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a b s t r a c t

In this paper, we consider output regulation for a 1-d heat equation where the disturbances generated
from an unknown finite-dimensional exosystem enter all possible channels. We adopt adaptive
observer internal model approach which has been well developed for lumped parameter systems
over two decades to estimate all possible unknown frequencies that have entered into a transformed
system. By the estimates of the unknown frequencies, we are able to design a tracking error based
feedback control to achieve output regulation and disturbance rejection for this PDE. A significance
of the problem lies in the fact that both the control and observation operators are unbounded. The
proposed approach is potentially applicable to other PDEs.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Output regulation is one of the most important problems in
ontrol theory, which aims at designing a tracking error feedback
ontrol to regulate output to track asymptotically reference sig-
al in the presence of disturbance. If both the reference signal
nd the disturbance are generated from a linear autonomous
ystem which is called exosystem, the problem can be solved
erfectly for linear time invariant systems by the internal model
rinciple developed in the 1970s by Davison (1976) and Fran-
is and Wonham (1976). The internal model principle has been
pplied later on to nonlinear finite-dimensional systems (Huang,
004) and even abstract infinite-dimensional systems (Natarajan
Benstman, 2016; Natarajan, Gilliam, & Weiss, 2014; Paunonen
Pohjolainen, 2010; Rebarber & Weiss, 2003; Schumacher, 1983;
u & Dubljevic, 2017).
However, the theory for abstract linear infinite-dimensional

ystems is difficult to be applied directly to systems described
y partial differential equations (PDEs) unless both the control
nd observation operators are bounded. Usually, the abstract set-
ing is discussed in a broader sense (Paunonen, 2017) for which
ome abstract conditions are hard to be checked for PDEs. In
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addition, we found recently that in observer-based internal model
principle, the PDE approach and abstract setting design are not
always coincident. For this reason, some progresses on output
tracking from PDE point of view have also been made over the
years like Deutscher (2015, 2016), Guo, Zhou, and Krstic (2020)
and Guo and Jin (2020). The problems of Guo and Jin (2020), Guo
et al. (2020) have been solved recently in Guo and Meng (2020,
2021a, 2021b) by means of the observer-based internal model
principle with robustness, less restriction and fast convergence.
However, in all these papers aforementioned, the frequencies of
the harmonic disturbances were supposed to be known. To the
best of our knowledge, only a few studies have been carried out
for the output tracking of the infinite-dimensional systems with
unknown frequencies like those in Wang, Ji, and Sheng (2014)
andWang, Ji, and Wang (2014) where the control and observation
operators were assumed to be bounded.

On the other hand, there are many works attributed to on-
line estimation of the frequencies for finite sum of the sinusoid
signals and output regulation for systems described by ordinary
differential equations (ODEs) with unknown exosystem. The main
stream is represented by a series of works fromMarino and Tomei
(2002, 2003, 2007), to Marino and Tomei (2013, 2017), over two
decades. In this paper, adopted the methods from Marino and
Tomei (2017) and Kim and Shim (2015), we propose an adaptive
internal model based control method to solve an output tracking
problem for a PDE system described by a 1-d heat equation where
the exosystem is not necessarily known, which means that the
frequencies of the sinusoidal signals that appear in the reference
and disturbances can be unknown. In addition, both the control
and observation operators are unbounded, which has potential
applicability to other PDEs.

https://doi.org/10.1016/j.automatica.2022.110159
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The system that we consider in this paper is described by the
following heat equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t) + F (x)p(t), x ∈ (0, 1), t > 0,
wx(0, t) = Np(t), t ≥ 0,
wx(1, t) = u(t) + Dp(t), t ≥ 0,
w(x, 0) = w0(x), x ∈ [0, 1],
yc(t) = w(0, t), t ≥ 0,

(1)

where u(·) is the control, and yc(·) which is non-collocated with
control is the output to be regulated, the F (·) ∈ L∞(0, 1;R1×n),
N ∈ R1×n, and D ∈ R1×n are unknown coefficients of the in-
domain and boundary disturbances, w0(·) is the initial state. The
disturbance p(·) is produced from the following exosystem:{

ṗ(t) = Gp(t), t > 0,
p(0) = p0,

(2)

where the unknown p(t) ∈ Rn. It is assumed that both the matrix
G ∈ Rn×n and the initial value p0 are unknown. We consider
system (1) in the usual state space H = L2(0, 1).

Denote the reference trajectory by

yref (t) = Mp(t), (3)

where M ∈ R1×n is also unknown, and the tracking error is
denoted by ye(t) = yc(t)−yref (t). The control objective is to design
a tracking error feedback control so that

lim
t→∞

|ye(t)| = lim
t→∞

|yc(t) − yref (t)| = 0. (4)

The following assumption is made throughout the paper.

Assumption 1.1. The spectrum of G is either {±jωi, 1 ≤ i ≤ r}
with n = 2r or {0, ±jωi, 1 ≤ i ≤ r} with n = 2r + 1, where
ω1 < ω2 < · · · < ωr are positive distinct unknown parameters.
It is supposed that r has an upper bound: r ≤ m for a known
positive integer m.

By Assumption 1.1, the general solution of the exosystem
(2) includes steplike functions and sinusoidal functions with un-
known frequencies, which typically arise in applications. Define

wr (x, t) = Γ (x)p(t) and ur (t) = γ p(t), (5)

which satisfy⎧⎪⎪⎨⎪⎪⎩
wr

t (x, t) = wr
xx(x, t) + F (x)p(t),

wr
x(0, t) = Np(t),

wr
x(1, t) = ur (t) + Dp(t),

wr (0, t) = Mp(t),

(6)

that is, wr (x, t) and ur (t) are the reference signals of w(x, t) and
u(t). The coefficients Γ (·) and γ are determined by the following
regulator equation:⎧⎪⎨⎪⎩

Γ ′′(x) = Γ (x)G − F (x),
Γ ′(0) = N,

Γ (0) = M,

γ = Γ ′(1) − D,

(7)

which admits a unique solution. Obviously, the state regulation
error ε(x, t) = w(x, t) − wr (x, t) satisfies⎧⎪⎨⎪⎩

εt (x, t) = εxx(x, t),
εx(0, t) = 0,
εx(1, t) = u(t) − γ p(t),
ye(t) = ε(0, t).

(8)

We proceed as follows. In Section 2, we consider a special case
of r = 1 to display simply the approach. Section 3 is devoted to
the case of r ≥ 1. In Section 4, we demonstrate some numerical
simulations for illustration, followed up by concluding remarks in

Section 5.

2

2. Main results for r = 1

In order to show clearly about our control design approach,
we consider, in this section, the case of r = 1, n = 2. The case of
r ≥ 1 will be discussed in next section. The following assumption
is convenient for the discussion in this section although it is not
essential and will be removed in next section.

Assumption 2.1. The pair (G, γ ) is observable and the initial
value p(0) excites all oscillatory modes of the exosystem.

By Assumptions 1.1 and 2.1, we may write ur (t) as

ur (t) = A cosωt + B sinωt, (9)

where A, B, ω are unknown parameters with A2
+ B2 > 0. Hence

ur (t) can be described by the exosystem of the following:{
η̇(t) = Gcη(t),
ur (t) = γ p(t) = γcη(t),

(10)

where γc = [1, 0], η(0) = (A, B)⊤, and Gc is a 2 × 2 matrix:

Gc =

[
0 ω

−ω 0

]
.

We design naturally a feedforward control for system (8) as
follows:

u(t) = −α2ε(1, t) + γcη(t), α2 > 0, (11)

and the closed-loop of system (8) under control (11) reads{
εt (x, t) = εxx(x, t),
εx(0, t) = 0,
εx(1, t) = −α2ε(1, t),

(12)

which, by lemma 1.1 of Guo and Meng (2020), is exponentially
stable and |ye(t)| = |ε(0, t)| converges to zero exponentially as
t → ∞.

In the rest of this section, we are devoted to design a suitable
observer to estimate (ε(1, t), η(t)) in (11). To this purpose, we
introduce a transform:

z(x, t) = ε(x, t) + g(x)η(t), (13)

where g(x) = (g1(x), g2(x)) satisfies{ g ′′(x) = g(x)Gc,

g ′(0) = α1g(0), α1 > 0,
g ′(1) = γc .

(14)

The extended system of (z(·, ·), η(·)) is then governed by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zt (x, t) = zxx(x, t),
zx(0, t) = α1z(0, t) − α1ye(t),
zx(1, t) = u(t),
η̇(t) = Gcη(t),
ye(t) = z(0, t) − g(0)η(t).

(15)

It is seen that the z-subsystem in (15) has damping at x = 0. The
existence of the solution to (14) is guaranteed by the following
Lemma 2.1.

Lemma 2.1. The boundary value problem (14) admits a unique
solution.

Proof. Let w1 = (1, i)⊤ and w2 = (1, −i)⊤ be the eigenvectors
of Gc corresponding to the eigenvalues iω and −iω respectively,
which will be used throughout this section. Right multiply by w1
in (14) to obtain{
g ′′
a (x) = iωga(x),
′ ′

(16)

ga(0) = α1ga(0), ga(1) = 1,
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here ga(x) = g(x)w1. Then, the solution of (16) can be found as

a(x) =
(β + α1)eβx

+ (β − α1)e−βx

β(β + α1)eβ − β(β − α1)e−β
, (17)

here β =
√
iω. It is easy to check that the denominator of (17)

is non-zero. For the eigenvalue −iω, we can similarly obtain

b(x) =
(β∗

+ α1)eβ∗x
+ (β∗

− α1)e−β∗x

β∗(β∗ + α1)eβ∗
− β∗(β∗ − α1)e−β∗

, (18)

here gb(x) = g(x)w2, β
∗

=
√

−iω. Therefore, the solution of
14) always exists for any α1 > 0 that g(x) = (ga(x), gb(x))
w1, w2]

−1. ■

Now, since the initial value of (15) is unknown, we design an
bserver for z-subsystem of (15) as follows:

ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = u(t).

(19)

he observer error z̃(x, t) = z(x, t) − ẑ(x, t) satisfies⎧⎨⎩
z̃t (x, t) = z̃xx(x, t),
z̃x(0, t) = α1z̃(0, t),
z̃x(1, t) = 0,

(20)

which is, similar to (12), exponentially stable in H .

Lemma 2.2. Let z̃(·, ·) be the solution of (20) in H = L2(0, 1).
Then, z̃(0, ·), z̃(1, ·) ∈ L2(0, T ) for any T > 0. Moreover, there are
M∗, ω∗ > 0, such that

|z̃(0, t)| + |z̃(1, t)| ≤ M∗e−ω∗t
∥z̃(·, 0)∥, ∀t ≥ ε, (21)

for any ε > 0.

Proof. We only discuss z̃(1, t) since the counterpart for z̃(0, t) is
similar. From the proof of lemma 1.1 of Guo and Meng (2020),
the solution of (20) can be represented as{
z̃(x, t) =

∑
∞

n=0 bne
µntgn(x),

∥z̃(·, 0)∥2
=
∑

∞

n=0 b
2
n < ∞,

(22)

where (there is a typo in (9) of Guo and Meng (2020)){
µn = −2α1 − (nπ )2 + O(n−1) < 0,
gn(x) = cos nπx + O(n−1), (23)

with {gn(x)} being an orthonormal basis for H . First, (21) comes
from

|z̃(1, t)| ≤

∞∑
n=0

|bngn(1)|eµnt

≤ C

(
∞∑
n=0

e2µnt

) 1
2
(

∞∑
n=0

b2n

) 1
2

≤ L0e−ω0t∥z̃(·, 0)∥, ∀t ≥ ε

or some L0, ω0 > 0. Next,

T

0
z̃2(1, s) ds =

∫ T

0

(
∞∑
n=0

bneµnsgn(1)

)2

ds

C2

(∫ T

0

∞∑
n=0

e2µns ds

)(
∞∑
n=0

b2n

)

≤ C2

(
∞∑ 1

−2µ

)(
∞∑

b2n

)
< C1∥z̃(·, 0)∥2
n=0 n n=0

3

for some C1 > 0. This shows that z̃(1, ·) ∈ L2(0, T ), for any
T > 0. ■

Since from (15), ye(t) = z(0, t)−g(0)η(t) and hence g(0)η(t) =

−ye(t) + z(0, t), we define an approximation of g(0)η(t) by a
known function yd(t) = ẑ(0, t) − ye(t) = g(0)η(t) − z̃(0, t) where
z̃(0, t) comes from (20). Consider the following system:{

η̇(t) = Gcη(t),
yd(t) = g(0)η(t) − z̃(0, t). (24)

We shall design an adaptive observer according to yd(t). For this
purpose, we need the following Lemma 2.3.

Lemma 2.3. The pair (Gc, g(0)) is observable for every ω ∈

(0, +∞).

Proof. It is known that (Gc, g(0)) is observable if and only if
(G0, g∗(0)) is observable, where G0 = J−1GC J = diag{iω, −iω},
g∗(0) = g(0)J = (ga(0), gb(0)), J = [w1, w2]. It is easy to show
that (G0, g∗(0)) is observable if and only if ga(0) ̸= 0 and gb(0) ̸= 0
which are true for every ω ∈ (0, +∞) by the expressions (17) and
(18). ■

Lemma 2.3 guarantees that there exists a coordinate transfor-
mation:

d(t) = Tη(t), d(t) = (d1(t), d2(t))⊤ ∈ R2, (25)

where T is nonsingular for all ω ∈ (0, +∞), which transforms the
observable pair (Gc, g(0)) into an canonical form:{

ḋ(t) = Sc(θ )d(t),
yd(t) = γcd(t) − z̃(0, t), (26)

with θ = ω2 and

γc = g(0)T−1, Sc(θ ) = TGcT−1
=

[
0 1

−θ 0

]
. (27)

Lemma 2.4. There exists an adaptive observer for (26). Precisely, for
any (ξ (0), χ̂1(0), φ̂(0), θ̂ (0)) ∈ R4, the following adaptive observer:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̇ (t) = −λξ (t) − yd(t),
˙̂χ1(t) = φ̂(t) + λyd(t) + θ̂ (t)ξ (t) + k0(yd(t) − χ̂1(t)),
˙̂
φ(t) = −λφ̂(t) − λ2yd(t),
˙̂
θ (t) = gξ (t)(yd(t) − χ̂1(t)),

d̂1(t) = χ̂1(t),

d̂2(t) = φ̂(t) + ξ (t)θ̂ (t) + λχ̂1(t),

(28)

with g > 0, λ > 0, k0 > 1
4λ satisfies

lim
t→∞

|θ̂ (t) − θ | = 0 and lim
t→∞

∥d̂(t) − d(t)∥R2 = 0

exponentially.

Proof. Since by Lemma 2.3, d1(t) contains one sinusoid signal, the
roof is very similar to theorem 2.1 of Marino and Tomei (2017)
nd we omit the details due to page limitation. ■

Let f0(x, θ ) = f0(x) ∈ R1×2 be the solution of the following
equation⎧⎨⎩

f ′′

0 (x) = f0(x)Sc(θ ),
f ′

0(0) = α1γc,

f0(0) = γc,

(29)

which is an initial value problem of an ordinary differential equa-
tion. Hence, the solution of (29) is continuously differentiable
with respect to the parameters θ . By (27), it is easily to check
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ε

hat f0(x)T = g(x) which results in

(x, t) = z(x, t) − g(x)η(t) = z(x, t) − f0(x)d(t), (30)

and

γcη(t) = g ′(1)η(t) = f ′

0(1, θ )d(t). (31)

By Lemma 2.4 and (11), we can design naturally an error
feedback control as follows:

u(t) = −α2ẑ(1, t) + f ′

0(1, θ̂ )d̂(t) + α2f0(1, θ̂ )d̂(t). (32)

Lemma 2.5. For any functions a(·), b(·) ∈ C[0, +∞)∩L∞
[0, +∞)

and â(·), b̂(·) ∈ C[0, +∞), if |a(t) − â(t)| and |b(t) − b̂(t)| converge
exponentially to zero as t → +∞, then so does for
|a(t)b(t) − â(t)b̂(t)| as t → +∞.

Proof. The proof is trivial and we omit the details. ■

Lemma 2.6. The error feedback control u(t) = −α2ẑ(1, t) +

f ′

0(1, θ̂ )d̂(t)+α2f0(1, θ̂ )d̂(t) converges exponentially to −α2ε(1, t)+
γcη(t) as t → ∞.

Proof. Since |θ − θ̂ (t)| converges exponentially to zero as t →

+∞, we may suppose that |θ − θ̂ (t)| ≤ Ce−βt for some constants
C, β > 0, which implies that θ̂ (t) is bounded. Suppose that
θ̂ (t), θ ∈ [−M,M] for someM > 0. Let ũ(t) = u(t)−(−α2ε(1, t)+
γcη(t)). Then,

ũ(t) = α2z̃(1, t) + f ′

0(1, θ̂ )d̂(t) + α2f0(1, θ̂ )d̂(t)
− f ′

0(1, θ )d(t) − α2f0(1, θ )d(t).
(33)

By Lemma 2.5 and Lemma 2.2, it suffices to prove limt→∞

∥f0(1, θ̂ (t)) − f0(1, θ )∥ = 0 and limt→∞ ∥f ′

0(1, θ̂ (t)) − f ′

0(1, θ )∥ =

0 exponentially. Since f0(1, θ ), f ′

0(1, θ ) are continuously differ-
entiable with respect to the parameter θ , they are Lipschitz
continuous functions over the domain [−M,M]. Therefore,

∥f0(1, θ̂ (t)) − f0(1, θ (t))∥ ≤ L1|θ̂ (t) − θ | ≤ L1Ce−βt ,

and

∥f ′

0(1, θ̂ (t)) − f ′

0(1, θ )∥ ≤ L2|θ̂ (t) − θ | ≤ L2Ce−βt ,

for some constants L1, L2, β > 0. ■

Finally, we write the close-loop of system (1) under the feed-
back control (32) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t) + F (x)p(t),
wx(0, t) = Np(t),

wx(1, t) = −α2ẑ(1, t) + f ′

0(1, θ̂ )d̂(t)

+α2f0(1, θ̂ )d̂(t) + Dp(t),
ṗ(t) = Gp(t),
ye(t) = w(0, t) − Mp(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),

ẑx(1, t) = −α2ẑ(1, t) + f ′

0(1, θ̂ )d̂(t) + α2f0(1, θ̂ )d̂(t),
yd(t) = −ye(t) + ẑ(0, t),
ξ̇ (t) = −λξ (t) − yd(t),
˙̂χ1(t) = φ̂(t) + λyd(t) + θ̂ (t)ξ (t) + k0(yd(t) − χ̂1(t)),
˙̂
φ(t) = −λφ̂(t) − λ2yd(t),
˙̂
θ (t) = gξ (t)(yd(t) − χ̂1(t)),

d̂1(t) = χ̂1(t),
ˆ ˆ ˆ

(34)
d2(t) = φ(t) + ξ (t)θ (t) + λχ̂1(t).
4

Theorem 2.1. Suppose that α1, α2 > 0 and Assumption 2.1
holds. For any unknown coefficients F (·),M,N,D, ω and any initial
state (w(·, 0), ẑ(·, 0), ξ (·), χ̂1(0), φ̂(0), θ̂ (0)) ∈ (L2(0, 1))2 × R4, the
output tracking of the closed-loop system (34) is guaranteed that

lim
t→∞

|ye(t)| = 0 (35)

exponentially.

Proof. The ε-system (8) under feedback control (32) now reads⎧⎪⎪⎨⎪⎪⎩
εt (x, t) = εxx(x, t),
εx(0, t) = 0,
εx(1, t) = u(t) − γcη(t) = −α2ε(1, t) + ũ(t),
ye(t) = ε(0, t).

(36)

By Lemma 2.2, the ũ(·) defined by (33) satisfies ũ(·) ∈ L2(0, T ) for
any T > 0. System (36) can be written abstractly as

ε̇(·, t) = Aε(·, t) + δ(x − 1)ũ(t),

where the operator A : D(A)(⊂ H) → H is defined by⎧⎨⎩
Af (x) = f ′′(x),
D(A) = {f (x) ∈ H2(0, 1)|

f ′(0) = 0, f ′(1) = −α2f (1)}.
(37)

Once again, from the proof of lemma 1.1 of Guo and Meng (2020),
ε ∈ C(0, ∞;H), we can write the solution of (36) as

ε(x, t) =

∞∑
n=0

⟨φn(·), ε(·, ε0)⟩Heλn(t−ε0)φn(x)

+

∫ t

ε0

∞∑
n=0

φn(1)φn(x)eλn(t−s)ũ(s)ds,

= I1(x, t) + I2(x, t) (38)

for any given ε0 > 0, where{
λn = −2α2 − (nπ )2 + O(n−1) < 0,
φn(x) = cos nπx + O(n−1), (39)

with {φn(x)} being an orthonormal basis for H . Then, ε(0, t) =

I1(0, t)+ I2(0, t). Same to the proof of Lemma 2.2, I1(0, t) satisfies

|I1(0, t)| ≤ C2eλ0t∥ε(·, ε0)∥, ∀t ≥ ε0, (40)

for some constants C2 independent of the initial value. As for the
second term, by Lemma 2.6, we may suppose |ũ(t)| ≤ Ce−µt for
t ≥ ε0, where C > 0 and 0 < µ < −λ0. Then,⏐⏐⏐⏐∫ t

ε0

eλn(t−s)ũ(s) ds
⏐⏐⏐⏐ ≤

C
−λn − µ

[e−µt
− eλnt ]

≤
C

−λn − µ
e−µt , ∀t ≥ ε0.

Since |φn(0)φn(1)| ≤ C0 for some constant C0 and all n = 0, 1, . . .,
we have

|I2(0, t)| ≤

∞∑
n=0

C0C
−λn − µ

e−µt
≤ C3e−µt , ∀t ≥ ε0,

which leads to

lim
t→∞

|ε(0, t)| = lim
t→∞

|ye(t)| = 0

exponentially. ■
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emark 2.1. The proof Theorem 2.1 corrected an inappropriate
roof of theorem 3.2 of Guo and Meng (2020).

. Main results for r ≥ 1

In this section, we deal with the general case of r ≥ 1 and
n = 2r + 1 without Assumption 2.1 which means the number of
frequencies is unknown yet has a known upper bound m under
Assumption 1.1. We consider only the case of n = 2r + 1, since
the solution to the problem with n = 2r follows the same steps.
Similarly with the last section, we introduce a transformation for
system (8):

z(x, t) = ε(x, t) + h(x)p(t), (41)

where h(x) ∈ R1×(2r+1) satisfies{ h′′(x) = h(x)G,

h′(0) = α1h(0), α1 > 0,
h′(1) = γ .

(42)

The extended system of (z(·, ·), p(·)) is then governed by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zt (x, t) = zxx(x, t),
zx(0, t) = α1z(0, t) − α1ye(t),
zx(1, t) = u(t),
ṗ(t) = Gp(t),
ye(t) = z(0, t) − h(0)p(t).

(43)

It is seen that the z-subsystem in (43) has damping at x = 0.
The proof for the existence of the solution to (42) is straight-
forward and we omit the details here. By Assumption 1.1, the
term h(0)p(t) contains the sinusoids of no more than m distinct
frequencies, which can be expressed without loss of generality
as

h(0)p(t) =

l∑
i=1

(Ai cosωit + Bi sinωit) + C, l ≤ r ≤ m, (44)

where Ai, Bi, C are unknown parameters and A2
i + B2

i > 0, i =

1, . . . , l.

Lemma 3.1. The h(0)p(t) can be generated by exosystem of the
following:{
ḋ(t) = Sc(θ )d(t) = Acd(t) −

∑m
i=1 θiE2id1(t),

h(0)p(t) = d1(t)
(45)

where d(t) = (d1(t), d2(t), . . . , d2m+1(t))⊤ ∈ R2m+1,

Ac =

⎡⎢⎢⎢⎣
0 1 · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · 1
0 0 · · · 0

⎤⎥⎥⎥⎦ , Sc (θ ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
−θ1 0 1 · · · 0 0

.

.

.
.
.
.

. . .
. . .

.

.

.
.
.
.

0 0 0 · · · 1 0
−θm 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

E2i is the 2i-th column of the (2m + 1) × (2m + 1) identity matrix,
and θ = [θ1, . . . , θl, 0, . . . , 0]⊤ ∈ Rm with θ1, . . . , θl being chosen
so that

s2l + θ1s2(l−1)
+ · · · + θl ≜

l∏
i=1

(s2 + ω2
i ). (46)

Proof. We can consider h(0)p(t) to be generated by the following
exosystem:{

η̇(t) = Gηη(t), η(t) ∈ R2l+1,
(47)
h(0)p(t) = γηη(t),

5

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gη = diag{G(ω1),G(ω2), . . . ,G(ωl), 01×1},

G(ωi) =

[
0 ωi

−ωi 0

]
,

γη = [1, 0, . . . , 1, 0, 1],
η(0) = (A1, B1, . . . , Al, Bl, C)⊤.

(48)

It is a trivial exercise that the pair (Gη, γη) is observable which
guarantees that there exists a coordinate transformation:

ηE(t) = T1η(t), ηE(t) = (ηE
1(t), . . . , η

E
2l+1(t))

⊤, (49)

where T1 is a nonsingular (2l+1)×(2l+1) matrix, which converts
the observable pair (Gη, γη) into an canonical form:{

η̇E(t) = GE(θ )ηE(t),
h(0)p(t) = ηE

1(t),
(50)

with

GE(θ ) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
−θ1 0 1 · · · 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · 1 0
−θl 0 0 · · · 0 1
0 0 0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Since the characteristic polynomial of Gη is the same as GE , we
can see that θ1, . . . , θl can be chosen such that

s2l+1
+ θ1s2l−1

+ · · · + θl−1s3 + θls ≜ s
l∏

i=1

(s2 + ω2
i ). (51)

Next, let T2 = [I2l+1 0(2m−2l)×(2l+1)]
⊤, and d(t) = T2ηE(t). A direct

computation shows that d(·) satisfies (45). ■

We therefore write (z(·, t), d(·)) as governed by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

zt (x, t) = zxx(x, t),
zx(0, t) = α1z(0, t) − α1ye(t),
zx(1, t) = u(t),
ḋ(t) = Sc(θ )d(t),
ye(t) = z(0, t) − Ccd(t),

(52)

where Cc = [1, 0, . . . , 0] ∈ R1×(2m+1).

3.1. Error-based observer design

We can design an observer for the z-subsystem in (52) as⎧⎨⎩
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = u(t).

(53)

Define the observer errors to be z̃(x, t) = z(x, t) − ẑ(x, t). Then,⎧⎨⎩
z̃t (x, t) = z̃xx(x, t),
z̃x(0, t) = α1z̃(0, t),
z̃x(1, t) = 0,

(54)

which is, as mentioned in last section, exponentially stable in H
and

lim
t→∞

⏐⏐z̃(0, t)⏐⏐ = 0, lim
t→∞

⏐⏐z̃(1, t)⏐⏐ = 0

exponentially. We can thus introduce a known function
yd(t) = −ye(t) + ẑ(0, t) = Ccd(t) − z̃(0, t),



B.-Z. Guo and R.-X. Zhao Automatica 138 (2022) 110159

a

O
t
L

L

w
f

a

S
a
[

µ

s
i

nd consider the following system:{
ḋ(t) = Sc(θ )d(t),
yd(t) = Ccd(t) − z̃(0, t).

(55)

nce again, we design an adaptive observer for (55) according
o the output yd(t). The design of adaptive observer (57) in
emma 3.2 is inspired by Kim and Shim (2015).

emma 3.2. For any initial state (Ξ (t), d̂(0), θ̂ (0)) ∈ R(2m+1)×m
×

R2m+1
× Rm, there hold

lim
t→∞

∥θ̂ (t) − θ∥ = 0, lim
t→∞

∥d̂(t) − d(t)∥ = 0, (56)

here θ̂ (·) and d̂(·) are updated by the following adaptive observer
or (55):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

˙̂d(t) = Ac d̂(t) − Byd(t)θ̂ (t)
+L(yd(t) − Cc d̂(t)) + Ξ (t) ˙̂θ (t),

˙̂
θ (t) = λaΞ (t)⊤C⊤

c (yd(t) − Cc d̂(t))
−λadiag(e− det2[Ω1(t)]t , . . . , e− det2[Ωm(t)]t ) · θ̂ (t),
Ξ̇ (t) = (Ac − LCc)Ξ (t) − Byd(t),
Ω̇(t) = −λbΩ(t) + λcΞ (t)⊤C⊤

c CcΞ (t),

(57)

with Ξ (t) ∈ R(2m+1)×m, Ω(t) ∈ Rm×m, λa, λb, λc > 0, B =

(E2, . . . , E2m), Ωi(t) = [Ii, 0i×(m−i)]Ω(t)[Ii, 0i×(m−i)]
⊤. The observer

gain L ∈ R(2m+1)×1 is chosen so that Ac − LCc is Hurwitz, and the
initial Ω(0) is any positive definite symmetric matrix.

Proof. Let Ξi(t) be the ith column of Ξ (t) and let µi(t) be the
first element of Ξi(t). In addition, let µ(t) = [µ1(t), . . . , µm(t)]⊤.
Then, µi(t) = CcΞi(t), µ(t) = Ξ⊤(t)C⊤

c . By (57),{
Ξ̇i(t) = (Ac − LCc)Ξi(t) − E2iyd(t),
µi(t) = CcΞi(t).

(58)

Set µi(t) = µip(t) + µie(t) where µip(·) is the solution to{
Ξ̇ip(t) = (Ac − LCc)Ξip(t) − E2id1(t),
µip(t) = CcΞip(t), i = 1, . . . ,m,

(59)

nd µip(·) is governed by⎧⎨⎩ Ξ̇ie(t) = (Ac − LCc)Ξie(t) + E2iz̃(0, t),
µi(0) = µip(0) + µie(0)
µie(t) = CcΞie(t), i = 1, . . . ,m.

(60)

ince d1(·) is bounded and Ac − LCc is Hurwitz, µip(·) is bounded
s well. By theorem 5.2.1 of Ioannou and Sun (1996), the vector
µ1p(t), . . . , µlp(t)]⊤ is persistently exciting (PE) (but [µ1p(t), . . . ,
kp(t)]⊤, k ≥ l + 1 is not) because d1(·) contains the sinu-
oids of l distinct frequencies. For system (60), since Ac − LCc

s Hurwitz, and limt→∞ |z̃(0, t)| = 0 exponentially, we conclude
that limt→∞ |µie(t)| = 0 exponentially. By lemma 2.6.6 of Sas-
try and Bodson (1989) and µi(t) = µip(t) + µie(t), the vector
[µ1(t), . . . , µl(t)]⊤ is also PE. Similarly to lemma 2 of Kim and
Shim (2015), we can prove that

lim
t→∞

e−det2[Ωi(t)]t =

{
0, i = 1, . . . , l,
1, i = l + 1, . . . ,m,

(61)

and

lim
t→∞

diag
(
e−det2[Ω1(t)]t , . . . , e−det2[Ωm(t)]t

)
· θ (62)
≜ limt→∞ D(t)θ = 0
6

exponentially. Now let d̃(t) = d(t) − d̂(t) and θ̃ (t) = θ − θ̂ (t),
which satisfy⎧⎪⎪⎪⎨⎪⎪⎪⎩

˙̃d(t) = (Ac − LCc)d̃(t) + Ξ (t) ˙̃θ (t)
−Byd(t)θ̃ (t) + (L − Bθ )z̃(0, t),

˙̃
θ (t) = −λaΞ (t)⊤C⊤

c (Cc d̃(t) − z̃(0, t))
+λaD(t)(θ − θ̃ (t)).

(63)

Let φ(t) = d̃(t)−Ξ (t)θ̃ (t), φ(t) = (φ1(t), . . . , φ2m+1(t))⊤ ∈ R2m+1.
Then, we have

φ̇(t) =
˙̃d(t) − Ξ (t) ˙̃θ (t) − Ξ̇ (t)θ̃ (t)

= (Ac − LCc)φ(t) + (L − Bθ )z̃(0, t),
(64)

and
˙̃
θ (t) = −λaΞ (t)⊤C⊤

c (φ1(t)
+CcΞ (t)θ̃ (t) − z̃(0, t)) + λaD(t)(θ − θ̃ (t))

= −λa
(
µ(t)µ(t)⊤ + D(t)

)
θ̃ (t)

−λaµ(t)(φ1(t) − z̃(0, t)) + λaD(t)θ.

(65)

For system (64), since Ac−LCc is Hurwitz and limt→∞ |z̃(0, t)| = 0
exponentially, we conclude that limt→∞ |φ(t)| = 0 exponentially.
Similarly with lemma 2 of Kim and Shim (2015), we can prove
that

lim
t→∞

θ̃ (t) = 0, (66)

which is the first limit in (56). Since d̃(t) = φ(t) + Ξ (t)θ̃ (t) and
Ξ (·) is bounded, we obtain the second limit in (56):

lim
t→∞

d̃(t) = 0. (67)

■

3.2. Feedforward controller design

Let f0(x, θ ) = f0(x) ∈ R1×(2m+1) be the solution of the following
equation⎧⎨⎩

f ′′

0 (x) = f0(x)Sc(θ ),
f ′

0(0) = α1Cc,

f0(0) = Cc,

(68)

which is an initial value problem of an ordinary differential equa-
tion and hence the solution of (68) is continuously differentiable
with respect to the parameters θ . Let wc(x, t) = z(x, t)− f0(x)d(t).
Then, the wc(·, ·) is governed by⎧⎪⎪⎨⎪⎪⎩

wc
t (x, t) = wc

xx(x, t),
wc

x (0, t) = 0,
wc

x (1, t) = u(t) − f ′

0(1, θ )d(t),
ye(t) = wc(0, t).

(69)

We can then naturally design a feedforward control of the follow-
ing:

u(t) = −α2wc(1, t) + f ′

0(1, θ )d(t)
= −α2z(1, t) + f ′

0(1, θ )d(t) + α2f0(1, θ )d(t).
(70)

3.3. Error-based feedback controller design

By (70), we can therefore design naturally a tracking error
feedback control:

ˆ
′ ˆ ˆ ˆ ˆ
u(t) = −α2z(1, t) + f0(1, θ )d(t) + α2f0(1, θ )d(t). (71)
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he close-loop of system (1) under control (71) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t) + F (x)p(t),
wx(0, t) = Np(t),
wx(1, t) = −α2ẑ(1, t) + f ′

0(1, θ̂ )d̂(t)
+α2f0(1, θ̂ )d̂(t) + Dp(t),

ṗ(t) = Gp(t),
ye(t) = w(0, t) − Mp(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = −α2ẑ(1, t) + f ′

0(1, θ̂ )d̂(t) + α2f0(1, θ̂ )d̂(t),
yd(t) = −ye(t) + ẑ(0, t),
˙̂d(t) = Ac d̂(t) − Byd(t)θ̂ (t) + L(yd(t) − Cc d̂(t))

+Ξ (t) ˙̂θ (t),
˙̂
θ (t) = λaΞ (t)⊤C⊤

c (yd(t) − Cc d̂(t))
−λadiag(e−det2[Ω1(t)]t , . . . , e−det2[Ωm(t)]t ) · θ̂ (t),
Ξ̇ (t) = (Ac − LCc)Ξ (t) − Byd(t), Ξ (t) ∈ R(2m+1)×m,

Ω̇(t) = −λbΩ(t) + λcΞ (t)⊤C⊤
c CcΞ (t), Ω(t) ∈ Rm×m.

(72)

Theorem 3.1. Suppose that α1, α2 > 0, λa, λb, λc, L, Ω(0) are cho-
sen as in Lemma 3.2. For any unknown coefficients F (·),M,N,D,G
and any initial state (w(·, 0), ẑ(·, 0), Ξ (0), d̂(0), θ̂ (0)) ∈ (L2(0, 1))2×
R(2m+1)×m

× R2m+1
× Rm, the output tracking of the closed-loop

system (72) is guaranteed that

lim
t→∞

|ye(t)| = 0. (73)

Proof. The wc-system (69) under control (71) now reads⎧⎪⎪⎨⎪⎪⎩
wc

t (x, t) = wc
xx(x, t),

wc
x (0, t) = 0,

wc
x (1, t) = −α2w

c(1, t) + ũ(t),
ye(t) = wc(0, t),

(74)

where

ũ(t) = α2z̃(1, t) + f ′

0(1, θ̂ )d̂(t) + α2f0(1, θ̂ )d̂(t)
− f ′

0(1, θ )d(t) − α2f0(1, θ )d(t).
(75)

By Lemma 2.2, ũ(·) ∈ L2(0, T ), for any T > 0. We claim that
limt→∞ |ũ(t)| = 0. To this end, it suffices to prove

lim
t→∞

∥f0(1, θ̂ (t)) − f0(1, θ )∥ = 0, (76)

and

lim
t→∞

∥f ′

0(1, θ̂ (t)) − f ′

0(1, θ )∥ = 0. (77)

However, both convergence are guaranteed because ∥θ̂ (t)−θ∥ →

0(t → ∞) and f0(1, θ ), f ′

0(1, θ ) are continuously differentiable
with respect to the parameter θ , and hence they are Lipschitz
continuous functions over some finite domain. System (74) can
be written abstractly as

ẇc(·, t) = Awc(·, t) + δ(x − 1)ũ(t),

where the operator A : D(A)(⊂ H) → H is defined by (37),
which generates an exponentially stable C0-semigroup on H .
Since limt→∞ |ũ(t)| = 0, and δ(x − 1) is admissible for eAt , we
conclude immediately that

lim
t→∞

∥wc(·, t)∥ = 0.

Therefore, both w(x, t) = wc(x, t) + f0(x)d(t) + (Γ (x) − h(x))p(t)
ˆ c ˜
and z(x, t) = w (x, t) + f0(x)d(t) − z(x, t) are bounded in H with

7

respect to time. The remaining is the proof of limt→∞ |ye(t)| = 0.
Similarly to (38), we can write the solution of (74) as

wc(x, t) =

∞∑
n=0

aneλntφn(x)

+

∫ t

0

∞∑
n=0

φn(1)φn(x)eλn(t−s)ũ(s)ds,

= I1(x, t) + I2(x, t),

(78)

where
∑

∞

n=0 a
2
n = ∥wc(·, 0)∥2, and λn, φn(x) are defined by (39),

and hence wc(0, t) = I1(0, t) + I2(0, t). Similarly to (40), there
holds

|I1(0, t)| ≤ C2eλ0t∥wc(·, 0)∥, ∀t ≥ ε > 0 (79)

for some ε > 0. As for the second term, since limt→∞ |ũ(t)| = 0,
for any given σ > 0, there exists t0 > 0 such that |ũ(t)| ≤ σ , t ≥

t0. Hence,⏐⏐⏐⏐∫ t

0
eλn(t−s)ũ(s) ds

⏐⏐⏐⏐
≤

⏐⏐⏐⏐∫ t

t0

eλn(t−s)σ ds
⏐⏐⏐⏐+ ⏐⏐⏐⏐∫ t0

0
eλn(t−s)ũ(s) ds

⏐⏐⏐⏐
≤

σ

−λn
+

(∫ t0

0
ũ2(s) ds

) 1
2
(∫ t0

0
e2λn(t−s) ds

) 1
2

≤
σ

−λn
+ ∥ũ∥L2(0,t0)

(
1

−2λn

) 1
2

eλn(t−t0).

ince |φn(0)φn(1)| ≤ C0 for some constant C0 and all n = 0, 1, . . .,
e have

I2(0, t)| ≤

∞∑
n=0

C0σ

−λn
+

∞∑
n=0

C0∥ũ∥L2(0,t0)

(−2λn)
1
2

eλn(t−t0)

L1σ + C0∥ũ∥L2(0,t0)

(
∞∑
n=0

e2λn(t−t0)

) 1
2
(

∞∑
n=0

1
−2λn

) 1
2

≤ L1σ + Lt0e
λ0(t−t0), t > t0. (80)

hich leads to limt→∞ |wc(0, t)| ≤ L1σ . By the arbitrariness of σ ,
e have wc(0, t) → 0 as t → ∞. ■

emark 3.1. Compared with the previous section, where the
racking error converges exponentially to zero, we only obtain
he asymptotic convergence of the tracking error ye(t) here due
o unknown number of the frequencies.

. Numerical simulation

As an illustrating example, we consider the following system:

⎧⎪⎪⎨⎪⎪⎩
wt (x, t) = wxx(x, t),
wx(0, t) = 10 sin 0.2t, wx(1, t) = u(t),
ye(t) = w(0, t) − 10 sin t,
w(x, 0) = 10.

(81)

he parameters of the controller are chosen as m = 2, α1 = α2 =

a = λb = λc = 1, L = [4, 6, 4, 1]⊤, and

ˆ(x, 0) = 1, (Ξ (0), d̂(0), θ̂ (0)) = 0, Ω(0) = I2. (82)

ig. 1(a) plots the tracking performance of w(0, t). It is obvious
hat w(0, t) tracks y (t) well after t ≥ 30. Fig. 1(b) and Fig. 1(c)
ref
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Fig. 1. Tracking performance, frequency estimate and evolution of w(x, t) for
system (81)–(82).

display the tracking performance of θ̂ (t) from which we can find
that θ̂ (t) tends to θ satisfactorily. Fig. 1(d) shows the w-part of
system (81) and (82) is bounded. In order to verify the robustness
of the control (82), a second set of simulation has been carried
out for the following system where only one frequency has really
entered into the system and thus µ(t) = [µ1(t), µ2(t)]⊤ is not
PE:⎧⎪⎪⎨⎪⎪⎩

wt (x, t) = wxx(x, t),
wx(0, t) = 0, wx(1, t) = u(t),
ye(t) = w(0, t) − 10 sin t,
w(x, 0) = 10.

(83)

However, as plotted in Fig. 2, the same controller (82) can also
regulate the closed-loop system (82) and (83).

5. Concluding remarks

This paper is a first effort to develop output regulation for a
boundary controlled PDE system where the disturbance is gen-
erated from a completely unknown exosystem. The system is
described by a 1-d heat equation where the control and ob-
servation operators are unbounded, which represents a difficult
situation in output regulation of PDEs. Motivated from adaptive
estimation of frequencies of sinusoid signals in signal process
and adaptive internal model for lumped parameter systems, we
develop an adaptive internal model for output regulation of this
PDE system. All the estimations are in real time and the control
is robust to disturbances in all possible channels. Numerical sim-
ulations validate the theoretical results. When the number of the
unknown frequencies is available in a transformed system, the
convergence can be exponential while the number is unknown,
only asymptotic convergence can be achieved. Some preliminary
studies show that the approach is applicable to other 1-d PDEs.
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Fig. 2. Tracking performance, frequency estimate and evolution of w(x, t) for
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