recall that θ = [θ1, . . . , θm]� = [θ1, . . . , θl, 0, . . . , 0]

� ∈ R
m

with θ1, . . . , θl being the coefficients of the polynomial (13).
Lemma 2.5: For any initial state

(χ̂1(0), φ̂(0), θ̂(0),Ω(0), {ξi(0)}mi=1) ∈ R×R
2 m×R

m×S
m
+

×R
2m×m,where S

m
+ = {A ∈ R

m×m : A is positive definite}
there hold

lim
t→∞ e

−|det(Ωi)|1/i·t =

{
0, i = 1, . . . , l
1, i = l + 1, . . . ,m

exponentially, and

lim
t→∞‖θ̂(t)− θ‖ = 0, lim

t→∞‖d̂(t)− d(t)‖ = 0 (33)

exponentially.
Proof: Set μi(t) = μip(t) + μie(t), where μip(·) is the solu-

tion to {
ξ̇ip(t) = Γξip(t)− [0 I2 m]E2id1(t)
μip(t) = [1 0 . . . 0]ξip(t), i = 1, . . . ,m

(34)

and μie(·) is governed by⎧⎨
⎩
ξ̇ie(t) = Γξie(t) + [0 I2 m]E2iz̃(0, t)
μie(0) = μi(0)− μip(0)
μie(t) = [1 0 . . . 0]ξie(t), i = 1, . . . ,m.

(35)

Since d1(·) is bounded and Γ is Hurwitz, μip(·) is bounded.
By [15, Th. 5.2.1], the vector [μ1p(t), . . . , μlp(t)]

� is PE (but
[μ1p(t), . . . , μkp(t)]

�, k ≥ l + 1 is not) because d1(·) contains
the sinusoids of l distinct frequencies. For the system (35),
since Γ is Hurwitz, and limt→∞ |z̃(0, t)| = 0 exponentially, we
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conclude that limt→∞ |μie(t)| = 0 exponentially. By Lemma 1.3
and μi(t) = μip(t) + μie(t), the vector [μ1(t), . . . , μl(t)]

� is
also PE, that is, there exist K,T > 0 such that for all t ≥ 0 and
i = 1, . . . , l∫ t+T

t

[μ1(s), . . . , μi(s)]
�[μ1(s), . . . , μi(s)] ds ≥ KIi.

From (29), it is seen that

Ωi(t) = e−λbtΩi(0)

+ λc

∫ t

0

e−λb(t−s)[μ1(s), . . . , μi(s)]
�[μ1(s), . . . , μi(s)]ds.

(36)

SinceΩ(0) is positive definite, it follows from a similar argument
of [21, lemma 3.1] that |det(Ωi(t))|1/i ≥ δm > 0∀t ≥ 0, i =
1, . . . , l, where δm is a positive number and that |det(Ωi)|1/i, i =
1 + 1, . . . ,m tend to zero exponentially as time goes to infinity.
Therefore

lim
t→∞ e

−|det(Ωi)|1/i·t =

{
0, i = 1, . . . , l,
1, i = l + 1, . . . ,m

exponentially. Hence, there exists some Tp > 0 such that for all
t ≥ Tp

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), 1 ≤ i ≤ l

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), l + 1 ≤ i ≤ m.

Define the error variables χ̃1(t) = χ1(t)− χ̂1(t), φ̃(t) =

φ(t)− φ̂(t), θ̃(t) = θ − θ̂(t). Then⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˙̃
φ(t) = Γφ̃(t) + z̃(0, t)(β −M2θ)
˙̃χ1(t) = −k0χ̃1(t) + φ̃1(t) + μ(t)�θ̃(t) + z̃(0, t)(b1 + k0)

˙̃
θi(t) = −gμi(t)χ̃1(t) + gμi(t)z̃(0, t), 1 ≤ i ≤ l

˙̃
θi(t) = −gμi(t)χ̃1(t)− αθ̃i(t)

+ gμi(t)z̃(0, t), l + 1 ≤ i ≤ m.
(37)

Since Γ is Hurwitz and limt→∞ |z̃(0, t)| = 0 exponentially, we
conclude that limt→∞ ‖φ̃(t)‖ = 0 exponentially. Now, we con-
sider the last three equations of the system (37) as perturbations
of the following nominal system:⎧⎪⎪⎨
⎪⎪⎩

˙̃χ1(t) = −k0χ̃1(t) + μ(t)�θ̃(t)
˙̃
θi(t) = −gμi(t)χ̃1(t), 1 ≤ i ≤ l

˙̃
θi(t) = −gμi(t)χ̃1(t)− αθ̃i(t), l + 1 ≤ i ≤ m.

(38)

Define the Lyapunov function as

V (t) =
1

2

(
χ̃2
1 +

1

g
θ̃�θ̃ + p

(
Qθ̃[l]− μ[l]χ̃1

)�

×
(
Qθ̃[l]− μ[l]χ̃1

))

where p is a positive real to be determined later, μ[l] =
[μ1, . . . , μl]

�, θ[l] = [θ1, . . . , θl]
�, and Q(t) is generated by⎧⎪⎨

⎪⎩
Q̇ = −Q+ μ[l]μ�[l], Q(0) = e−TKIl

Recall that
∫ t+T

t

μ[l](s)μ�[l](s) ds ≥ KIl ∀t ≥ 0. (39)

Since μ[l](t) is bounded, we can write

‖μ[l](t)‖ ≤ μM ∀t ≥ 0. (40)

From (39) and (40), it follows that

Ke−2 T I ≤ Q(t) ≤ μ2
MI ∀t ≥ 0. (41)

The time derivative of V (t), in the light of (38), is found to be

V̇ (t) = −k0χ̃2
1 + μ�θ̃χ1 − μ�θ̃χ1 −

m∑
i=l+1

α

g
θ̃2i

+ p
(
Qθ̃[l]− μ[l]χ̃1

)� (
Q̇θ̃[l]− gQμ[l]χ̃1

)

+ p
(
Qθ̃[l]−μ[l]χ̃1

)� (
k0μ[l]χ̃1−μ[l]μ�θ̃−μ̇[l]χ̃1

)

= −k0χ̃2
1 −

m∑
i=l+1

α

g
θ̃2i − p

∥∥∥Qθ̃[l]− μ[l]χ̃1

∥∥∥2

+ p
(
Qθ̃[l]− μ[l]χ̃1

)�{
(k0 − 1)μ[l]χ̃1

− μ[l]

m∑
i=l+1

μiθ̃i − gQμ[l]χ̃1 − μ̇[l]χ̃1

}
(42)

for all t > Tp. Since μi and μ̇i are bounded, by choos-
ing p sufficiently small, we conclude that the origin of the
nominal system (38) is exponentially stable. By Lemma 1.2,
limt→∞ ‖θ̂(t)− θ‖ = 0 and limt→∞ |χ̂1(t)− χ1(t)| = 0 expo-
nentially. Since limt→∞ ‖φ̃(t)‖ = 0 exponentially, it then fol-
lows from (31) and (30) that

d̃(t) = d(t)− d̂(t) =

[
χ̃1(t)

φ̃(t)

]
+

[
0∑m

i=1 ξi(t)θ̃i(t) + bχ̃1(t)

]

which is obviously tend to 0 exponentially as t→ ∞ by bound-
edness of ξi(t). �

Remark 1: When θ is known, we can design a standard
Luenberger observer

˙̂
d(t) = Sc(θ)d̂(t) + L(yd(t)− Ccd̂(t))

for (28) and there also holds limt→∞ d̃(t) = 0 exponentially.
Remark 2: Different from the adaptive internal model method

for output regulation problem of ODEs discussed in [19], [21],
and [22] where the observer design was split into four steps:

1) Convert the plant into an observable canonical form;
2) Convert the exosystem into an observable canonical form;
3) Convert the coupled system of plant and exosystem into

an observable canonical form;
4) Design an adaptive observer for the coupled system of

plant and exosystem.
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In this article, through transformation (4), the PDE part (plant)
is separated from the exosystem, and the observers for PDE-part
and ODE-part can be designed separately.

C. Error-Based Feedback Control Design

By (19), (31), and (26), we design, therefore, naturally a
tracking error feedback control as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+f ′0(1, θ̂)d̂(t) + c2f0(1, θ̂)d̂(t) + c3f0(1, θ̂)Sc(θ̂)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = c0[ẑ(0, t)− e(t)] + c1[ẑt(0, t)− ė(t)]

ẑx(1, t) = u(t)

yd(t) = −e(t) + ẑ(0, t)
˙̂χ1(t)= φ̂1(t)+b1yd(t)+

∑m
i=1 μi(t)θ̂i(t)+ko(yd(t)−χ̂1(t))

˙̂
φ(t) = Γφ̂(t) + βyd, φ̂(t) ∈ R

2 m

d̂(t) =

[
χ̂1(t)

φ̂(t)

]
+

[
0∑m

i=1 ξi(t)θ̂i(t) + bχ̂1(t)

]
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), e−|det(Ωi)|1/i·t ≤ 1

2

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R
2 m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, Ω(t) ∈ R

m×m

(43)
which is obtained with replacements of the states in feedforward
control (19) with their estimates from observers (26) and (31).

Remark 3: In the control (43), f0(x, θ) determined by the
initial value problem (16) plays an important role. However,
for different PDEs, f0(x, θ) is not always a solution to an
initial value problem like (16). For example, in (1), when the
performance output is Y (t) = y(1, t), then f0(x) = f0(x, θ) is
changed to be a solution of a two-point boundary value problem
of the following: ⎧⎪⎨

⎪⎩
f ′′0 (x) = f0(x)S

2
c (θ)

f ′0(0) = 0

f0(1) = Cc.

(44)

Nevertheless, our method can still be applied because the solu-
tions to (44) can be expressed as

(f0(x, θ), f
′
0(x, θ))

= Cc

{[
I 0

]
eA0(θ)

[
I

0

]}−1 [
I 0

]
eA0(θ)x (45)

where A0(θ) =
(
0 S2

c (θ)

I 0

)
. Actually, from the first two equa-

tions of (44), (f0(x, θ), f ′0(x, θ)) = (f0(0, θ), 0)e
A0(θ)x. Since

(44) admits a unique solution under some proper conditions,
f0(0, θ) is uniquely determined by f0(1) = Cc, i.e., the linear

equation f0(0, θ)
[
I 0

]
eA0(θ)

[
I

0

]
= Cc admits a unique solution,

which implies in turn that [I 0] eA0(θ)
[
I

0

]
is invertible, and

hence, (f0(x, θ), f ′0(x, θ)) can be written as (45). Similar treat-
ment can be done for other PDEs.

D. Well-Posedness and Stability of the Closed-Loop
System

The closed loop of the system (1) under control (43) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(x, t) = yxx(x, t) + Δ(x)F1v(t)

yx(0, t) = F2v(t)

yx(1, t) = u(t) + F3v(t)

v̇(t) = Sv(t)

e(t) = y(0, t)− F4v(t)

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+f ′0(1, θ̂)d̂(t) + c2f0(1, θ̂)d̂(t) + c3f0(1, θ̂)Sc(θ̂)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = c0[ẑ(0, t)− e(t)] + c1[ẑt(0, t)− ė(t)]

ẑx(1, t) = u(t)

yd(t) = −e(t) + ẑ(0, t)
˙̂χ1(t)= φ̂1(t)+b1yd(t)+

∑m
i=1 μi(t)θ̂i(t)+ko(yd(t)−χ̂1(t))

˙̂
φ(t) = Γφ̂(t) + βyd, φ̂(t) ∈ R

2 m

d̂(t) =

[
χ̂1(t)

φ̂(t)

]
+

[
0∑m

i=1 ξi(t)θ̂i(t) + bχ̂1(t)

]
(46)

with the parameter adaptive law{
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), e−|det(Ωi)|1/i·t ≤ 1

2
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

for 1 ≤ i ≤ m, and filter⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R

2 m

μi(t) = [1 0 . . . 0]ξi(t), 1 ≤ i ≤ m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, μ(t) = [μ1, . . . , μm(t)]�

Ωi(t) = [Ii, 0i×(m−i)]Ω(t)[Ii, 0i×(m−i)]
�, 1 ≤ i ≤ m.

We consider system (46) in the state space H = H2 × R×
R

2 m × R
m × S

m
+ × R

2m×m.
Theorem 2.1: Suppose that c0, c1, c2, c3 > 0. Then, for any

unknown coefficientsF1, F2, F3, F4, S, unknown functionΔ(·)
and any initial state

(y(·, 0), yt(·, 0), ẑ(·, 0), ẑt(·, 0)
χ̂1(0), φ̂(0), θ̂(0),Ω(0), {ξi(0)}mi=1) ∈ H

the closed-loop system (46) admits a unique bounded
solution (y, yt, ẑ, ẑt, χ̂1, φ̂, θ̂) ∈ C([0,∞);H ) such that
limt→∞ |e(t)| = 0 exponentially, and∫ ∞

0

eβt|ė(t)|2 dt <∞.

Proof: Using the variables ε(x, t), z̃(x, t), χ̃1(t), φ̃(t), and
θ̃(t) given by (18), (27), and (37), the closed-loop system (46)
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is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εtt(x, t) = εxx(x, t)

εx(0, t) = 0

εx(1, t) = −c2ε(1, t)− c3εt(1, t)

+P(t) + c2z̃(1, t) + c3z̃t(1, t)

z̃tt(x, t) = z̃xx(x, t)

z̃x(0, t) = c0z̃(0, t) + c1z̃t(0, t)

z̃x(1, t) = 0

yd(t) = Ccd(t)− z̃(0, t)
˙̂χ1(t) = φ̂1(t) + b1yd(t) +

∑m
i=1 μi(t)θ̂i(t)

+ko(yd(t)− χ̂1(t))
˙̂
φ(t) = Γφ̂(t) + βyd
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), e−|det(Ωi)|1/i·t ≤ 1

2
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R
2 m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, Ω(t) ∈ R

m×m

e(t) = ε(0, t)

(47)

where

P(t) := − f ′0(1, θ)d(t)−c2f0(1, θ)d(t)−c3f0(1, θ)Sc(θ)d(t)

+f ′0(1, θ̂)d̂(t)+c2f0(1, θ̂)d̂(t)+c3f0(1, θ̂)Sc(θ̂)d̂(t).
(48)

The existence and stability of the solution of
(z̃, χ̂1, φ̂, θ̂, {ξi}mi=1,Ω) part of (47) has been shown in
Lemmas 2.4 and 2.5. We only need to consider the ε-part of
system (47), which can be written abstractly as

d

dt
(ε(·, t), εt(·, t)) = A(ε(·, t), εt(·, t))

+ B(P(t) + c2z̃(1, t) + c3z̃t(1, t))

where the operator A : D(A)(⊂ H) → H is defined by⎧⎪⎨
⎪⎩
A(f, g) = (g, f ′′)
D(A) = {(f, g) ∈ H2(0, 1)×H1(0, 1)|
f ′(0) = 0, f ′(1) = −c2f(1)− c3g(1)}

and B = (0, δ(· − 1)). By Lemma 2.4,A generates an exponen-
tially stable C0-semigroup on H . It is well known that B is ad-
missible for eAt. It follows from Lemma 2.4 that eα/2·z̃t(1, ·) ∈
L2(0,∞), z̃(1, ·) ∈ C([0,∞);R) and limt→∞ z̃(1, t) = 0 ex-
ponentially.

Furthermore, we also have P(·) ∈ C([0,∞);R) and
limt→∞ P(t) = 0 exponentially. Actually, to this end, it suffices
to show that f ′0(1, θ̂(t)), f0(1, θ̂(t)), Sc(θ̂(t)) are continuous in
t, and ⎧⎪⎨

⎪⎩
limt→∞ ‖f0(1, θ̂)− f0(1, θ)‖ = 0

limt→∞ ‖f ′0(1, θ̂)− f ′0(1, θ)‖ = 0

limt→∞ ‖Sc(θ̂)− Sc(θ)‖ = 0

all are exponentially. Since θ(·) ∈ C([0,∞);Rm), and
limt→∞ ‖θ̂(t)− θ‖ = 0 exponentially, we see that θ̂(t) is

bounded. Now, suppose that θ, θ̂(t) ∈ [−M,M ]m for some
M > 0. By Lemma 2.3, f ′0(1, θ), f0(1, θ), and Sc(θ) are
continuously differentiable with respect to the parame-
ter θ, and hence, they are Lipschitz continuous over
[−M,M ]m. We can thus get immediately the continuity of
f ′0(1, θ̂(t)), f0(1, θ̂(t)), Sc(θ̂(t)) with respect to time, and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
t→∞‖f0(1, θ̂)− f0(1, θ)‖ ≤ lim

t→∞L1‖θ̂(t)− θ‖ = 0

lim
t→∞‖f ′0(1, θ̂)− f ′0(1, θ)‖ ≤ lim

t→∞L2‖θ̂(t)− θ‖ = 0

lim
t→∞‖Sc(θ̂)− Sc(θ)‖ ≤ lim

t→∞L3‖θ̂(t)− θ‖ = 0

all are exponentially too. It then follows from Lemma 1.1 that the
ε-part of (47) admits a unique solution (ε, εt) ∈ C([0,∞);H),
and

‖(ε(·, t), εt(·, t))‖H ≤M1e
−ω1t

for some M1, ω1 > 0. Therefore, the transformations
y(x, t) = ε(x, t) + f0(x)d(t)− g(x)v(t), ẑ(x, t) = ε(x, t) +
f0(x)d(t)− z̃(x, t) imply that (y, yt, ẑ, ẑt) are well defined
in C([0,∞);H2) ∩ L∞(0,∞;H2). By the Sobolev trace
theorem,

lim
t→∞ |ε(0, t)| = 0 (49)

exponentially. Define

ρ1(t) = 2

∫ 1

0

(x− 1)εt(x, t)εx(x, t)dx

which satisfies |ρ1(t)| ≤ ‖(ε(·, t), εt(·, t))‖2H . Finding ρ̇1(t)
and performing integration by parts, we obtain

ρ̇1(t)

= 2

∫ 1

0

(x− 1)εt(x, t)εxt(x, t)dx

+ 2

∫ 1

0

(x− 1)εxx(x, t)εx(x, t)dx

= ε2t (0, t) + ε2x(0, t)−
∫ 1

0

[ε2t (x, t) + ε2x(x, t)]dx

≥ ε2t (0, t)− ‖(ε(·, t), εt(·, t))‖2H .

For any 0 < β < 2ω1, it has

∫ ∞

0

eβtε2t (0, t) dt ≤
∫ ∞

0

eβt‖(ε(·, t), εt(·, t))‖2H dt

+ |ρ1(0)|+ β

∫ ∞

0

eβt|ρ1(t)| dt

<∞.
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This completes the proof of the theorem. �
Remark 4: When θ is known, the control (43) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+f ′0(1, θ)d̂(t) + c2f0(1, θ)d̂(t) + c3f0(1, θ)Sc(θ)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = c0[ẑ(0, t)− e(t)] + c1[ẑt(0, t)− ė(t)]

ẑx(1, t) = u(t)

yd(t) = −e(t) + ẑ(0, t)
˙̂
d(t) = Sc(θ)d̂(t) + L(yd(t)− Ccd̂(t)).

In this case, limt→∞ e(t) = 0 exponentially which leads to an
internal model principle discussed in [7].

III. REGULATION OF TRACKING ERROR ONLY

In this section, we deal with the case where only the displace-
ment signal e(·) can be measured. We show that the closed-loop
system in this case is only internally asymptotically stable and
the tracking error is also asymptotically convergent. This is
because the measured signal, corresponding to a compact output
operator, is too weak to make closed-loop exponentially stable
(see [11]).

Motivated from [7] for asymptotic stabilization of wave equa-
tion, we introduce

Ż1(t) = −k1[Z1(t)− e(t)], k1 > 0, Z1(0) = Z10 ∈ R (50)

which is completely determined by the tracking error. Similarly
with the last section, we introduce a transformation for the
system (1) {

z(x, t) = y(x, t) + g(x)v(t)
Z2(t) = Z1(t) + gzv(t)

where g : [0, 1] → R
1×(2r+1), gv ∈ R

1×(2r+1) satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩
g′′(x) = g(x)S2 + F1Δ(x)

g′(0) = −F2 + (k1 + k2)[F4 + g(0)]− k1gz, k2 > 0

g′(1) = −F3

gzS = −k1[gz − g(0)− F4].
(51)

Lemma 3.1: The boundary value problem (51) admits a
unique solution (g�, g�z ) ∈ H2((0, 1);R2r+1)× R

2r+1.
Proof: According to the fourth equation of (51), we can see

that gz = k1[F4 + g(0)][S + k1]
−1. The rest of proof is very

similar to the proof of Lemma 2.1. �
The extended system of (z(·, ·), Z2(·), v(·)) is then governed

by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ztt(x, t) = zxx(x, t)
zx(0, t) = (k1 + k2)[z(0, t)− e(t)]− k1[Z2(t)− Z1(t)]
zx(1, t) = u(t)

Ż2(t) = −k1(Z2(t)− z(0, t))
v̇(t) = Sv(t)
e(t) = z(0, t)− (g(0) + F4)v(t).

By Assumption A, the term (g(0) + F4)v(t) contains the si-
nusoids of no more than m distinct frequencies, which can be

expressed, without loss of generality, as

(g(0)+F4)v(t)=

l∑
i=1

(Ai cosωit+Bi sinωit)+C, l≤r≤m

where Ai, Bi, and C are unknown parameters and A2
i +B2

i >
0, i = 1, . . . , l.

Same as the previous section, (g(0) + F4)v(t) can be gener-
ated by the exosystem of the following:{

ḋ(t) = Sc(θ)d(t) = Acd(t)−
∑m

i=1 θiE2id1(t)

(g(0) + F4)v(t) = d1(t)

where d(t) = (d1(t), d2(t), . . . , d2m+1(t))
� ∈ R

2m+1, Ac and
Sc(θ) are defined by Lemma 2.2. The E2i is the 2ith col-
umn of the (2m+ 1)× (2m+ 1) identity matrix, and θ =
[θ1, . . . , θl, 0, . . . , 0]

� ∈ R
m with θ1, . . . , θl being defined by

(13).
We therefore write (z(·, ·), Z2(·), d(·)) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ztt(x, t) = zxx(x, t)

zx(0, t) = (k1 + k2)[z(0, t)− e(t)]− k1[Z2(t)− Z1(t)]

zx(1, t) = u(t)

Ż2(t) = −k1(Z2(t)− z(0, t))

ḋ(t) = Sc(θ)d(t)

e(t) = z(0, t)− Ccd(t)
(52)

where Cc = [1, 0, . . . , 0] ∈ R
1×(2m+1). From now on, we only

need to design tracking error feedback control for the trans-
formed system (52).

A. Feedforward Control Design

In this subsection, we design a feedforward control for the
system (52). Let f0(x, θ) = f0(x) ∈ R

1×(2m+1) be the solution
of the following equation:⎧⎪⎨

⎪⎩
f ′′0 (x) = f0(x)S

2
c (θ)

f ′0(0) = (k1 + k2)Cc − k21Cc[Sc(θ) + k1]
−1

f0(0) = Cc

which admits a unique solution

(f0(x, θ), f
′
0(x, θ)) = (f0(0), f

′
0(0))e

⎛
⎜⎝0 S2

c (θ)

I 0

⎞
⎟⎠x

.

Let ε(x, t) = z(x, t)− f0(x)d(t). Then, the ε(·, ·) is governed
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
εtt(x, t) = εxx(x, t)

εx(0, t) = 0, εx(1, t) = u(t)− f ′0(1)d(t)
ḋ(t) = Sc(θ)d(t)

e(t) = ε(0, t).

(53)

Similar to the previous section, we can then naturally design a
feedforward control of the following:

u(t) = −c2ε(1, t)− c3εt(1, t) + f ′0(1, θ)d(t)
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= −c2z(1, t)− c3zt(1, t) + f ′0(1, θ)d(t)

+ c2f0(1, θ)d(t) + c3f0(1, θ)Sc(θ)d(t). (54)

B. Error-Based Observer Design

In this subsection, we design an observer for the system (52)
to recover the state (z(·, t), Z2(t), d(t)) and estimate online the
θ by the output measurement e(t). Once again, an observer for
the z-subsystem of (52) is also a direct copy of the plant as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = (k1 + k2)[ẑ(0, t)− e(t)]− k1[Ẑ2(t)− Z1(t)]

ẑx(1, t) = u(t)
˙̂
Z2(t) = −k1(Ẑ2(t)− ẑ(0, t))

(ẑ(·, 0), ẑt(·, 0), Ẑ2(0)) = (ẑ0(·), ẑ1(·), Z20) ∈ H × R.
(55)

Define the observer error as z̃(x, t) = z(x, t)− ẑ(x, t) and
Z̃2(t) = Z2(t)− Ẑ2(t). Then⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

z̃tt(x, t) = z̃xx(x, t)

z̃x(0, t) = (k1 + k2)z̃(0, t)− k1Z̃2(t)

z̃x(1, t) = 0
˙̃Z2(t) = −k1(Z̃2(t)− z̃(0, t))

(56)

which is asymptotically stable in H × R claimed by [7,
Lemma 2.1]. By the Sobolev trace theorem, z̃(0, ·), z̃(1, ·) ∈
C([0,∞);R) and

lim
t→∞ |z̃(0, t)| = lim

t→∞ |z̃(1, t)| = 0.

We can thus introduce a known function

yd(t) = −e(t) + ẑ(0, t) = Ccd(t)− z̃(0, t)

and consider the following ODE system:{
ḋ(t) = Sc(θ)d(t) = Acd(t)−

∑m
i=1 θiE2id1(t)

yd(t) = Ccd(t)− z̃(0, t).
(57)

It is now the time for us to design an adaptive observer for (57)
according to the output yd(t).

Lemma 3.2: For any initial state

(χ̂1(0), φ̂(0), θ̂(0),Ω(0), {ξi(0)}mi=1) ∈
R× R

2 m × R
m × S

m
+ × R

2m×m

there hold

lim
t→∞‖θ̂(t)− θ‖ = 0, lim

t→∞‖d̂(t)− d(t)‖ = 0

where d̂(·) and ξi(·),Ωi(·) are updated by the same adaptive
observer and filter given by (31) and (29), respectively, but the
adaptation dynamics for the estimates θ̂i(t), i = 1, 2, . . . ,m are
given by{

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), | det(Ωi)|1/i ≥ δ > 0
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

(58)

where δ is a small threshold, and α, g > 0 can be arbitrarily
chosen.

Proof: We still set μi(t) = μip(t) + μie(t) where μip(·) is
the solution to{

ξ̇ip(t) = Γξip(t)− [0 I2 m]E2id1(t)
μip(t) = [1 0 . . . 0]ξip(t), i = 1, . . . ,m

(59)

and μie(·) is governed by⎧⎨
⎩
ξ̇ie(t) = Γξie(t) + [0 I2 m]E2iz̃(0, t)
μie(0) = μi(0)− μip(0)
μie(t) = [1 0 . . . 0]ξie(t), i = 1, . . . ,m.

(60)

By the proof of Lemma 2.5, the vector [μ1p(t), . . . , μlp(t)]
�

is PE (but [μ1p(t), . . . , μkp(t)]
�, k ≥ l + 1 is not). For the

system (60), since Γ is Hurwitz and limt→∞ |z̃(0, t)| =
0, we conclude that limt→∞ |μie(t)| = 0. By Lemma 1.3,
and μi(t) = μip(t) + μie(t), the vector [μ1(t), . . . , μl(t)]

�

is PE (but [μ1(t), . . . , μk(t)]
�, k ≥ l + 1 is not). It follows

from (36) and a similar argument of [21, lemma 3.1]
that | det(Ωi(t))|1/i ≥ δm > 0 ∀t ≥ 0, i = 1, . . . , l, where
δm is a positive number and |det(Ωi)|1/i, i = 1 + 1, . . . ,m
tend to zero as time goes to infinity. By choosing δ suf-
ficiently small, there exists some T > 0 such that for all
t ≥ T

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), 1 ≤ i ≤ l

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), l + 1 ≤ i ≤ m.

Define the error variables χ̃1(t) = χ1(t)− χ̂1(t), φ̃(t) =

φ(t)− φ̂(t), θ̃(t) = θ − θ̂(t), where the definitions of χ1, φ
are the same as in the previous section [see (30)].
Then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙̃
φ(t) = Γφ̃(t) + z̃(0, t)(β −M2θ)
˙̃χ1(t) = −k0χ̃1(t) + φ̃1(t) + μ(t)�θ̃(t) + z̃(0, t)(b1 + k0)

˙̃
θi(t) = −gμi(t)χ̃1(t) + gμi(t)z̃(0, t), 1 ≤ i ≤ l

˙̃
θi(t)=−gμi(t)χ̃1(t)−αθ̃i(t)+gμi(t)z̃(0, t), l+1≤ i≤m.

(61)
Since Γ is Hurwitz and limt→∞ |z̃(0, t)| = 0, we conclude
that limt→∞ ‖φ̃(t)‖ = 0. Now we consider the last three
equations of the system (61) as perturbations of the nominal
system (38), whose origin is, by the proof of Lemma
2.5, exponentially stable. By Lemma 1.2, it is seen that
limt→∞ ‖θ̂(t)− θ‖ = 0 and limt→∞ |χ̂1(t)− χ1(t)| =
0. Since limt→∞ ‖φ̃(t)‖ = 0, same as the previous
section,

d̃(t) =

[
χ̃1(t)

φ̃(t)

]
+

[
0∑m

i=1 ξi(t)θ̃i(t) + bχ̃1(t)

]

is obviously tending to 0 as t→ ∞ by boundedness of ξi(t). �

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on April 27,2024 at 08:14:32 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO AND GUO: OUTPUT REGULATION FOR A WAVE EQUATION WITH UNKNOWN EXOSYSTEM 3077

(a) (b)

Fig. 1. Tracking performance of Y (t). (a) First simulation. (b) Second
simulation.

C. Tracking Error Feedback Control Design

By (54), we can therefore design naturally a tracking error
feedback control as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+ f ′0(1, θ̂)d̂(t) + c2f0(1, θ̂)d̂(t) + c3f0(1, θ̂)Sc(θ̂)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = (k1 + k2)[ẑ(0, t)− e(t)]− k1[Ẑ2(t)− Z1(t)]

ẑx(1, t) = u(t)

˙̂
Z2(t) = −k1(Ẑ2(t)− ẑ(0, t)), Ż1(t) = −k1[Z1(t)− e(t)]

yd(t) = −e(t) + ẑ(0, t)

˙̂χ1(t)= φ̂1(t)+b1yd(t)+
∑m

i=1 μi(t)θ̂i(t)+ko(yd(t)−χ̂1(t))

˙̂
φ(t) = Γφ̂(t) + βyd, φ̂(t) ∈ R

2 m

d̂(t) =

[
χ̂1(t)

φ̂(t)

]
+

[
0∑m

i=1 ξi(t)θ̂i(t) + bχ̂1(t)

]
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), |det(Ωi)|1/i ≥ δ

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R
2 m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, Ω(t) ∈ R

m×m

(62)
where

(f0(1, θ̂), f
′
0(1, θ̂))=(Cc, (k1+k2)Cc−k21Cc[Sc(θ̂)+k1]

−1)

× e

⎛
⎜⎝0 S2

c (θ̂)

I 0

⎞
⎟⎠
. (63)

SinceSc(θ̂) + k1 might be singular, we need to replace (Sc(θ̂) +
k1)

−1 in (63) with

T(θ̂) = adj[Sc(θ̂) + k1]
det[Sc(θ̂) + k1]

sat(det2[Sc(θ̂) + k1])

where

sat(a) =

{
a, if a ≥ δ0
δ0, if a < δ0

with δ0 > 0 being a small threshold and adj[Sc(θ̂) + k1] is the
adjoint matrix of Sc(θ̂) + k1.

D. Well-Posedness and Stability of the Closed-Loop
System

The close loop of the system (1) under control (62) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(x, t) = yxx(x, t) + Δ(x)F1v(t)

yx(0, t) = F2v(t)

yx(1, t) = u(t) + F3v(t)

v̇(t) = Sv(t)

e(t) = y(0, t)− F4v(t)

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+ f ′0(1, θ̂)d̂(t) + c2f0(1, θ̂)d̂(t) + c3f0(1, θ̂)Sc(θ̂)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = (k1 + k2)[ẑ(0, t)− e(t)]− k1[Ẑ2(t)− Z1(t)]

ẑx(1, t) = u(t)
˙̂
Z2(t) = −k1(Ẑ2(t)− ẑ(0, t)), Ż1(t) = −k1[Z1(t)− e(t)]

yd(t) = −e(t) + ẑ(0, t)
˙̂χ1(t)= φ̂1(t)+b1yd(t)+

∑m
i=1μi(t)θ̂i(t)+ko(yd(t)−χ̂1(t))

˙̂
φ(t) = Γφ̂(t) + βyd, φ̂(t) ∈ R

2 m

d̂(t) =

[
χ̂1(t)

φ̂(t)

]
+

[
0∑m

i=1 ξi(t)θ̂i(t) + bχ̂1(t)

]

(64)
with parameter adaptive law{

˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t)), |det(Ωi)|1/i ≥ δ > 0
˙̂
θi(t) = gμi(t)(yd(t)− χ̂1(t))− αθ̂i(t), otherwise

for 1 ≤ i ≤ m, and filter⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ξ̇i(t) = Γξi(t)− [0 I2 m]E2iyd(t), ξi(t) ∈ R

2 m

μi(t) = [1 0 . . . 0]ξi(t), 1 ≤ i ≤ m

Ω̇(t) = −λbΩ(t) + λcμ(t)μ(t)
�, μ(t) = [μ1, . . . , μm(t)]�

Ωi(t) = [Ii, 0i×(m−i)]Ω(t)[Ii, 0i×(m−i)]
�, 1 ≤ i ≤ m.

We consider system (64) in the state space H2 = H2 × R
2 ×

R× R
2 m × R

m × S
m
+ × R

2m×m.
Theorem 3.1: Suppose that k1, k2, c2, c3 > 0. For any un-

known coefficients F1, F2, F3, F4, S, unknown function Δ(·)
and any initial state

(y(·, 0), yt(·, 0), ẑ(·, 0), ẑt(·, 0), Ẑ2(0), Z1(0),

χ̂1(0), φ̂(0), θ̂(0),Ω(0), {ξi(0)}mi=1) ∈ H2

the closed-loop system (64) admits a unique bounded solution
in C([0,∞);H2) such that

lim
t→∞ |e(t)| = 0.

Proof: Using the variables ε(x, t), z̃(x, t), Z̃2(t) given by
(53) and (56). Define ε̂(x, t) = ε(x, t)− z̃(x, t). Then, ε̂(x, t)
is governed by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ε̂tt(x, t) = ε̂xx(x, t)

ε̂x(0, t) = −(k1 + k2)z̃(0, t) + k1Z̃2(t)

ε̂x(1, t) = −c2ε̂(1, t)− c3ε̂t(1, t) + P(t)

e(t) = z̃(0, t) + ε̂(0, t)

(65)
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where

P(t) :=−f ′0(1, θ)d(t)− c2f0(1, θ)d(t)−c3f0(1, θ)Sc(θ)d(t)

+ f ′0(1, θ̂)d̂(t)+c2f0(1, θ̂)d̂(t)+c3f0(1, θ̂)Sc(θ̂)d̂(t).

The system (65) can be written abstractly as

d

dt
(ε̂(·, t), ε̂t(·, t)) = A(ε̂(·, t), ε̂t(·, t)) + BP(t)

+ B1(−(k1 + k2)z̃(0, t) + k1Z̃2(t))

where the operator A : D(A)(⊂ H) → H is defined in the
proof of Theorem 2.1, and B = (0, δ(· − 1)),B1 = (0,−δ(·)).
It is well known that B and B1 are admissible for eAt.
It follows from (56) that z̃(0, ·), Z̃2(·) ∈ C([0,∞);R) and
limt→∞ z̃(0, t) = limt→∞ Z̃2(t) = 0. Moreover, we also have
P ∈ C([0,∞);R) and limt→∞ P(t) = 0. By Lemma 1.1, the
ε̂-system admits a unique solution (ε̂, ε̂t) ∈ C([0,∞);H), and

lim
t→∞‖(ε̂(·, t), ε̂t(·, t))‖H = 0.

Therefore, the transformations y(x, t) = ε̂(x, t) + z̃(x, t) +
f0(x)d(t)− g(x)v(t), ẑ(x, t) = ε̂(x, t) + f0(x)d(t) imply
that (y, yt, ẑ, ẑt) are well-defined in C([0,∞);H2) ∩
L∞(0,∞;H2). By the Sobolev trace embedding theorem

lim
t→∞ |ε̂(0, t)| ≤ lim

t→∞‖ε̂(·, t)‖H1(0,1)

≤ lim
t→∞‖(ε̂(·, t), ε̂t(·, t))‖H = 0.

This, together with (65), gives

lim
t→∞ |e(t)| = lim

t→∞ |z̃(0, t) + ε̂(0, t)| = 0.

�
Remark 5: When θ is known, the control (62) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = −c2ẑ(1, t)− c3ẑt(1, t)

+f ′0(1, θ)d̂(t) + c2f0(1, θ)d̂(t) + c3f0(1, θ)Sc(θ)d̂(t)

ẑtt(x, t) = ẑxx(x, t)

ẑx(0, t) = (k1 + k2)[ẑ(0, t)− e(t)]− k1[Ẑ2(t)− Z1(t)]

ẑx(1, t) = u(t)
˙̂
Z2(t) = −k1(Ẑ2(t)− ẑ(0, t)), Ż1(t) = −k1[Z1(t)− e(t)]

yd(t) = −e(t) + ẑ(0, t)
˙̂
d(t) = Sc(θ)d̂(t) + L(yd(t)− Ccd̂(t)).

In this case, limt→∞ e(t) = 0, which leads to an internal model
principle discussed in [7].

IV. NUMERICAL SIMULATIONS

In this section, we demonstrate some numerical simulations
for illustration. Consider the closed-loop system (46) with the
disturbances w1(t) = w2(t) = w3(t) = 5 cos( 45 t), and the ref-
erence signal r(t) being{
r(t) = 20 sin( 45 t) + 5, in the first simulation
r(t) = 25 sin(2t) + 3 sin( 15 t), in the second simulation.

For the controller, we choose m = 2 so that two unknown pa-
rameters θ1 and θ2 are needed. Numerical simulations have been

(a) (b)

Fig. 2. Tracking performance of Ẏ (t). (a) First simulation. (b) Second
simulation.

(a) (b)

Fig. 3. Frequency estimation. (a) First simulation. (b) Second simula-
tion.

Fig. 4. Evolution of the plant y(x, t). (a) First simulation. (b) Second
simulation.

carried out with parametersΔ(x) = x/5, c0 = c1 = c2 = c3 =
2, λb = λc = 1, b = [4, 6, 4, 1]�, α = g = k0 = 1, and all the

initial states of the plant and controller except Ω(0) =
[
1 0

0 1

]
are set to be zero. The simulations are implemented using finite
difference with 50 points on [0, 1].

Figs. 1 and 2 plot the tracking performances of the Y (t) and
Ẏ (t). Fig. 3 displays the frequency estimation of θ̂(t). From
the figures, we see that both frequency estimation and tracking
performance are satisfactorily. Fig. 4 shows that the state of plant
is bounded.

It is worth noting that in the second simulation, the number of
frequencies entering the system is l = 3, which is greater than
m = 2, which is not in line with Assumption A, but the output
regulation of the system is approximately still valid in this case,
which shows that our controller may estimate the dominant two
(2 and 4

5 ) of the three frequencies with good robustness.

V. CONCLUSION

This article develops output regulation for a hyperbolic PDE
system with disturbances being generated from a completely
unknown exosystem. The system is described by 1-D wave
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equation where the control operator is unbounded and is non-
collocated with the regulated output, which is a difficult situ-
ation in output regulation of PDEs. Motivated from adaptive
estimation of frequencies of sinusoidal signals in signal process
and adaptive internal model principle for lumped parameter
systems, we develop an adaptive internal model principle for the
PDE discussed. Two different cases are investigated. In the first
case, the derivative of the tracking error is allowed to be used
in the control design, which is somehow PD control. We can
achieve the exponential convergence for the tracking error. The
derivative of the tracking error is also shown to be convergent
in a generalized sense. The second case is solely the tracking
error feedback, for which, only the asymptotic convergence is
guaranteed due to the observation operator being compact. All
the estimations are in real time and the control is actually robust
to disturbances in all possible channels. Numerical simulations
validate the theoretical results.
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