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Abstract—In this article, we apply the active disturbance rejec-
tion control (ADRC) to the output tracking of a class of lower
triangular nonlinear systems subject to mismatched bounded
stochastic disturbances of unknown statistic characteristics and
nonvanishing at the origin. A major obstacle is that the paths
of the stochastic disturbances are nowhere differentiable almost
surely which causes that the stochastic disturbances cannot be
refined into the control input channel by the usual way of state
transformation. To overcome this obstacle, a set of second-order
extended state observers is first designed to estimate, in real time,
the disturbance in each channel, and then a backstepping ADRC
based on feedforward compensation and a constructive backstep-
ping procedure is developed, guaranteeing that the closed-loop
output tracks a time-varying reference signal in practically mean
square and the closed-loop states are practically bounded in
probability first defined in this article. Finally, some numeri-
cal simulations are presented to validate the effectiveness of the
proposed backstepping ADRC approach.

Index Terms—Active disturbance rejection control (ADRC),
backstepping control, extended state observer (ESO), lower
triangular nonlinear systems, mismatched bounded stochastic
disturbances, output tracking.

I. INTRODUCTION

UNKNOWN disturbances coming from various sources
exist widely in many practical control systems, which

often leads to severe negative effects of control precision.
For this reason, analysis and synthesis for control systems
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subject to disturbances has been becoming one of the most
animate research fields in the past few decades [1]. On the one
hand, there have been many control approaches attributed to
disturbance attenuation for systems subject to unknown dis-
turbances, such as the stochastic control approaches [2]–[8]
and the robust control approaches [9]–[12], where the for-
mer is often feasible for attenuating noise disturbances with
known statistical characteristics and the latter can be applied
in coping with more general bounded disturbance and uncer-
tainty without statistical characteristics. However, the most
robust control approaches are in the worst case scenario,
which makes the controller design rather conservative. On
the other hand, with the new challenges in controller design
for systems subject to more general disturbance and improv-
ing anti-disturbance performance and robustness of the closed
loop, some novel disturbance rejection control methods like
the disturbance observer-based control (DOBC) [13]–[15],
based on disturbance estimation and feedforward compensa-
tion, have been developed. The core idea of these disturbance
rejection approaches is that an observer is designed to esti-
mate disturbance, and then an observer-based controller which
uses the state of the observer can be designed to compensate
the disturbance and guarantees satisfactory performance of the
closed loop. The active disturbance rejection control (ADRC)
is a representative control approach for disturbance rejection
for systems subject to disturbance and uncertainty in a large
scale, proposed by Han in the late 1980s [16].

The extended state observer (ESO) is the key part of ADRC
which aims at the online estimation of the “total disturbance”
which includes internal unmodeled dynamics and external dis-
turbance affecting system performance, where the internal
uncertainty is regarded as the “internal disturbance” of the
system. Based on estimation obtained by ESO, an ESO-based
controller can be designed to cancel the total disturbance in
the feedback loop and hence the desired control performance
can be ensured. This ESO-based estimation/cancellation nature
makes ADRC be capable of eliminating the total disturbance
before it causes a negative effect to the plant, and at the same
time reduces significantly the control energy in practice [17].
In the past two decades, the effectiveness and practicality
of ADRC have been validated in many engineering appli-
cations, such as dc–dc power converter [18], flight vehicles
control [19], synchronous motors [20], gasoline engines [21],
and power plants [22], to name just a few.
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On the other hand, the theoretical foundation of ADRC
has also attracted increasing attention over the years
(see [23]–[28]). Nevertheless, most of these researchers mainly
address ADRC for systems subject to disturbance and uncer-
tainty to be matched with the control input, and very few
are known for the stochastic counterpart. In reality, how-
ever, the mismatched disturbances are more general and exist
widely in practical systems [29], and some theoretical develop-
ments of ADRC for nonlinear systems subject to mismatched
disturbances have been achieved recently (see [30]–[33]). In
addition, as is known, disturbances of stochastic characteristics
are more common in practical systems. The ADRC approach
has been applied to output-feedback stabilization for nonlin-
ear systems subject to bounded stochastic disturbance matched
with the control input [34], [35].

Although there have been some theoretical developments
concerning the ADRC for nonlinear systems with mismatched
disturbances without stochastic characteristics or bounded
stochastic disturbance matched with the control input, the the-
oretical foundation of ADRC for nonlinear systems subject
to mismatched stochastic disturbances has scarcely been con-
sidered up to present. In this article, we develop the ADRC
approach to the output tracking problem for a class of lower
triangular nonlinear systems subject to mismatched bounded
stochastic disturbances of unknown statistic characteristics and
nonvanishing at the origin. There exist evident difficulties
in applying the conventional ADRC to such systems. This
is because the paths of bounded stochastic disturbances are
nowhere differentiable almost surely, leading to the fact that
they cannot be refined into the control input channel by the
way of state transformation like the aforementioned litera-
ture [31], [32]. To overcome this obstacle, a backstepping
control strategy which is a constructive procedure is adopted in
this article on the basis of the real-time estimation of bounded
stochastic disturbances by a set of second-order ESOs. The
backstepping control strategy has been proposed and general-
ized for stochastic nonlinear systems in [4] and [5]. Since then,
remarkable progresses have been made in the backstepping
control designs for stochastic nonlinear systems (see [6], [8]).

The main contributions of this article can be summed up as
follows.

1) From a theoretical perspective, the applicability of
ADRC is expanded to the nonlinear systems sub-
ject to mismatched bounded stochastic disturbances of
unknown statistic characteristics without differentiabil-
ity assumptions for the time-varying disturbances as
required in most existing literature like [16], [23]–[28],
and [30]–[33] and nonvanishing at the origin.

2) By combining ESO with the backstepping control tech-
nique, a backstepping ADRC is designed to guarantee
that the closed-loop output can track the reference sig-
nal with satisfactory transient performance not just the
steady one obtained in most existing literature, and the
closed-loop states are practically bounded in probability,
which is first defined in this article, where the theoretical
proof for the latter is novel to some certain extent.

3) For the concerned systems, a set of second-order ESOs
is designed for real-time estimation of the mismatched

stochastic disturbances with observer gain only to be
r2 much smaller than rn+1 in many existing literature
like [23]–[27] and [30]–[32], which is more likely to
meet the engineering application requirements of low
bandwidth and with much smaller peaking values than
the conventional ESO.

We proceed as follows. In the next section, Section II,
the problem is formulated. The backstepping ADRC design
and the theoretical analysis are given in detail in Section III.
Some numerical simulations are performed to demonstrate the
effectiveness of the proposed backstepping ADRC approach
in Section IV, followed up the conclusion in Section V.

We use the following notations throughout this article.
The R

n denotes the n-dimensional Euclidean space; and EX
denotes the mathematical expectation of a random variable
X. For a scalar K, |K| denotes its absolute value. For a vec-
tor or matrix K, K� represents its transpose; ‖K‖ represents
the Euclidean norm of a vector K; λmin(K) and λmax(K) are
the minimal and maximal eigenvalues of the symmetric real
matrix K, respectively; and I2×2 denotes the 2×2 unit matrix.
In addition, x̄i � (x1, . . . , xi)

�, x̂ � (x̂1, . . . , x̂n)
�, ŵ �

(ŵ1, . . . , ŵn)
�, � = (�1, . . . , �n)

�, and η = (η1, . . . , ηn)
�.

For any function φi:[0,∞) × R
κ → R, (∂φi)/(∂ϑ) �

((∂φi)/(∂ϑ1), . . . , (∂φi)/(∂ϑκ)) ∀ϑ = (ϑ1, . . . , ϑκ)
� ∈ R

κ .
For any subset A ⊂ 	, Ac � 	 − A. To simplify the nota-
tion, most obvious domains for time variables will be dropped
hereafter when there is no confusion.

II. PROBLEM FORMULATION

Although many stochastic control approaches have been
adopted to deal with stochastic disturbance, they are mostly
addressed to disturbance attenuation for stochastic systems,
based on passive control design ideology instead of active dis-
turbance rejection studied in this article. We point out that
ADRC is a novel active control approach to reject distur-
bance not just disturbance attenuation for a class of uncertain
stochastic systems, for which the most advantage is its esti-
mation/cancellation strategy where the mismatched stochastic
disturbances are estimated by a set of second-order ESOs in
real time and are canceled in the feedback loop. The esti-
mation and compensation are all in real time so that the
mismatched stochastic disturbances cannot be accumulated to
cause damage of the systems to some considerable extent.

The system that is considered in this article is a class
of lower triangular nonlinear systems subject to mismatched
bounded stochastic disturbances described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)+ h1(x1(t))+ w1(t)

ẋ2(t) = x3(t)+ h2(x1(t), x2(t))+ w2(t)
...

ẋn(t) = hn(x(t))+ wn(t)+ u(t)

y(t) = x1(t)

(1)

where x(t) = (x1(t), . . . , xn(t))� ∈ R
n, u(t) ∈ R, and y(t) ∈ R

are the measurable state, input, and output of system, respec-
tively. The known functions hi : Ri → R (i = 1, 2, . . . , n−1)
are continuously differentiable for (n − i) times with respect
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to their arguments x̄i ∈ R
i and hn is a known locally Lipschitz

continuous function; wi(t) � φi(t,B(t)) (i = 1, 2, . . . , n) for
some unknown functions φi(t, ϑ):[0,∞) × R

κ → R are the
bounded stochastic disturbances not necessarily in the con-
trol input channel, where B(t) = (B1(t), . . . ,Bκ (t))� is a
κ-dimensional independent standard Brownian motion defined
on a complete probability space (	,F , {Ft}t≥0,P) with 	

being a sample space, F being a σ -field, {Ft}t≥0 being a
filtration, and P being a probability measure.

We emphasize that this article is devoted to find out what
kinds of stochastic noises can be estimated and rejected by the
ADRC approach. This is an important problem, very different
from most existing literature where the disturbance attenuation
for stochastic systems driven by the white noise is addressed.
Thus, only the mismatched bounded stochastic noise is taken
into account in the process yet the measurement noise is
beyond the scope of the objective of this article. For uncertain
systems with both measurement and process noise, the effects
of the measurement noise on state estimation are attenuated by
a filter design would be another important problem. A recent
study on this regard can be found in [36].

The functions φi defining the bounded stochastic distur-
bances satisfy Assumption (A1).

Assumption 1 (A1): The φi(t, ϑ) : [0,∞)× R
κ → R (i =

1, 2, . . . , n) are continuously differentiable and twice continu-
ously differentiable with respect to t and ϑ , respectively, and
there exist some known constants βi > 0, such that for all
t ≥ 0, ϑ = (ϑ1, . . . , ϑκ)

� ∈ R
κ

|φi(t, ϑ)| +
∣
∣
∣
∣
∂φi(t, ϑ)

∂t

∣
∣
∣
∣ +

κ∑

j=1

∣
∣
∣
∣
∂φi(t, ϑ)

∂ϑj

∣
∣
∣
∣

2

+ 1

2

κ∑

j=1

∣
∣
∣
∣
∣

∂2φi(t, ϑ)

∂ϑ2
j

∣
∣
∣
∣
∣
≤ βi. (2)

Remark 1: The bounded stochastic disturbances wi(t) (i =
1, 2, . . . , n) will be estimated by a set of second-order ESOs
and canceled by an ESOs-based controller, so both the
bounded stochastic disturbances and their “variations” rea-
sonably need to be bounded which is guaranteed by the
condition (2) in Assumption (A1). This is because unbounded
disturbances will make the controller unbounded as well which
is not physically implementable. In addition, the existence
of partial derivatives in Assumption (A1) is required for the
deterministic functions φi(t, ϑ) : [0,∞) × R

κ → R (i =
1, 2, . . . , n) with respect to their arguments t and ϑ , not
for the stochastic disturbances themselves, where the func-
tions φi(·) (i = 1, 2, . . . , n) are used to define the stochastic
disturbances by wi(t) � φi(t,B(t)).

Remark 2: The mismatched bounded stochastic distur-
bances wi(t) (i = 1, 2, . . . , n) are quite general with strong
practical background. First, such disturbances cover those dis-
turbances without stochastic characteristics which have been
widely addressed by the ADRC approaches in the existing lit-
erature like [16], [23]–[28], and [30]–[33] where φi(·) are the
functions of the time variable t only, i.e., wi(t) � φi(t), and in
this case, the condition (2) in Assumption (A1) is reduced to be
the usual one that both the disturbances and their derivatives

with respect to the time are bounded. Second, mismatched
disturbances of stochastic characteristics are more natural and
common in practical systems and their classical derivatives
are even not required, which is novel in the theory of ADRC
and is more suitable for the requirements in engineering prac-
tice. Finally, the statistical characteristics of the mismatched
bounded stochastic disturbances are allowed to be unknown
because the functions φi(·) are unknown and the disturbances
are nonvanishing at the origin.

Let ν(t) be a time-varying reference signal which is sup-
posed to be continuously differentiable for n times, and
we denote (ν1(t), . . . , νn+1(t))� = (ν(t), . . . , ν(n)(t))�. The
reference signal ν(t) is supposed to satisfy Assumption (A2).

Assumption 2 (A2): There exists a known positive constant
M such that

sup
t≥0

(

|ν(t)| +
n∑

i=1

|ν(i)(t)|
)

≤ M. (3)

This article focuses on the output tracking problem of the
system (1). The control objective is to design an anti-
disturbance controller based on ADRC and the backstepping
strategy, guaranteeing that the closed-loop output y(t) can track
the reference signal ν(t) in practically mean-square sense with
satisfactory transient performance and good robustness, and at
the same time, the closed-loop states are practically bounded
in probability. Particularly, it should be noticed that engineers
usually require the output y(t) to be tracking the reference sig-
nal ν(t) not only in the steady state but also more importantly
in the transient process. That is, the output y(t) can track the
reference signal ν(t) uniformly in t ∈ [T,∞) for any posi-
tive constant T despite various kinds of bounded stochastic
disturbances.

III. BACKSTEPPING ADRC DESIGN AND

CONVERGENCE ANALYSIS

To overcome the obstacle that the mismatched bounded
stochastic disturbances cannot be refined into a stochastic total
disturbance in the control input channel by the state transfor-
mation, system (1) is regarded as a system of n connected
first-order subsystems. The stochastic disturbance in each first-
order subsystem can be regarded as an extended state variable
to be estimated by a second-order ESO. By applying the Itô
differentiation rule to the mismatched stochastic disturbances
wi(t) � φi(t,B(t)) (i = 1, 2, . . . , n), each first-order subsystem
is regarded as a second-order Itô-type stochastic one, that is,
system (1) is regarded as the one composed of n second-order
Itô-type stochastic systems as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t) = [xi+1(t)+ hi(x̄i(t))+ wi(t)]dt

dwi(t) =
⎡

⎣
∂φi(t,B(t))

∂t
+ 1

2

κ∑

j=1

∂2φi(t,B(t))

∂ϑ2
j

⎤

⎦dt

+ ∂φi(t,B(t))

∂ϑ
dB(t)

� ψi(t)dt + ψ∗
i (t)dB(t), 1 ≤ i ≤ n − 1

(4)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxn(t) = [hn(x(t))+ wn(t)+ u(t)]dt

dwn(t) =
⎡

⎣
∂φn(t,B(t))

∂t
+ 1

2

κ∑

j=1

∂2φn(t,B(t))

∂ϑ2
j

⎤

⎦dt

+ ∂φn(t,B(t))

∂ϑ
dB(t)

� ψn(t)dt + ψ∗
n (t)dB(t).

(5)

For each second-order Itô-type stochastic system, a second-
order ESO will be designed to estimate in real time the
extended state wi(t). Based on the estimates of the extended
state (bounded stochastic disturbances), the known system
functions, and the reference signal, a series of virtual con-
trol variables are constructed recursively to derive a Lyapunov
function specified in (36) and the actual backstepping ADRC
controller (37) later.

For (4) and (5), a set of second-order ESOs is designed as
follows:

{ ˙̂xi(t) = xi+1(t)+ hi(x̄i(t))+ ŵi(t)+ ai1r(xi(t)− x̂i(t))
˙̂wi(t) = ai2r2(xi(t)− x̂i(t)) 1 ≤ i ≤ n − 1

(6)
{ ˙̂xn(t) = hn(x(t))+ ŵn(t)+ u(t)+ an1r(xn(t)− x̂n(t))

˙̂wn(t) = an2r2(xn(t)− x̂n(t))
(7)

where x̂i(t) and ŵi(t) are, respectively, the estimates of states
xi(t) and the disturbances wi(t), r is a tuning gain parameter,
and aij (j = 1, 2) are the parameters guaranteeing the matrices

Ai =
(−ai1 1

−ai2 0

)

(8)

to be Hurwitz.
It should be pointed out that ESOs (6), (7) are known and

hence cannot contain unknown diffusion terms although all
the variables involved are stochastic processes. Set

⎧
⎪⎨

⎪⎩

ηi1 = r(xi − x̂i), ηi2 = wi − ŵi

ηi = (ηi1, ηi2)
�, 1 ≤ i ≤ n

�i = xi − x∗
i , 1 ≤ i ≤ n

(9)

where x∗
i are the virtual control variable designed recursively

later.
By (4)–(7) and the Itô differentiation rule, a direct compu-

tation shows that ηi(t) = (ηi1(t), ηi2(t))� satisfy the following
Itô-type stochastic differential equations (1 ≤ i ≤ n):

{
dηi1(t) = r(ηi2(t)− ai1ηi1(t))dt

dηi2(t) = −rai2ηi1(t)dt + ψi(t)dt + ψ∗
i (t)dB(t)

(10)

where ψi(·) and ψ∗
i (·) are defined as those in (4) and (5).

Next, we proceed the following steps for the backstepping
ADRC controller design based on the ESOs.

Step 1: Set

x∗
1 = ν. (11)

Choose the Lyapunov function

V1(t) = 1

2
�2

1(t)+ η�
1 (t)Q1η1(t) (12)

where Q1 is a positive-definite matrix solution satisfying
Q1A1 + A�

1 Q1 = −I2×2 with A1 given in (8).
By Assumption (A1) and Itô’s formula, we have

dV1 ≤ [
�1(x2 + h1(x1)+ w1 − ν2)− r‖η1‖2

+ 2λmax(Q1)‖η1‖ · |ψ1| + λmax(Q1)‖ψ∗
1 ‖2]dt

+ ∂η�
1 Q1η1

∂η12
ψ∗

1 dB(t)

≤ [ − r‖η1‖2 + �1x∗
2 + �1(x2 − x∗

2)+ �1h1(x1)+ �1w1

− �1ν2 + 2λmax(Q1)β1‖η1‖ + λmax(Q1)β1
]
dt

+ ∂η�
1 Q1η1

∂η12
ψ∗

1 dB(t) (13)

where ψ1 and ψ∗
1 are defined in (4). Design a virtual ADRC

controller x∗
2 based on a second-order ESO as

x∗
2 = −

(

r + 1

2ε1

)

�1 − h1(x1)− ŵ1 + ν2 (14)

where r is a tuning gain parameter, ε1 is a positive parameter
to be chosen later, and “−ŵ1” is a feedforward compensation
term designed to cancel the stochastic disturbance w1 in real
time.

By (14) and Young’s inequality, (13) can be estimated
further as

dV1 ≤
[

−r‖η1‖2 −
(

r + 1

2ε1

)

�2
1 + �1η12 + �1�2

+ 2λmax(Q1)β1‖η1‖ + λmax(Q1)β1

]

dt

+ ∂η�
1 Q1η1

∂η12
ψ∗

1 dB(t)

≤
[
−r‖η1‖2 − r�2

1 + ε1

2
|η12|2 + �1�2 + ε1

2
‖η1‖2

+ 2

ε1
λ2

max(Q1)β
2
1 + λmax(Q1)β1

]

dt

+ ∂η�
1 Q1η1

∂η12
ψ∗

1 dB(t)

≤ [ − (r − ε1)‖η1‖2 − r�2
1 + �1�2 + M1

]
dt

+ ∂η�
1 Q1η1

∂η12
ψ∗

1 dB(t) (15)

where we set

M1 = λmax(Q1)β1

(

1 + 2

ε1
λmax(Q1)β1

)

. (16)

Step 2: Choose the Lyapunov function

V2(t) = 1

2

2∑

j=1

�2
j (t)+

2∑

j=1

η�
j (t)Qjηj(t) (17)

where Q2 is the positive-definite matrix solution satisfying
Q2A2 + A�

2 Q2 = −I2×2 with A2 given in (8). By Assumption
(A1) and Itô’s formula, we can obtain

dV2 ≤
⎧
⎨

⎩
− (r − ε1)‖η1‖2 − r�2

1 + �1�2 + M1

+ �2(x3 + h2(x̄2)+ w2)
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− �2

⎡

⎣
∂x∗

2

∂x1
(x2 + h1(x1)+ w1)

+ ∂x∗
2

∂ŵ1
a12rη11 +

2∑

j=1

∂x∗
2

∂νj
νj+1

⎤

⎦ − r‖η2‖2

+ 2λmax(Q2)‖η2‖ · |ψ2| + λmax(Q2)‖ψ∗
2 ‖2

⎫
⎬

⎭
dt

+
2∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

≤
⎧
⎨

⎩
− (r − ε1)‖η1‖2 − r�2

1 + �1�2 + M1

+ �2(x
∗
3 + x3 − x∗

3 + h2(x̄2)+ w2)

− �2

⎡

⎣
∂x∗

2

∂x1
(x2 + h1(x1)+ w1)+ ∂x∗

2

∂ŵ1
a12rη11

+
2∑

j=1

∂x∗
2

∂νj
νj+1

⎤

⎦dt − r‖η2‖2

+ 2λmax(Q2)β2‖η2‖ + λmax(Q2)β2

⎫
⎬

⎭
dt

+
2∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (18)

where ψ2 and ψ∗
2 are defined in (4). Design a virtual ADRC

controller based on two second-order ESOs as

x∗
3 = −�2r�2 − �1 − h2(x̄2)− ŵ2

+ ∂x∗
2

∂x1
(x2 + h1(x1)+ ŵ1)+

2∑

j=1

∂x∗
2

∂νj
νj+1 (19)

where

�2r �
1

2ε2
+ 1

4ε2

(
∂x∗

2

∂x1

)2

+
(

1 + a2
12

4ε2

(
∂x∗

2

∂ŵ1

)2
)

r (20)

with r being a tuning gain parameter and ε2 being a positive
parameter to be chosen later, and “−ŵ2” is a feedforward com-
pensation term designed to cancel the stochastic disturbance
w2 in real time. By (18) and (19), we have

dV2 ≤
{

− (r − ε1)‖η1‖2 − r�2
1 + M1 −�2r�

2
2 + �2η22

− �2
∂x∗

2

∂x1
η12 + �2�3 − �2

∂x∗
2

∂ŵ1
a12rη11 − r‖η2‖2

+ 2λmax(Q2)β2‖η2‖ + λmax(Q2)β2

}

dt

+
2∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t). (21)

By Young’s inequality

�2η22 ≤ q
1

2ε2
�2

2 + ε2

2
‖η2‖2

− �2
∂x∗

2

∂x1
η12

≤ 1

4ε2

(
∂x∗

2

∂x1

)2

�2
2 + ε2‖η1‖2

− �2
∂x∗

2

∂ŵ1
a12rη11

≤ a2
12

4ε2

(
∂x∗

2

∂ŵ1

)2

r�2
2 + ε2r‖η1‖2

2λmax(Q2)β2‖η2‖ ≤ 2

ε2
λ2

max(Q2)β
2
2 + ε2

2
‖η2‖2. (22)

These, together with (21), yield

dV2 ≤ [ − (r − ε2r − ε1 − ε2)‖η1‖2 − (r − ε2)‖η2‖2

− r�2
1 − r�2

2 + �2�3 + M2
]
dt

+
2∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (23)

where we set

M2 =
2∑

j=1

λmax(Qj)βj

(

1 + 2

εj
λmax(Qj)βj

)

. (24)

Suppose that the above procedures are repeated through to
step i, that is, the virtual ADRC controllers x∗

j (j = 1, 2, . . . ,
i + 1) have been designed, and the Lyapunov function

Vi(t) =
i∑

j=1

1

2
�2

j (t)+
i∑

j=1

η�
j (t)Qjηj(t) (25)

satisfies

dVi ≤
⎧
⎨

⎩
−

i−1∑

k=1

⎡

⎣

⎛

⎝1 −
i∑

j=k+1

εj

⎞

⎠r −
i∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εi)‖ηi‖2 − r
i∑

j=1

�2
j + �i�i+1 + Mi

⎫
⎬

⎭
dt

+
i∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (26)

where for each 1 ≤ j ≤ i, Qj is the positive-definite matrix
solution satisfying QjAj +A�

j Qj = −I2×2 with Aj given in (8),
r is a tuning gain parameter, and εj is a positive parameter to
be chosen later. Set

x∗
i+1 = −�ir�i − �i−1 − hi(x̄i)− ŵi

+
i−1∑

j=1

∂x∗
i

∂xj
(xj+1 + hj(x̄j)+ ŵj)+

i∑

j=1

∂x∗
i

∂νj
νj+1

(27)

Mi =
i∑

j=1

λmax(Qj)βj

(

1 + 2

εj
λmax(Qj)βj

)

. (28)
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Step i + 1: Choose the Lyapunov function

Vi+1(t) = 1

2

i+1∑

j=1

�2
j (t)+

i+1∑

j=1

η�
j (t)Qjηj(t). (29)

By Assumption (A1), (26), and Itô’s formula, it can be
obtained that

dVi+1 ≤
⎧
⎨

⎩
−

i−1∑

k=1

⎡

⎣

⎛

⎝1 −
i∑

j=k+1

εj

⎞

⎠r −
i∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εi)‖ηi‖2 − r
i∑

j=1

�2
j + �i�i+1 + Mi

+ �i+1(x
∗
i+2 + xi+2 − x∗

i+2 + hi+1(x̄i+1)+ wi+1)

− �i+1

i∑

j=1

∂x∗
i+1

∂xj
(xj+1 + hj(x̄j)+ wj)

− �i+1

i∑

j=1

∂x∗
i+1

∂ŵj
aj2rηj1 − �i+1

i+1∑

j=1

∂x∗
i+1

∂νj
νj+1

− r‖ηi+1‖2 + 2λmax(Qi+1)βi+1‖ηi+1‖

+ λmax(Qi+1)βi+1

⎫
⎬

⎭
dt +

i+1∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t).

(30)

Design a virtual ADRC controller based on i+1 second-order
ESOs as follows:

x∗
i+2 = −�(i+1)r�i+1 − �i − hi+1(x̄i+1)− ŵi+1

+
i∑

j=1

∂x∗
i+1

∂xj

(
xj+1 + hj

(
x̄j
) + ŵj

) +
i+1∑

j=1

∂x∗
i+1

∂νj
νj+1 (31)

where

�(i+1)r �
1

2εi+1
+ 1

4εi+1

i∑

j=1

(
∂x∗

i+1

∂xj

)2

+
⎛

⎝1 + 1

4εi+1

i∑

j=1

a2
j2

(
∂x∗

i+1

∂ŵj

)2
⎞

⎠r (32)

with r being a tuning gain parameter and εi+1 being a positive
parameter to be chosen later, and “−ŵi+1” is a feedfor-
ward compensation term designed to cancel the stochastic
disturbance wi+1 in real time.

For all 1 ≤ j ≤ i, it follows from Young’s inequality that:

− �i+1η(i+1)2 ≤ 1

2εi+1
�2

i+1 + εi+1

2
‖ηi+1‖2

− �i+1
∂x∗

i+1

∂xj
ηj2

≤ 1

4εi+1

(
∂x∗

i+1

∂xj

)2

�2
i+1 + εi+1‖ηj‖2

− �i+1r
∂x∗

i+1

∂ŵj
aj2ηj1

≤ a2
j2

4εi+1

(
∂x∗

i+1

∂ŵj

)2

r�2
i+1 + εi+1r‖ηj‖2

2λmax(Qi+1)βi+1‖ηi+1‖ ≤ 2

εi+1
λ2

max(Qi+1)β
2
i+1

+ εi+1

2
‖ηi+1‖2. (33)

By (30), (31), and (33), we have

dVi+1 ≤
⎧
⎨

⎩
−

i−1∑

k=1

⎡

⎣

⎛

⎝1 −
i∑

j=k+1

εj

⎞

⎠r −
i∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εi)‖ηi‖2 − r
i∑

j=1

�2
j + Mi −�(i+1)r�

2
i+1

+ �i+1�i+2 − �i+1η(i+1)2 − �i+1

i∑

j=1

∂x∗
i+1

∂xj
ηj2

− �i+1r
i∑

j=1

∂x∗
i+1

∂ŵj
aj2ηj1 − r‖ηi+1‖2

+ 2λmax(Qi+1)βi+1‖ηi+1‖ + λmax(Qi+1)βi+1

⎫
⎬

⎭
dt

+
i+1∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

≤
⎧
⎨

⎩
−

i−1∑

k=1

⎡

⎣

⎛

⎝1 −
i∑

j=k+1

εj

⎞

⎠r −
i∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εi)‖ηi‖2 − r
i∑

j=1

�2
j + Mi − r�2

i+1

+ �i+1�i+2 + εi+1

i∑

j=1

‖ηj‖2 + εi+1r
i∑

j=1

‖ηj‖2

+ εi+1‖ηi+1‖2 − r‖ηi+1‖2

+ λmax(Qi+1)βi+1

(

1 + 2

εi+1
λmax(Qi+1)βi+1

)
⎫
⎬

⎭
dt

+
i+1∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

=
⎧
⎨

⎩
−

i∑

k=1

⎡

⎣

⎛

⎝1 −
i+1∑

j=k+1

εj

⎞

⎠r −
i+1∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εi+1)‖ηi+1‖2

− r
i+1∑

j=1

�2
j + �i+1�i+2 + Mi+1

⎫
⎬

⎭
dt

+
i+1∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (34)

where

Mi+1 =
i+1∑

j=1

λmax(Qj)βj

(

1 + 2

εj
λmax(Qj)βj

)

. (35)
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Step n: In the final step, the actual ADRC controller u
appears. Choose the Lyapunov function

Vn(t) = 1

2

n∑

j=1

�2
j (t)+

n∑

j=1

η�
j (t)Qjηj(t). (36)

The actual ADRC controller u based on n second-order ESOs
is designed as follows:

u = x∗
n+1 = −�nr�n − �n−1 − hn(x̄n)− ŵn

+
n−1∑

j=1

∂x∗
n

∂xj
(xj+1 + hj(x̄j)+ ŵj)+

n∑

j=1

∂x∗
n

∂νj
νj+1 (37)

where

�nr �
1

2εn
+ 1

4εn

n−1∑

j=1

(
∂x∗

n

∂xj

)2

+
⎛

⎝1 + 1

4εn

n−1∑

j=1

a2
j2

(
∂x∗

n

∂ŵj

)2
⎞

⎠r

(38)

with r being a tuning gain parameter and εn being a positive
parameter to be chosen later, and “−ŵn” is a feedforward com-
pensation term designed to cancel the stochastic disturbance
wn in real time.

Compared with the existing literature addressing the back-
stepping ADRC for uncertain systems, a major difficulty in
this article is that the states of the closed loop are difficult or
impossible to be bounded almost surely because they are the
states of an essentially Itô-type stochastic nonlinear system.
This makes many available techniques in nonlinear system
control not applicable to arrive at the convergence of the
closed-loop system. Some novel techniques are adopted here
to show practical boundedness in the probability of the closed
loop first defined in this article. The convergence of the closed
loop of system (1) under control (37) can be summed up as
the following theorem (Theorem 1).

Theorem 1: Suppose that Assumptions (A1) and (A2) hold.
Then, there exist positive constant C independent of the tuning
gain parameter r and a positive constant r∗, such that for any
r > r∗, any initial values x(0) ∈ R

n, x̂(0) ∈ R
n, ŵ(0) ∈ R

n

and any positive constant T , there exists globally a unique
strong solution x(t), ŵ(t) to the closed loop of system (1)
under control (37) and it has the following convergence.

1) The estimation errors satisfy

E|wi(t)− ŵi(t)|2 ≤ C

r
, i = 1, 2, . . . , n (39)

which is uniformly in t ∈ [T,∞).
2) The closed-loop output y(t) tracks the reference signal

ν(t) in practically mean square in the sense that

E|y(t)− ν(t)|2 ≤ C

r
(40)

which is uniformly in t ∈ [T,∞).
3) For each i = 1, 2, . . . , n, the closed-loop state xi(t) is

practically bounded in probability in the sense that there

exists a monotonically decreasing non-negative func-
tion γi satisfying limr→∞ γi(r) = 0 and a non-negative
function Ni, such that

P{|xi(t)| < Ni(r)} ≥ 1 − γi(r) (41)

which is uniformly in t ∈ [T,∞).
Proof: It follows from the above recursive steps that:

dVn ≤
⎧
⎨

⎩
−

n−1∑

k=1

⎡

⎣

⎛

⎝1 −
n∑

j=k+1

εj

⎞

⎠r −
n∑

j=k

εj

⎤

⎦‖ηk‖2

− (r − εn)‖ηn‖2 − r
n∑

j=1

�2
j + Mn

⎫
⎬

⎭
dt

+
n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (42)

with

Mn =
n∑

j=1

λmax(Qj)βj

(

1 + 2

εj
λmax(Qj)βj

)

. (43)

The above positive parameters εj (j = 1, 2, . . . , n) are chosen
such that ε∗ �

∑n
j=1 εj < (1)/(2), and the gain parameter r

is chosen such that r > r∗ � max{(ε∗)/(1 − 2ε∗), 1} in what
follows. It then follows from (42) that:

dVn ≤
{

−
n−1∑

k=1

[(
1 − ε∗

)
r − ε∗

]‖ηk‖2 − (r − ε∗)‖ηn‖2

− r
n∑

j=1

�2
j + Mn

⎫
⎬

⎭
dt +

n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

≤
⎧
⎨

⎩
−[(1 − ε∗)r − ε∗]

n∑

j=1

‖ηj‖2 − r
n∑

j=1

�2
j + Mn

⎫
⎬

⎭
dt

+
n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

≤
⎧
⎨

⎩
− ε∗r

max1≤j≤n λmax(Qj)

n∑

j=1

η�
j Qjηj − r

n∑

j=1

�2
j

+ Mn

⎫
⎬

⎭
dt +

n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

≤ [ − rC1Vn + Mn]dt +
n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t) (44)

where C1 � min{[(ε∗)/(max1≤j≤n λmax(Qj))], 2}. It is easy
to conclude that there exists globally a unique strong solution
(��(t), η�(t))� and hence there exists globally a unique strong
solution x(t), ŵ(t) to the closed loop of system (1) under the
ADRC controller (37). By (44)

d[erC1tVn(t)] ≤ erC1tMndt + erC1t
n∑

j=1

∂η�
j Qjηj

∂ηj2
ψ∗

j dB(t)

(45)
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and so

Vn(t) ≤ e−rC1tVn(0)+
∫ t

0
e−rC1(t−s)Mnds

+
∫ t

0
e−rC1(t−s)

n∑

j=1

∂η�
j (s)Qjηj(s)

∂ηj2
ψ∗

j (s)dB(s).

(46)

Since ηj(t) (j = 1, 2, . . . , n) satisfy the Itô-type stochastic dif-
ferential equations (10), it is also easy to conclude that for all
t ≥ 0,

∫ t
0 e−rC1(t−s)∑n

j=1 [(∂η�
j (s)Qjηj(s))/(∂ηj2)]ψ∗

j (s)dB(s)
is a martingale (not just a local martingale). By taking
expectation on both sides of (46), there holds

EVn(t) ≤ e−rC1t
EVn(0)+ Mn

rC1
. (47)

It can be easily concluded that

EVn(0) ≤ 1

2

n∑

j=1

E|xj(0)− x∗
j (0)|2 +

n∑

j=1

λmax(Qj)

[
r2|xj(0)− x̂j(0)|2 + E|wj(0)− ŵj(0)|2

]

≤ C2r2 (48)

for some positive constant

C2 � 1

2

n∑

j=1

E|xj(0)− x∗
j (0)|2 +

n∑

j=1

λmax(Qj)

×
[
|xj(0)− x̂j(0)|2 + E|wj(0)− ŵj(0)|2

]
(49)

independent of r. Hence, for any T > 0 and t ∈ [T,∞), it has

e−rC1t
EVn(0) ≤ e−rC1TC2r2 ≤ C3

r
(50)

where C3 � sups∈(r∗,∞) e−sC1TC2s3 is a positive constant inde-
pendent of r. Let C4 = max{C3, (Mn)/(C1)}. By (47) and (50),
it follows that for any T > 0:

EVn(t) ≤ C4

r
uniformly in t ∈ [T,∞). (51)

Therefore, for any T > 0

E|wi(t)− ŵi(t)|2 = E|ηi2(t)|2 ≤ E‖ηi(t)‖2

≤ C4

min1≤i≤n λmin(Qi)r
≤ C

r
(52)

E|y(t)− ν(t)|2 = E|�1(t)|2 ≤ 2EVn(t) = 2C4

r
≤ C

r
(53)

both uniformly in t ∈ [T,∞), where

C � max

{

2C4,
C4

min1≤i≤n λmin(Qi)

}

. (54)

This completes the proof of assertions 1) and 2). It remains
to prove assertion 3). Indeed, by (51), it follows that for any
T > 0, there holds:

E‖�(t)‖2 ≤ 2EVn(t) ≤ C

r
uniformly in t ∈ [T,∞).

(55)

By Chebyshev’s inequality (see [37, p. 5]), for any positive
constant λ > 0 and any t ∈ [T,∞)

P{‖�(t)‖ ≥ λ} ≤ 1

λ2
E‖�(t)‖2 ≤ C

λ2r
(56)

which means that

P{|�i(t)| < λ} ≥ 1 − C

λ2r
, i = 1, 2, . . . , n. (57)

Similarly, it follows from (52), the boundedness of wi(t) (i =
1, 2, . . . , n) in Assumption (A1), the boundedness of νi(t) (i =
2, . . . , n) in Assumption (A2), and Chebyshev’s inequality
again, we can easily conclude that

P{|ŵi(t)| < λr} ≥ 1 − 1

λ2r2

(
2C

r
+ 2β2

i

)

i = 1, . . . , n (58)

P{|νi(t)| < λr} ≥ 1 − M2

λ2r2
, i = 2, . . . , n. (59)

We only give a detailed proof of (58) with (59) being similarly
concluded. Actually for a random variable X, Chebyshev’s
inequality (see [37, p. 5]) is

P{ω:|X(ω)| ≥ c} ≤ c−p
E|X|p

whenever c > 0, p > 0,X ∈ Lp. Since

P{|ŵi(t)| ≥ λr} ≤ 1

λ2r2
E|ŵi(t)|2

≤ 1

λ2r2
[2E|wi(t)− ŵi(t)|2 + 2E|wi(t)|2]

≤ 1

λ2r2

(
2C

r
+ 2β2

i

)

.

Equation (58) can then be concluded from

P{|ŵi(t)| < λr} = 1 − P{|ŵi(t)| ≥ λr}
≥ 1 − 1

λ2r2

(
2C

r
+ 2β2

i

)

.

By (53) and the boundedness of the reference signal ν1(t)
in Assumption (A2), we have

E|x1(t)|2 = E|y(t)|2 ≤ 2C

r
+ 2M2. (60)

Again, by Chebyshev’s inequality further, for any positive
constant λ > 0 and any t ∈ [T,∞)

P{|x1(t)| < N1(r)} ≥ 1 − γ1(r) (61)

where we denote

N1(r) = λr, γ1(r) = 1

λ2r2

(
2C

r
+ 2M2

)

. (62)

It can be seen that γ1 is a monotonically decreasing function
satisfying limr→∞ γ1(r) = 0.

The practical boundedness in the probability of xi(t) (i =
2, . . . , n) can be proved successively. This is because xi(t) =
�i(t) + x∗

i (t) (i = 2, . . . , n) so that the practical boundedness
in the probability of xi(t) can be concluded by the practical
boundedness in the probability of �i(t) obtained in (57) and
the practical boundedness in the probability of x∗

i (t), which
are proven step by step as well as they are designed.
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We first show in detail the practical boundedness in the
probability of the virtual ADRC controller x∗

2(t) designed
in (14). From (14), it is seen that x∗

2(t) is a combination of
�1(t), h1(x1(t)), ŵ1(t), and ν2(t) by the scalar multiplication
operation and the addition and subtraction operations. The key
step to obtain the practical boundedness in the probability of
x∗

2(t) is to have the same property of �1(t), h1(x1(t)), ŵ1(t),
and ν2(t). By (57)

P

{∣
∣
∣
∣

(

r + 1

2ε1

)

�1(t)

∣
∣
∣
∣ < λ

(

r + 1

2ε1

)}

≥ 1 − C

λ2r
.

(63)

Denote the maximal value of the continuous function h1
on the compact set [0,N1(r)] as α1(r), that is, α1(r) �
maxs∈[0,N1(r)] |h1(s)|.

By (61) and the continuity of the function h1, we also have

P{|h1(x1(t))| ≤ α1(r)} ≥ 1 − γ1(r). (64)

Then

P

{∣
∣
∣
∣

(

r + 1

2ε1

)

�1(t)| + |h1(x1(t))

∣
∣
∣
∣ < λ

(

r + 1

2ε1

)

+ α1(r)

}

≥ P

({∣
∣
∣
∣

(

r + 1

2ε1

)

�1(t)

∣
∣
∣
∣ < λ

(

r + 1

2ε1

)}

∩{|h1(x1(t))| ≤ α1(r)}
)

≥ P

{∣
∣
∣
∣

(

r + 1

2ε1

)

�1(t)

∣
∣
∣
∣ < λ

(

r + 1

2ε1

)}

− P({|h1(x1(t))| ≤ α1(r)}c)

≥ 1 − C

λ2r
− γ1(r). (65)

Similarly, by (58) and (59), we have

P{|ŵ1(t)| + |ν2(t)| < 2λr}
≥ P({|ŵ1(t)| < λr} ∩ {|ν2(t)| < λr})
≥ P{|ŵ1(t)| < λr} − P({|ν2(t)| < λr}c)

≥ 1 − 1

λ2r2

(
2C

r
+ 2β2

1

)

− M2

λ2r2
. (66)

Therefore, by the virtual ADRC controller x∗
2(t) designed

in (14) and (65)–(66), similar to the procedures in (65) or (66),
we conclude that for any t ∈ [T,∞), there holds

P

{

|x∗
2(t)| <

λ

2ε1
+ 3λr + α1(r)

}

≥ 1 −
[

C

λ2r
+ γ1(r)+ 1

λ2r2

(
2C

r
+ 2β2

1

)

+ M2

λ2r2

]

.

(67)

Therefore, it follows from (57) and (67) that:

P{|x2(t)| = |�2(t)+ x∗
2(t)| < N2(r)}

≥ P

(

{|�2(t)| < λ} ∩
{

|x∗
2(t)| <

λ

2ε1
+ 3λr + α1(r)

})

≥ P{|�2(t)| < λ} − P

({

|x∗
2(t)| <

λ

2ε1
+ 3λr + α1(r)

}c)

≥ 1 − γ2(r) (68)

where we denoted

N2(r) = λ+ λ

2ε1
+ 3λr + α1(r)

γ2(r) = γ1(r)+ 2C

λ2r
+ 1

λ2r2

(
2C

r
+ 2β2

1 + M2
)

(69)

and it can be seen that γ2 is a monotonically decreasing
function satisfying limr→∞ γ2(r) = 0.

It should be emphasized again that, for all i = 3, . . . , n, the
virtual ADRC control x∗

i (t) is recursively designed by

x∗
i = −�(i−1)r�i−1 − �i−2 − hi−1(x̄i−1)− ŵi−1

+
i−2∑

j=1

∂x∗
i−1

∂xj
(xj+1 + hj(x̄j)+ ŵj)+

i−1∑

j=1

∂x∗
i−1

∂νj
νj+1

(70)

which are a combination of �j(t) (j = i − 2, i − 1), ŵj(t) (j =
1, 2, . . . , i − 1), νj(t) (j = 2, . . . , i), and gi−1(x̄i−1(t)) for
some continuous functions gi−1 guaranteed by the smooth
assumption on hi with the scalar multiplication operation,
the addition and subtraction operations, and the multiplica-
tion. First, we notice that the boundedness in the probability
of �j(t) (j = i − 2, i − 1), ŵj(t) (j = 1, 2, . . . , i − 1), and
νj(t) (j = 2, . . . , i) are always true as presented in (57), (58),
and (59), respectively. Thus, if the practical boundedness in
the probability of x̄i−1(t) has been concluded, similar to the
above derivations (61) and (64), the practical boundedness
in the probability of gi−1(x̄i−1(t)) can be concluded. Similar
to the derivations of (63), (65), and (66), we can conclude
that the scalar multiplication operation and the addition and
subtraction operation among �j(t) (j = i − 2, i − 1), ŵj(t) (j =
1, 2, . . . , i−1), νj(t) (j = 2, . . . , i), and gi−1(x̄i−1(t)) will keep
the practical boundedness in probability. Next, we will prove
that the case by the multiplication operation is still true. That
is, for any two stochastic processes q1(t) and q2(t) which are
practical boundedness in probability, q1(t)q2(t) is still practical
boundedness in probability. Actually, suppose that

P{|q1(t)| < α∗
1(r)} ≥ 1 − γ ∗

1 (r) (71)

P{|q2(t)| < α∗
2(r)} ≥ 1 − γ ∗

2 (r) (72)

where γ ∗
j (j = 1, 2) are monotonically decreasing non-

negative functions satisfying limr→∞ γ ∗
j (r) = 0 (j = 1, 2)

and α∗
j (j = 1, 2) are non-negative functions. Then

P{|q1(t) · q2(t)| < α∗
1(r) · α∗

2(r)}
≥ P({|q1(t)| < α∗

1(r)} ∩ {|q2(t)| < α∗
2(r)})

≥ P{|q1(t)| < α∗
1(r)} − P({q2(t)| < α∗

2(r)}c)

≥ 1 − γ ∗
1 (r)− γ ∗

2 (r) (73)

which concludes the practical boundedness in the probabil-
ity of q1(t)q2(t). In a word, the practical boundedness in the
probability of x∗

i (t) can be obtained and then the practical
boundedness in the probability of xi(t) could also be concluded
for i = 3, . . . , n. Altogether, we could conclude recursively
that there exist two non-negative functions Ni and γi, such
that for any t ∈ [T,∞), it holds

P{|xi(t)| < Ni(r)} ≥ 1 − γi(r), i = 3, . . . , n (74)
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where γi are monotonically decreasing functions satisfying
limr→∞ γi(r) = 0. These procedures are as clear as stated
above yet are tedious and we omit some trivial details. This
completes the proof of Theorem 1.

Remark 3: The parameters in the ADRC controller (37)
are the gain parameter r, εj (j = 1, 2, . . . , n), and ai2 (i =
1, 2, . . . , n − 1). To guarantee the convergence of the result-
ing closed loop of system (1) under control (37) shown
by Theorem 1, they are chosen by the principle of the
following.

1) r > r∗ � max{(ε∗)/(1 − 2ε∗), 1}, where εj (j =
1, 2, . . . , n) are some small positive parameters satis-
fying ε∗ �

∑n
j=1 εj < (1)/(2).

2) ai2 (i = 1, 2, . . . , n−1) are chosen to make the matrices
defined in (8) be Hurwitz.

In addition, it is shown from (39) and (40) in Theorem 1 that
the higher the estimation and tracking accuracy is required, the
larger the gain parameter r needs to be tuned. That is, large
gain parameter r can make satisfactory estimation and track-
ing accuracy. Nevertheless, the peaking values of the ADRC
controller (37) resulted from a large gain parameter should be
also taken into consideration.

Remark 4: It is especially pointed out that the convergence
of the output tracking error is addressed by the “practically
mean square” sense in Theorem 1, where the “practicabil-
ity” is demonstrated by the fact that the transient tracking
performance is guaranteed by tuning the gain parameter r. In
addition, it should also be noted that the boundedness of the
closed-loop states is addressed by the “practically bounded in
probability” sense. The practicability could be embodied by
the fact that the probability of the boundedness of the closed-
loop states is regulated by the gain parameter r, which can
be as large as possible by regulating the γi(r) but the bounds
Ni(r) may amplify at the same time. This is coincident to the
reality.

Remark 5: By tuning the gain parameter r, (40) means
that the tracking error can be regulated to be arbitrarily
small. It is also noticed that (40) indicates the transient
tracking performance but not only the steady tracking one
given in the existing literature. Actually, the steady tracking
performance can be obtained directly by (47) in the above
proof that

lim sup
t→∞

E|y(t)− ν(t)|2 ≤ 2Mn

rC1
(75)

where (2Mn)/(C1) ≤ C. This means a reasonable fact that
the steady tracking performance could be more satisfactory
than the transient tracking one. It is also worth mention-
ing that both the estimation performance and the tracking
performance are related to the parameter C which has a
positive correlation with the initial estimation/tracking errors
|xj(0) − x̂j(0)|, E|wj(0) − ŵj(0)|2, and E|xj(0) − x∗

j (0)|2.
The key point to optimize this parameter is to minimize
these initial estimation/tracking errors. However, an accurate
evaluation of the parameter C would be very sophisticated
because there are many implicit and explicit parameters
involved.

IV. NUMERICAL SIMULATIONS

A. Numerical Example

In this section, some numerical simulations are presented
to demonstrate the effectiveness of the proposed backstepping
ADRC approach. Consider the following second-order nonlin-
ear systems with mismatched bounded stochastic disturbances:

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t)+ h1(x1(t))+ w1(t)

ẋ2(t) = h2(x1(t), x2(t))+ w2(t)+ u(t)

y(t) = x1(t)

(76)

where hi (i = 1, 2) and wi(t) (i = 1, 2) are known
system functions and unknown bounded stochastic distur-
bances, respectively. In particular, w1(t) � c1 cos(c2t +
c3B1(t)) and w2(t) � c4 sin(c5t + c6B2(t)) in system (76)
are bounded stochastic noises existing in many practical
dynamical systems such as the motion of oscillators [38], [39],
where ci (i = 1, 2, . . . , 6) are unknown parameters with a
known bound, and B(t) = (B1(t),B2(t))� is a two-dimensional
standard Brownian motion. Let ν(t) = sin(2t+1) be the refer-
ence signal. Now, we design a backstepping ADRC controller
to guarantee that the output y(t) of system (76) tracks the
reference signal sin(2t + 1) in practically mean square with
good transient performance and robustness and the states are
practically bounded in probability. Two second-order ESOs for
system (76) are designed as follows:

{ ˙̂x1(t) = x2(t)+ h1(x1(t))+ ŵ1(t)+ 2r(x1(t)− x̂1(t))
˙̂w1(t) = 3r2(x1(t)− x̂1(t))

(77)
{ ˙̂x2(t) = h2(x̄2(t))+ ŵ2(t)+ u(t)+ 2r(x2(t)− x̂2(t))

˙̂w2(t) = 3r2(x2(t)− x̂2(t))
(78)

where the matrices in (8) are specified as

A1 = A2 =
(−2 1

−3 0

)

(79)

which is Hurwitz for their eigenvalues are −1±√
2i. To illus-

trate the controller design more clearly, the known nonlinear
functions hi (i = 1, 2) in the following numerical simulations
are specified as:

h1(x1) = x2
1 + x3

1 + ex1 , h2(x1, x2) = x3
1 + x2 + x4

2 + ex2
1+x2 .

(80)

In this case, the actual backstepping ADRC controller u is
designed as follows:

u = −�2r(x2 − x∗
2)− (x1 − sin(2t + 1))

− (x3
1 + x2 + x4

2 + ex2
1+x2)− ŵ2

−
(

r + 1

2ε1
+ 2x1 + 3x2

1 + ex1

)

× (x2 + x2
1 + x3

1 + ex1 + ŵ1)

+ 2

(

r + 1

2ε1

)

cos(2t + 1)− 4 sin(2t + 1) (81)
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Fig. 1. Output tracking, the boundedness of the state x2(t), and the estima-
tion of bounded stochastic noises of the closed-loop system (76) under the
backstepping ADRC controller (81) with r = 10 and uncertain parameters
given in (85).

where

�2r = 1

2ε2
+ 1

4ε2

[

r + 1

2ε1
+ 2x1 + 3x2

1 + ex1

]2

+
(

1 + 9

4ε2

)

r (82)

and x∗
2 is a virtual control defined by

x∗
2 = −

(

r + 1

2ε1

)

(x1 − sin(2t + 1))− x2
1 − x3

1

− ex1 − ŵ1 + 2 cos(2t + 1). (83)

The parameters r and εi (i = 1, 2) are chosen as r = 10
and ε1 = ε2 = 0.2. Figs. 1 and 2 show the numerical results
for (76)–(81) where we take the initial values as

x1(0) = 1, x2(0) = −1

x̂1(0) = x̂2(0) = ŵ1(0) = ŵ2(0) = 0. (84)

In Fig. 1, the uncertain parameters ci (i = 1, 2, . . . , 6) are
specified as

c1 = c2 = c3 = 1, c4 = c5 = c6 = 2. (85)

It is seen from Fig. 1(c) and (d) that the estimation effects of
the ESOs (77) and (78) for bounded stochastic disturbances
w1(t) and w2(t) are very satisfactory. It is also observed from
Fig. 1(a) that the output y(t) of the closed loop (76) under
control (81) is very effective in tracking the reference signal
sin(2t + 1), and from Fig. 1(b), we can see that the absolute
value of the closed-loop state x2(t) is within 10 in a long time.

Fig. 2(a) and (b) presents the numerical results for (76)–(81)
with uncertain parameters ci (i = 1, 2, . . . , 6) chosen as

c1 = c2 = c3 = 2, c4 = 3, c5 = c6 = 4 (86)

Fig. 2. Output tracking of the closed-loop system (76) under the backstepping
ADRC controller (81) with r = 10 and uncertain parameters given in (86)
and (87).

Fig. 3. Output tracking of the closed-loop system (76) under the backstepping
ADRC controller (81) with r = 3 and uncertain parameters given as ci =
8 (i = 1, . . . , 6) and ci = 10 (i = 1, . . . , 6).

and

c1 = c2 = c3 = 3, c4 = 4, c5 = c6 = 5 (87)

respectively.
It should be noticed that the uncertain parameters ci (i =

1, 2, . . . , 6) in (86) and (87) are larger than the ones in (85),
which means that the intensity of bounded stochastic distur-
bances becomes stronger. However, we observe clearly from
Fig. 2(a) and (b) that the output y(t) of the closed loop under
the backstepping ADRC controller (81) still tracks the refer-
ence signal sin(2t + 1) with very satisfactory effects, which
validates that the proposed backstepping ADRC controller has
a good robustness.

To further verify the effectiveness of the proposed back-
stepping ADRC approach, the gain parameter is chosen to be
smaller as r = 3 while the uncertain parameters are increased
as ci = 8 (i = 1, . . . , 6) and ci = 10 (i = 1, . . . , 6). It can be
seen that the tracking effects are comparatively ineffective in
Fig. 3 compared with Figs. 1 and 2. This shows that control
effects can be significantly improved by an appropriate gain
parameter.

B. Application to Practical Example

A simple one-link robot manipulator driven directly by a
current-controlled permanent magnet dc motor with a servo
electrical driver is considered in this section which has been
addressed by the active disturbance rejection adaptive control
in [40]. The kinematic equation of the inertia load is described
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Fig. 4. Output tracking of the closed-loop system (89) under the back-
stepping ADRC controller (95) with r = 10 and uncertain parameters given
in (90)–(93), respectively.

by [40]

Jq̈(t) = Kθ θ(t)− [α1q̇(t)+ α2 tanh(β1q̇(t))

+ α3(tanh(β2q̇(t))

− tanh(β3q̇(t))] − Td(t)

L
dθ(t)

dt
= Kuu(t)− Rθ(t)− Keq̇(t) (88)

where q(t) and J represent, respectively, the angular displace-
ment and the inertia load, Kθ denotes the torque constant
with respect to the unit of current, θ(t) is the control cur-
rent, Td(t) is the time-varying external disturbance, the term
α1q̇(t)+α2 tanh(β1q̇(t))+α3(tanh(β2q̇(t))− tanh(β3q̇(t))) rep-
resents the nonlinear friction behaviors originally modeled
in [41] with αi (i = 1, 2, 3) being different friction levels
and βi (i = 1, 2, 3) being various shape coefficients, L is the
armature inductance of the motor, Ku is the electrical gain, R
is the armature resistance of the motor, u(t) is the control input
voltage, and Ke is the electromotive force coefficient, see [40]
for more detailed explanations of the physical meanings.

Set the state variable x(t) = (x1(t), x2(t), x3(t))� =
(q(t), q̇(t), (Kθ )/(J)θ(t))�. System (88) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)− 1

J
[α1x2(t)+ α2 tanh(β1x2(t))

+ α3(tanh(β2x2(t))− tanh(β3x2(t)))]

− Td(t)

J

ẋ3(t) = KθKu

JL
u(t)− R

L
x3(t)− KθKe

JL
x2(t).

(89)

The desired motion trajectory of the angular displacement
in the simulation is given as ν(t) = 0.5 sin(1.5t)rad. Compared
with the time-varying external disturbance Td(t) = 0.15 sin(t)
in [40], we consider it to be more general bounded stochas-
tic noise case: Td(t) = c1 sin(c2t + c3B1(t)) with unknown
parameters ci (i = 1, 2, 3), where the uncertain parameters
ci (i = 1, 2, 3) in Fig. 4(a)–(d) are chosen as

c1 = c2 = c3 = 2 (90)

c1 = c2 = c3 = 3 (91)

c1 = c2 = c3 = 4 (92)

and

c1 = c2 = c3 = 5 (93)

respectively. Set w(t) = −[(Td(t))/(J). A second-order ESO
is designed to estimate the mismatched stochastic disturbance
w(t) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂x2(t) = x3(t)− 1

J
[α1x2(t)+ α2 tanh(β1x2(t))

+ α3(tanh(β2x2(t))− tanh(β3x2(t)))]

+ ŵ(t)+ 2r(x2(t)− x̂2(t))
˙̂w(t) = 3r2(x2(t)− x̂2(t)).

(94)

The actual backstepping ADRC controller u is designed as
follows:

u = JL

KθKu

{

−�3r(x3 − x∗
3)− (x2 − x∗

2)

+
(

R

L
x3 + KθKe

JL
x2

)

−
[

1 +�2r

(

r + 1

2ε1

)]

x2

+
[

−�2r + α1

J
+ β1α2

J
(1 − tanh2(β1x2))

+ α3

J
(β2(1 − tanh2(β2x2))

− β3(1 − tanh2(β3x3)))
]

×
{

x3 − 1

J
[α1x2 + α2 tanh(β1x2)

+α3(tanh(β2x2)− tanh(β3x2))] + ŵ

}

+ 0.75 cos(1.5t)+�2r

(

r + 1

2ε1
+ 1

)

− 9

8

(

r + 1

2ε1

)

sin(1.5t)− 27

16
cos(1.5t)

}

(95)

where

�2r = 1

2ε2
+ 1

4ε2

(

r + 1

2ε1

)2

+ r (96)

�3r = 1

2ε3
+ 1

4ε3

{(

�2r

(

r + 1

2ε1

)

+ 1

)2

+
[

−�2r + α1

J
+ β1α2

J
(1 − tanh2(β1x2))

+ α3

J
(β2(1 − tanh2(β2x2))
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− β3(1 − tanh2(β3x2)))

−
(

r + 1

2ε1

)]2
}

+
(

1 + 9

4ε3

)

r (97)

x∗
2 = −

(

r + 1

2ε1

)

(x1 − 0.5 sin(1.5t))+ 0.75 cos(1.5t) (98)

x∗
3 = −�2r(x2 − x∗

2)− (x1 − 0.5 sin(1.5t))

+ 1

J
[α1x2 + α2 tanh(β1x2)+ α3(tanh(β2x2)

− tanh(β3x2))] − ŵ

−
(

r + 1

2ε1

)

x2 + 0.75

(

r + 1

2ε1

)

cos(1.5t)

− 9

8
sin(1.5t). (99)

The related physical parameters of the controlled system in
Fig. 3 are chosen as the same as those in [40]

J = 0.01,L = 0.05,R = 2.5,Kθ = 1.75,Ku = 2

Ke = 1, α1 = 0.1, α2 = 0.05, α3 = 1.025

β1 = 700, β2 = 15, β3 = 1.5. (100)

In Fig. 4, the parameters r and εi (i = 1, 2, 3) are chosen as
r = 10 and εi = 0.15 (i = 1, 2, 3), and the initial values are
x1(0) = x2(0) = x3(0) = x̂2(0) = ŵ(0) = 0.

It can be seen from Fig. 4 that the tracking effect of the
angular displacement state variable x1(t) of the closed loop
of (89) under the control (95) to the desired motion trajec-
tory ν(t) = 0.5 sin(1.5t) rad is very satisfactory under four
different noise intensities. The good tracking performance is
maintained even the uncertain parameters ci (i = 1, 2, 3) are
increased from ci = 2 to ci = 3, ci = 4, and ci = 5, which
demonstrate the good robustness of the designed backstepping
ADRC controller.

V. CONCLUSION

In this article, an output tracking problem of a class of lower
triangular nonlinear systems subject to mismatched bounded
stochastic disturbances of unknown statistic characteristics and
nonvanishing at the origin is addressed by combining the
ADRC approach with the backstepping control strategy. The
mismatched bounded stochastic disturbance in each channel
is, in real time, estimated by a second-order ESO, and then an
ESOs-based backstepping ADRC controller is constructed to
obtain desired closed-loop performances. It is shown that the
output of the resulting closed loop tracks a time-varying refer-
ence signal in practically mean-square sense with not only the
steady performance but also the more significant transient one.
In addition, some novel techniques in the theoretical proofs are
adopted to obtain that the closed-loop states are practically
bounded in probability, which is first defined in this article,
where the theoretical results and robustness of the proposed
controller are confirmed by some numerical simulations.

In addition, we point out some potential interesting prob-
lems that could be further considered. First, it is worth noting
that the existing ESO designs cannot be used for the real-
time estimation of external disturbance or uncertainty of the
uncertain Itô-type stochastic systems because of the Hessian

term caused by the Itô differentiation. It would be therefore
interesting to develop the ADRC approach for the uncer-
tain Itô-type stochastic systems. Second, from the available
design ideology and theoretical proofs of ADRC, it seems
that the boundedness is a key factor to determine whether
the stochastic noises can be estimated and rejected by the
ADRC approach. For this reason, it may be feasible that the
common colored noise which is bounded in the mean square
could also be coped with by ADRC. Finally, the backstep-
ping design technique is adopted in the ADRC controller to
overcome the obstacle that the mismatched stochastic distur-
bances cannot be refined into the control input channel by
the frequently used state transformation. However, the back-
stepping ADRC controller design will become more complex
with the increase of the system order. This problem known
as the “explosion of complexity” is often inevitable for the
backstepping design caused by repeated differentiation of vir-
tual controllers. Thus, it would be interesting to improve the
available controller design to surmount the problem of the
explosion of complexity.
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