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SUMMARY

In this paper, we apply the active disturbance rejection control approach to output-feedback stabilization
for uncertain lower triangular nonlinear systems with stochastic inverse dynamics and stochastic distur-
bance. We first design an extended state observer (ESO) to estimate both unmeasured states and stochastic
total disturbance that includes unknown system dynamics, unknown stochastic inverse dynamics, external
stochastic disturbance, and uncertainty caused by the deviation of control parameter from its nominal value.
The stochastic total disturbance is then compensated in the feedback loop. The constant gain and the time-
varying gain are used in ESO design separately. The mean square practical stability for the closed-loop
system with constant gain ESO and the mean square asymptotic stability with time-varying gain ESO are
developed, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the
proposed output-feedback control scheme. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The active disturbance rejection control (ADRC), as an unconventional design strategy, was first
proposed by Han in his pioneer work [1]. It is now acknowledged to be an effective control strategy
in dealing with the total disturbance that can be the coupling between the external disturbance,
unknown system dynamics, and the superadded unknown part of control input. The key idea of
ADRC is that the total disturbance is considered as an extended state and is estimated, in real time,
through extended state observer (ESO). The total disturbance is then compensated in the feedback
loop by its estimation. This estimation/cancelation nature of ADRC makes it capable of eliminating
the uncertainty before it causes negative effect to control plant and the control energy can therefore
be saved significantly in engineering applications.

In the last several years, some progresses have been made in building the theoretical foundation
of ADRC, see, for instance, [2–12]. The convergence of linear ESO, which is proposed in [3] in
terms of bandwidth, is discussed in [12]. The linear ADRC has been addressed for different systems
like those for control and disturbance unmatched systems [8], lower triangular systems [10], and
the system without known nominal control parameter [7]. In particular, linear ADRC with adaptive
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gain ESO is investigated in [9, 11] and extended state filter is addressed for filtering problem of
general discrete nonlinear uncertain systems in [2]. The convergence of nonlinear ADRC for SISO
systems is proved firstly in [4] and extended subsequently to MIMO systems in [5] and then to lower
triangular systems in [6].

These literatures address ADRC for deterministic systems, and very little is known for the
stochastic counterpart. In contrast to deterministic cases, the main technical obstacle in stochas-
tic systems is that the Itô differentiation involves not only the gradient but also the Hessian term
of the Lyapunov function. As breakthrough in stochastic nonlinear control area, a recursive back-
stepping control design approach is presented to solve stabilization for strict-feedback stochastic
systems driven by white noise based on a risk-sensitive cost criterion in [13]. It is recognized that
output-feedback control is more difficult and challenging than full state feedback. In recent years,
output-feedback design for stochastic nonlinear systems driven by white noise has been an active
area of research [14–19]. By using a quartic Lyapunov function, the paper [20] presents a backstep-
ping design to achieve a first result on global output-feedback stabilization for stochastic nonlinear
systems driven by white noise. Several output-feedback control designs are available for stochastic
nonlinear systems driven by white noise with unmeasured states, such as tracking control [16] and
decentralized control [18].

However, in these works, the system functions are supposed to be known or the system uncertain-
ties are linearly parameterized with respect to known nonlinear functions. To overcome this obstacle,
an adaptive neural network backstepping output-feedback control approach is investigated for uncer-
tain stochastic nonlinear systems driven by white noise, where the uncertain nonlinear terms are
allowed to be functions of the output [17] or even related with all states variables [14]. How-
ever, all these output-feedback controllers are constructed recursively in framework of conventional
backstepping design technique, which inevitably leads to the problem of ‘explosion of complexity’
caused by repeated differentiations of virtual controllers [21], which makes the complexity of con-
troller grow dramatically as the order of system increases. By combining dynamic surface control
technique [21], a simplified adaptive fuzzy backstepping output-feedback control approach is devel-
oped in [22] to overcome ‘explosion of complexity’ with the unknown nonlinear functions being
approximated by fuzzy logic systems, guaranteeing that all signals of the closed-loop system are
semi-globally uniformly ultimately bounded in mean square topology.

On the other hand, very few results are available on output-feedback stabilization for nonlinear
systems with both uncertain nonlinear system functions and stochastic non-white disturbance. In
this paper, we consider output-feedback stabilization for uncertain lower triangular nonlinear sys-
tems with bounded exogenous stochastic disturbance that satisfies an uncertain Itô-type stochastic
differential equation. A typical example of such kind of exogenous disturbance is the ‘colored noise’
whose fundamental noise sources through various feedback mechanisms may be regarded as white
so that it can be produced by passing the white noise through a filter, described by an Itô-type
stochastic differential equation, see, for instance, [23, 24]. Actually, ‘colored noise’ exists in many
practical systems such as physical model systems [25, 26] and chemical model systems [27, 28]. In
addition, we also consider the effect of inverse dynamics that is disturbed by both non-white exter-
nal stochastic disturbance and white noise. Precisely, the system that we consider is an uncertain
lower triangular SISO nonlinear system with stochastic inverse dynamics and stochastic disturbance
described by 8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

dx1.t/ D Œx2.t/C h1.x1.t//�dt;
dx2.t/ D Œx3.t/C h2.x1.t/; x2.t//�dt;

:::

dxn.t/ D Œf .t; x.t/; �.t/; w.t//C hn.x.t//C bu.t/� dt;
d�.t/ D f1.t; x.t/; �.t/; w.t//dt C f2.t; x.t/; �.t/; w.t//dB1.t/;
y.t/ D x1.t/;

(1.1)

where x.t/ D .x1.t/; � � � ; xn.t//
> 2 Rn, u.t/ 2 R, and y.t/ 2 R are the state, control

(input), and output (measurement) of system, respectively. �.t/ 2 Rm denotes the state of stochas-
tic inverse dynamics. The functions hi W Ri ! R; i D 1; 2; � � � ; n are known, whereas those
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f W Œ0;1/ � RnCmCs ! R, f1 W Œ0;1/ � RnCmCs ! Rm, and f2 W Œ0;1/ � RnCmCs ! Rm�p

are unknown but measurable. The constant b ¤ 0 is the control coefficient that is not exactly known
yet has a nominal value b0 that is sufficiently closed to b; ¹B1.t/ºt>0 is a p-dimensional standard
Brownian motion defined on a complete probability space .�;F ; ¹Ftºt>0; P / with � being a sam-
ple space, F a � -field, ¹Ftºt>0 a filtration, and P the probability measure. The w.t/ 2 Rs is used
to describe the external stochastic disturbance that is assumed to satisfy the following uncertain
stochastic differential equation:

dw.t/ D � .t; w.t// dt C  .t; w.t// dB2.t/; w.0/ D w0; (1.2)

where ¹B2.t/ºt>0 is a q-dimensional standard Brownian motion defined on .�;F ; ¹Ftºt>0; P / as
well and is mutually independent with ¹B1.t/ºt>0. The functions � W Œ0;1/ � Rs ! Rs ,  W
Œ0;1/ �Rs ! Rs�q are unknown measurable functions.

The difference of the x-subsystem of (1.1) with Itô-type stochastic systems studied in [14, 15]
is that in the x-subsystem, w.t/ is considered completely as an unknown external stochastic distur-
bance without any statistic characteristic. The x-subsystem can be regarded as a class of stochastic
systems driven by colored noise because colored noise is a typical example of w.t/, not as a state
as in [14, 15] where the stochastic systems are driven by white noise although the x-subsystem is
also equivalent to an uncertain Itô-type stochastic system specified in (2.25) after combination with
stochastic inverse dynamics and (1.2) together.

It should be noted that the system (1.1) covers some special systems studied in literature such
as the deterministic lower triangular SISO nonlinear systems investigated in [29–32] when f2.�/ D
w.�/ � 0; the uncertain deterministic lower triangular SISO nonlinear systems with deterministic
disturbance investigated via ADRC approach in [6] when f2.�/ D  .�/ � 0 and �.�/ is independent
of w; the uncertain nonminimum phase lower triangular SISO nonlinear systems where the inverse
dynamics equations are disturbed by white noise when w.�/ � 0; the uncertain lower triangular
SISO nonlinear systems with stochastic disturbance when �.�/ � 0; and hence, system considered
in [33] is a special case of (1.1) with hi .�/ � 0 and b D b0 D 1. Actually, it is indicated in [34] that
any uniform observable SISO nonlinear system can be transformed into the lower triangular form.

Define the stochastic total disturbance as

xnC1.t/ , f .t; x.t/; �.t/; w.t//C .b � b0/u.t/; (1.3)

which contains unknown system dynamics, unknown stochastic inverse dynamics, external stochas-
tic disturbance, and uncertainty caused by the deviation of control parameter b from its nominal
value b0.

The main contributions of this paper are the total disturbance is estimated by ESO and an ESO-
based output-feedback control is designed to stabilize the x-subsystem of (1.1), avoiding ‘explosion
of complexity’ inherent in existing output-feedback control methods. It is noted that most available
output-feedback controls are guaranteeing global asymptotic stability in probability with assumption
of noise vector field being vanishing at the origin based on stochastic LaSalle theorem [20] or the
noise-to-state (or input-to-state) stability in probability [15, 16] otherwise. In this paper, however,
we address mean square asymptotic stability with nonvanishing non-white noise vector field by
designing a time-varying gain ESO-based output-feedback control.

We proceed as follows. In the next section, Section 2, we design a constant high-gain ESO and
an ESO-based feedback control for the x-subsystem of (1.1). The mean square practical stability
for the closed-loop of x-subsystem of (1.1) is proved. In Section 3, we propose a time-varying gain
ESO and an ESO-based feedback control for x-subsystem of (1.1). The mean square asymptotic
stability is developed. Finally, in Section 4, we present some numerical simulations for illustration
of the convergence and the peaking value reduction.

The following notations are used throughout the paper. The Rn represents the n-dimensional
Euclidean space, and Rn�m stands for the space of real n � m-matrices. The C.RnIR/ and
C 1.RnIR/ denote, respectively, spaces of all continuous and continuous differentiable functions
defined on Rn. For a given vector x 2 Rn, kxk denotes the Euclidean norm and x> denotes its trans-
pose. For a square matrix X , we use Tr.X/ to denote its trace. .a.ij //m�n denotes an m � n matrix
with entries a.ij /. In addition, f1 D .f

.i1/
1 /m�1, f2 D .f

.ij /
2 /m�p , � D .�.i1//s�1, D . .ij //s�q ,

x.t/ D .x1.t/; � � � ; xn.t//
>, Ox.t/ D . Ox1.t/; � � � ; Oxn.t//>, �.t/ D .�1.t/; � � � ; �n.t//>.
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2. ACTIVE DISTURBANCE REJECTION CONTROL WITH CONSTANT GAIN EXTENDED
STATE OBSERVER

Although linear ESO takes its advantage of simple turning parameter, it also brings the peaking
value problem, slow convergence, and many other problems contrast to fast tracking and small
peaking value indicated numerically in [35] by nonlinear ESO. By taking these points into account,
we introduce the nonlinear ESO proposed in [4, 6] with constant high-gain tuning parameter for
system (1.1) as follows:8̂̂

ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂:

d Ox1.t/ D
h
Ox2.t/C "

n�1g1

�
y.t/� Ox1.t/

"n

�
C h1. Ox1.t//

i
dt;

d Ox2.t/ D
h
Ox3.t/C "

n�2g2

�
y.t/� Ox1.t/

"n

�
C h2. Ox1.t/; Ox2.t//

i
dt;

:::

d Oxn.t/ D
h
OxnC1.t/C gn

�
y.t/� Ox1.t/

"n

�
C hn. Ox.t//C b0u.t/

i
dt;

d OxnC1.t/ D
1
"
gnC1

�
y.t/� Ox1.t/

"n

�
dt;

(2.1)

where gi 2 C.RIR/, i D 1; 2; � � � ; n C 1 are designed functions to be specified later and " > 0

is the tuning parameter. The main idea of ESO is to choose some appropriate gi .�/’s so that when
" is small enough, the Oxi .t/ approaches xi .t/ for all i D 1; 2; � � � ; n C 1 and sufficiently large t ,
where xnC1.t/ is the stochastic total disturbance defined by (1.3). Here and throughout the paper,
we always drop " for the solution of (2.1) by abuse of notation without confusion.

The ESO (2.1)-based output-feedback control is designed as

u.t/ D
1

b0

�
�v.�n�1 Ox1.t/; �

n�2 Ox2.t/; � � � ; Oxn.t// � OxnC1.t/
�
; (2.2)

where � > 1 is a constant, OxnC1.t/ is used to compensate (cancel) the total disturbance xnC1.t/,
and v W Rn ! R is to be specified later.

The Assumption (A1) is a prior assumption about the functions hi .�/, f .�/, f1.�/, f2.�/, �.�/, and
 .�/.

Assumption (A1)
f .�/ is twice continuously differentiable with respect to its arguments, and there exist (known)
constants Ci > 0 .i D 0; � � � ; 4/ and a nonnegative function & 2 C.RsIR/ such that for all t > 0,
x D .x1; � � � ; xn/

> 2 Rn, � D .�1; � � � ; �m/> 2 Rm, w D .w1; � � � ; ws/> 2 Rs ,

jhi .x1; � � � ; xi / � hi . Ox1; � � � ; Oxi /j 6 C0k..x � Ox1/; � � � ; .xi � Oxi //k;
hi .0; � � � ; 0/ D 0; .i D 1; 2; � � � ; n/I

(2.3)

ˇ̌̌
ˇ@f .t; x; �; w/@t

ˇ̌̌
ˇC

mX
iD1

ˇ̌̌
f
.i1/
1 .t; x; �; w/

ˇ̌̌
6 C1 C C2kxk C &.w/I

(2.4)

nX
iD1

ˇ̌̌
ˇ@f .t; x; �; w/@xi

ˇ̌̌
ˇC

mX
iD1

ˇ̌̌
ˇ@f .t; x; �; w/@�i

ˇ̌̌
ˇC

mX
i;jD1

ˇ̌̌
ˇ@f .t; x; �; w/@�i@�j

ˇ̌̌
ˇ

C

sX
iD1

ˇ̌̌
ˇ@f .t; x; �; w/@wi

ˇ̌̌
ˇC

sX
i;jD1

ˇ̌̌
ˇ@2f .t; x; �; w/@wi@wj

ˇ̌̌
ˇ

C

pX
jD1

mX
iD1

ˇ̌̌
f
.ij /
2 .t; x; �; w/

ˇ̌̌
6 C3 C &.w/I

(2.5)
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sX
iD1

j�.i1/.t; w/j C

qX
jD1

sX
iD1

j .ij /.t; w/j 6 C4 C &.w/: (2.6)

Remark 2.1
Because the stochastic total disturbance is regarded as an extended state variable of system (1.1)
to be estimated by ESO, its ‘variation’ certainly needs to limited. The conditions (2.4), (2.5), and
(2.6) in Assumption (A1) are essentially about the Itô differential (or ‘variation’) of stochastic total
disturbance, where the ‘variation’ satisfies linear growth of x and nonlinear growth of w because
the estimation is considered in mean square sense.

The following Assumption (A2) is a prior assumption about v.�/ chosen in (2.2).

Assumption (A2)
v.y/ is continuously differentiable and Lipschitz continuous with Lipschitz constant L0, v.0/ D 0.
There exist constants 	1i .i D 1; 2; 3; 4/ and continuously differentiable function V1 W Rn ! R that
is positive definite and radially unbounded such that8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

	11kyk
2 6 V1.y/ 6 	12kyk2; 	13kyk2 6 W1.y/ 6 	14kyk2;

n�1P
iD1

yiC1
@V1.y/
@yi
C v.y/ @V1.y/

@yn
6 �W1.y/;ˇ̌̌

@V1.y/
@yi

ˇ̌̌
6 ˛kyk; i D 1; 2; � � � ; n;

8 y D .y1; y2; � � � ; yn/
> 2 Rn;

(2.7)

for some nonnegative continuous function W1 W Rn ! R and constant ˛ > 0.

In Assumption (A2), the continuous differentiability and Lipschitz continuity of v.y/ imply thatˇ̌̌
ˇ@v.y/@yi

ˇ̌̌
ˇ 6 L0;8 y 2 Rn; i D 1; 2; � � � ; n: (2.8)

Remark 2.2
Essentially, the Assumption (A2) is to ensure that v W Rn ! R is chosen so that the following
system is globally asymptotically stable:

Py.t/ D .y2.t/; � � � ; yn.t/; v.y1.t/; � � � ; yn.t///
> : (2.9)

The following Assumption (A3) is on the designed functions gi .�/0s in ESO (2.1) and the
unknown control parameter b.

Assumption (A3)
jgi .r/j 6 ai jr j for some positive constants ai for all i D 1; 2; � � � ; n C 1. There exist constants
	2i .i D 1; 2; 3; 4/ and twice continuously differentiable function V2 W RnC1 ! R that is positive
definite and radially unbounded such that

8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

	21kyk
2 6 V2.y/ 6 	22kyk2; 	23kyk2 6 W2.y/ 6 	24kyk2;

nP
iD1

@V2.y/
@yi

.yiC1 � gi .y1// �
@V2.y/
@ynC1

gnC1.y1/ 6 �W2.y/;ˇ̌̌
@V2.y/
@yi

ˇ̌̌
6 ˇkyk;

ˇ̌̌
ˇ @2V2.y/@y2

nC1

ˇ̌̌
ˇ 6 
; i D 1; 2; � � � ; nC 1;

8 y D .y1; y2; � � � ; ynC1/
> 2 RnC1;

(2.10)

for some nonnegative continuous function W2 W RnC1 ! R and constants ˇ; 
 > 0. Moreover, the
parameter b satisfies jb � b0j <

�23jb0j
ˇanC1

.
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Remark 2.3
Essentially, the Lyapunov functions V2.y/ and W2.y/ are used mainly to make the following gi .�/
involving system

Py.t/ D .y2.t/ � g1.y1.t//; � � � ; ynC1.t/ � gn.y1.t//;�gnC1.y1.t///
> ; (2.11)

be globally asymptotically stable.

Theorem 2.1
Let � > max¹1; n˛C0

�13
º. Suppose that supt>0 kw.t/k 6 B almost surely for some constant B > 0.

Then under Assumptions (A1)–(A3), the closed-loop of x-subsystem of (1.1), (2.1), and (2.2) has
the following mean square practical convergence: there are a constant "� > 0 (specified by (2.31)
later) and an "-dependent constant t�" > 0 with " 2 .0; "�/ such that for any initial values x.0/ 2
Rn; . Ox.0/; OxnC1.0// 2 RnC1, �.0/ 2 Rm,

EŒxi .t/ � Oxi .t/�
2 6 �"2nC3�2i ; 8t > t�" ; i D 1; 2; � � � ; nC 1;

and

E
nX
iD1

x2i .t/ 6 �"; 8t > t�" ;

where � > 0 is an "-independent constant.

Proof
Set 8̂̂̂

ˆ̂̂<
ˆ̂̂̂̂
:̂

Qxi .t/ D xi .t/ � Oxi .t/; �i .t/ D
Qxi ."t/

"nC1�i
; i D 1; 2; � � � ; nC 1;

ei .t/ D �
n�ixi ."t/;


i .t/ D hi .x1.t/; � � � ; xi .t// � hi . Ox1.t/; � � � ; Oxi .t//;

Dn.t/ D �v.�
n�1 Ox1.t/; � � � ; Oxn.t// � �v.�

n�1x1.t/; � � � ; xn.t//;

�.t/ D .�1.t/; � � � ; �nC1.t//
>;

e.t/ D .e1.t/; � � � ; en.t//
>:

(2.12)

Let " > 0 be chosen so that " < "0 , min¹1
�
; 1º. Then by Assumption (A1), we can obtain

j
i ."t/j
2 6 C 20

�
.x1."t/ � Ox1."t//

2 C � � � C .xi ."t/ � Oxi ."t//
2
�

D C 20

h
"2nj�1.t/j

2 C � � � C "2.nC1�i/j�i .t/j
2
i

6 C 20 "2.nC1�i/k�.t/k2; i D 1; 2; � � � ; n;

(2.13)

and hence,

jhi . Ox1."t/; � � � ; Oxi ."t//j 6 C0"nC1�ik�.t/kCC0k.x1."t/; � � � ; xi ."t//k; i D 1; 2; � � � ; n: (2.14)

In addition, it follows from Assumption (A2) that

jDn."t/j
2 6 L20

�
1

"2n
.x1."t/ � Ox1."t//

2 C � � � C
1

"2
.xn."t/ � Oxn."t//

2

�
D L20

�
j�1.t/j

2 C � � � C j�n.t/j
2
�
6 L20k�.t/k2;

(2.15)

and so

j�v.�n�1 Ox1."t/; � � � ; Oxn."t//j 6 L0k�.t/k C j�v.�n�1x1."t/; � � � ; xn."t//j
6 L0k�.t/k C �L0ke.t/k:

(2.16)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2017; 27:2773–2797
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In terms of the Itô’s formula, it is obtained that

df .t; x.t/; �.t/; w.t//
ˇ̌
along .1:1/

D

´
@

@t
f .t; x.t/; �.t/; w.t//C

n�1X
iD1

ŒxiC1.t/C hi .x1.t/; � � � ; xi .t//�
@f .t; x.t/; �.t/; w.t//

@xi

C Œf .t; x.t/; �.t/; w.t//C bu.t/C hn.x.t//� �
@f .t; x.t/; �.t/; w.t//

@xn

C
@f .t; x.t/; �.t/; w.t//

@�
f1.t; x.t/; �.t/; w.t//

C
1

2
Tr

²
f >2 .t; x.t/; �.t/; w.t//

@2f .t; x.t/; �.t/; w.t//

@�2
f2.t; x.t/; �.t/; w.t//

³

C
@f .t; x.t/; �.t/; w.t//

@w
�.t; w.t//

C
1

2
Tr

²
 >.t; w.t//

@2f .t; x.t/; �.t/; w.t//

@w2
 .t; w.t/

³³
dt

C
@f .t; x.t/; �.t/; w.t//

@�
.f2.t; x.t/; �.t/; w.t//dB1.t//

C
@f .t; x.t/; �.t/; w.t//

@w
. .t; w.t//dB2.t//

, ƒ1.t/dt Cƒ2.t/dB1.t/Cƒ3.t/dB2.t/;
(2.17)

where we set

ƒ2.t/ D .ƒ
j
2.t//1�p; ƒ

j
2.t/ D

mX
iD1

@f .t; x.t/; �.t/; w.t//

@�i
f
.ij /
2 .t; x.t/; �.t/; w.t//I

ƒ3.t/ D .ƒ
j
3.t//1�q; ƒ

j
3.t/ D

sX
iD1

@f .t; x.t/; �.t/; w.t//

@wi
 .ij /.t; w.t//:

(2.18)

A direct computation shows that

jf ."t; x."t/; �."t/; w.t//C bu."t/j D jxnC1."t/ � OxnC1."t/C �v.�
n�1 Ox1."t/; � � � ; Oxn."t//j

6 j�nC1.t/j C L0k�.t/k C �L0ke.t/k:
(2.19)

Thus, it follows from Assumption (A1) that there exist constants C5; C6; C7; C8 > 0 such that

jƒ1."t/j 6 C5 C C6k�.t/k C C7ke.t/k; kƒ2."t/k2 C kƒ3."t/k2 6 C8: (2.20)

Finding the derivative of u.t/ along the solution of (2.1) to obtain

du.t/

dt

ˇ̌̌
ˇ
along .2:1/

D
1

b0

´
n�1X
iD1

�nC1�i
�
OxiC1.t/C "

n�igi

�
y.t/ � Ox1.t/

"n

	
C hi . Ox1.t/; � � � ; Oxi .t//

	

�
@v.�n�1 Ox1.t/; � � � ; Oxn.t//

@.�n�i Oxi /
C �

�
OxnC1.t/C gn

�
y.t/ � Ox1.t/

"n

	
C b0u.t/C hn. Ox.t//

	

�
@v.�n�1 Ox1.t/; � � � ; Oxn.t//

@ Oxn
�
1

"
gnC1

�
y.t/ � Ox1.t/

"n

	³
, ƒ4.t/:

(2.21)
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So, it follows from Assumption (A3), (2.8), (2.14), and (2.16) that

ƒ4."t/j 6
L0

jb0j

´
n�1X
iD1

�nC1�i"n�i j�iC1.t/j C �
2
nX
iD2

jei .t/j C

n�1X
iD1

. ai �
nC1�i"n�i j�1.t/j

C �nC1�i"nC1�iC0k�.t/k C �
nC1�iC0k.x1."t/; � � � ; xi ."t//k /

C�
�
anj�1.t/jCj�v.�

n�1 Ox1."t/; � � � ; Oxn."t//jC"C0k�.t/k C C0kx."t/k
�±
C
anC1

jb0j"
j�1.t/j

6 L0

jb0j

´
n�1X
iD1

�nC1�i"n�i j�iC1.t/j C �
2
nX
iD2

jei .t/j C

n�1X
iD1

. ai �
nC1�i"n�i j�1.t/j

C �nC1�i"nC1�iC0k�.t/k C �C0ke.t/k /

C� . anj�1.t/j C L0k�.t/k C �L0ke.t/k C "C0k�.t/k C C0ke.t/k/

μ
C
anC1

jb0j"
j�1.t/j

6 L0

jb0j

²
.n � 1/�n"0 C .n � 1/�

n"0 max
16i6n�1

¹ai º C .n � 1/�
n"20C0 C �an C �L0 C �"0C0

³
k�.t/k

C
L0

jb0j

°
.n � 1/�2 C .n � 1/�C0 C �

2L0 C �C0

±
ke.t/k C

anC1

jb0j"
k�.t/k

D C9k�.t/k C C10ke.t/k C
anC1

jb0j"
k�.t/k;

(2.22)
where we set

C9 D
L0

jb0j

²
.n � 1/�n"0C .n � 1/�

n"0 max
16i6n�1

¹aiº C .n � 1/�
n"20C0 C�an C �L0 C �"0C0

³
;

C10 D
L0

jb0j

®
.n � 1/�2 C .n � 1/�C0 C �

2L0 C �C0
¯
:

(2.23)
Let

‚1.t/ D ƒ1.t/C .b � b0/ƒ4.t/; ‚2.t/ D ƒ2.t/;‚3.t/ D ƒ3.t/: (2.24)

Then, the x-subsystem of (1.1) can be written as8̂̂̂
<̂
ˆ̂̂̂:

dx1.t/ D Œx2.t/C h1 .x1.t//� dt;
dx2.t/ D Œx3.t/C h2 .x1.t/; x2.t//� dt;

:::

dxn.t/ D ŒxnC1.t/C b0u.t/C hn.x.t//� dt
dxnC1.t/ D ‚1.t/dt C‚2.t/dB1.t/C‚3.t/dB2.t/:

(2.25)

Notice that for any " > 0, OB1.t/ D 1p
"
B1."t/ and OB2.t/ D 1p

"
B2."t/ are also two mutually inde-

pendent standard Brownian motions taking values in Rp and Rq , respectively. A direct computation
shows that the closed-loop of x-subsystem of (1.1), (2.1), and (2.2) is equivalent to8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂ˆ̂̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂ˆ̂̂:

de1.t/ D "
h
�e2.t/C �

n�1h1

�
e1.t/

�n�1

�i
dt;

de2.t/ D "
h
�e3.t/C �

n�2h2

�
e1.t/

�n�1
; e2.t/
�n�2

�i
dt;

:::

den.t/ D "
h
�v.e1.t/; � � � ; en.t//CDn."t/C �nC1.t/C hn

�
e1.t/

�n�1
; � � � ; en.t/

�i
dt;

d�1.t/ D
h
�2.t/ � g1.�1.t//C

1
"n�1


1."t/
i
dt;

d�2.t/ D
h
�3.t/ � g2.�1.t//C

1
"n�2


2."t/
i
dt;

:::

d�n.t/ D Œ�nC1.t/ � gn.�1.t//C
n."t/�dt;

d�nC1.t/ D Œ"‚1."t/ � gnC1.�1.t//�dt C
p
"‚2."t/d OB1.t/C

p
"‚3."t/d OB2.t/:

(2.26)
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Consider the positive definite function V W R2nC1 ! R given by

V.e; �/ D V.e1; � � � ; en; �1; � � � ; �nC1/ D V1.e1; � � � ; en/C V2.�1; � � � ; �nC1/: (2.27)

Apply Itô’s formula to V.e.t/; �.t// with respect to t along the solutions .e.t/; �.t// of system
(2.26) to obtain

dV.e.t/; �.t// D

"
�"

n�1X
iD1

@V1.e.t//

@ei
eiC1.t/C �"

@V1.e.t//

@en
v.e1.t/; � � � ; en.t//

C

nX
iD1

"�n�i
@V1.e.t//

@ei
hi

�
e1.t/

�n�1
; � � � ;

ei .t/

�n�i

	
C "

@V1.e.t//

@en
Dn."t/C "

@V1.e.t//

@en
�nC1.t/

#
dt

C

"
nX
iD1

@V2.�.t//

@�i
.�iC1.t/ � gi .�1.t/// �

@V2.�.t//

@�nC1
gnC1.�1.t//

#
dt

C

nX
iD1

1

"n�i
@V2.�.t//

@�i

i ."t/dt C "

@V2.�.t//

@�nC1
‚1."t/dt C

1

2
"
@2V2.�.t//

@�2nC1
k‚2."t/k

2dt

C
1

2
"
@2V2.�.t//

@�2nC1
k‚3."t/k

2dt C
p
"
@V2.�.t//

@�nC1
‚2."t/d OB1.t/C

p
"
@V2.�.t//

@�nC1
‚3."t/d OB2.t/:

(2.28)

By (2.20), there exists constant C8 > 0 such that Ek‚2."t/k2 6 C8, Ek‚3."t/k2 6 C8 for all
t > 0. Because � > max¹1; n˛C0

�13
º, jb � b0j <

�23jb0j
ˇanC1

, we then have

�0 , 	13� � n˛C0 > 0; �1 , 	23 �
ˇanC1jb � b0j

jb0j
> 0: (2.29)

We also notice that there exist � > 0 and "1 > 0 such that

�0 � 2� > 0;

�2 , �1 � "1
�
nˇC0 C

1

2
C ˇC6 C

ˇ2C 27
2�

C ˇC9jb � b0j C
ˇ2C 210jb � b0j

2

2�

	
> 0;

�3 , �2 �
�
"1˛

2L20
2�

C
"1˛

2

2�

	
> 0:

(2.30)

Now, we suppose that

0 < " < "� , min

²
1; "0; "1;

�3

�0 � 2�

³
: (2.31)

It follows from (2.13), (2.15), (2.20), (2.22), (2.28), Assumptions (A2) and (A3) that
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dEV.e.t/; �.t//

dt
6 ��"EW1.e.t//C n˛"C0Eke.t/k2 C ˛"L0E.ke.t/k � k�.t/k/

C ˛"E.ke.t/k � k�.t/k/ � EW2.�.t//C nˇ"C0Ek�.t/k
2

C ˇ"E

²
k�.t/k � . C5 C C6k�.t/k C C7ke.t/k

Cjb � b0j.C9k�.t/k C C10ke.t/k C
anC1

jb0j"
k�.t/k/

	³
C 
"C8

6 ��0"Eke.t/k2 C
�"

2
Eke.t/k2 C

"˛2L20
2�

Ek�.t/k2

C
�"

2
Eke.t/k2 C

"˛2

2�
Ek�.t/k2 � 	23Ek�.t/k

2 C nˇ"C0Ek�.t/k
2

C
"

2
Ek�.t/k2 C

"ˇ2C 25
2
C "ˇC6Ek�.t/k

2 C
�"

2
Eke.t/k2

C
"ˇ2C 27
2�

Ek�.t/k2 C "ˇC9jb � b0jEk�.t/k
2 C

�"

2
Eke.t/k2 C

"ˇ2C 210jb � b0j
2

2�
Ek�.t/k2

C
ˇanC1jb � b0j

jb0j
Ek�.t/k2 C 
"C8

6 �.�0 � 2�/"Eke.t/k2 � �3Ek�.t/k2 C
"ˇ2C 25
2
C 
"C8

6 � .�0 � 2�/"

max¹	12; 	22º
EV.e.t/; �.t//C

"ˇ2C 25
2
C 
"C8:

(2.32)
Hence, for any " 2 .0; "�/, there exists t" , 1

"%
; % > 1 such that for all t > t",

EV.e.t/; �.t//

6 e�
.�0�2�/"t

max¹�12;�22ºEV.e.0/; �.0//C

�
"ˇ2C 25
2
C 
"C8

	Z t

0

e
�

.�0�2�/"

max¹�12;�22º
.t�s/

ds

6 e�
.�0�2�/

max¹�12;�22º"
%�1EV.e.0/; �.0//C

.ˇ2C 25 C 2
C8/max¹	12; 	22º

.�0 � 2�/

6 �1;

(2.33)

for some "-independent constant �1 > 0. By a similar technique used in (2.32), it follows from
(2.33) that for all t > t",

dEV2.�.t//

dt
6 ��2Ek�.t/k2 C �"Eke.t/k2 C

"ˇ2C 25
2
C 
"C8

6 � �2
	22

EV2.�.t//C
�"�1

	11
C
"ˇ2C 25
2
C 
"C8;

(2.34)

and hence,

EV2

�
�

�
t

"

		
6 e�

�2
�22

. t"�t"/EV2.�.t"//C

�
�"�1

	11
C
"ˇ2C 25
2
C 
"C8

	Z t
"

t"

e
�
�2
�22
. t"�s/ds:

(2.35)

Because it follows from (2.33) that the first term of the right-hand side of (2.35) is bounded

by e�
�2t"
�22

. 1
"�
�1/ multiplied by an "-independent constant, and the second term is bounded by "

multiplied by an "-independent constant, there exists an "-independent constant �2 > 0 such that
for all t > t",

EV2

�
�

�
t

"

		
6 �2"; (2.36)
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and so

E





�
�
t

"

	




2

6
EV2

�
�
�
t
"

��
	21

6 �2"
	21

: (2.37)

Thus, for any i D 1; 2; � � � ; nC 1 and all t > t",

E Qx2i .t/ D "
2nC2�2iE

ˇ̌̌
ˇ�i
�
t

"

	ˇ̌̌
ˇ
2

6 "2nC2�2iE




�
�
t

"

	




2

6 �2

	21
"2nC3�2i : (2.38)

This completes the proof of the first part.
Set �i .t/ D �n�ixi .t/; i D 1; 2; � � � ; n. Then the x-subsystem of (1.1) is equivalent to8̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
:̂

d�1.t/ D
h
��2.t/C �

n�1h1

�
�1.t/

�n�1

�i
dt;

d�2.t/ D
h
��3.t/C �

n�2h2

�
�1.t/

�n�1
; �2.t/
�n�2

�i
dt;

:::

d�n.t/ D
h
�v.�1.t/; � � � ; �n.t//CDn.t/C �nC1

�
t
"

�
C hn

�
�1.t/

�n�1
; � � � ; �n.t/

�i
dt:

(2.39)

Hence, for any " 2 .0; "�/ and all t > t", it follows from Assumption (A2), (2.15), and 2.37 that

dEV1.�.t//

dt
6 ��EW1.�.t//C E

�
@V1.�.t//

@�n
jDn.t/j

	

C E
nX
iD1

�n�i
@V1.�.t//

@�i
hi

�
�1.t/

�n�1
; � � � ;

�i .t/

�n�i

	
C E

�
@V1.�.t//

@�n
�nC1

�
t

"

		

6 �	13�Ek�.t/k2 C ˛L0E
�
k�.t/k �





�
�
t

"

	




	

C n˛C0Ek�.t/k
2 C ˛E

�
k�.t/k �

ˇ̌̌
ˇ�nC1

�
t

"

	ˇ̌̌
ˇ
	

6 �.	13� � n˛C0/Ek�.t/k2 C �Ek�.t/k2 C
˛2L20
4�

E





�
�
t

"

	




2

C �Ek�.t/k2 C
˛2

4�
E

ˇ̌̌
ˇ�nC1

�
t

"

	ˇ̌̌
ˇ
2

6 �.�0 � 2�/Ek�.t/k2 C
˛2.L20 C 1/�2

4�	21
":

(2.40)

We then have, for any " 2 .0; "�/ and all t > t" that

Ek�.t/k2 6 1

	11
e
�
.�0�2�/

�12
.t�t"/EkV1.�.t"//k

C
˛2.L20 C 1/�2

4�	21	11
"

Z t

t"

e
�
.�0�2�/

�12
.t�s/

ds:

(2.41)

Because by (2.33), the first term of the right-hand side of (2.41) tends to zero as t goes to infinity,
and the second term is bounded by " multiplied by an "-independent constant, it follows that there
exist t�" > t" and � > �2

�21
> 0 such that

E
nX
iD1

x2i .t/ 6 Ek�.t/k2 6 �";8 t > t�" :

This completes the proof of the theorem. �
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The simplest example of constant gain ADRC satisfying conditions of Theorem 2.1 is the linear
one, that is, gi .�/; i D 1; � � � ; n C 1 in ESO (2.1) and v.�/ in feedback control (2.2) are linear
functions. Let

gi .r/ D kir; v.y1; � � � ; yn/ D c1y1 C � � � C cnyn: (2.42)

Define the matrices E and F as follows:

E D

0
BBBB@
0 1 0 � � � 0

0 0 1 � � � 0

� � � � � � � � � � � � � � �

0 0 0
: : : 1

c1 c2 � � � cn�1 cn

1
CCCCA
n�n

; F D

0
BBBB@
�k1 1 0 � � � 0
�k2 0 1 � � � 0
� � � � � � � � � � � � � � �

�kn 0 0
: : : 1

�knC1 0 0 � � �

1
CCCCA
.nC1/�.nC1/

: (2.43)

Let 	max.H/ be the maximal eigenvalue of matrix H that is the unique positive definite matrix
solution of the Lyapunov equation HE C E>H D �In�n for n-dimensional identity matrix In�n.
In addition, let 	max.Q/ be the maximal eigenvalue of matrix Q that is the unique positive definite
matrix solution of the Lyapunov equation QF C F>Q D �I.nC1/�.nC1/ for .nC 1/-dimensional
identity matrix I.nC1/�.nC1/.

Corollary 2.1
Let � > max¹1; 2n	max.H/C0º. Suppose that supt>0 kw.t/k 6 B almost surely for some constant
B > 0, the matrices E and F are Hurwitz, and jb � b0j <

jb0j
2knC1�max.Q/

. Then under Assump-
tion (A1), the closed-loop of x-subsystem of (1.1),(2.1), and (2.2) has the following mean square
practical convergence: There are a constant "� > 0 and an "-dependent constant t�" > 0 with
" 2 .0; "�/ such that for any initial values x.0/ 2 Rn; . Ox.0/; OxnC1.0// 2 RnC1, �.0/ 2 Rm,

EŒxi .t/ � Oxi .t/�
2 6 �"2nC3�2i ;8 t > t�" ; i D 1; 2; � � � ; nC 1;

and

E
nX
iD1

x2i .t/ 6 �";8 t > t�" ;

where � > 0 is an "-independent constant.

Proof
Define the Lyapunov functions V1; W1 W Rn ! R by V1.�/ D �>H�, W1.�/ D �>� for � 2 Rn

and the Lyapunov functions V2; W2 W RnC1 ! R by V2.�/ D �>Q�, W2.�/ D �>� for � 2 RnC1.
Then it is easy to verify that all conditions of Assumptions (A2) and (A3) are satisfied. The results
then follow directly from Theorem 2.1. �

Remark 2.4
When �.�/ � 0, hi .�/ � 0; i D 1; 2; � � � ; n, b D b0 D 1, system (1.1) is of the form:

8̂̂
ˆ̂<
ˆ̂̂̂:

dx1.t/ D x2.t/dt;
dx2.t/ D x3.t/dt;

:::

dxn.t/ D Œf .t; x1.t/; � � � ; xn.t/; w.t//C u.t/� dt;
y.t/ D x1.t/;

(2.44)

In this case, we can easily see that the parameter � in (2.2) can be chosen as � D 1. We thus
conclude the results of [33] by Theorem 2.1 and Corollary 2.1.
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Remark 2.5
The traditional ADRC approach needs to have a nominal value of unknown control coefficient b,
which is specified in Assumption (A3) in this paper. However, an adaptive projected gradient method
is developed in [7] to estimate b without a priori estimate. Therefore, it would be interesting and
challenging to generalize some adaptive way like the algorithm in [7] to the stochastic counterpart
of systems considered in this paper.

To end this section, we indicate the relation of stability of closed-loop system claimed by Theorem
2.1 and Corollary 2.1, with the total disturbance assumptions (2.4–2.6), which is reflected mainly
in constant � in mean square convergence. Because this relation is complicated to our nonlinear
system, we use an example to explain this point. Consider the following first-order system:²

Px.t/ D w.t/C u.t/;
y.t/ D x.t/;

where w.t/ is the deterministic external disturbance that satisfies: supt>0 j Pw.t/j 6 M with M > 0

being the bound of the variation of external disturbance. We design the following linear ESO:´
POx.t/ D Ow.t/C 1

"
.y.t/ � Ox.t//C u.t/;

POw.t/ D 1
"2
.y.t/ � Ox1.t// ;

and ESO-based output-feedback control: u.t/ D �Ox.t/ � Ow.t/.
Let Qx1.t/ D x.t/ � Ox.t/ and Qx2.t/ D w.t/ � Ow.t/. Then a direct computation shows that the

closed-loop system is equivalent to8<
:
Px.t/ D �x.t/C Qx1.t/C Qx2.t/;
PQx1.t/ D �

1
"
Qx1.t/C Qx2.t/;

PQx2.t/ D �
1
"2
Qx1.t/C Pw.t/:

(2.45)

The solution of (2.45) is found explicitly as8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

Qx1.t/ D Qx1.0/
�
e�

t
2" cos

p
3t
2"
�
p
3
3
e�

t
2" sin

p
3t
2"

�
C Qx2.0/

�
2
p
3
3
"e�

t
2" sin

p
3t
2"

�
C
R t
0

�
2
p
3
3
"e�

t�s
2" sin

p
3.t�s/
2"

�
Pw.s/ds;

Qx2.t/ D Qx1.0/
�
�2
p
3

3"
e�

t
2" sin

p
3t
2"

�
C Qx2.0/

�
e�

t
2" cos

p
3t
2"
C
p
3
3
e�

t
2" sin

p
3t
2"

�
C
R t
0

�
e�

t�s
2" cos

p
3.t�s/
2"

C
p
3
3
e�

t�s
2" sin

p
3.t�s/
2"

�
Pw.s/ds:

(2.46)

Thus, for any constant a > 0,

j Qx1.t/j 6
  
1C

p
3

3

!
e�

t
2" j Qx1.0/j C

2
p
3"

3
e�

t
2" j Qx2.0/j

!
C
8
p
3

3
M"2

6 "2� uniformly in t 2 Œa;C1/;

(2.47)

and

j Qx2.t/j 6
2
p
3

3"
e�

t
2" j Qx1.0/j C

 
1C

p
3

3

!
e�

t
2" j Qx2.0/j C 4

 
1C

p
3

3

!
M"

6 "� uniformly in t 2 Œa;C1/;

(2.48)

where we notice that � > 0 is an "-independent constant and is directly proportional to M . There-
fore, the tracking effect would become better as the variation of external disturbance becomes
smaller, and it becomes worse otherwise.
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In addition, it follows from (2.45) that the closed-loop signal x.t/ is given by

x.t/ D e�.t�a/x.a/C

Z t

a

e�.t�s/ Œ Qx1.s/C Qx2.s/� ds:

Thus, it follows from (2.47) and (2.48) that

jx.t/j 6 e�.t�a/jx.a/j C 4"�; 8t > a;

where � > 0 is specified in (2.47) and (2.48), and thus, we can see that the stabilization effect
become better as the variation of external disturbance becomes smaller, and it becomes worse
otherwise.

3. ACTIVE DISTURBANCE REJECTION CONTROL WITH TIME-VARYING GAIN
EXTENDED STATE OBSERVER

In this section, we propose a time-varying gain ESO for (1.1) as follows:8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂:

d Ox1.t/ D
h
Ox2.t/C

1
rn�1.t/

g1 .r
n.t/.y.t/ � Ox1.t///C h1 . Ox1.t//

i
dt;

d Ox2.t/ D
h
Ox3.t/C

1
rn�2.t/

g2 .r
n.t/.y.t/ � Ox1.t///C h2. Ox1.t/; Ox2.t//

i
dt;

:::

d Oxn.t/ D Œ OxnC1.t/C gn ..r
n.t/.y.t/ � Ox1.t///C hn. Ox.t//C b0u.t/� dt;

d OxnC1.t/ D r.t/gnC1 .r
n.t/.y.t/ � Ox1.t/// dt;

(3.1)

where gi 2 C.RIR/ are designed functions satisfying Assumption (A3), and r 2 C.Œ0;1/I .0;1//
is the gain function to be required to satisfy the following Assumption (A4).

Assumption (A4)
r 2 C 1.Œ0;1/; .0;1//, r.t/ > 0; Pr.t/ > k > 0, and j Pr.t/

r.t/
j 6 K for all t > 0, where k > 0 and

K > 0 are constants.

Theorem 3.1
Let � > max¹1; n˛C0

�13
º. Suppose that supt>0 kw.t/k 6 B almost surely for some constant B > 0.

Then under Assumptions (A1)–(A4), for any initial values x.0/ 2 Rn; . Ox.0/; OxnC1.0// 2 RnC1,
�.0/ 2 Rm, the closed-loop of x-subsystem of (1.1),(3.1), and (2.2) is asymptotically mean square
stable in the sense that

lim
t!1

E
nC1X
iD1

Œxi .t/ � Oxi .t/�
2 D 0; lim

t!1
E

nX
iD1

x2i .t/ D 0:

Proof
Set ²

�i .t/ D �
n�ixi .t/; i D 1; 2; � � � ; n;

�i .t/ D r
nC1�i .t/.xi .t/ � Oxi .t//; i D 1; 2; � � � ; nC 1:

(3.2)

By Assumption (A4), there exists t1 > 0 such that r.t/ > max¹1; �º for all t > t1. Similar to the
computations in the proof of Theorem 2.1, for all t > t1, by Assumption (A1), we can obtain

j
i .t/j
2 6 C 20

�
.x1.t/ � Ox1.t//

2 C � � � C .xi .t/ � Oxi .t//
2
�

D C 20

�
1

r2n.t/
j�1.t/j

2 C � � � C
1

r2.nC1�i/.t/
j�i .t/j

2

�

6 C 20
r2.nC1�i/.t/

k�.t/k2; i D 1; 2; � � � ; n;

(3.3)
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and so

jhi . Ox1.t/; � � � ; Oxi .t//j 6
C0

rnC1�i .t/
k�.t/k C C0k.x1.t/; � � � ; xi .t//k; i D 1; 2; � � � ; n; (3.4)

where 
i .t/; i D 1; 2; � � � ; n are as that defined in (2.12). Moreover, it follows from Assump-
tion (A2) that

jDn.t/j 6 L0k�.t/k; (3.5)

and

j�v.�n�1 Ox1.t/; � � � ; Oxn.t//j 6 jDn.t/j C j�v.�n�1x1.t/; � � � ; xn.t//j
6 L0k�.t/k C �L0k�.t/k;

(3.6)

jf .t; x.t/; �.t/; w.t//C bu.t/j D jxnC1.t/ � OxnC1.t/C �v.�
n�1 Ox1.t/; � � � ; Oxn.t//j

6 j�nC1.t/j C L0k�.t/k C �L0k�.t/k;
(3.7)

where Dn.t/ is defined in (2.12). It then follows from Assumption (A1) and (2.17) that there exist
constants C �5 ; C

�
6 ; C

�
7 ; C

�
8 > 0 such that

jƒ1.t/j 6 C �5 C C �6 k�.t/k C C �7 k�.t/k; kƒ2.t/k2 C kƒ3.t/k2 6 C �8 ; (3.8)

where ƒi .t/; i D 1; ; 2; 3 are in (2.17). Finding the derivative of u.t/ along the solution of (3.1) to
obtain

du.t/

dt
jalong (3.1)

D
1

b0

² n�1X
iD1

�nC1�i
�
OxiC1.t/C

1

rn�i .t/
gi .�1.t//Chi . Ox1.t/; � � � ; Oxi .t//

	
@v.�n�1 Ox1.t/; � � � ; Oxn.t//

@.�n�i Oxi /

C � . OxnC1.t/C gn.�1.t//C b0u.t/C hn. Ox.t/// �
@v.�n�1 Ox1.t/; � � � ; Oxn.t//

@ Oxn

� r.t/gnC1.�1.t//

³
, ƒ�4.t/:

(3.9)
By Assumption (A3), (2.8), (3.4), and (3.6), it follows that

jƒ�4.t/j 6
L0

jb0j

´
n�1X
iD1

�nC1�i

rn�i .t/
j�iC1.t/j C �

2

nX
iD2

j�i .t/j C

n�1X
iD1

�
ai�

nC1�i

rn�i .t/
j�1.t/j

C
C0�

nC1�i

rnC1�i .t/
k�.t/k C C0�

nC1�ik.x1.t/; � � � ; xi .t//k

	

C�

�
anj�1.t/j C j�v.�

n�1 Ox1.t/; � � � ; Oxn.t//j C
C0

r.t/
k�.t/kCC0kx.t/k

	μ
C
anC1

jb0j
r.t/j�1.t/j

6 L0

jb0j

´
n�1X
iD1

�nC1�i

rn�i .t/
j�iC1.t/j C �

2

nX
iD2

j�i .t/j C

n�1X
iD1

�
ai�

nC1�i

rn�i .t/
j�1.t/j

C
C0�

nC1�i

rnC1�i .t/
k�.t/k C �C0k�.t/k

	

C�

�
anj�1.t/j C L0k�.t/k C �L0k�.t/k C

C0

r.t/
k�.t/k C C0k�.t/k

	μ
C
anC1

jb0j
r.t/j�1.t/j

6 L0

jb0j

²
.n � 1/�n

r.t1/
C
.n � 1/�n

r.t1/
max

16i6n�1
¹aiº C

.n � 1/�nC0

r2.t1/
C �an C �L0 C

�C0

r.t1/

³
k�.t/k

C
L0

jb0j

�
.n � 1/�2 C .n � 1/�C0 C �

2L0 C �C0
�
k�.t/k C

anC1

jb0j
r.t/k�.t/k

D C �9 k�.t/k C C
�
10k�.t/k C

anC1

jb0j
r.t/k�.t/k;8 t > t1; (3.10)
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where we set

C �9 ,
L0

jb0j

²
.n � 1/�n

r.t1/
C
.n � 1/�n

r.t1/
max

16i6n�1
¹aiº C

.n � 1/�nC0

r2.t1/
C �an C �L0 C

�C0

r.t1/

³
;

C �10 ,
L0

jb0j

�
.n � 1/�2 C .n � 1/�C0 C �

2L0 C �C0
�
:

(3.11)
Let

‚1.t/ D ƒ1.t/C .b � b0/ƒ
�
4.t/; ‚2.t/ D ƒ2.t/; ‚3.t/ D ƒ3.t/: (3.12)

Then a direct computation shows that the closed-loop of x-subsystem of (1.1), (2.2), and (3.1) is
equivalent to

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

d�1.t/ D
h
��2.t/C �

n�1h1

�
�1.t/

�n�1

�i
dt;

d�2.t/ D
h
��3.t/C �

n�2h2

�
�1.t/

�n�1
; �2.t/
�n�2

�i
dt;

:::

d�n.t/ D
h
�v.�1.t/; � � � ; �n.t//CDn.t/C �nC1.t/C hn

�
�1.t/

�n�1
; � � � ; �n.t/

�i
dt;

d�1.t/ D
h
r.t/.�2.t/ � g1.�1.t///C

n Pr.t/
r.t/

�1.t/C r
n.t/
1.t/

i
dt;

d�2.t/ D
h
r.t/.�3.t/ � g2.�1.t///C

.n�1/ Pr.t/
r.t/

�2.t/C r
n�1.t/
2.t/

i
dt;

:::

d�n.t/ D
h
r.t/.�nC1.t/ � gn.�1.t///C

Pr.t/
r.t/
�n.t/C r.t/
n.t/

i
dt;

d�nC1.t/ D Œ‚1.t/ � r.t/gnC1.�1.t//�dt C‚2.t/dB1.t/C‚3.t/dB2.t/:

(3.13)

Consider the positive definite function V W R2nC1 ! R given by

V.�; �/ D V.�1; � � � ; �n; �1; � � � ; �nC1/ D V1.�1; � � � ; �n/C V2.�1; � � � ; �nC1/: (3.14)

Apply Itô’s formula to V.�.t/; �.t// with respect to t along the solutions .�.t/; �.t// of system
(3.13) to obtain

dV.�.t/; �.t// D

"
�

n�1X
iD1

@V1.�.t//

@�i
�iC1.t/C �

@V1.�.t//

@�n
v.�1.t/; � � � ; �n.t//

C

nX
iD1

�n�i
@V1.�.t//

@�i
hi

�
�1.t/

�n�1
; � � � ;

�i .t/

�n�i

	

C
@V1.�.t//

@�n
Dn.t/C

@V1.�.t//

@�n
�nC1.t/

#
dt

C r.t/

"
nX
iD1

@V2.�.t//

@�i
.�iC1.t/ � gi .�1.t/// �

@V2.�.t//

@�nC1
gnC1.�1.t//

#
dt

C

nX
iD1

rnC1�i .t/
@V2.�.t//

@�i

i .t/dt C

Pr.t/

r.t/

nX
iD1

.nC 1 � i/
@V2.�.t//

@�i
�i .t/

C
@V2.�.t//

@�nC1
‚1.t/dt C

1

2

@2V2.�.t//

@�2nC1
k‚2.t/k

2dt

C
1

2

@2V2.�.t//

@�2nC1
k‚3.t/k

2dt C
@V2.�.t//

@�nC1
‚2.t/dB1.t/C

@V2.�.t//

@�nC1
‚3.t/dB2.t/:

(3.15)
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By Assumption (A4), there exist � > 0, t2 > t1 > 0 such that

�0 � 2� > 0;

�1r.t2/

2
�

�
˛2L20
2�
C
˛2

2�
C nˇC0 CKn

2ˇ C 1C ˇC �6

C
ˇ2C �27
2�

C ˇC �9 jb � b0j C
ˇ2C �210 jb � b0j

2

2�

	
> 0;

(3.16)

where �0 and �1 are given by (2.29). It follows from (3.3), (3.5), (3.8), (3.10), and Assumptions (A2)
and (A3) that

dEV.�.t/; �.t//

dt
6 ��EW1.�.t//C n˛C0Ek�.t/k2 C ˛L0E.k�.t/k � k�.t/k/

C ˛E.k�.t/k � k�.t/k/ � r.t/EW2.�.t//C nˇC0Ek�.t/k
2

C n2ˇ
Pr.t/

r.t/
Ek�.t/k2 C ˇE

²
k�.t/k �

�
C �5 C C

�
6 k�.t/k C C

�
7 k�.t/k

Cjb � b0j.C
�
9 k�.t/k C C

�
10k�.t/k C

anC1

jb0j
r.t/k�.t/k/

	³
C 
C �8

6 ��0Ek�.t/k2 C
�

2
Ek�.t/k2 C

˛2L20
2�

Ek�.t/k2

C
�

2
Ek�.t/k2 C

˛2

2�
Ek�.t/k2 � 	23r.t/Ek�.t/k

2 C nˇC0Ek�.t/k
2

CKn2ˇEk�.t/k2 C Ek�.t/k2 C
ˇ2C �25
4
C ˇC �6 Ek�.t/k

2 C
�

2
Ek�.t/k2 C

ˇ2C �27
2�

Ek�.t/k2

C ˇC �9 jb � b0jEk�.t/k
2 C

�

2
Ek�.t/k2 C

ˇ2C �210 jb � b0j
2

2�
Ek�.t/k2

C
ˇanC1jb � b0j

jb0j
r.t/Ek�.t/k2 C 
C �8 ;

6 �.�0 � 2�/Ek�.t/k2 �
�1r.t/

2
Ek�.t/k2 C

ˇ2C �25
4
C 
C �8 ; 8 t > t2:

(3.17)

From Assumption (A4), for any ı > 0, there exists a positive constant t3 > t2 such that r.t/ >
ˇ2C�2

5
C4�C�

8
C4�1

2�1ı
for all t > t3. This together with (3.17) yields that if Ek�.t/k2 > ı, then

dEV.�.t/; �.t//

dt
6 ��1 < 0: (3.18)

Therefore, there exists t4 > t3 such that Ek�.t/k2 6 ı for all t > t4, and hence,

lim
t!1

Ek�.t/k2 D 0: (3.19)

This shows that

lim
t!1

E
nC1X
iD1

Œxi .t/ � Oxi .t/�
2 D lim

t!1
E
nC1X
iD1

ˇ̌̌
ˇ �i .t/

rnC1�i .t/

ˇ̌̌
ˇ
2

D 0; (3.20)

the first part of the theorem.
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By Assumption (A2) and (3.5), we find the derivative of V1.�.t// with respect to t along the
solution �.t/ of system (3.13) to obtain

dEV1.�.t//

dt
6 ��EW1�.t//C E

�
@V1.�.t//

@�n
jDn.t/j

	

C E
nX
iD1

�n�i
@V1.�.t//

@�i
hi

�
�1.t/

�n�1
; � � � ;

�i .t/

�n�i

	
C E

�
@V1.�.t//

@�n
�nC1.t/

	

6 �	13�Ek�.t/k2 C ˛L0E.k�.t/k � k�.t/k/C n˛C0Ek�.t/k2 C ˛E.k�.t/k � j�nC1.t/j/

6 �.	13� � n˛C0/Ek�.t/k2 C �Ek�.t/k2 C
˛2L20
4�

Ek�.t/k2 C �Ek�.t/k2 C
˛2

4�
E�2nC1.t/

6 �.�0 � 2�/Ek�.t/k2 C
˛2.L20 C 1/

4�
Ek�.t/k2:

(3.21)
Because limt!1Ek�.t/k2 D 0, for any ı > 0, there exists a positive constant t�3 > t2 such that

Ek�.t/k2 < 2�.�0�2�/ı

˛2.L2
0
C1/

for all t > t�3 : It follows from (3.21) that if Ek.�.t//k2 > ı, then

dEV1.�.t//

dt
6 � .�0 � 2�/ı

2
< 0: (3.22)

Therefore, there exists t�4 > t
�
3 such that Ek�.t/k2 6 ı for all t > t�4 . This shows that

lim
t!1

Ek�.t/k2 D 0; (3.23)

and thus,

lim
t!1

E
nX
iD1

x2i .t/ 6 lim
t!1

Ek�.t/k2 D 0: (3.24)

This completes the proof of the theorem. �

Similarly, the simplest example of time-varying gain ADRC satisfying conditions of Theorem 3.1
is the linear one, that is, gi .�/; i D 1; � � � ; nC 1 in ESO (3.1) and v.�/ in feedback control (2.2) are
linear functions as defined in (2.42). Similar to the proof of Corollary 2.1, we have Corollary 3.1.

Corollary 3.1
Let � > max¹1; 2n	max.H/C0º. Suppose that supt>0 kw.t/k 6 B almost surely for some constant
B > 0, the matrices E and F are Hurwitz, and jb � b0j <

jb0j
2knC1�max.Q/

. Then under Assump-
tions (A1) and (A4), for any initial values x.0/ 2 Rn; . Ox.0/; OxnC1.0// 2 RnC1, �.0/ 2 Rm, the
closed-loop of x-subsystem of (1.1), (3.1), and (2.2) is asymptotically mean square stable in the
sense that

lim
t!1

E
nC1X
iD1

Œxi .t/ � Oxi .t/�
2 D 0; lim

t!1
E

nX
iD1

x2i .t/ D 0:

Remark 3.1
As indicated in [6], the time-varying gain ESO degrades the ability of ESO to filter high-frequency
noise, while the constant gain ESO does not. In practical applications, we can use time-varying
gain r.t/ as follows: (i) given a small initial value r.0/ > 0; (ii) from the constant high gain, we
obtain the convergent high-gain value 1

"
.0 < " < 1/ that can also be obtained by trial-and-error

experiment for practical systems; (iii) the gain function is initialed from the small value r.0/ > 0

and then increases continuously to a large constant high gain 1
"
. Specially, r.t/ can be chosen as

r.t/ D

´
eat ; 0 6 t 6 � 1

a
ln ";

1
"
; t > � 1

a
ln ";

(3.25)
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where a > 0 is used to control the convergent speed and the peaking value. The larger a is, the
faster convergence but larger peaking; while the smaller a is, the lower convergence speed and
smaller peaking. The mean square practical ability of the closed-loop system of x-subsystem of
(1.1), (2.2), and (3.1) with time-varying gain r.t/ given by (3.25) can also be achieved since the
ESO (3.1) is reduced to ESO (2.1) when t > � 1

a
ln ":

4. NUMERICAL SIMULATIONS

In this section, we present an example to illustrate the effectiveness of the proposed ADRC
approach. Consider the following uncertain lower triangular system with stochastic inverse dynamic
and exogenous stochastic disturbance:8̂<
:̂
dx1.t/ D Œx2.t/C sin.x1.t//�dt;
dx2.t/ D Œ˛1x1.t/C ˛2x2.t/C ˛3 cos.�.t//C cos .˛4t C ˛5B2.t//C u.t/C sin.x2.t//�dt;
d�.t/ D ˛6 sin.�.t// � x2.t/dt C ˛7 cos.�.t// � cos .˛4t C ˛5B2.t// dB1.t/;
y.t/ D x1.t/;

(4.1)
where ˛i .i D 1; 2; � � � ; 7/ are unknown parameters satisfying j˛i j 6 M .i D 1; 2; � � � ; 7/ for
any given (known) constant M > 0. The w.t/ , cos .˛4t C ˛5B2.t// is a bounded non-white
noise appeared often in many practical dynamical systems like the motion of oscillators [25], where
˛4 and ˛25 are constants representing the central frequency and strength of frequency disturbance,
respectively. In this case, n D 2;m D 1; s D 1; p D q D 1; b D b0 D 1. It is easy to check that all
the uncertainties in (4.1) satisfy Assumption (A1). So we can design a constant gain ESO (4.2) for
system (4.1) as follows:8̂̂

<̂
ˆ̂̂:
d Ox1.t/ D

h
Ox2.t/C

6
"
.y.t/ � Ox1.t//C "‰

�
y.t/� Ox1.t/

"2

�
C sin. Ox1.t//

i
dt;

d Ox2.t/ D
h
Ox3.t/C

12
"2
.y.t/ � Ox1.t//dt C u.t/C sin. Ox2.t//

i
dt;

d Ox3.t/ D
8
"3
.y.t/ � Ox1.t//dt;

(4.2)

where ‰ W R! R is defined as

‰.s/ D

8̂̂<
ˆ̂:
� 1
	
; s 2 .�1;�1�;

1
	

sin 	s
2
; s 2 .�1; 1/;

1
	
; s 2 Œ1;C1/:

(4.3)

First, we notice that the corresponding matrix in (2.43) for the linear part of (4.2) is

F D

0
@�6 1 0

�12 0 1
�8 0 0

1
A ; (4.4)

which has eigenvalues equal to �2 and hence is Hurwitz. In this case, gi .�/; i D 1; 2; 3 in (2.1) can
be specified as

g1.y1/ D 6y1 C‰.y1/; g2.y1/ D 12y1; g3.y1/ D 8y1: (4.5)

The Lyapunov function V2 W R3 ! R for this case is given by

V2.y/ D y
>Qy C

Z y1

0

‰.s/ds;8 y D .y1; y2; y3/
> 2 R3; (4.6)

where

Q D

0
B@

67
32
�1
2
� 97
128

�1
2

97
128

�1
2

� 97
128
�1
2

643
512

1
CA (4.7)
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is the positive definite solution of the Lyapunov equation QF C F>Q D �I3�3 for F given by
(4.4). A direct computation shows that

2X
iD1

@V2.y/

@yi
.yiC1 � gi .y1// �

@V2.y/

@y3
g3.y1/

D �y21 � y
2
2 � y

2
3 �

�
67

16
y1 � y2 �

97

64
y3 C‰.y1/

	
�‰.y1/C .y2 � 6y1/ �‰.y1/

6 � 63
256

y21 �
1

3
y22 �

159

256
y23 , �W2.y/; 8 y D .y1; y2; y3/> 2 R3:

(4.8)

So all conditions of Assumption (A3) are satisfied. Choose v W R2 ! R in (2.42) as follows:

v. Ox1; Ox2/ D �2 Ox1 � 3 Ox2 (4.9)

with the corresponding matrix in (2.43)

E D

�
0 1

�2 �3

	
: (4.10)

being Hurwitz and

H D

�
5
4
1
4

1
4
1
4

	
(4.11)

is the positive definite solution of the Lyapunov equation HE C E>H D �I2�2: A simple com-
putation shows that the maximal eigenvalue of matrix H is 	max¹Hº D

3C
p
5

4
< 3

2
: We also notice

that C0 D 1; 	13 D 1; n D 2; ˛ < 3, and thus, we can choose the parameter � for this case in
(2.2) as � D 6. It follows from Assumption (A2) and Theorem 2.1 that (4.2) serves as a well-
defined nonlinear constant gain ESO for system (4.1) under the ESO (4.2)-based feedback control
designed as

u.t/ D �72 Ox1.t/ � 18 Ox2.t/ � Ox3.t/: (4.12)

The Milstein approximation method [36] is used to discretize systems (4.1) and (4.2). Figures 1–4
display the numerical results for (4.1) and (4.2) where we take

˛1 D 1; ˛2 D 2; ˛3 D 1; ˛4 D
1

3
; ˛5 D

1

3
; ˛6 D

1

2
; ˛7 D

1

2
: (4.13)

The initial values are

x1.0/ D 1; x2.0/ D �1; �.0/ D 0; Ox1.0/ D Ox2.0/ D Ox3.0/ D 0; (4.14)

Figure 1. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under nonlinear constant gain ESO (4.2)-based feedback control (4.12) with " D 0:01.

[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 2. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under nonlinear constant gain ESO (4.2)-based feedback control (4.12) with " D 0:01.
(a) Magnification of (1(a)), (b) magnification of (1(b)), and (c) magnification of (1(c)). [Colour figure can

be viewed at wileyonlinelibrary.com]

Figure 3. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under nonlinear constant gain ESO (4.2)-based feedback control (4.12) with " D 0:05.

[Colour figure can be viewed at wileyonlinelibrary.com]

Figure 4. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under nonlinear constant gain ESO (4.2)-based feedback control (4.12) with " D 0:1.

[Colour figure can be viewed at wileyonlinelibrary.com]

and time discrete step is taken as


t D 0:001: (4.15)

Theoretically, we can conclude from Theorem 2.1 that under the ESO (4.2)-based output-
feedback control (4.12), the estimation errors for x1.t/, x2.t/, x3.t/ are bounded by O."5/, O."3/,
O."/ in practical mean square sense, respectively. In addition , the states x1.t/ and x2.t/ are
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bounded by O."/ in practical mean square sense. In Figures 1 and 2, the tuning parameter is
" D 0:01. The local amplification of Figure 1 is plotted in Figure 2. It is seen from Figure 2 that the
nonlinear constant gain ESO (4.2) is very effective in tracking system (4.1) not only for the state
.x1.t/; x2.t// but also for the extended state (stochastic total disturbance) x3.t/ defined by

x3.t/ D x1.t/C 2x2.t/C cos.�.t//C cos

�
1

3
t C

1

3
B2.t/

	
: (4.16)

It is observed from Figure 2 that the estimation effect for x1.t/ is the best, x2.t/ the second ,
and x3.t/ the last, which are coincident with the theoretical estimations. Moreover, it is seen from
Figure 2(a) and (b) that stabilization for each trajectory of x1.t/ and x2.t/ is very satisfactory. To
validate further the theoretical convergence in Theorem 2.1, Figures 3 and 4 are plotted in compar-
ison with Figure 2, where the tuning parameters are chosen as " D 0:05 and " D 0:1, respectively.
On one hand, it is seen that the effects of estimation and stabilization in Figure 2 are the best,
Figures 3 the second, and Figure 4 the worst because of the increase in tuning parameter ", which is
also consistent with the theoretical estimation. On the other hand, it is observed from Figures 3 and
4 that the estimation for states x1.t/ and x2.t/ still maintains good performances although the tun-
ing parameter " is increased from 0.01 to 0.05 and 0.1. However, the estimation effect for stochastic
total disturbance x3.t/ becomes much worse when the tuning parameter " is increased from 0.01 to
0.05 and 0.1. These are exactly consistent with the theoretical estimation that the estimation errors
for x1.t/ and x2.t/ are bounded by O."5/ and O."3/ in practical mean square sense, respectively,
but the estimation error for stochastic total disturbance x3.t/ is only bounded by O."/.

The main problem for constant high-gain ESO, likewise many other high-gain designs, is the
peaking value problem near the initial stage caused by different initial values of system (4.1) and
ESO (4.2) ([6]). The large peaking values of Ox2.t/ and Ox3.t/ are observed near the initial stage
because of the high gain 1

"
D 100 : The absolute peaking value of Ox2.t/ is near 200 and that of

Ox3.t/ is even greater than 104 in Figure 1(b) and (c), respectively.
Now, we apply the following time-varying gain ESO (4.17) to system (4.1), which comes from

(3.1) with nonlinear functions gi .�/; i D 1; 2; 3 as that in (4.5):8̂̂
<
ˆ̂:
d Ox1.t/ D

h
Ox2.t/C 6r.t/.y.t/ � Ox1.t//C

1
r.t/
‰
�
r2.t/.y.t/ � Ox1.t/

�
C sin. Ox1.t//

i
dt;

d Ox2.t/ D
�
Ox3.t/C 12r

2.t/.y.t/ � Ox1.t//dt C u.t/C sin. Ox2.t//
�
dt;

d Ox3.t/ D 8r
3.t/.y.t/ � Ox1.t//dt;

(4.17)
where ‰ W R! R is given by (4.3). In what follows, we use the time-varying gain r.t/ D e0:5t for
the numerical simulation. It is observed from Figure 5 that the estimation of .x1.t/; x2.t/; x3.t//

Figure 5. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under the nonlinear time-varying gain ESO (4.17)-based feedback control (4.12) with

time-varying gain r.t/ D e0:5t . [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 6. The closed-loop state .x1.t/; x2.t//, stochastic total disturbance x3.t/, and their estimates
. Ox1.t/; Ox2.t/; Ox3.t// under the nonlinear time-varying gain ESO (4.17)-based feedback control (4.12)
with time-varying gain r.t/ given by (4.18) and " D 0:01 . [Colour figure can be viewed at

wileyonlinelibrary.com]

and the stabilization for state .x1.t/; x2.t/ are also very satisfactory after a short time. In addition,
there are no peaking values near the initial stages for Ox2.t/ and Ox3.t/.

In general, the large gain value needs small integration step. Thus, as recommended in [6] and
Remark (3.1), in practice, the time-varying gain should be small value in the beginning and gradually
increases to a large constant high gain for which we choose as

r.t/ D

²
e6t ; 0 6 t 6 ln 100=6;
1
"
D 100; t > ln 100=6:

(4.18)

The numerical results for (4.1) with time-varying gain ESO (4.17) and time-varying gain r.t/
given by (4.18) are plotted in Figure 6 with the same initial values and time discrete step as that
in Figures 1–5. Figure 6 shows that the nonlinear time-varying gain ESO (4.17) tracks the state
.x1.t/; x2.t// of system (4.1) and stochastic total disturbance x3.t/ defined in (4.16) well. In addi-
tion, Figure 6(a) and (b) show that the stabilization under time-varying gain ESO (4.17)-based
feedback control (4.12) is also very satisfactory. More importantly, the absolute peaking value near
the initial stage of Ox2.t/ is around one (near 200 by constant high gain) and that of Ox3.t/ is less
than 5 (over 104 by constant high gain). This shows that the time-varying gain method reduces dra-
matically the peaking value caused by the constant high gain. Finally, the effects of estimation and
stabilization in Figure 6 are satisfactorily after a shorter time than Figure 5, which is because the
gain value of the former is larger than the latter in the beginning.

5. CONCLUDING REMARKS

In this paper, we apply ADRC approach to output-feedback stabilization for a class of lower trian-
gular nonlinear systems with large stochastic uncertainty in the control channel. Both constant gain
ESO and time-varying gain ESO are designed to estimate, in real time, both the unmeasured states
and the stochastic total disturbance that includes unknown system dynamics, unknown stochastic
inverse dynamics, external stochastic disturbance, and uncertainty caused by the deviation of con-
trol parameter from its nominal value. The stochastic total disturbance is then compensated in the
feedback loop. An ESO-based output-feedback control is designed analogously as for the system
without disturbance. It is shown that the resulting closed-loop of x-subsystem is practically mean
square stable with constant gain ESO and asymptotically mean square stable with time-varying gain
ESO, respectively. The numerical results validate the efficiency of both design methods. By com-
bination of the time-varying gain in the initial stage and the constant high gain, the peaking value
reduction near the initial stage is also addressed through numerical simulations.

Finally, we indicate a potential application of the ADRC approach to more complicated sys-
tems like models in [21, 22] with mismatched unknown nonlinear system uncertainty and stochastic
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disturbance. That is, the nonlinear system dynamics hi .�/ .i D 1; 2; � � � ; n/ in system (1.1) are also
unknown and the x-subsystem could be modeled by Itô-type stochastic differential equations. In
this case, the diffusion term in the x-subsystem would bring essential difficulty for ESO to estimate
the stochastic total disturbance because high-gain ESO is sensitive to white noise in x-subsystem.
Mathematically, a feasible way like reforming ESO should be excavated to tackle the Hessian term
brought by Itô differential to estimate stochastic total disturbance.
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