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Abstract The active disturbance rejection control
(ADRC), first proposed by Jingqing Han in late 1980s,
is a powerful control technology being able to deal with
external disturbances and internal uncertainties in large
scale for control systems in engineering applications.
This survey paperwill articulate, from a theoretical per-
spective, the origin, ideology andprogress ofADRCfor
not only uncertain finite-dimensional systems but also
uncertain infinite-dimensional ones. Some recent theo-
retical developments, general framework and unsolved
problems ofADRC for finite-dimensional systemswith
mismatched disturbances and uncertainties by output
feedback, uncertain finite-dimensional stochastic sys-
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tems, uncertain infinite-dimensional systems described
by both the wave equation and the fractional-order par-
tial differential equation are successively addressed,
fromwhich we see the challenges and opportunities for
this remarkable emerging control technology to various
types of control systems.

Keywords Active disturbance rejection control ·
Extended state observer · Boundary control ·
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systems · Fractional-order PDE

1 Introduction

Copyingwith disturbances and uncertainties is the eter-
nal theme in control theory due to the ubiquitousness of
the uncertainties and disturbances in most of the indus-
trial control systems, which most often cause negative
effects on performance and even stability of control
systems [1–4]. There many control approaches have
been developed since 1970s to cope with disturbances
or uncertainties through disturbance attenuation and
disturbance rejection. Among many others, stochas-
tic control [5–9] and robust control [10–14] are two
major disturbance attenuation methods, where the for-
mer is often applicable for attenuating disturbances in
the form of noises with known statistical characteris-
tics and the latter is to deal with more general norm
bounded disturbances and uncertainties without con-
cerning their statistical characteristics. For robust con-
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trol approaches, the H∞ and H2 control approaches
have been developed to attenuate the disturbances so
that its influence to controlled output is kept into a
desired level [15–18]. However, most of the robust
controller designs are based on the worst case sce-
nario that make control relatively conservative. On the
other hand, the ideology of disturbance rejection could
be found in adaptive control [19,20], internal model
principle [21,22], disturbance observer-based control
(DOBC) [23–26] and active disturbance rejection con-
trol (ADRC) [27–32], where the disturbances or uncer-
tainties (or both of them) are estimated in real time
and are eliminated in feedback loop so that these dis-
turbance rejection control approaches have good anti-
disturbance performance. However, the disturbances
or uncertainties estimated and cancelled in the adap-
tive control framework and internal model principle
are only in the form of internal unknown parameters
and are some “almost known” ones generated from a
dynamic exosystem, respectively.

Based on the error-driven rather than model-based
thought, the powerful proportional–integral–derivative
(PID) control law proposed during the period of the
1920s–1940s has dominated control practice for one
century. This contributes largely to its model-free
nature, while most other control theories are relying on
themathematicalmodels.However, there are some lim-
itations in existing PID framework in practical appli-
cations (see, e.g.,[31]) that (1) The setpoint is often
chosen from some nonsmooth functions such as the
step function, not applicable to most dynamics systems
since the controlled output and the control signal will
have a sudden jump in this sense. (2) The derivative
part in PID may be not practically feasible because
the classical differentiation is quite sensitive to noise
and may amplify the noise. (3) The weight sum of the
three terms in PID may not be the best choice based
on the current and the past of the error and its rate
of change. (4) The integral term in PID could lead to
other limitations like saturation and reduced stability
margin because of phase lag. The ADRC framework,
as an alternative of PID, provides some corresponding
technical and conceptual solutions to these limitations.

Motivated by the practical demands from industry to
surmount available PID framework and the new chal-
lenges in control designs for systems subject to more
general disturbances and uncertainties and improv-
ing performances of disturbance rejection and robust-
ness, the idea of estimation/cancellation strategy has

been fostered and enhanced by well-known ADRC,
an almost model-free control technology proposed by
Jingqing Han in the late 1980s [27–31]. ADRC is com-
posed of three parts which include the tracking dif-
ferentiator (TD), the extended state observer (ESO)
and the ESO-based feedback control. The first part
TD is a relatively independent part that carries for-
ward PID directly, which not only acts as the deriva-
tive extraction, but also provides a transient process
that the output of plant can reasonably track to avoid
sudden jump in PID. The estimation/cancellation char-
acteristic of ADRC is embodied in the configurations
of ESO and ESO-based feedback control, which are
capable of dealing with large-scale “total disturbance”
representing the total effects of all potential unmodeled
system dynamics, external disturbances, unknown con-
trol gain coefficient or even the part difficultly coped
with by engineers, as long as they influence the perfor-
mance of the controlled output. The concept of “dis-
turbance” is significantly refined in this framework
because all uncertainties affecting the performance of
controlled output are regarded as “internal disturbance”
of the plant, combined with the external disturbances
to form the “total disturbance.” The total disturbance
is regarded as a signal of time from the “timescale”
no matter they are state variables, inputs, outputs ones
and the disturbances, which is reflected in observable
measured output and then can be estimated. ESO is the
most important part of ADRC, designed for the real-
time estimation of not only the unmeasured state but
also the total disturbance in large scale by the mea-
sured output. Once the total disturbance is estimated,
an ESO-based feedback control for the stabilization
or the output tracking of the nominal systems (with-
out disturbances and uncertainties) and feed-forward
compensation link, can be designed to compensate the
total disturbance in real time and guarantee satisfac-
tory performance and robustness of the resulting closed
loop. It can be seen that ADRC is a systematic estima-
tion/cancellation strategy to deal with disturbances and
uncertainties in large scale compared with the adaptive
control and internal model principle aforementioned.
In addition, some nonlinear feedback combinations are
explored in ADRC, not just the weight sum of the three
terms in PID, have been proved to be very effective
in improving performance and practicality from prac-
tices in the beginning and theory till recently. Finally,
the conventional PID control problem could be trans-
formed to real-time estimation and rejection of the total
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disturbance with a simplified controller without the
integral term in PID, i.e., a PD controller. That is, the
limitations of PID caused by the integral term men-
tioned above could be overcame in ADRC.

In the past two decades, the effectiveness and prac-
ticality of ADRC have been demonstrated in many
engineering applications such as flywheel energy stor-
age systems [33], robot control [34], predictive con-
trol for quadrotor helicopter [35], hydraulic servo sys-
tems [36], power plants [37,38] and many other ones
in [39–61], to name just a few. Specially, the ADRC
control technology has been applied in the general pur-
pose control chips produced by Texas Instruments [62]
and Freescale Semiconductor [63] and has been experi-
mented in Parker Hannifin Parflex hose extrusion plant
and across multiple production lines for over 8 months
with the improvement of product performance capabil-
ity index (Cpk) by 30% and the reduction of the energy
consumption over 50% [64].

Although the theoretical research of ADRC lags
behind its practical applications generally, some pro-
gresses, however, have been made in recent years. This
survey paper will demonstrate a comprehensive review
of ADRC for controlled plants from finite-dimensional
systems to infinite-dimensional ones from a theoretical
perspective. In particular, the recent theoretical devel-
opments, essentials and unsolved problems of ADRC
for finite-dimensional systems with mismatched dis-
turbances and uncertainties by output feedback, uncer-
tain finite-dimensional stochastic systems, uncertain
infinite-dimensional systems described by both the
wave equation and the fractional-order partial differ-
ential equation are introduced, which summarize some
latest theoretical developments and were not presented
in available survey papers like our previous ones [65–
67].

We proceed as follows. In the next section, Sect. 2,
the configuration and basic idea of ADRC are artic-
ulated. In Sect. 3, overall review of theoretical pro-
gresses of ADRC for uncertain finite-dimensional and
infinite-dimensional systems is presented. The recent
theoretical developments and essentials of ADRC for
finite-dimensional systems with mismatched distur-
bances and uncertainties by output feedback, uncer-
tain finite-dimensional stochastic systems, uncertain
infinite-dimensional systems described by the wave
equation and uncertain infinite-dimensional systems
described by the fractional-order partial differential
equation are addressed in Sects. 4, 5, 6 and 7, respec-

tively. Some further theoretical problems to be consid-
ered are summarized in Sect. 8, followed up concluding
remarks in Sect. 9.

We use the following notations throughout this
paper. Rn denotes the n-dimensional Euclidean space;
E denotes the mathematical expectation; for a vec-
tor or matrix K , K � represents its transpose; for a
scalar K , |K | denotes its absolute value; ‖K‖ repre-
sents the Euclidean norm of a vector K , and the corre-
sponding induced norm when K is a matrix; λmax(K )

denotes the maximal eigenvalue of the symmetric real
matrix K ; C(�) denotes the set of all continuous func-
tions from � to concerning Euclidean space; Cs(�)

denotes the set of all continuous differentiable func-
tions from � to concerning Euclidean space up to
s-order; L2(0, 1) is a Hilbert space whose elements
are those square integrable measurable functions on
(0, 1); H1(0, 1) � {φ : φ ∈ L2(0, 1), φ′ ∈ L2(0, 1)};
L∞(0,∞) is a function space whose elements are the
essentially bounded measurable functions; L2

loc(0,∞)

is locally summable function space whose elements are
square integrable on every compact subset of (0,∞);
the space H1

loc(0,∞) consists of all the functions φ

satisfying φ, φ′ ∈ L2
loc(0,∞).

2 Basic idea of ADRC and its framework

As mentioned in the last section, the ADRC is com-
posed of three parts which include tracking differen-
tiator (TD), extended state observer (ESO) and ESO-
based feedback control.

Let us begin with the introduction of TD, which
is the first and relatively independent component of
ADRC. One of the main functions of TD is to recover
the derivatives r (i)(t) (i = 1, . . . , n) of a given refer-
ence signal r(t) through the r(t) itself.Mathematically,
TD is described by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1R(t) = z2R(t),
...

żn R(t) = z(n+1)R(t),

ż(n+1)R(t) = Rnψ

(

z1R(t) − r(t),
z2R(t)

R
, . . . ,

z(n+1)R(t)

Rn

)

, ψ(0, 0, . . . , 0) = 0,

(1)

where R is the tuning parameter, andψ : Rn+1 → R is
a locally Lipschitz continuous function chosen so that
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the zero equilibrium state of the following reference-
free system is globally asymptotically stable:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż1(t) = z2(t),
ż2(t) = z3(t),

...

żn+1(t) = ψ(z1(t), . . . , zn+1(t)).

(2)

A second-order TD which is the special case of (1)
with n = 1, was first proposed in [27] where a first
convergenceproofwaspresented. It is, however, proved
afterward that it is true only for constant signal r(t) in
[68]. A rigorous theoretical proof was given in [68]
showing that if system (2) is globally asymptotically
stable and the reference signal r(t) is differentiable and
supt∈[0,∞) |ṙ(t)| < ∞, then, the solution of designed
TD (1) is convergent in the sense that for any given
initial value and any T > 0,

lim
R→∞ |z1R − r(t)| = 0 uniformly in [T,∞). (3)

This convergence result reveals that zi R(t) can be
regarded as an approximation of the derivative r (i−1)(t)
for each i = 2, . . . , n + 1, as long as the latter exists in
the classical sense or is considered as the generalized
derivative by considering r(t) as a generalized function
[68].

The linear TD, which is the special case of (1) when
ψ(·) is a linear function, is as follows [68]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1R(t) = z2R(t),
...

żn R(t) = z(n+1)R(t),

ż(n+1)R(t) = Rn
(

k1(z1R(t) − r(t)) + k2z2R(t)

R
+

· · · + kn+1z(n+1)R(t)

Rn

)

,

(4)

where ki (i = 1, 2, . . . , n +1) are the parameters such
that the following matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0

. . . 1
k1 k2 k3 · · · kn+1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

(5)

is Hurwitz. It was proved in [68] that if
supt∈[0,∞),1≤k≤n+1

|r (k)(t)| < ∞, then, linear TD (4) is convergent in the
sense that for any given initial value and any T > 0,

lim
R→∞ |z1R(t) − r(t)| = 0 uniformly in [T,∞), (6)

lim
R→∞ |zi R(t) − r (i−1)(t)| = 0 uniformly in [T,∞),

i = 2, . . . , n + 1. (7)

This convergence reveals that zi R(t) can be well rec-
ognized as the derivative r (i−1)(t) for each i = 2, . . . ,
n+1 provided that the latter exists in the classical sense.

Another function of TD is that it can play a role
as a transient profile so that the controlled output of
plant can effectively track a relatively smooth signal to
avoid sudden jump in PID. Namely, the trajectory to be
tracked by controlled output of the plant in engineering
applications is z1R(t) instead of r(t) which could be
jumping like step function, which makes the reference
signal smooth and then the control signal could also be
made smooth. The transient profile function of TD was
indicated by Han in [31].

It is worth noting that for general nonlinear TD pre-
sented by (1) and linear TD (4), there are still not
explicit estimation errors given in existing literature.
However, for some special nonlinear TD, explicit esti-
mation errors can be given [69].

We take the single-input single-output (SISO) sys-
tem as an example to address another two components
of ADRC as follows:
{

x (n)(t) = f (t, x(t), ẋ(t), . . . , x (n−1)(t), w(t)) + bu(t),
y(t) = x(t)

that can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),
ẋ2(t) = x3(t),

...

ẋn(t) = f (t, x1(t), . . . , xn(t), w(t)) + bu(t),
y(t) = x1(t),

(8)

where u(t) is the input, y(t) is the measured output,
f (·) : [0,∞) × R

n+1 → R is an unknown system
function,b is the control coefficientwhich is not exactly
known but has a nominal value b0 sufficiently closed
to b, and w(t) is the external disturbance. xn+1(t) �
f (t, x1(t), . . . , xn(t), w(t))+ (b −b0)u(t) is regarded
as the total disturbance (extended state) of system (8)
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including the nonlinear coupling effects of both internal
unmodeled dynamics and external disturbance.

The second and also key component of ADRC is
the ESO which is an extension of the state observer by
adding an augmented state variable designed to esti-
mate the total disturbance. In general, ESO is a sys-
tematic scheme for real-time estimation of not only
the unmeasured state but also the total disturbance that
could contain uncertainties coming from internal struc-
ture of system and external disturbance, where the for-
mer is regarded as the “internal disturbance” of sys-
tem. The total effects of this “internal disturbance” and
external disturbance are refined into the total distur-
bance or “extended state” to be estimated by ESO.

A first ESO with multiple tuning parameters was
proposed by Han in late 1980s [28] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) − α1g1(x̂1(t) − y(t)),
˙̂x2(t) = x̂3(t) − α2g2(x̂1(t) − y(t)),
...

˙̂xn(t) = x̂n+1(t) − αngn(x̂1(t) − y(t)) + b0u(t),
˙̂xn+1(t) = −αn+1gn+1(x̂1(t) − y(t)).

(9)

The core idea of ESO (9) is that for some prop-
erly selected functions gi (·) (i = 1, 2, . . . , n + 1) and
parameters αi (i = 1, 2, . . . , n + 1), the unmeasured
states xi (t) (i = 1, 2, . . . , n) and the total disturbance
xn+1(t) of system (8) can be estimated in real time by
the states x̂i (t) (i = 1, 2, . . . , n) and x̂n+1(t) of ESO
(9) designed by making use of the input u(t) and the
output y(t) of system (8), respectively. The “fal” func-
tion is the nonlinear gain one commonly used in ESO
(9) in practice defined as follows:

gi (e) = fal(e, αi , δ) =
{ e

δ1−αi
, |e| ≤ δ,

|e|αi sign(e), |e| > δ,
(10)

where 0 < αi < 1, δ > 0 are tuning parameters.
Many computer simulations and engineering practices
have confirmed that ESO (9) with nonlinear functions
gi (·) (i = 1, 2, . . . , n+1) of form (10) is very effective
in the real-time estimationof unmeasured state and total
disturbance with good performances including small
peaking value and better measurement noise tolerance.
The convergence analysis of estimation error of ESO

(9) with “fal” gain functions is not available due to its
special nonlinear structure until recently made in [70].

For the purpose of easy use in practice, Zhiqiang
Gao introduces simplified one-parameter tuning linear
ESO (11) in terms of bandwidth [71] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + a1
ε

(y(t) − x̂1(t)),˙̂x2(t) = x̂3(t) + a2
ε2

(y(t) − x̂1(t)),
...

˙̂xn(t) = x̂n+1(t) + an
εn (y(t) − x̂1(t)) + b0u(t),

˙̂xn+1(t) = an+1
εn+1 (y(t) − x̂1(t)),

(11)

where ai (i = 1, 2, . . . , n+1) are designed parameters
such that the following matrix is Hurwitz:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−a1 1 0 · · · 0
−a2 0 1 · · · 0
· · · · · · · · · · · · · · ·
−an 0 0

. . . 1
−an+1 0 0 · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(n+1)×(n+1)

, (12)

ε > 0 is the tuning parameter, and 1
ε
is the observer

bandwidth. Theoretically, the faster the total distur-
bance varies, the smaller the tuning parameter ε should
be tuned correspondingly. The convergence analysis of
one-parameter tuning linear ESO (11) was presented in
[72] showing that the estimation errors of linear ESO
(11) are bounded and their bounds are monotonously
decreasing with their respective bandwidths.

As a special case of (9) and a nonlinear generaliza-
tion of linear ESO (11), a one-parameter tuning non-
linear ESO was proposed in [73] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x1(t) = x̂2(t) + εn−1g1

(
y(t) − x̂1(t)

εn

)

,

˙̂x2(t) = x̂3(t) + εn−2g2

(
y(t) − x̂1(t)

εn

)

,
...

˙̂xn(t) = x̂n+1(t) + gn

(
y(t) − x̂1(t)

εn

)

+ b0u(t),

˙̂xn+1(t) = 1

ε
gn+1

(
y(t) − x̂1(t)

εn

)

,

(13)

where gi (·) (i = 1, 2, . . . , n + 1) are some appro-
priate chosen functions. The convergence analysis of
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the one-parameter tuning nonlinear ESO was first pre-
sented in [73] with sufficient conditions being given for
the selection of gi (·) (i = 1, 2, . . . , n + 1).

The third and also the last component of ADRC is
the ESO-based feedback control. The control objective
of ADRC is to design a state and disturbance observer-
based, i.e., an ESO-based feedback control so that the
closed-loop output y(t) tracks a given reference sig-
nal r(t), and keeps all xi (t) to be bounded. The better
case for the latter is certainly that xi (t) tracks r (i−1)(t)
for each i = 2, 3, . . . , n where the stabilization prob-
lem at the origin is a special case by letting r(t) ≡ 0.
The ESO-based feedback control can be designed as
follows:

u(t) = 1

b0

[
φ(x̂1(t) − r(t), . . . , x̂n(t) − r (n−1)(t))

+rn(t) − x̂n+1(t)
]
, (14)

where “−x̂n+1(t)” plays a role in cancelling the total
disturbance xn+1(t), and φ(·) is a (linear or nonlin-
ear) feedback control law chosen such that the zero
equilibrium state of the following target error system
is asymptotically stable:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė1(t) = e2(t),
ė2(t) = e3(t),

...

ėn(t) = φ(e1(t), . . . , en(t)), φ(0, 0, . . . , 0) = 0.

(15)

As pointed out above, TD can also serve as a tran-
sient profile for output tracking where y(t) tracks
z1R(t) instead of r(t) to avoid setpoint jump. Thus,
the last component of ADRC can be designed as the
TD and ESO-based feedback control as follows:

u(t) = 1

b0

[
φ(x̂1(t) − z1R(t), . . . , x̂n(t) − zn R(t))

+z(n+1)R(t) − x̂n+1(t)
]
. (16)

Under some assumptions, see, for example the main
results of [32,65], the ADRC closed loop is practically
convergent in the sense that for any given initial value,
it holds

lim
t→∞
ε→0

[xi (t) − x̂i (t)] = 0, 1 ≤ i ≤ n + 1,

lim
t→∞
ε→0

[y(t) − r(t)] = 0,

lim
t→∞
ε→0

[xi (t) − r (i−1)(t)] = 0, 2 ≤ i ≤ n,

(17)

without using the relatively independent TD compo-
nent; or there exists a constant R0 > 0 such that for all
R > R0 and T > 0, it holds

lim
t→∞
ε→0

[xi (t) − x̂i (t)] = 0, 1 ≤ i ≤ n + 1,

lim
t→∞
ε→0

[xi (t) − zi R(t)] = 0, 1 ≤ i ≤ n,

lim
R→∞ |z1R(t) − r(t)| = 0 uniformly in t ∈ [T,∞),

(18)

using the relatively independent TD component. Spe-
cially, when r(t) ≡ 0, then, zi R(t) ≡ 0 and the ADRC
closed loop deduces the practical stability.

3 Overview of theoretical progresses of ADRC

If either the ESO or the ESO-based feedback control is
nonlinear, the ADRC is referred commonly as a non-
linear ADRC and to be a linear one otherwise. The
stability characteristics of linear ADRC for nonlinear
time-varying plants subject to vast dynamic uncertain-
ties were first addressed in [72] revealing that both
estimation and tracking errors are bounded with their
bounds proportion to the bandwidths of linear ESO.
The global and semi-global convergence of the non-
linear ADRC for a class of multi-input multi-output
(MIMO) nonlinear systems with large uncertainty was
investigated in [74]. On the one hand, a series of pro-
gresses concerning ADRC designs and convergence
for various kinds of uncertain finite-dimensional sys-
tems have been made up to date. An adaptive ESOwith
time-varying observer gains was proposed for nonlin-
ear disturbed systems, and the convergence proof of
estimation errors was presented in [75]; The backstep-
ping ADRC design was proposed for uncertain nonlin-
ear systems, and the corresponding closed-loop con-
vergence was established in [76–78]. The analysis of
linear ADRCwas carried out via the well-known inter-
nal model control (IMC) framework [79]. The con-
troller based on both the ESO and the projected gra-
dient estimator was designed for a class of uncer-
tain nonlinear dynamical systems with zero dynam-
ics without a “good” prior estimate for the uncer-
tainties in the input channel required by the conven-
tional ADRC, and the corresponding closed-loop con-
vergence was investigated in [80]. A switching con-
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trol scheme composed of linear ADRC and nonlin-
ear ADRC was proposed, and its stability was ana-
lyzed in [81]. The stability of ADRC was addressed
for uncertain nonlinear systems by singular perturba-
tions analysis in [82], a flatness-based approach [83]
and some novel Lyapunov approaches [84,85], respec-
tively; the filtering problem for a class of uncertain
MIMOsystemswithmeasurement noisewas addressed
by ESO in [86], the augment observer in view of
ESO and its convergence analysis for a large class of
uncertain nonlinear systems was investigated in [87],
and some improved ADRC designs and correspond-
ing closed-loop convergence analysiswere presented in
[88,89]. The nonlinear ESO using “fal” functions and
the corresponding ESO-based output feedback control
were designed for nonlinear systems with mismatched
uncertainties, and the convergence of the closed-loop
systems was proved in [90]. The convergence analysis
anddesigns ofADRCfor uncertain nonminimumphase
systems [91], uncertain nonlinear fractional-order sys-
tems [92,93], uncertain nonaffine-in-control nonlin-
ear systems [94], nonlinear systems with mismatched
disturbances and uncertainties [90,95–100], uncertain
time-delay systems [101–105], uncertain networked
control systems [106,107], uncertain nonlinear sys-
tems with measurement uncertainty [108] and uncer-
tain stochastic systems [109–113] have been investi-
gated.

On the other hand, both ADRC designs and conver-
gence for various uncertain infinite-dimensional sys-
tems described by partial differential equations (PDEs),
have also attracted more attentions. Some primary the-
oretical researches of ADRC for uncertain PDEs can
be found in boundary feedback stabilization for one-
dimensional Euler–Bernoulli beamequationswith con-
trol matched external disturbance [114–116], a one-
dimensional anti-stable wave equation with control
matched external disturbance [117], a one-dimensional
Schrödinger equation with control matched external
disturbance [118], a one-dimensional rotating disk-
beam system with boundary input disturbances [119]
and a one-dimensional unstable heat equation by a
dynamic boundary ADRC compensator [120]. The
ADRC was also developed on boundary state feed-
back stabilization for multi-dimensional wave equa-
tion with control matched external disturbance [121]
and multi-dimensional Kirchhoff equation with con-
trol matched external disturbance [122]. The idea in
these literatures is that the control matched external

disturbance is refined into associated disturbed ordi-
nary differential equations (ODEs) by test functions,
and then the conventional ESO designs for uncer-
tain finite-dimensional systems can be adopted for
real-time estimation of the disturbance. Based on the
estimate of the control matched external disturbance,
the disturbance can be approximatively cancelled in
the closed loop of the uncertain PDEs by feedfor-
ward compensation so that the conventional bound-
ary feedback control for the PDEs without distur-
bance can be designed to obtain closed-loop’s stabil-
ity. A first result on output feedback stabilization for a
one-dimensional anti-stable wave equation subject to
boundary control matched disturbance by the ADRC
approachwas presented in [123]where a variable struc-
tured unknown input state observer was designed by
the output of the PDE system. The boundary output
feedback stabilization by ADRC approach was first
addressed for uncertain multi-dimensional Kirchhoff
plate with boundary observation subject to external dis-
turbance, where the real-time estimation of disturbance
is conducted by use of infinitely many time-dependent
test functions [124]. An infinite-dimensional distur-
bance estimator, also served as a TD, was designed
to extract real signal from disturbed velocity signal
by the ADRC approach, and the design strategy was
adopted in the boundary output feedback stabilization
for a multi-dimensional wave equation with position
and disturbed velocity measurements [125]. A series
of boundary output feedback stabilization problems for
uncertain PDEs by designing an infinite-dimensional
disturbance estimator to estimate the disturbance can
be found in [126–128]. The output tracking for a one-
dimensional wave equation and a multi-dimensional
heat equation subject to unmatched general disturbance
and noncollocated control was, respectively, inves-
tigated in [129,130], where the mismatched distur-
bance is only supposed to be in L∞(0,∞), which
is not necessarily smooth. The ADRC for uncertain
fractional PDEs is just started from the boundary
Mittag–Leffler stabilization for a unstable time frac-
tional anomalous diffusion equation with boundary
control subject to the control matched external distur-
bance [131] and a unstable time fractional hyperbolic
PDE by boundary control and boundary measurement
[132].
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4 ADRC for finite-dimensional nonlinear systems
with mismatched disturbances and uncertainties

Most of literature address mainly ADRC for essen-
tially integral chain systems with control matched dis-
turbances and uncertainties satisfying some matching
conditions. However, the control mismatched distur-
bances and uncertainties, that is, those in different
channels from control inputs, are more general and
widely exist in practical applications, see, for exam-
ple, some practical systems in [24, p. 22]. Generally
speaking, the mismatched disturbances and uncertain-
ties cannot be attenuated completely from the state
equation no matter what controller is designed [133].
One of the most feasible objectives in this case is
to eliminate the disturbances and uncertainties from
the output channel in steady state, i.e., the output
tracking control objective. Related theoretical pro-
gresses have been made recently. The output track-
ing for nonlinear systems with mismatched distur-
bances and uncertainties was investigated in [76–78]
by combining the ADRC approach and a construc-
tive backstepping control strategy, with state feed-
back controller was designed. An output tracking prob-
lem for multiple-input multiple-output (MIMO) lower-
triangular nonlinear systems with mismatched distur-
bances and uncertainties by theADRC strategy by state
feedback was investigated in [95]. The output tracking
for SISO and MIMO lower-triangular nonlinear sys-
tems with mismatched disturbances and uncertainties
via the ADRC strategy by output feedback was devel-
oped in [96] and [97], respectively. The output tracking
for MIMO lower-triangular nonlinear systems via the
ADRC approach based on both nonlinear ESO con-
structed by “fal” functions and output feedback was
addressed in [90].

To make the ideology of ADRC for finite-dimensio-
nal nonlinear systems with mismatched disturbances
and uncertainties more clearly, in this section, we only
use a second-order system with mismatched distur-
bance and uncertainties for demonstration. As for the
ADRC on more general n-th-order nonlinear systems
with mismatched disturbances and uncertainties, we
refer to [96]. The following results come from [96] or
can be easily concluded from [96].

The second-order system with mismatched distur-
bance and uncertainties considered here is as follows:

⎧
⎨

⎩

ẋ1(t) = x2(t) + h1(x1(t), w(t)),
ẋ2(t) = h2(x1(t), x2(t), w(t)) + u(t),
y(t) = x1(t),

(19)

where x(t) = (x1(t), x2(t))� ∈ R
2 is the system state,

y(t) ∈ R is the measured controlled output, u(t) ∈ R

is the control input, and w(t) ∈ R is the unknown
exogenous signal or external disturbance. The func-
tions hi ∈ C3−i (Ri+1) (i = 1, 2) represent unknown
systems dynamics. It can be seen that nonlinear system
uncertainties and unknown external disturbance are in
all channels of system (19), not only in the control chan-
nel.

The control objective here is to design an output
feedback control by the ADRC approach, such that for
all initial state in given compact set, the closed-loop
state x(t) is bounded and the closed-loop output y(t)
tracks practically a given, bounded, reference signal
r(t) whose derivatives ṙ(t), r̈(t), r (3)(t) are assumed
to be bounded. Set

(r1(t), r2(t), r3(t), r4(t)) = (r(t), ṙ(t), r̈(t), r (3)(t)).

(20)

As announced in [30,67,96], a key point to apply
ADRC is to lump various kinds of systems dynamics
and external disturbances affecting performance of the
controlled systems into the total disturbance, which is a
vital procedure in making the control problem become
simple whatever the plant is complicated or not. Thus,
the total disturbance should be observed by use of some
measurable states so that the estimation/cancellation
strategy of ADRC can be implemented. Thus, the first
step is to refine the total disturbance that affects the
system performance. Let us make the following state
transformation keeping the same measured controlled
output y(t):

{
x̄1(t) = x1(t),
x̄2(t) = x2(t) + h1(x1(t), w(t)).

(21)

It follows from (19), (21) that system (19) is equiv-
alently transformed into an essentially integral-chain
system with control matched total disturbance as fol-
lows:

⎧
⎨

⎩

˙̄x1(t) = x̄2(t),˙̄x2(t) = x̄3(t) + u(t),
y(t) = x̄1(t) = x1(t),

(22)
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where x̄3(t) is the actual total disturbance influencing
the controlled output y(t) of system (19) given by

x̄3(t) = h2(x1(t), x2(t), w(t))

+∂h1(x1(t), w(t))

∂x1
(x2(t) + h1(x1(t), w(t)))

+∂h1(x1(t), w(t))

∂w
ẇ(t).

(23)

System (22) is exactly observable because it is easily
concluded that for any L > 0, (y(t), u(t)) ≡ 0, t ∈
[0, L] ⇒ x̄3(t) ≡ 0, t ∈ [0, L]; (x̄1(0), x̄2(0)) = 0
(see, e.g., [134, p.5, Definition 1.2]). This indicates that
y(t) contains all information of x̄3(t) and then a nat-
ural thought is to use y(t) to estimate the actual total
disturbance x̄3(t). If this is feasible, that is, y(t) ⇒
ˆ̄x3(t) ≈ x̄3(t), then the actual total disturbance x̄3(t)
can be approximately cancelled by designing u(t) =
u0(t) − ˆ̄x3(t) and system (22) is approximately equiv-
alent to the following linear time-invariant system

⎧
⎨

⎩

˙̄x1(t) = x̄2(t),˙̄x2(t) = u0(t),
y(t) = x̄1(t) = x1(t),

(24)

where the control law u0(t) can be easily designed for
the output tracking of simplified system (24).

As indicated above, the key point in the ADRC
design is how to estimate the actual total disturbance
x̄3(t) by the measured output y(t). By taking these
points into account, a third-order one-parameter tun-
ing linear ESO is designed for system (22) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

˙̄̂x1(t) = ˆ̄x2(t) + a1(y(t)− ˆ̄x1(t))
ε

,
˙̄̂x2(t) = ˆ̄x3(t) + a2(y(t)− ˆ̄x1(t))

ε2
,

˙̄̂x3(t) = a3(y(t) − ˆ̄x1(t))
ε3

,

(25)

where ε > 0 is the tuning gain parameter and ai (i =
1, 2, 3) are the parameters such that the matrix

M1 =
⎛

⎝
−a1 1 0
−a2 0 1
−a3 0 0

⎞

⎠ (26)

is Hurwitz. For example, ai (i = 1, 2, 3) are often cho-
sen in practice as a1 = 3, a2 = 3, a3 = 1, in which

case all eigenvalues of M1 are −1 and then M1 is Hur-
witz. The main idea of linear ESO (25) is to choose
some appropriate parameters ai (i = 1, 2, 3), such
that the ˆ̄xi (t) approaches x̄i (t) for each i = 1, 2, 3 by
tuning the gain parameter ε, where the absolute values
of the estimation errors |x̄i (t)− ˆ̄xi (t)| (i = 1, 2, 3) are
inversely proportional to ε.

Motivated by (14), ESO (25)-based output feedback
control is designed as

u(t) = k1satQ1(
ˆ̄x1(t) − r1(t)) + k2satQ2(

ˆ̄x2(t)
−r2(t)) − satQ3(

ˆ̄x3(t)) + r3(t), (27)

where the output feedback control gain parameters ki

(i = 1, 2) are chosen such that the following target
error system is asymptotically stable:

{
ė1(t) = e2(t),
ė2(t) = k1e1(t) + k2e2(t),

(28)

that is, the following matrix is Hurwitz:

M2 =
(
0 1
k1 k2

)

n×n
, (29)

and satQi (·) (i = 1, 2, 3) are the continuous differ-
entiable saturation odd functions to limit the peaking
value in control signal defined by (the counterpart for
t ∈ (−∞, 0] is obtained by symmetry)

satQi (z)

=
⎧
⎨

⎩

z, 0 ≤ z ≤ Qi ,

− 1
2 z2 + (Qi + 1)z − 1

2 Q2
i , Qi < z ≤ Qi + 1,

Qi + 1
2 , z > Qi + 1,

(30)

with Qi (1 ≤ i ≤ 3) are constants to be specified.
We notice that ESO (25)-based output feedback con-

trol (27) is essentially an error-driven PD feedback con-
trol combined with a feedforward term “−satQ3(

ˆ̄x3(t))
+ r3(t),” where −satQ3(

ˆ̄x3(t)) is designed to cancel in
real time the actual total disturbance x̄3(t) and r3(t) is
for the compensation of the second derivative of the
reference signal r(t).

The convergence of the closed-loop system com-
posed of (19), (25), (27) is a special case of Theorem
2.1 of [96], which is summarized in following Theorem
1.

Theorem 1 Suppose that there exists a positive con-
stant C such that ‖x(0)‖ ≤ C, supt≥0 ‖(w(t),
ẇ(t), ẅ(t))‖
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≤ C and supt≥0 |ri (t)| ≤ C for all i = 1, 2, 3. Then,
the closed-loop system composed of (19), (25), (27) has
the following convergence:

(i) The closed-loop state x(t) is bounded: ‖x(t)‖ ≤ 


for all t ≥ 0, where 
 is an ε-independent positive
constant;

(ii) The output y(t) of system (19) tracks practically
the reference signal r(t) in the sense that: For any
σ > 0, there exists a constant ε∗ > 0 such that for
any ε ∈ (0, ε∗),

|y(t) − r(t)| ≤ σ uniformly in t ∈ [tε,∞),

where tε > 0 is an ε-dependent constant. In par-
ticular,

lim sup
t→∞

|y(t) − r(t)| ≤ σ.

Remark 1 The ADRC designs like (27) and the main
results like Theorem 1 and others in literature [90,95–
97] indicate that the ADRC approach can be effective
in the output tracking for finite-dimensional nonlin-
ear systems with mismatched disturbances and uncer-
tainties, which pushes forward potentially practical
applications and further theoretical research. It is also
worth noting that the unknown dynamics functions
hi ∈ C3−i (Ri+1) (i = 1, 2) could be fast-varying even
be nonlinear growth such as the functions h1(x1, w) =
ex1+w and h2(x1, x2, w) = ex1+x2+w. This is because
the closed-loop states under the ADRC controller are
bounded so that the total disturbance is bounded in the
closed loop and can thus be estimated by ESO and can-
celled by the feedback.

Remark 2 It should be pointed out that the backstep-
ping ADRC approach proposed in [76–78] can also
be applied in output tracking control problem without
using the state transformation adopted in this section,
and the smooth assumptions about the unknown system
functions and external disturbances can therefore be
relaxed to a large extent. However, theADRC approach
proposed in this section is by output feedback instead
of state feedback via backstepping approach, and the
ADRC controller structure in this section is much sim-
pler than the backstepping ADRC one that it avoids the
“explosion of complexity” inevitable in the backstep-
ping ADRC approach.

5 ADRC for uncertain finite-dimensional
stochastic systems

A commonly known fact is that in engineering appli-
cations, stochastic disturbances are much more com-
mon. A series of theoretical researches concerning the
ADRC approach to output feedback stabilization for
uncertain finite-dimensional stochastic systems with
controlmatched bounded stochastic noises of unknown
statistical characteristics and unmodeled dynamics can
be found in [109–113], where the considered bounded
noises exist widely in practical systems [135–137].
Although the ADRC approach is applicable to n-th-
order SISO uncertain stochastic systems [109,110],
lower triangular uncertain stochastic systems [111] and
MIMO uncertain stochastic systems [112,113], we use
a second-order SISO example for the sake of simplicity
and clarity.

Now, we consider a second-order SISO uncer-
tain stochastic system with control matched bounded
stochastic noises of unknown statistical characteristics
and unmodeled dynamics as follows:

⎧
⎨

⎩

ẋ1(t) = x2(t),
ẋ2(t) = f (t, x(t), w(t)) + bu(t),
y(t) = x1(t),

(31)

where x(t) = (x1(t), x2(t))� ∈ R
2 is the state, u(t) ∈

R is the control input, and y(t) ∈ R is themeasured out-
put. The functions f : [0,∞)×R

3 → R are unknown;
b �= 0 is the control coefficient which is not exactly
known yet has a nominal value b0 that is sufficiently
closed to b. The w(t) � ψ(t, B(t)) ∈ R for some
bounded unknown function ψ(·) : [0,∞) × R → R

is the external stochastic disturbance, where B(t) is a
one-dimensional standard Brownianmotion defined on
a complete probability space (�,F , {Ft }t≥0, P) with
� being a sample space, F being a σ field, {Ft }t≥0

being a filtration and P being the probability measure.
As pointed out in papers [109–113] that the exter-

nal stochastic noise w(t) is quite general from the per-
spectives of theory and practice. Firstly, the external
stochastic noise w(t) has large stochastic uncertainty
since the function ψ(·) is unknown. Secondly, the dis-
turbancewithout stochastic characteristics investigated
via ADRC in aforementioned literature is just a special
case of the w(t) where the defining function ψ(·) is
only with respect to the time variable t : w(t) � ψ(t).
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Finally, for the stochastic case, thew(t) covers bounded
stochastic noises considered inmany practical systems,
see, for instance [135–137].

Since f (·) is an unknown function, the equilibrium
states of uncertain stochastic system (31) cannot be
determined or even the existence cannot be guaranteed,
the stabilization of uncertain stochastic system (31) is
the stabilization at the equilibrium state of its nominal
system (the part without disturbances and uncertainty),
i.e., the stabilization at the origin. Thus, the control
objective is to design an output feedback control such
that for any initial state, the closed-loop system is mean
square practically stable as stated in succeeding Theo-
rem 2.

The stochastic total disturbance affecting system
performance is refined as follows:

x3(t) � f (t, x(t), w(t)) + (b − b0)u(t), (32)

which represents the total coupling effects of unknown
system dynamics, external stochastic disturbance with
unknown defining function and uncertainty caused by
the deviation of control parameter b from its nominal
value b0.

System (31) is exactly observable because we can
easily obtain that for any L > 0, (y(t), u(t)) ≡ 0, t ∈
[0, L] ⇒ x3(t) ≡ 0, t ∈ [0, L]; (x1(0), x2(0)) = 0
(see, e.g., [134, p.5, Definition 1.2]), which indicates
that the real-time information of stochastic total distur-
bance x3(t) and the state x(t) = (x1(t), x2(t))� could
be identified via the measured output y(t).

Thus, it is quite reasonable to design an observer for
estimation of both the stochastic total disturbance and
unmeasured state by use of y(t). Motivated by (11), a
third-order one-parameter tuning linearESOfor system
(31) is designed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

˙̂x1(t) = x̂2(t) + a1(y(t)−x̂1(t))
ε

,

˙̂x2(t) = x̂3(t) + a2(y(t)−x̂1(t))
ε2

+ b0u(t),

˙̂x3(t) = a3(y(t) − x̂1(t))

ε3
,

(33)

where ε > 0 is the tuning gain parameter and ai (i =
1, 2, 3) are the parameters such that the matrix M1

defined in (26) is Hurwitz.
Motivated by (14) with the reference signal satisfy-

ing r(t) ≡ 0, ESO (33)-based output feedback control
of very simple control structure is designed as follows:

u(t) = 1

b0

[
k1 x̂1(t) + k2 x̂2(t) − x̂3(t)

]
, (34)

where −x̂3(t) is used for the real-time approximate
cancellation of the stochastic total disturbance x3(t)
defined in (32) and the output feedback control law
u0(t) � k1 x̂1(t) + k2 x̂2(t) is designed to stabilize the
nominal part of system (31):

{
ẋ1(t) = x2(t),
ẋ2(t) = u0(t),

(35)

that is, the output feedback control gain parameters
ki (i = 1, 2) are chosen such that thematrix M2 defined
in (29) is Hurwitz.

To address the resulting ADRC’s closed-loop sta-
bility, following Assumptions ((A1)) and ((A2)) are
required, where the former is about the unknown func-
tion defining the external stochastic disturbance and the
latter is a prior assumption about the unknown function
f (·).
Assumption (A1) The ψ(t, ϑ) : [0,∞) × R → R is
twice continuously differentiable with respect to their
arguments, and there exists a (known) constant C > 0
such that for all ϑ ∈ R,

|ψ(t, ϑ)| +
∣
∣
∣
∣
∂ψ(t, ϑ)

∂t

∣
∣
∣
∣ +

∣
∣
∣
∣
∂ψ(t, ϑ)

∂ϑ

∣
∣
∣
∣ +

∣
∣
∣
∣
∂2ψ(t, ϑ)

∂ϑ2

∣
∣
∣
∣ ≤C.

(36)

Assumption (A2) The f (·) is twice continuously dif-
ferentiable with respect to their arguments. There exist
(known) constants Di > 0 (i = 1, 2, 3) and a non-
negative continuous function ς ∈ C(R;R) such that
for all t ≥ 0, x = (x1, x2)� ∈ R

2 and w ∈ R,
∣
∣
∣
∣
∂ f (t, x, w)

∂t

∣
∣
∣
∣ ≤ D1 + D2‖x‖ + ς(w); (37)

∥
∥
∥
∥
∂ f (t, x, w)

∂x

∥
∥
∥
∥ +

∣
∣
∣
∣
∂ f (t, x, w)

∂w

∣
∣
∣
∣ +

∣
∣
∣
∣
∂2 f (t, x, w)

∂w2

∣
∣
∣
∣

≤ D3 + ς(w); (38)

The conditions of Assumption ((A1)) and (37), (38)
in Assumption ((A2)) are about the Itô differential
(or “variation”) of the stochastic total disturbance to
make sure that the “variation” is bounded or can be
“absorbed” by decaying parts in the closed loop. These
assumptions are reasonable because the ADRC con-
troller is based on feedforward compensation by use of
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the estimate of the stochastic total disturbance and the
control energy must be limited in practice.

Let Q be the positive definite matrix solution satis-
fying the Lyapunov equations QM1 + M�

1 Q = −I3×3

with M1 defined in (26) and I3×3 being the 3 × 3 unit
matrix.

The main result on practical mean square conver-
gence of the closed loop comprised of (31), (33) and
(34) which includes practical mean square stability of
the closed loop and ESO’s practical mean square esti-
mation of unmeasured state and stochastic total distur-
bance, can be concluded directly from Theorem 2.1 of
[110].

Theorem 2 Suppose that Assumptions (A1)–(A2) hold
and |b − b0| <

|b0|
2λmax(Q)a3

. Then, for any initial value,
the closed loop composed of (31), (33) and (34) has
the practical mean square convergence in the sense
that there are a constant ε∗ > 0 and an ε-dependent
constant t∗ε > 0 with ε ∈ (0, ε∗) such that

E|xi (t) − x̂i (t)|2 ≤ 
ε2n+3−2i , ∀t ≥ t∗ε , i = 1, 2, 3,

and

E|xi (t)|2 ≤ 
ε, ∀t ≥ t∗ε , i = 1, 2,

where 
 > 0 is an ε-independent constant. As a result,

lim sup
t→∞

E|xi (t)|2 ≤ 
ε, i = 1, 2.

Remark 3 From a theoretical perspective, it can be
shown from Assumption (A1) and Theorem 2 that
the bounded stochastic noise like “sin(α1t + α2B(t))”
or “cos(α1t + α2B(t))” with B(t) being a Brownian
motion and αi (i = 1, 2) being unknown constants
can be coped with by ADRC whatever it is the high-
frequency stochastic noise or not.

6 ADRC for an uncertain infinite-dimensional
system: wave equation

In this section, we introduce ADRC for an uncertain
infinite-dimensional system by considering the stabi-
lization of the wave equation using two kinds of distur-
bance estimators to cope with the external disturbance
and interior uncertainty. The first estimator is based
on the conventional ESO by using a test function, and
the second one relies on an infinite-dimensional system
which is related to the original system.

Although theADRCapproach can be applied to both
the anti-stable wave equation and unstable wave equa-
tion [123,126,138], to make the ideology of ADRC
for infinite-dimensional systems more clearly, we con-
sider a one-dimensional Lyapunov stable wave equa-
tion whose solution does not decay to zero provided
that there is no control input as follows:

⎧
⎨

⎩

wt t (x, t) = wxx (x, t), x ∈ (0, 1), t > 0,
w(0, t) = 0, t ≥ 0,
wx (1, t) = F(t) + u(t), t ≥ 0,

(39)

where (w,wt ) is the state, u(t) is the control (or input),
and F(t) � f (w(·, t), wt (·, t)) + d(t) is the total dis-
turbance with the function f (·) being unknown. Here
f (w(·, t), wt (·, t)) represents the boundary unknown
interior uncertainty and d(t) is the external disturbance.
The control objective is to design a feedback control
law u(t) so that the closed-loop state of system (39)
converges to zero by rejecting the total disturbance
F(t). The state space is taken as H = H1

L(0, 1) ×
L2(0, 1), where H1

L(0, 1) = {φ ∈ H1(0, 1)|φ(0) =
0}. The usual inner product of H is given by

〈(φ1, ψ1), (φ2, ψ2)〉H
=

∫ 1

0
[φ′

1(x)φ′
2(x) + ψ1(x)ψ2(x)]dx .

for any (φ1, ψ1) ∈ H, (φ2, ψ2) ∈ H.
It is well known that u(t) = −kwt (1, t) with k > 0

can exponentially stabilize system (39) provided that
F(t) ≡ 0. However, this control law is not robust with
respect to the boundarydisturbance.To see this, let F(t)
be a constant, i.e., F(t) ≡ C . Then, (w,wt ) = (Cx, 0)
is a nonzero solution of system (39) even if we design
the control law u(t) = −kwt (1, t).
We define the operator A as follows:

⎧
⎪⎪⎨

⎪⎪⎩

A(φ,ψ) = (ψ, φ′′), ∀(φ,ψ) ∈ D(A),

D(A) =
{
(φ,ψ) ∈ H ∩ (H2(0, 1) × H1(0, 1))|

ψ(0) = 0, φ′(1) = 0
}
.

(40)

Then, system (39) can be written as

d

dt
(w(·, t), wt (·, t)) = A(w(·, t), wt (·, t))

+B(F(t) + u(t)), (41)
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where B = (0, δ(x − 1)). It is easy to verify that
A generates a C0-group eAt on H and B is admis-
sible for eAt [139]. Moreover, from Lemma A.2 of
[128], system (39) has a unique solution provided that
u, d ∈ L2

loc(0,∞) and f (·) satisfies the local Lipschitz
condition on H.

To adopt the conventional ESO to deal with the total
disturbance F(t), we first assume that f (·) ≡ 0, d ∈
H1
loc(0,∞) ∩ L∞(0,∞). In this case, system (39) has

only the external disturbance d(t). The measurement is
the full state (w,wt ).

Define Y (t) = ∫ 1
0 xwt (x, t)dx , where x is regarded

as a test function. Finding the derivative of Y with
respect to t and using the boundary condition of system
(39), it is easy to see that Y (t) satisfies

Ẏ (t) = −w(1, t) + u(t) + d(t). (42)

It can be seen that (42) is a one-dimensional ODE sub-
ject to external disturbance d(t). That is, the exter-
nal disturbance d(t) is refined into uncertain finite-
dimensional system (42).

Motivated by one-parameter tuning linear ESO
design (11), we design a one-parameter tuning linear
ESO to estimate the external disturbance d(t):

⎧
⎪⎨

⎪⎩

˙̂Y ε(t) = −w(1, t) + d̂ε(t) + 2

ε

[
Y (t) − Ŷε(t)

] + u(t),

˙̂dε(t) = 1

ε2

[
Y (t) − Ŷε(t)

]
,

(43)

where ε is the tuning parameter, and d̂ε(t) is regarded as
an estimate of d(t). The convergence of the estimation
errors is summarized as following Lemma 1 that comes
from [140].

Lemma 1 Assume that the disturbance d(t) and its
derivative ḋ(t) are uniformly bounded with an upper
bound M. Let Y (t) = ∫ 1

0 xwt (x, t)dx. Then, the esti-
mation errors of linear ESO (43) satisfy

lim
t→∞ |Ŷε(t) − Y (t)| = lim

t→∞ |d̂ε(t) − d(t)|
= O(ε) as ε → 0.

Moreover, for any fixed T > 0,
∫ T

0
|Ŷε(t) − Y (t)|dt

=
∫ T

0
|d̂ε(t) − d(t)|dt = O(ε) as ε → 0,

∫ T

0
|Ŷε(t) − Y (t)|2dt

=
∫ T

0
|d̂ε(t) − d(t)|2dt = O(ε−1) as ε → 0.

(44)

By (44),
∫ T
0 |d̂ε(t) − d(t)|dt is uniformly bounded

in ε for any fixed T > 0, and
∫ T
0 |d̂ε(t) − d(t)|2dt

is unbounded in ε. By [139, Theorem 4.8], we only
have admissibility with L2

loc(0,∞) control yet not the
admissibility with L1

loc(0,∞) control. To overcome
this difficulty, the control law is proposed by

u(t) = −kwt (1, t) − sat(d̂(t))

where sat(x) = min{M + 1,max{x,−M − 1}} is a
saturate function.

The resulting closed-loop system is governed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t (x, t) = wxx (x, t), x ∈ (0, 1), t > 0,
w(0, t) = 0, t ≥ 0,
wx (1, t) = −kwt (1, t) − sat(d̂(t)) + d(t),
˙̂Y ε(t) = d̂ε(t) + 2

ε
[Y (t) − Ŷε(t)]

−w(1, t) − kwt (1, t) − sat(d̂(t)),
˙̂dε(t) = 1

ε2
[Y (t) − Ŷε(t)].

(45)

The following result can be easily concluded from [123,
140].

Theorem 3 Suppose that d ∈ H1
loc(0,∞) and there

exists a positive constant M such that |d(t)| ≤ M for
all t ≥ 0. Let Y (t) = ∫ 1

0 xwt (x, t)dx. Then, system
(45) is practically stable in the sense that

lim sup
t→∞

{ ∫ 1

0
[w2

t (x, t) + w2
x (x, t)]dx + |Ŷε(t)|

+ |d̂ε(t) − d(t)|
}

≤ Cε, (46)

where C > 0 is a constant independent of ε.

In closed-loop system (45), the external disturbance
is estimated by a conventional ESO that may be high
gain because the gain 1/ε may be large due to the fact
that the energy of the state is in inverse proportion to
the tuning parameter ε. In addition, the control law in
(45) is based on the full state feedback.

Next we will consider the output feedback exponen-
tial stabilization of system (39). The output measure-
ment is supposed to be

ym(t) = {wx (0, t), w(1, t)}, t ≥ 0.
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Compared with the full state feedback, the output mea-
surement is only two boundary signals. We first use the
output signal wx (0, t) to design an auxiliary system as
follows:

⎧
⎨

⎩

vt t (x, t) = vxx (x, t), x ∈ (0, 1), t > 0,
vx (0, t) = c0v(0, t) + c1vt (0, t) + wx (0, t),
vx (1, t) = u(t), t ≥ 0,

(47)

which is used to bring the total disturbance from orig-
inal system (39) into an exponentially stable system.
Here c0, c1 > 0. To understand this idea, we introduce
a new variable p(x, t) given by

p(x, t) = w(x, t) − v(x, t). (48)

Combining (39) with (47), we can conclude that

⎧
⎨

⎩

ptt (x, t) = pxx (x, t), x ∈ (0, 1), t > 0,
px (0, t) = c0 p(0, t) + c1 pt (0, t), t ≥ 0,
px (1, t) = F(t), t ≥ 0.

(49)

We consider (49) in the energy space H = H1(0, 1) ×
L2(0, 1) with the norm

〈(φ1, ψ1), (φ2, ψ2)〉H
=

∫ 1

0
[φ′

1(x)φ′
2(x) + ψ1(x)ψ2(x)]dx + φ1(0)φ2(0).

In system (49), the total disturbance F(t) can be
regarded as an input. Indeed, system (49) can bewritten
as

d

dt
(p(·, t), pt (·, t)) = A1(p(·, t), pt (·, t)) + B1F(t),

where the operator A1 is defined by

⎧
⎪⎪⎨

⎪⎪⎩

A1(φ,ψ) = (ψ, φ′′), ∀(φ,ψ) ∈ D(A1),

D(A1) =
{
(φ,ψ) ∈ H2(0, 1) × H1(0, 1)|

φ′(0) = c0φ(0) + c1ψ(0), φ′(1) = 0
}
,

(50)

and the operator B1 is defined by B1 = (0, δ(x −1)). It
is well known that A1 generates an exponentially stable
C0-semigroup eA1t and B1 is admissible for eA1t . The
well-posedness and the boundedness of the solution of
system (49) are a special case of Lemma 2.2 of [138],
which is summarized in following lemma 2.

Lemma 2 For any initial state (p(·, 0), pt (·, 0)) ∈ H,
suppose that F ∈ L∞(0,∞). Then, there exists a

unique solution to (49) such that (p, pt ) ∈ C(0,∞;H)

and for some M > 0, it holds

sup
t≥0

‖(p(·, t), pt (·, t))‖H ≤ M. (51)

In system (49), we regard yo(t) � p(1, t) as an output
of system (49). Next, by making use of system (49)
and the output p(1, t), we propose the second auxiliary
system as follows:

⎧
⎨

⎩

ztt (x, t) = zxx (x, t), x ∈ (0, 1), t > 0,
zx (0, t) = c0z(0, t) + c1zt (0, t), t ≥ 0,
z(1, t) = p(1, t), t ≥ 0,

(52)

which is used to estimate the total disturbance F(t). To
understand this idea, we regard zx (1, t) as an output of
system (52) and denote

q(x, t) = z(x, t) − p(x, t). (53)

It is seen that q(x, t) satisfies

{
qtt (x, t) = qxx (x, t),
qx (0, t) = c0q(0, t) + c1qt (0, t), q(1, t) = 0.

(54)

We consider system (54) in the energy Hilbert state
space H = H1

R(0, 1) × L2(0, 1), where H1
R(0, 1) =

{φ ∈ H1(0, 1)| φ(1) = 0}. System (54) can be rewrit-
ten as

d

dt
(q(·, t), qt (·, t)) = A2(q(·, t), qt (·, t)),

where

⎧
⎪⎪⎨

⎪⎪⎩

A2(φ,ψ) = (ψ, φ′′), ∀(φ,ψ) ∈ D(A2),

D(A2) =
{
(φ,ψ) ∈ H2(0, 1) × H1(0, 1)|

φ′(0) = c0φ(0) + c1ψ(0), φ(1) = 0
}
.

(55)

It is well known [141, Theorem 3] that eA2t is an expo-
nentially stable operator semigroup onH. Thus, for any
initial state (q0, q1) ∈ H, system (54) has a unique solu-
tion (q(·, t), qt (·, t)) = eA2t (q0, q1) ∈ C(0,∞;H),
which decays exponentially. Moreover, for some α >

0, we have (see [138, Remark 2.3])

eαt qx (1, t) ∈ L2(0,∞).
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Denote qx (1, t) = zx (1, t) − px (1, t) = zx (1, t) −
F(t). Hence, zx (1, t) can be regarded as an approxima-
tion of the total disturbance F(t). Using this approxi-
mation, we propose an state observer for system (39)
as follows:

⎧
⎨

⎩

ŵt t (x, t) = ŵxx (x, t), x ∈ (0, 1), t > 0,
ŵx (0, t) = c0ŵ(0, t) + c1ŵt (0, t) + wx (0, t),
ŵx (1, t) = u(t) + zx (1, t), t ≥ 0,

(56)

where zx (1, t) is the estimate of the total disturbance
F(t). To confirm that (56) is an appropriate observer
for system (39), we set

w̃(x, t) = ŵ(x, t) − w(x, t).

It is easy to verify that w̃(x, t) satisfies

⎧
⎨

⎩

w̃t t (x, t) = w̃xx (x, t), x ∈ (0, 1), t > 0,
w̃x (0, t) = c0w̃(0, t) + c1w̃t (0, t), t ≥ 0,
w̃x (1, t) = qx (1, t), t ≥ 0.

(57)

To demonstrate the exponential stability of system (57),
we introduce the variable β(x, t) given by

β(x, t) = w̃(x, t) − q(x, t).

From (54) and (57), it follows that

⎧
⎨

⎩

βt t (x, t) = βxx (x, t), x ∈ (0, 1), t > 0,
βx (0, t) = c0β(0, t) + c1βt (0, t), t ≥ 0,
βx (1, t) = 0, t ≥ 0.

(58)

Consider system (58) in the state space H. It is well
known that for any (β(·, 0), βt (·, 0)) ∈ H, system (58)
has a unique solution (β, βt ) ∈ C(0,∞;H). By this
fact and the exponential stability of system (54), we
can immediately obtain the following conclusion.

Lemma 3 For any initial state (w̃(·, 0), w̃t (·, 0)) ∈ H,
qx (1, t) is generated by (54), there exists a unique solu-
tion to (57) such that (w̃, w̃t ) ∈ C(0,∞;H), and for
some α, M, μ > 0, it holds eαt w̃t (1, t) ∈ L2(0,∞)

and

‖(w̃(·, t), w̃t (·, t))‖H1(0,1)×L2(0,1) ≤ Me−μt . (59)

Since the state observer and the estimate of the total
disturbance are obtained, an observer-based feedback
control law can be designed naturally as follows:

u(t) = −c2ŵt (1, t) − zx (1, t).

By this control, since qx (1, t) = zx (1, t) − F(t) and
ŵt (1, t) = w̃t (1, t) + wt (1, t), system (39) becomes

⎧
⎪⎪⎨

⎪⎪⎩

wt t (x, t) = wxx (x, t), x ∈ (0, 1), t > 0,
w(0, t) = 0, t ≥ 0,
wx (1, t) = F(t) − c2ŵt (1, t) − zx (1, t)
= −c2wt (1, t) + θ(t),

(60)

where θ(t) = −c2w̃t (1, t)−qx (1, t) satisfies eαtθ(t) ∈
L2(0,∞). Define the operator A3 given by

⎧
⎪⎪⎨

⎪⎪⎩

A2(φ,ψ) = (ψ, φ′′), ∀(φ,ψ) ∈ D(A3),

D(A3) =
{
(φ,ψ) ∈ H ∩ (H2(0, 1) × H1(0, 1))|

ψ(0) = 0, φ′(1) = −c2ψ(1)
}
.

(61)

Then, system (60) can be written as

d

dt
(w(·, t), wt (·, t)) = A3(w(·, t), wt (·, t)) + Bθ(t),

where B = (0, δ(x −1)). It is well known that A3 gen-
erates an exponentially stable C0-semigroup eA3t on
H and B is admissible for eA3t [139]. The exponential
stability of the solution of (60) follows from Lemma
2.1 in [138].

Collecting (47), (52) and (56), we obtain the closed-
loop system of (39) described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt t (x, t) = wxx (x, t),
w(0, t) = 0, t ≥ 0,
wx (1, t) = f (w(·, t), wt (·, t)) + d(t)

−c2ŵt (1, t) − zx (1, t),
vt t (x, t) = vxx (x, t), x ∈ (0, 1),
vx (0, t) = c0v(0, t) + c1vt (0, t) + wx (0, t),
vx (1, t) = −c2ŵt (1, t) − zx (1, t),
ztt (x, t) = zxx (x, t),
zx (0, t) = c0z(0, t) + c1zt (0, t),
z(1, t) = w(1, t) − v(1, t),
ŵt t (x, t) = ŵxx (x, t),
ŵx (0, t) = c0ŵ(0, t) + c1ŵt (0, t) + wx (0, t),
ŵx (1, t) = −c2ŵt (1, t).

(62)

Weconsider system (62) in the state spaceX = H×H3.
The main result on the stability and the well-posedness
of system (62) can be proved similarly as Theorem 4.3
of [138].
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Theorem 4 Suppose that the parameters c0, c1, c2 >

0, f : H → R are continuous, and d ∈ L∞(0,∞)

or d ∈ L2(0,∞). For any initial state (w0, w1,

v0, v1, z0, z1, ŵ0, ŵ1) ∈ X with the compatibility con-
ditions

z0(1) + v0(1) − w0(1) = 0, (63)

there exists a unique solution to (62) such that (w,wt ,

v, vt , z, zt , ŵ, ŵt ) ∈ C(0,∞;X ),

‖(w(·, t), wt (·, t), ŵ(·, t), ŵt (·, t))‖H×H
≤ Me−μt‖(w0, w1, v0, v1, ŵ0, ŵ1)‖X ,∀ t ≥ 0,

(64)

for some M, μ > 0, and

sup
t≥0

‖(v(·, t), vt (·, t), z(·, t), zt (·, t))‖H2 < ∞.

7 ADRC for uncertain infinite-dimensional
fractional-order systems

In this section,we introduce theADRCapproach to sta-
bilization for uncertain infinite-dimensional fractional-
order systems, which is just initiated in 2019 [131]. The
followingmain results come from [131]. The controlled
plant is the following one-dimensional time fractional-
order anomalous diffusion equation (TFADE) with
Neumann boundary control and boundary disturbance:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t w(x, t) = wxx (x, t) + λ(x)w(x, t),
wx (0, t) = −qw(0, t),
wx (1, t) = u(t) + d(t),
w(x, 0) = w0(x),

(65)

where x ∈ (0, 1), t ≥ 0, w(x, t) is the state, u(t)
is the control input, λ ∈ C[0, 1], d(t) represents an
unknown external disturbance which is only supposed
to satisfy d, C

0 Dα
t d ∈ L∞(0,∞). C

0 Dα
t w(x, t) stands

for the Caputo derivative which is a regularized frac-
tional derivative of w(x, t) with respect to the time
variable t , that is,

C
0 Dα

t w(x, t)

= 1


(1 − α)

[
∂

∂t

∫ t

0
(t − s)−αw(x, s)ds − t−αw(x, 0)

]

.

It is well known that

lim
α→1−

C
0 Dα

t w(x, t) = ∂w(x, t)

∂t
.

Noting that system (65) is unstable without control and
disturbance.When the external disturbance flows in the
control end, the stabilization problem for (65) becomes
much more complicated. The control objective here is
to design a state feedback control law u(t) so that the
close-loop state of system (65) converges to zero in the
Mittag–Leffler sense by rejecting the external distur-
bance d(t).

For the reader’s convenience, we present the usual
definitions of the Mittag–Leffler function and the
Mittag–Leffler stability, which can be founded in [131].

Definition 1 The one-parameter Mittag–Leffler func-
tion and two-parameter Mittag–Leffler function are
defined by

Eα(z) =
∞∑

k=0

zk


(αk + 1)

and Eα,β(z) =
∞∑

k=0

zk


(αk + β)
,

respectively, where α > 0, β > 0. In particular,
Eα,1(z) = Eα(z) and E1(z) = E1,1(z) = ez .

Definition 2 (Mittag–Leffler Stability). The solution
of (65) is said to be Mittag–Leffler stable if

‖w(·, t)‖L2(0,1) ≤ {m(‖w(·, 0)‖L2(0,1))Eα(−λtα)}b,

where α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(s) ≥ 0,
and m(s) is locally Lipschitz in s ∈ R with Lipschitz
constant m0.

Since Eα(−λtα) ≤ M
1+λtα for some M > 0 and

all t ≥ 0, it is seen that the Mittag–Leffler stabil-
ity implies the Lyapunov asymptotic stability, that is,
lim

t→∞ ‖w(·, t)‖L2(0,1) = 0.

To obtain the estimation of the external disturbance,
we propose two auxiliary systems, one is to bring the
disturbance from original system (65) into a Mittag–
Leffler stable system, and the other one is to estimate
the external disturbance. The following steps were pre-
sented in [131].

Step 1: The first auxiliary system is given by :

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t v(x, t) = vxx (x, t) + λ(x)w(x, t)
−c[v(x, t) − w(x, t)],

vx (0, t) = −qw(0, t), vx (1, t) = u(t),
v(x, 0) = v0(x),

(66)
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where the gain c is a positive designed parameter
used to regulate the convergence speed. Let v̂(x, t) =
v(x, t)−w(x, t). It is easy to check that v̂(x, t) satisfies
⎧
⎪⎨

⎪⎩

C
0 Dα

t v̂(x, t) = v̂xx (x, t) − cv̂(x, t),

v̂x (0, t) = 0, v̂x (1, t) = −d(t),

v̂(x, 0) = v̂0(x) = v0(x) − w0(x),

(67)

and the external disturbance is coming into system
(67) to beMittag–Leffler stable shown in the following
lemma.

Lemma 4 ([131]) Suppose that c > 0, and d, C
0 Dα

t d ∈
L∞(0,∞). For any initial value v̂(·, 0) ∈ L2(0, 1),
there exists a unique solution to (67) such that v̂ ∈
C(0,∞; L2(0, 1)) satisfying supt≥0 ‖̂v(·, t)‖L2(0,1) <

+∞. Moreover, if d ≡ 0, then ‖̂v(·, t)‖L2(0,1) ≤
M Eα(−μtα) with M, μ > 0.

Step 2: For system (66),wedesign a second auxiliary
system to estimate the external disturbance:

⎧
⎪⎨

⎪⎩

C
0 Dα

t z(x, t) = zxx (x, t) − cz(x, t),

zx (0, t) = 0, z(1, t) = w(1, t) − v(1, t),

z(x, 0) = z0(x),

(68)

where c is a positive designed parameter which is
exactly the same as that in (66). Let p(x, t) =
−z(x, t) − v̂(x, t). It is easy to verify that p(x, t) sat-
isfies

⎧
⎨

⎩

C
0 Dα

t p(x, t) = pxx (x, t) − cp(x, t),
px (0, t) = 0, p(1, t) = 0,
p(x, 0) = p0(x),

(69)

which is a Mittag–Leffler stable system and serves as
a target system for the design of disturbance estimator.

System (69) can be rewritten as

C
0 Dα

t p(·, t) = Ap(·, t), p(x, 0) = p0(x),

where the operator A : D(A)(⊂ L2(0, 1)) → L2(0, 1)
is given by

{ [A f ](x) = f ′′(x) − c f (x),

D(A) = { f ∈ H2(0, 1)| f ′(0) = 0, f (1) = 0}.
(70)

The well-posedness and stability of (69) can be found
in [131]. Moreover, we have the following result.

Lemma 5 ([131]) Suppose that c > 0. For any initial
value p(·, 0) ∈ D(A), the solution of (69) satisfies
|px (1, t)| ≤ M Eα(−μtα) with some M, μ > 0.

Clearly, we have

px (1, t) = d(t) − zx (1, t),

which, together with Lemma 5, implies that zx (1, t)
could be an approximation of the external disturbance
d(t).

Finally, let us put system (66) and system (68)
together. We then obtain a disturbance estimator for
system (65) as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 Dα

t v(x, t) = vxx (x, t) + λ(x)w(x, t)
−c[v(x, t) − w(x, t)],

vx (0, t) = −qw(0, t), vx (1, t) = u(t),
C
0 Dα

t z(x, t) = zxx (x, t) − cz(x, t),
zx (0, t) = 0, z(1, t) = w(1, t) − v(1, t),

(71)

where the external disturbance is estimated in the way
of d(t) ≈ zx (1, t) because of px (1, t) = zx (1, t)−d(t)
and Lemma 5.

With disturbance estimator (71), we next present a
stabilizing control for system (65). For this purpose, we
introduce an invertible transformation w → ŵ [142]:

ŵ(x, t) = w(x, t) −
∫ x

0
k(x, y)w(y, t)dy, (72)

where the kernel function k(x, y) is the solution of the
following partial differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

kxx (x, y) − kyy(x, y) = (λ(y) + c)k(x, y),

ky(x, 0) + qk(x, 0) = 0,

k(x, x) = −q − 1

2

∫ x

0
(λ(y) + c)dy.

(73)

Under transformation (72), system (65) is equivalent
to:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
0 Dα

t ŵ(x, t) = ŵxx (x, t) − cŵ(x, t),
ŵx (0, t) = 0,
ŵx (1, t) = u(t) + d(t) − k(1, 1)w(1, t)

−
∫ 1

0
kx (1, y)w(y, t)dy.

(74)
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If the disturbance d(t) vanishes, the stabilizing control
law was designed in [142] as

u(t) = k(1, 1)w(1, t) +
∫ 1

0
kx (1, y)w(y, t)dy. (75)

However,when the external disturbanced(t) is nonzero,
control law (75) cannot stabilize system (65).

Since we have concluded that the external distur-
bance d(t) could be approximated by zx (1, t), it is nat-
ural to propose the following disturbance estimator-
based feedback control:

u(t) = −zx (1, t) + k(1, 1)w(1, t)

+
∫ 1

0
kx (1, y)w(y, t)dy. (76)

It is seen that the “−zx (1, t)” term in (76) is used to
compensate for the external disturbance d(t), and the
other terms are the feedback control designed to stabi-
lize system (74) without the external disturbance d(t)
suggested by (75).

Closed-loop system (65) under disturbance estimator-
based feedback control (76) is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 Dα

t w(x, t) = wxx (x, t) + λ(x)w(x, t),
wx (0, t) = −qw(0, t),
wx (1, t) = −zx (1, t) + k(1, 1)w(1, t)

+
∫ 1

0
kx (1, y)w(y, t)y + d(t),

C
0 Dα

t v(x, t) = vxx (x, t) + λ(x)w(x, t)
−c[v(x, t) − w(x, t)],

vx (0, t) = −qw(0, t),
vx (1, t) = −zx (1, t) + k(1, 1)w(1, t)

+
∫ 1

0
kx (1, y)w(y, t)y,

C
0 Dα

t z(x, t) = zxx (x, t) − cz(x, t),
zx (0, t) = 0, z(1, t) = v(1, t) − w(1, t).

(77)

We consider closed-loop system (77) in H =
[L2(0, 1)]3, and its convergence can be summarized
in following Theorem 5 obtained in [131].

Theorem 5 ([131]) Let k(x, y) be the solution of (73).
Suppose that c > 0, and d, C

0 Dα
t d ∈ L∞(0,∞). For

any initial value (w(·, 0), v(·, 0), z(·, 0)) ∈ H, there
exists a unique solution to (77) such that (w, v, z) ∈
C(0,∞;H) satisfying‖w(·, t)‖L2(0,1) ≤ M Eα(−μtα)

with some M, μ > 0, and supt≥0 ‖(v(·, t),
z(·, t))‖[L2(0,1)]2 < +∞. If we assume further that
d(t) ≡ 0, then, there exist two constants M ′, μ′ > 0

such that ‖(v(·, t), z(·, t))‖H2 ≤ M ′Eα(−μ′tα), ∀t ≥
0.

To end this section, we emphasize that although
the conventional one-parameter tuning linear ESO is
extended to fractional ESO (see [92,93]), the frac-
tional ESO seems not be applied to fractional infinite-
dimensional system, which is remarkably different
from the stabilization problem of the wave equation
with boundary disturbance and uncertainty by conven-
tional ESO to estimate the boundary total disturbance
presented in Sect. 6. This difference leads to the fact
that we are not able to obtain corresponding practical
stability for the fractional infinite-dimensional system.
In order to explain it clearly, we use the test function to
refine the disturbance and the control in the boundary
into an ODE, and we denote two new variables Y (t)
and Z(t) as follows:

Y (t) =
∫ 1

0
h(x)w(x, t)dx,

Z(t) =
∫ 1

0
[h(x)λ(x) + h′′(x)]w(x, t)dx,

(78)

where h(x) is any test function satisfying h ∈ C2[0, 1]
with h(0) = h′(0) = h′(1) = 0 and h(1) = 1.
Obviously, we can take a simple example as h(x) =
x2(3−2x). A simple exercise shows Y (t) and Z(t) are
governed by

C
0 Dα

t Y (t) = u(t) + d(t) + Z(t). (79)

Motivated by the fractional ESO design in [92,93], the
corresponding fractional ESO for ODE (79) subject to
external disturbance d(t) can be designed as follows:

{ C
0 Dα

t Ŷ (t) = u(t) + d̂(t) + Z(t) − β1[Ŷ (t) − Y (t)],
C
0 Dα

t d̂(t) = −β2[Ŷ (t) − Y (t)],

where β1 = 2ωo and β2 = ω2
o with ωo being the linear

bandwidth parameterization [92]. It follows from [93,
Lemma 2] that

lim
t→∞ sup |Ŷ (t) − Y (t)| ≤ M

ω2
o
,

lim
t→∞ sup |d̂(t) − d(t)| ≤ 2M

ωo
,

(80)

where M = supt≥0 |C0 Dα
t d(t)|. It is clearly seen from

(80) that the larger the bandwidthωo is , the smaller the
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estimation errors of the fractional-order ESO become.
However, a drawback of this design is that the output
noise will be amplified when the bandwidthωo is large.

From (80), we obtain an estimate d̂(t) of the external
disturbance d(t). However, the ADRC based on this
ESO design seems unable to reject the external dis-
turbance in fractional PDEs like the one satisfying d,
C
0 Dα

t d ∈ L∞(0,∞). Actually, by the ADRC strategy,
the control law should be designed by

u(t) = −d̂(t) + k(1, 1)w(1, t)

+
∫ 1

0
kx (1, y)w(y, t)dy. (81)

With this control law, the closed loop becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 Dα

t w(x, t) = wxx (x, t) + λ(x)w(x, t),
wx (0, t) = −qw(0, t),
wx (1, t) = −d̂(t) + k(1, 1)w(1, t) + d(t)

+
∫ 1

0
kx (1, y)w(y, t)dy,

C
0 Dα

t Ŷ (t) = k(1, 1)w(1, t) − β1[Ŷ (t) − Y (t)]
+Z(t) +

∫ 1

0
kx (1, y)w(y, t)dy,

C
0 Dα

t d̂(t) = −β2[Ŷ (t) − Y (t)],
(82)

where Y (t) and Z(t) are given by (78), β1 = 2ωo

and β2 = ω2
o. Using transformation (72) and the error

variables Ỹ (t) = Ŷ (t) − Y (t), d̃(t) = d̂(t) − d(t),
system (82) is equivalent to:

⎧
⎪⎪⎨

⎪⎪⎩

C
0 Dα

t ŵ(x, t) = ŵxx (x, t) − cŵ(x, t),
ŵx (0, t) = 0, ŵx (1, t) = −d̃(t),
C
0 Dα

t Ỹ (t) = d̃(t) − β1Ỹ (t),
C
0 Dα

t d̃(t) = −β2Ỹ (t) − C
0 Dα

t d(t).

(83)

Ifα = 1, by linear system theory [139], with the similar
estimation techniques used for the wave equation, we
can conclude that

lim
t→∞,ωo→∞ sup ‖ŵ(·, t)‖L2(0,1) = 0. (84)

However, when α ∈ (0, 1), the admissibility theory for
fractional system is not available. By (80), we have

lim
t→∞ sup |d̃(t)| ≤ 2M

ωo
, lim

t→∞ sup |C0 Dα
t d̃(t)| ≤ 2M,

where M = supt≥0 |C0 Dα
t d(t)|. By Comparing (83)

with (67),we canonlyobtain that supt≥0 ‖ŵ(·, t)‖L2(0,1)
< +∞ by Lemma 4 but not the practical stability con-
cluded as that in (84).

8 Some further theoretical problems

In this section, we summarize some open theoretical
problems on active disturbance rejection control (AD
RC) to be further considered specially according to pre-
vious four sections.

Firstly, with regard to ADRC for finite-dimensional
nonlinear systems with mismatched disturbances and
uncertainties in Sect. 4, we point out an unresolved and
interesting problem of the ADRC design and conver-
gence analysis for uncertain systemswithout satisfying
the matching condition. The problem is again output
tracking for the following lower triangular nonlinear
system subject to mismatched stochastic disturbances
and uncertainties by the ADRC approach:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t) + h1(x1(t), w1(t)),
ẋ2(t) = x3(t) + h2(x1(t), x2(t), w2(t)),

...

ẋn(t) = hn(x(t), wn(t)) + bu(t),
y(t) = x1(t),

(85)

where the mathematical symbols are defined as those
in system (8), hi : Ri+1 → R (i = 1, 2, . . . , n) are
unknown functions representing mismatched unmod-
eled dynamics, and wi (t) (i = 1, 2, . . . , n) are
bounded stochastic noises existing widely in practi-
cal systems like the ones in [135–137] and defined
in Sect. 5. A major obstacle of the ADRC design
and convergence analysis here is that the paths of the
bounded stochastic noises are nowhere differentiable
almost surely so that the mismatched bounded stochas-
tic noises cannot be refined into the control input chan-
nel by the straightforward state transformation method
proposed in Sect. 4.

Secondly, with regard to ADRC for uncertain finite-
dimensional stochastic systems in Sect. 5, we point out
an unresolved and important problem of the ADRC
design and convergence analysis for uncertain stochas-
tic systems. It is about the ADRC design and conver-
gence analysis for widely existing Itô-type stochastic
nonlinear system with large uncertainties. Take the fol-
lowing simple first-order stochastic system driven by
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Brownian motion as an example:

{
dx1(t) = [w(t) + u(t)] dt + σd B(t),
y(t) = x1(t),

(86)

where B(t) is a one-dimensional standard Brownian
motion, σ is a constant representing the additive noise
intensity, and w(t) is the bounded external disturbance
with unknown stochastic characteristics whose varia-
tion with respect to t is also bounded. The conventional
ADRC design for this simple system (86) is even not
feasible because the conventional ESO design cannot
be used for the real-time estimation of the external dis-
turbance w(t), which is demonstrated in detail in sec-
tion 2.2 of [110]. The essential difficulty is caused by
the diffusion term of system (86) [110]. A possibly fea-
sible solution to the ESO design for Itô-type stochastic
nonlinear system with large uncertainties is to intro-
duce dynamic time-varying gain making full use of the
real-time information of the control input u(t) andmea-
sured output y(t), such that there exists a well trade-off
between the estimation performance and the noise sen-
sitivity.

Thirdly, with regard to ADRC for both finite-
dimensional nonlinear systems with mismatched dis-
turbances and uncertainties in Sect. 4 and uncertain
finite-dimensional stochastic systems in Sect. 5, we
point out an interesting open problem. That is, since
measurement noise exists widely in practice, the design
and performance analysis of ADRC for uncertain
systems with measurement noise becomes an open
problem theoretically. Similar to the trade-off exist-
ing between the speed of state reconstruction and the
immunity to measurement noise caused by high-gain
observers [143], a natural trade-off between fast recon-
struction of both the states and the total disturbance and
the tolerance to measurement noise caused by ESO is
inevitable and should be explored. Recently, theADRC
has been addressed for a class of uncertain systems
withmeasurement uncertainty by seizing the equivalent
total effect of multiple uncertainties in both dynamics
and measurement, where the measurement uncertainty
is without stochastic characteristic and the existence
of its higher derivative is required [108]. However,
for the measurement noise of stochastic characteristic,
the approach proposed in [108] is infeasible since the
paths of the measurement noise are nowhere differen-
tiable almost surely. In this scheme, the switched-gain
approach [143] may be one of the feasible approaches.

Finally, with regard to ADRC for uncertain infinite-
dimensional systems in Sect. 6 and fractional-order
systems in Sect. 7, we point out two unresolved and
interesting problems of the ADRC design and con-
vergence analysis for fractional systems. The first one
is the output feedback stabilization for system (65).
Section 7 presents the full state feedback for system
(65); however, the in-domain term λ(x)w(x, t) leads
to the difficulty of the design in terms of the boundary
output measurement. The second problem is the sta-
bilization of uncertain fractional wave systems when
the fractional-order α ∈ (1, 2). Consider the system
described by

⎧
⎨

⎩

C
0 Dα

t y(x, t) = yxx (x, t), x ∈ (0, 1), t ≥ 0,
yx (0, t) = pC

0 Dr
t y(0, t), yx (1, t) = u(t) + ψ(t),

y(x, 0) = y0(x), yt (x, 0) = y1(x), 0 ≤ x ≤ 1,

(87)

where α ∈ (1, 2), r ∈ (0, 1), y(x, t) is the state,
p is a constant, u(t) is the control input, ψ(t) is an
unknown external disturbance, and (y0(x), y1(x)) is
the initial state. The case where (α, r) = (2, 1), p < 0
or (α, r) = (2, 0), p < 0 and the casewhereα ∈ (0, 1),
p < 0 and r = 0 were studied in [138] and [131],
respectively. Unlike the case α ∈ (0, 1) and α = 2,
the main difficulties are that the fractional Lyapunov
method is not applicable for the order α ∈ (1, 2) (the
key inequality C

0 Dα
t x2(t) ≤ 2x(t)C

0 Dα
t x(t) fails when

α ∈ (1, 2)) and that the eigenfunctions of the associ-
ated system operator do not form Riesz basis due to
the fractional boundary condition, which lead to the
obstacle in proving the stability.

9 Concluding remarks

In this survey paper, the origin, general framework,
ideology and theoretical progresses of active distur-
bance rejection control (ADRC) have been articulated
at length. The plant addressed by the ADRC approach,
from a theoretical perspective, is comprehensively con-
cerning not only uncertain finite-dimensional systems
but also uncertain infinite-dimensional systems. Some
very recent theoretical developments have been spe-
cially highlighted by including finite-dimensional sys-
tems with mismatched disturbances and uncertain-
ties by output feedback, uncertain finite-dimensional
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stochastic systems, uncertain infinite-dimensional sys-
tems described by wave equation and fractional-order
partial differential equation, where the essences of
ADRC for these kinds of controlled systems and some
potential further developments have been specially
introduced.
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