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A B S T R A C T

In this paper, we explore state feedback control for the 𝐻∞ disturbance-attenuation problem in stable parabolic
systems with in-domain distributed disturbances under Dirichlet boundary control. Calculating the state
feedback control involves solving an operator algebraic Riccati equation, which poses challenges in finding an
analytic solution. A practical approach is to seek an approximate solution via finite-dimensional approximation.
Specifically, we employ the Galerkin approximation, which generates a sequence of finite-dimensional systems
that approximate the original infinite-dimensional system. All corresponding finite-dimensional disturbance-
attenuation problems are solvable, and it is demonstrated that the sequence of solutions to the associated
finite-dimensional algebraic Riccati equations converges in norm to the solution of the infinite-dimensional op-
erator algebraic Riccati equation. Furthermore, the state feedback controls derived from the finite-dimensional
algebraic Riccati equations are proven to be 𝛾-admissible controls for the original system.

1. Introduction

𝐻∞ control addresses the challenge of managing extensive disturbances in control systems. Since the 1980s, there has been a vast amount of
literature on 𝐻∞ control problems for finite-dimensional systems, as seen in works [1–4]. Additionally, infinite-dimensional systems with bounded
control operators have been extensively studied in [5,6], and others. When dealing with bounded control operators, the transition from lumped
to distributed parameter systems does not introduce significant complexities. However, the scenario becomes considerably more intricate when
the control operator is unbounded. The unboundedness of the control operator typically reduces the regularity of the solution to the dynamic
equation, adding another layer of complexity to the problem. The monograph [7] specifically addressed the 𝐻∞-control problem for a class
of systems with unbounded control operators, commonly referred to as Pritchard-Salamon systems. This class encompasses delay equations as
well as the one-dimensional heat equation with Neumann boundary control, yet it excludes heat equations subject to Dirichlet boundary control.
On the other hand, [8] focused on 𝐻∞-boundary control under state feedback for hyperbolic-like systems. In the context of finite-dimensional
systems [1–4], state feedback for 𝐻∞-control can be derived by solving a matrix algebraic Riccati equation, which is a relatively straightforward task
with the aid of modern mathematical tools. For infinite-dimensional systems [5–8], finding state feedback requires solving an infinite-dimensional
operator algebraic Riccati equation. This task has rarely been undertaken in the literature. [9] found an analytic optimal 𝐻∞-control directly for
a very specific heat equation without solving the algebraic Riccati equation. However, this approach is not readily applicable to general infinite-
dimensional systems. Previous works [10–12] explored the approximation method for operator Riccati equations where the control operators were
bounded. However, the literature on addressing unbounded control operators in this context is limited. The approach introduced in [10] cannot
be directly applied to boundary control problems due to its heavy reliance on the boundedness and compactness of the control operator. This
limitation provided the impetus for our current research, as the control operator in this paper lacks both boundedness and compactness, posing a
significant challenge.

In infinite-dimensional systems governed by partial differential equations (PDEs), unbounded control operators primarily originate from
boundary control, which stands out as one of the most practical control strategies in PDEs. This paper delves into the 𝐻∞ disturbance-attenuation
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problem for stable parabolic systems under Dirichlet boundary control and distributed disturbance. First, we revisit the min–max game theory
for parabolic-like systems, as a standard approach to tackling the 𝐻∞ disturbance-attenuation problem often involves associating the system

ith a min–max game problem. Numerous studies have examined min–max game problems for PDEs with unbounded control operators, such
s parabolic-like PDEs discussed in [13, Chapter 6] and [14], as well as hyperbolic-like PDEs in [15]. We will incorporate some findings from
in–max game problems for parabolic-like systems. A crucial aspect is the explicit representation of solutions to the associated game problem and

he corresponding algebraic Riccati equation, as outlined in [13, part II of Chapter 6]. Next, we employ the Galerkin approximation method, which
enerates a sequence of finite-dimensional systems that approximate the original parabolic system, along with a sequence of finite-dimensional
lgebraic Riccati equations that approximate the operator algebraic Riccati equation with an unbounded control operator. Our approach differs
ignificantly from that presented in [10]. We leverage the uniform analyticity of approximation operators discussed in [16] for the original free
ynamics generator, as well as results on Galerkin approximation for open-loop problems with nonhomogeneous Dirichlet boundary conditions.
t is demonstrated that solutions to algebraic Riccati equations linked with finite-dimensional systems converge, in terms of norm, to the solution
f the operator algebraic Riccati equation associated with the original infinite-dimensional system. Simultaneously, state feedback controls for
he finite-dimensional systems converge in norm to the state feedback control of the original infinite-dimensional system. Furthermore, finite-
imensional feedback controls, constructed using solutions of finite-dimensional algebraic Riccati equations, are proven to be 𝛾-admissible for the
riginal infinite-dimensional system.

We proceed as follows. In the next section, Section 2, the problem is formulated. In Section 3, we sum up some results about the min–max game
heory. The Galerkin approximation scheme of the 𝐻∞ control problem is introduced in Section 4.1 where the convergence analysis is carried out
n Section 4.2. A numerical simulation is presented in Section 5, followed up by conclusions in Section 6.

. Problem statement

Let 𝛺 ⊂ R𝑛 be a bounded domain with smooth boundary 𝛤 . Let 𝐴(𝜉, 𝜕) be a uniformly strongly elliptic operator of order two in 𝛺 that satisfies

−𝐴(𝜉, 𝜕) =
𝑛
∑

𝑖,𝑗=1

𝜕
𝜕𝜉𝑖

(

𝑎𝑖𝑗 (𝜉)
𝜕
𝜕𝜉𝑗

)

+
𝑛
∑

𝑗=1
𝑏𝑗 (𝜉)

𝜕
𝜕𝜉𝑗

+ 𝑐,

where the coefficients 𝑎𝑖𝑗 (𝜉) and 𝑏𝑗 (𝜉) are sufficiently smooth functions, 𝑐 is a constant and the matrix [𝑎𝑖𝑗 ] is symmetric. Furthermore, there is a
constant 𝛼 > 0 such that

𝑛
∑

𝑖,𝑗=1
𝑎𝑖𝑗 (𝜉)𝜉𝑖𝜉𝑗 ≥ 𝛼|𝜉|2, ∀𝜉 = (𝜉1, 𝜉2,… , 𝜉𝑛) ∈ R𝑛.

We consider a parabolic control system of the following:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑧(𝜉, 𝑡)
𝜕𝑡

= −𝐴(𝜉, 𝜕)𝑧(𝜉, 𝑡) + 𝑑(𝜉, 𝑡) in 𝛺 × (0,∞],

𝑧(𝜎, 𝑡) = 𝑢(𝜎, 𝑡) in 𝛤 × (0,∞],

𝑧(𝜉, 0) = 𝑧0(𝜉), 𝜉 ∈ 𝛺,

(2.1)

here 𝑢 ∈ 𝐿2(0,∞;𝐿2(𝛤 )) is the boundary control, 𝑑 ∈ 𝐿2(0,∞;𝐿2(𝛺)) is an in-domain disturbance and the initial value 𝑧0 ∈ 𝐿2(𝛺). Suppose that
= 𝐺𝑤 where 𝐺 ∈ (𝑉 ,𝐿2(𝛺)), 𝑉 is a Hilbert space and 𝑤 ∈ 𝐿2(0,∞;𝑉 ). Let

 = 𝐿2(0,∞;𝐿2(𝛺)),  = 𝐿2(0,∞;𝐿2(𝛤 )),  = 𝐿2(0,∞;𝑉 ).

et 𝐴 ∶ (𝐴)(⊂ 𝐿2(𝛺)) → 𝐿2(𝛺) be the operator −𝐴(𝜉, 𝜕) with the homogeneous Dirichlet boundary condition. From [17, Theorem 2.7, p.211], 𝐴
enerates a strongly continuous semigroup 𝑒𝐴𝑡 on 𝐿2(𝛺) and 𝑒𝐴𝑡 is analytic in a triangular sector containing the positive real line. Throughout the

paper, we assume that 𝐴 is exponentially stable, i.e., there are constants 𝑀0, 𝜔0 > 0 such that

‖𝑒𝐴𝑡‖(𝐿2(𝛺)) ≤ 𝑀0𝑒
−𝜔0𝑡, ∀𝑡 ≥ 0. (2.2)

By [17, Theorem 6.13, p.74], a more general form than (2.2) holds:

‖(−𝐴)𝜌𝑒𝐴𝑡‖(𝐿2(𝛺)) ≤
𝐶𝜌𝑒−𝜔0𝑡

𝑡𝜌
, ∀𝑡 > 0, 0 ≤ 𝜌 ≤ 1, (2.3)

where the fractional power of −𝐴 is defined in [17, p. 69] and 𝐶𝜌 is a constant depending on 𝜌 only. In addition, it follows from [18, p. 187] that

(𝐴) = (𝐴∗), hence ((−𝐴)𝜃) = ((−𝐴)∗𝜃), 0 < 𝜃 < 1.

The operator 𝐴 can be extended isomorphically from 𝐿2(𝛺) to [(𝐴)]′, which is still denoted by 𝐴. Let a Dirichlet map 𝐷 be defined by

ℎ = 𝐷𝑔 ⇔ 𝐴ℎ = 0 in 𝛺, ℎ|𝛤 = 𝑔.

It is well known from the elliptic theory that [18, Theorem 7.3, p.187]

𝐷 ∈ (𝐿2(𝛤 ),𝐻1∕2(𝛺)).

Referring to [13, p. 181], we can reformulate (2.1) into the following abstract form:

𝑧̇(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝑢(𝑡) + 𝐺𝑤(𝑡) in [(𝐴)]′, 𝑧(0) = 𝑧0 ∈ 𝐿2(𝛺), (2.4)

where 𝐵 = −𝐴𝐷 ∈ (𝐿2(𝛤 ), [(𝐴)]′). By [19], 𝐻1∕2(𝛺) ⊂ ((−𝐴)1∕4−𝛽 ) = 𝐻1∕2−2𝛽 (𝛺) for any 0 < 𝛽 < 1
4 . Hence

(−𝐴)−(3∕4+𝛽)𝐵 = (−𝐴)1∕4−𝛽𝐷 ∈ (𝐿2(𝛤 ), 𝐿2(𝛺)). (2.5)
2
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𝐴

Moreover, from [13, Remark 3.1.2, p.183], the following properties hold

𝐵∗𝑓 = − 𝜕
𝜕𝜈𝐴∗

𝑓, ∀𝑓 ∈ (𝐴) and 𝐵∗𝑓 = − 𝜕
𝜕𝜈

𝑓 whenever − 𝐴(𝜉, 𝜕) = 𝛥, (2.6)

‖𝐵∗𝑓‖𝐿2(𝛤 ) ≤ 𝐶
‖

‖

‖

‖

𝜕
𝜕𝜈

𝑓
‖

‖

‖

‖𝐿2(𝛤 )
, ∀𝑓 ∈ (𝐴), (2.7)

here 𝐶 > 0 is a constant independent of 𝑓 and 𝜕
𝜕𝜈𝐴∗

is the co-normal derivative with respect to 𝐴∗.
Now, we introduce the class  of admissible feedback operators 𝐹 ∈ ((𝐴), 𝐿2(𝛤 )) satisfying the following conditions: 𝐹 ∈  if and only if

𝐹 = 𝐴 + 𝐵𝐹 generates an exponentially stable 𝐶0-semigroup 𝑒𝐴𝐹 𝑡 on 𝐿2(𝛺); (𝐴𝐹 ) ⊂ (𝐹 ); and 𝐹 is an infinite-admissible observation operator
for 𝑒𝐴𝐹 𝑡, meaning that 𝐹𝑒𝐴𝐹 ⋅ ∈ (𝐿2(𝛺), ). Let

𝑅 ∈ (𝐿2(𝛺), 𝑌 )

where 𝑌 is a Hilbert space. Define

(𝑆𝐹𝑤)(𝑡) =
(

𝑅∫

𝑡

0
𝑒𝐴𝐹 (𝑡−𝜏)𝐺𝑤(𝜏)d𝜏, 𝐹 ∫

𝑡

0
𝑒𝐴𝐹 (𝑡−𝜏)𝐺𝑤(𝜏)d𝜏

)

.

By [20],

𝑆𝐹 ∈ ( , 𝐿2(0,∞; 𝑌 × 𝐿2(𝛤 ))), ∀𝐹 ∈  .

Definition 2.1. A 𝛾-admissible state feedback for (2.4) is an operator 𝐹 ∈  such that ‖𝑆𝐹 ‖ < 𝛾. Here ‖𝑆𝐹 ‖ is the norm of the operator
𝑆𝐹 ∈ ( , 𝐿2(0,∞; 𝑌 × 𝐿2(𝛤 ))).

The present paper considers the problem of constructing a 𝛾-admissible state feedback for (2.4). This is equivalent to construct a stabilizing
feedback control 𝑢(𝑡) = 𝐹𝑧(𝑡), 𝐹 ∈  , with which there is a 𝛿 > 0 independent of 𝑤 such that the closed-loop solution 𝑧(⋅) of (2.4) with 𝑧0 = 0
satisfies

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐹𝑧(𝑡)‖2

𝐿2(𝛤 )
)d𝑡 ≤ (𝛾2 − 𝛿)∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡, ∀𝑤 ∈  . (2.8)

This is a standard 𝐻∞ disturbance-attenuation problem with state feedback for the system (2.4). Moreover, we shall estimate the optimal disturbance
attenuation 𝛾̂ defined by

𝛾̂ = inf 𝛾 (2.9)

over all 𝛾 ≥ 0 such that there is a 𝛾-admissible state feedback for (2.4).

Remark 2.1. Eq. (2.1) bears similarities to the one examined in [21,22], where linear quadratic regulator problems were discussed. We point
out that the linear quadratic regulator problem may be regarded as a limiting case of 𝐻∞ disturbance-attenuation problem when 𝛾 → ∞. The
paper [22] introduced a Galerkin approximation technique to tackle the regulator problem for the system (2.4) under the condition 𝑤 ≡ 0. In
contrast, the current paper delves into the Galerkin approximation of the 𝐻∞ disturbance-attenuation problem for the same system (2.4). It will
be observed that the findings of these two distinct problems exhibit numerous parallels.

3. Min–max game theory over an infinite time interval

The result presented in this section originates from [13, part II of Chapter 6], which holds significance for our discussions in the upcoming
sections. Given a fixed value of 𝛾 ≥ 0, define a cost functional:

𝐽 (𝑢,𝑤; 𝑧0) = ∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝑢(𝑡)‖2𝐿2(𝛤 ) − 𝛾2‖𝑤(𝑡)‖2𝑉 )d𝑡 (3.1)

where 𝑧(𝑡) = 𝑧(𝑡; 𝑧0) is the mild solution of (2.4). A standard approach to handle the 𝐻∞ disturbance-attenuation problem is to associate the system
(2.4) with a game problem:

sup
𝑤∈

inf
𝑢∈

𝐽 (𝑢,𝑤; 𝑧0) (3.2)

where the infimum is taken over all 𝑢 ∈  for fixed 𝑤, and the supremum is taken over all 𝑤 ∈  . Before giving related results, we need some
preparations. Define

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝐿𝑢)(𝑡) = ∫

𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)d𝜏, ∀𝑢 ∈  ,

(𝑊𝑤)(𝑡) = ∫

𝑡

0
𝑒𝐴(𝑡−𝜏)𝐺𝑤(𝜏)d𝜏, ∀𝑤 ∈  .

(3.3)

Then the mild solution of (2.4) can be given explicitly by

𝑧(𝑡; 𝑧0) = 𝑒𝐴𝑡𝑧0 + (𝐿𝑢)(𝑡) + (𝑊𝑤)(𝑡).
3

We have the following regularity properties of 𝐿 and 𝑊 .
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Lemma 3.1. Let the operators 𝐿 and 𝑊 be defined by (3.3). Then,

𝐿 ∈ ( ,), 𝑊 ∈ ( ,). (3.4)

Proof. The second assertion is a consequence of (2.2) and 𝐺 ∈ (𝑉 ,𝐿2(𝛺)) from Young’s inequality. Here we only need to prove the first assertion.
Notice that

‖𝐿𝑢‖ ≤

(

∫

∞

0

‖

‖

‖

‖

‖

∫

𝑡

0
𝑒𝐴(𝑡−𝜏)(−𝐴)3∕4+𝛽 (−𝐴)−(3∕4+𝛽)𝐵𝑢(𝜏)d𝜏

‖

‖

‖

‖

‖

2

𝐿2(𝛺)
d𝑡

)1∕2

≤ ∫

∞

0
‖𝑒𝐴𝑡(−𝐴)3∕4+𝛽‖(𝐿2(𝛺))d𝑡

(

∫

∞

0
‖(−𝐴)−(3∕4+𝛽)𝐵𝑢(𝑡)‖2

𝐿2(𝛺)
d𝑡
)1∕2

≤ 𝐶 ∫

∞

0

𝑒−𝜔0𝑡

|𝑡|3∕4+𝛽
d𝑡
(

∫

∞

0
‖𝑢(𝑡)‖2

𝐿2(𝛤 )
d𝑡
)1∕2

≤ 𝐶‖𝑢‖ ,

where 𝐶 is a constant independent of 𝑢(⋅), the second inequality was from Young’s inequality and the third inequality was induced from (2.3) and
(2.5). ■

We can therefore define 𝐿∗ and 𝑊 ∗ as the 𝐿2(0,∞; ⋅)-adjoint of 𝐿 and 𝑊 respectively. A straightforward computation shows that

(𝐿∗𝑓 )(𝑡) = 𝐵∗
∫

∞

𝑡
𝑒𝐴

∗(𝜏−𝑡)𝑓 (𝜏)d𝜏, ∀𝑓 ∈ 

(𝑊 ∗𝑓 )(𝑡) = 𝐺∗
∫

∞

𝑡
𝑒𝐴

∗(𝜏−𝑡)𝑓 (𝜏)d𝜏, ∀𝑓 ∈  .

Now we briefly review some results on the game problem (3.2). We only give a brief proof for later usage. The details can be found in [13,
part II of Chapter 6].

Theorem 3.1. For the system (2.4) with assumptions (2.3) and (2.5), there is a critical value 𝛾𝑐 (determined in (3.13) later) such that:
(a) If 𝛾𝑐 > 0 and 0 < 𝛾 < 𝛾𝑐 , then

sup
𝑤∈

inf
𝑢∈

𝐽 (𝑢,𝑤; 𝑧0) = +∞, ∀𝑧0 ∈ 𝐿2(𝛺).

(b) If 𝛾 > 𝛾𝑐 , then there exists a unique solution {𝑤∗, 𝑢∗, 𝑧∗} of the game problem (3.2) with explicit expressions:

⎧

⎪

⎨

⎪

⎩

𝑤∗(⋅; 𝑧0) = 𝐸−1
𝛾 𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑒𝐴⋅𝑧0,

𝑢∗(⋅; 𝑧0) = −[𝐼 + 𝐿∗𝑅∗𝑅𝐿]−1𝐿∗𝑅∗𝑅[𝑒𝐴⋅𝑧0 +𝑊𝑤∗(⋅; 𝑧0)],

𝑧∗(⋅; 𝑧0) = 𝑒𝐴⋅𝑧0 + 𝐿𝑢∗(⋅; 𝑧0) +𝑊𝑤∗(⋅; 𝑧0),

(3.5)

where 𝐸𝛾 ∈ () is defined in (3.9) later and there is an operator 𝑃 = 𝑃 ∗ ≥ 0 ∈ (𝐿2(𝛺)) satisfying the following algebraic Riccati equation, that is, for
any 𝑓, 𝑔 ∈ ((−𝐴)𝜀) with 𝜀 > 0,

(𝑃𝑓,𝐴𝑔)𝐿2(𝛺) + (𝐴𝑓, 𝑃𝑔)𝐿2(𝛺) + (𝑅𝑓,𝑅𝑔)𝑌 = (𝐵∗𝑃𝑓, 𝐵∗𝑃𝑔)𝐿2(𝛤 ) − 𝛾2(𝐺∗𝑃𝑓,𝐺∗𝑃𝑔)𝑉 ; (3.6)

𝐴𝑃 ,𝛾 = 𝐴 − 𝐵𝐵∗𝑃 + 𝛾−2𝐺𝐺∗𝑃 with (𝐴𝑃 ,𝛾 ) ⊂ ((−𝐴)1∕4−𝛽 ) generates an analytic exponentially stable 𝐶0-semigroup 𝛷(𝑡) on 𝐿2(𝛺):

‖𝛷(𝑡)‖(𝐿2(𝛺)) ≤ 𝑀1𝑒
−𝜔1𝑡, (3.7)

for some constants 𝑀1, 𝜔1 > 0; moreover,

𝑢∗(𝑡; 𝑧0) = −𝐵∗𝑃𝑧∗(𝑡; 𝑧0), 𝐵∗𝑃 ∈ (𝐿2(𝛺), 𝐿2(𝛤 )), 𝑧∗(𝑡, 𝑧0) = 𝛷(𝑡)𝑧0

and 𝐴𝑃 = 𝐴 − 𝐵𝐵∗𝑃 generates an analytic exponentially stable 𝐶0-semigroup 𝑒𝐴𝑃 𝑡 on 𝐿2(𝛺):

‖𝑒𝐴𝑃 𝑡
‖(𝐿2(𝛺)) ≤ 𝑀2𝑒

−𝜔2𝑡,

for some constants 𝑀2, 𝜔2 > 0.

Proof. We split the proof into three steps.
Step 1. First, for a given 𝑤 ∈  , consider the following minimization problem:

inf
𝑢∈

𝐽 (𝑢,𝑤; 𝑧0).

It is obvious that the optimal problem is a standard quadratic problem in 𝑢 for fixed 𝑤 ∈  . Applying the Lagrange multiplier as in the proof
of [13, Theorem 6.20.1.1, p.613], we can get

inf
𝑢∈

𝐽 (𝑢,𝑤; 𝑧0) = 𝐽 (−𝐿∗𝑅∗𝑅𝑧,𝑤; 𝑧0). (3.8)

Denote 𝐽 (−𝐿∗𝑅∗𝑅𝑧,𝑤; 𝑧0) by 𝐽 0
𝑤(𝑧0) and

𝐸𝛾 = 𝛾2𝐼 − 𝑆 ∈ (), (3.9)

where 𝑆 is defined by

𝑆 = 𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑊 ∈ (). (3.10)
4
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A simple calculation shows that

𝐽 0
𝑤(𝑧0) = 𝐽 0

𝑤=0(𝑧0) + 𝐽 0
𝑤(𝑧0 = 0) + 𝜒𝑧0 ,𝑤, (3.11)

where
𝐽 0
𝑤=0(𝑧0) = (𝑅𝑒𝐴⋅𝑧0, [𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑒𝐴⋅𝑧0)𝐿2(0,∞;𝑌 ),

𝐽 0
𝑤(𝑧0 = 0) = −(𝑤,𝐸𝛾𝑤) ,

𝜒𝑧0 ,𝑤 = 2(𝑅𝑒𝐴⋅𝑧0, [𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑊𝑤)𝐿2(0,∞;𝑌 ).

Step 2. Next, we consider the following maximization problem:

sup
𝑤∈

𝐽 0
𝑤(𝑧0).

which is equivalent to the minimization problem

inf
𝑤∈

−𝐽 0
𝑤(𝑧0). (3.12)

We know from (3.10) that 𝑆 is self-adjoint and 𝑆 ≥ 0. Define the critical value 𝛾𝑐 of 𝛾 by:

𝛾2𝑐 = ‖𝑆‖() = sup
‖𝑤‖=1

(𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑊𝑤,𝑤) . (3.13)

(3.11) tells us that −𝐽 0
𝑤(𝑧0) consists of three terms: a quadratic term in 𝑤, given by −𝐽 0

𝑤(𝑧0 = 0) = (𝑤,𝐸𝛾𝑤) which, by (3.13), satisfies

(𝐸𝛾𝑤,𝑤) ≥ (𝛾2 − 𝛾2𝑐 )‖𝑤‖

2
 ; (3.14)

a linear term in 𝑤, given by −𝜒𝑧0 ,𝑤 satisfying

|𝜒𝑧0 ,𝑤| ≤ 2‖𝑤‖‖𝑄𝑧0‖

≤ 𝜀‖𝑤‖

2
 + 1

𝜀
‖𝑄‖

2
(𝐿2(𝛺),)

‖𝑧0‖
2
𝐿2(𝛺)

, ∀𝜀 > 0,

with 𝑄 = 𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑒𝐴⋅ ∈ (𝐿2(𝛺),); and finally a constant term in 𝑤, given by −𝐽 0
𝑤=0(𝑧0). Thus,

−𝐽 0
𝑤(𝑧0) ≥ [𝛾2 − (𝛾2𝑐 + 𝜀)]‖𝑤‖

2
 − 𝐽 0

𝑤=0(𝑧0) −
1
𝜀
‖𝑄‖

2
(𝐿2(𝛺),)

‖𝑧0‖
2
𝐿2(𝛺)

.

Therefore for 𝛾 > 𝛾𝑐 , −𝐽 0
𝑤(𝑧0) is a quadratic functional with respect to 𝑤 and is bounded from below. As a result, for the minimization problem

(3.12), there exists a unique solution denoted by 𝑤∗(⋅; 𝑧0) ∈  , i.e.,

sup
𝑤∈

𝐽 0
𝑤(𝑧0) = − inf

𝑤∈
−𝐽 0

𝑤(𝑧0) = 𝐽 0
𝑤∗ (𝑧0).

If 𝛾𝑐 > 0 and 𝛾 < 𝛾𝑐 , then it follows from

inf
‖𝑤‖=1

(𝑤,𝐸𝛾𝑤) ≤ 𝛾2 − 𝛾2𝑐 < 0,

that

sup
𝑤∈

𝐽 0
𝑤(𝑧0) = +∞, ∀𝑧0 ∈ 𝐿2(𝛺).

Step 3. We omit the remaining proof but it needs to be pointed out that after getting the explicit of 𝑧∗(𝑡; 𝑧0), there holds

𝑧∗(𝑡; 𝑧0) = 𝛷(𝑡)𝑧0, ∀𝑧0 ∈ 𝐿2(𝛺),

where 𝛷(𝑡) is an analytic and exponentially stable 𝐶0-semigroup. Define 𝑃 ∈ (𝐿2(𝛺)) by:

𝑃𝑓 = ∫

∞

0
𝑒𝐴

∗𝑡𝑅∗𝑅𝑧∗(𝑡; 𝑓 )d𝑡 = ∫

∞

0
𝑒𝐴

∗𝑡𝑅∗𝑅𝛷(𝑡)d𝑡𝑓 . (3.15)

Then 𝐴𝑃 ,𝛾 = 𝐴−𝐵𝐵∗𝑃 +𝛾−2𝐺𝐺∗𝑃 generates the same semigroup 𝛷(𝑡) on 𝐿2(𝛺) and the operator 𝑃 ≥ 0 satisfies the algebraic Riccati Eq. (3.6). ■

While the solution to Eq. (3.6) is typically not unique, the following Theorem 3.2 establishes that, under certain conditions, a unique solution
to (3.6) does exist.

Theorem 3.2. If one operator 0 ≤ 𝑃 ∈ (𝐿2(𝛺)) satisfies (3.6) such that 𝐵∗𝑃 ∈ (𝐿2(𝛺), 𝐿2(𝛤 )) and 𝐴𝑃 ,𝛾 = 𝐴 − 𝐵𝐵∗𝑃 + 𝛾−2𝐺𝐺∗𝑃 is exponentially
stable, then 𝑃 is unique in (𝐿2(𝛺)) and is given by (3.15).

Proof. Suppose that 𝑃1 and 𝑃2 are two solutions satisfying the conditions in the theorem. Then, for any 𝑓, 𝑔 ∈ ((−𝐴)𝜀) with 𝜀 > 0, one has

(𝐴𝑃1 ,𝛾𝑓, (𝑃1 − 𝑃2)𝑔)𝐿2(𝛺) + ((𝑃1 − 𝑃2)𝑓,𝐴𝑃2 ,𝛾𝑔)𝐿2(𝛺) = 0,

which leads to
𝑑
𝑑𝑡

(𝑒𝐴𝑃1 ,𝛾 𝑡𝑓, (𝑃1 − 𝑃2)𝑒
𝐴𝑃2 ,𝛾 𝑡𝑔)𝐿2(𝛺) = 0, ∀𝑡 ≥ 0.

Since 𝑒𝐴𝑃1 ,𝛾 𝑡 and 𝑒𝐴𝑃2 ,𝛾 𝑡 are exponentially stable, it has

(𝑓, (𝑃1 − 𝑃2)𝑔)𝐿2(𝛺) = 0, ∀𝑓, 𝑔 ∈ ((−𝐴)𝜀),∀𝜀 > 0.

By density argument, 𝑃1 = 𝑃2. Moreover, from Theorem 3.1, we know that the 𝑃 ≥ 0 given by (3.15) satisfies (3.6), 𝐵∗𝑃 ∈ (𝐿2(𝛺), 𝐿2(𝛤 )) and
𝐴 = 𝐴 − 𝐵𝐵∗𝑃 + 𝛾−2𝐺𝐺∗𝑃 is exponentially stable. ■
5

𝑃 ,𝛾
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Pursuant to [13, Theorem 6.19.2, p. 612], the parameter 𝛾𝑐 also represents a pivotal threshold for the algebraic Riccati Eq. (3.6). Precisely, if
𝛾 < 𝛾𝑐 , there is no solution to (3.6) in the sense outlined in Theorem 3.2. Conversely, when 𝛾 > 𝛾𝑐 , a unique solution emerges, adhering to the
conditions stipulated in Theorem 3.2. To conclude this section, we extend a result from the realm of finite-dimensional systems, as demonstrated
in [2, p. 150], indicating that the critical value 𝛾𝑐 precisely corresponds to the optimal disturbance attenuation 𝛾̂.

Theorem 3.3. The 𝛾𝑐 defined by (3.13) is equal to 𝛾̂ defined by (2.9):

𝛾̂ = 𝛾𝑐 .

Proof. The proof consists of two steps. First, we show that 𝛾̂ ≤ 𝛾𝑐 . From Theorems 3.2 and 3.3, for any 𝛾 > 𝛾𝑐 , there exists a unique operator
𝑃 ∈ (𝐿2(𝛺)) satisfying (3.6) for all 𝑓, 𝑔 ∈ ((−𝐴)𝜀) with 𝜀 > 0 such that 𝐵∗𝑃 ∈ (𝐿2(𝛺), 𝐿2(𝛤 )) and 𝑒𝐴𝑃 𝑡 is analytic and exponentially stable.
Since 𝐴𝑃 = 𝐴−𝐵𝐵∗𝑃 = 𝐴𝑃 ,𝛾−𝛾−2𝐺𝐺∗𝑃 , we have (𝐴𝑃 ) = (𝐴𝑃 ,𝛾 ) ⊂ ((−𝐴)1∕4−𝛽 ). As a result, −𝐵∗𝑃 ∈  . Let 𝑤 ∈ 𝐶1

0 (0,∞;𝑉 ) ⊂  , 𝑢(𝑡) = −𝐵∗𝑃𝑧(𝑡)
and 𝑧0 ∈ (𝐴𝑃 ) in (2.4). Then,

𝑧̇(𝑡) = (𝐴 − 𝐵𝐵∗𝑃 )𝑧(𝑡) + 𝐺𝑤(𝑡), 𝑧(0) = 𝑧0 ∈ (𝐴𝑃 ). (3.16)

By [23, Theorem 4.1.6], 𝑧 ∈ 𝐶([0,∞);𝐷(𝐴𝑃 )) ∩ 𝐶1([0,∞);𝐿2(𝛺)) and hence

𝑑
𝑑𝑡

(𝑃𝑧(𝑡), 𝑧(𝑡))𝐿2(𝛺) = −‖𝑅𝑧(𝑡)‖2𝑌 − ‖𝐵∗𝑃𝑧(𝑡)‖2
𝐿2(𝛤 )

− 𝛾−2‖𝐺∗𝑃𝑧(𝑡)‖2𝑉 + 2(𝐺∗𝑃𝑧(𝑡), 𝑤(𝑡))𝑉

= −‖𝑅𝑧(𝑡)‖2𝑌 − ‖𝐵∗𝑃𝑧(𝑡)‖2
𝐿2(𝛤 )

− ‖𝛾𝑤(𝑡) − 𝛾−1𝐺∗𝑃𝑧(𝑡)‖2𝑉 + 𝛾2‖𝑤(𝑡)‖2𝑉 .
(3.17)

Since 𝑒𝐴𝑃 𝑡 is exponentially stable, integrating the last equality of (3.17) from 0 to ∞ gives

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐵∗𝑃𝑧(𝑡)‖2

𝐿2(𝛤 )
− 𝛾2‖𝑤(𝑡)‖2𝑉 )d𝑡 = −𝛾2 ∫

∞

0
‖𝑤̄(𝑡)‖2𝑉 d𝑡 + (𝑃𝑧0, 𝑧0)𝐿2(𝛺), (3.18)

where 𝑤̄ = 𝑤 − 𝛾−2𝐺∗𝑃𝑧. On the other hand, if 𝑧0 = 0, (3.16) is equivalent to

𝑧̇(𝑡) = 𝐴𝑃 ,𝛾𝑧(𝑡) + 𝐺𝑤̄(𝑡), 𝑧(0) = 0

which has solution

𝑧(𝑡) = ∫

𝑡

0
𝛷(𝑡 − 𝜏)𝐺𝑤̄(𝜏)d𝜏.

By Young’s inequality,

∫

∞

0
‖𝑧‖2

𝐿2(𝛺)
d𝑡 ≤

𝑀2
1‖𝐺‖

2
(𝑉 ,𝐿2(𝛺))

𝜔2
1

∫

∞

0
‖𝑤̄(𝑡)‖2𝑉 d𝑡.

Since 𝑤 = 𝑤̄ + 𝛾−2𝐺∗𝑃𝑧, we obtain

∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡 ≤ 2

⎛

⎜

⎜

⎝

1 + 𝛾−4‖𝐺∗𝑃‖2(𝐿2(𝛺),𝑉 )

𝑀2
1‖𝐺‖

2
(𝑉 ,𝐿2(𝛺))

𝜔2
1

⎞

⎟

⎟

⎠

∫

∞

0
‖𝑤̄(𝑡)‖2𝑉 d𝑡. (3.19)

ence for 𝑧0 = 0 and any 𝑤 ∈ 𝐶1
0 (0,∞), combining (3.18) and (3.19) gives

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐵∗𝑃𝑧(𝑡)‖2

𝐿2(𝛤 )
− 𝛾2‖𝑤(𝑡)‖2𝑉 )d𝑡 ≤ −𝛿 ∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡, (3.20)

here 𝛿 = 1
2 𝛾

2

(

1 + 𝛾−4‖𝐺∗𝑃‖2
(𝐿2(𝛺),𝑉 )

𝑀2
1 ‖𝐺‖

2
(𝑉 ,𝐿2(𝛺))
𝜔2
1

)−1

is independent of 𝑤. Since 𝐶1
0 (0,∞;𝑉 ) is dense in  , (3.20) holds for all 𝑤 ∈  . This

eans that 𝛾̂ < 𝛾 for any 𝛾 > 𝛾𝑐 . Therefore, 𝛾̂ ≤ 𝛾𝑐 .
Next, we show 𝛾̂ ≥ 𝛾𝑐 . If 𝛾𝑐 = 0, then 𝛾̂ = 𝛾𝑐 = 0. For 𝛾𝑐 > 0, we assume 𝛾̂ < 𝛾𝑐 . Choose 𝛾 > 0 so that 𝛾̂ < 𝛾 < 𝛾𝑐 . From the definition of 𝛾̂, there

xist an operator 𝐹 ∈  and a constant 𝛿 > 0 such that

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐹𝑧(𝑡)‖2

𝐿2(𝛤 )
)d𝑡 ≤ (𝛾2 − 𝛿)∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡,

where 𝑧(⋅) is the solution of (2.4) with 𝑢(𝑡) = 𝐹𝑧(𝑡) and 𝑧0 = 0, i.e.,

𝐽 (𝐹𝑧,𝑤; 0) ≤ −𝛿 ∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡.

From (3.8), it follows that

𝐽 0
𝑤(𝑧0 = 0) = 𝐽 (−𝐿∗𝑅∗𝑅𝑧,𝑤; 0) ≤ 𝐽 (𝐹𝑧,𝑤; 0),∀𝑤 ∈  .

ence,

sup
‖𝑤‖=1

𝐽 0
𝑤(𝑧0 = 0) = sup

‖𝑤‖=1
−(𝑤, (𝛾2𝐼 − 𝑆)𝑤) = 𝛾2𝑐 − 𝛾2 ≤ −𝛿.
6

herefore 𝛾 ≥ 𝛾𝑐 which contradicts 𝛾 < 𝛾𝑐 . This proves 𝛾̂ ≥ 𝛾𝑐 . ■
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4. Approximation and convergence analysis

In this section, we delve into the Galerkin approximation of the 𝐻∞ disturbance-attenuation problem for the system described by Eq. (2.4).
nitially, in Section 4.1, we introduce approximating subspaces and operators. These elements form the foundation for constructing the approxi-
ating dynamics and game problems. We rigorously confirm that these approximating equations adhere to the prerequisites of Theorem 3.1. As a

esult, the pertinent conclusions from the game theory are applicable.
Proceeding to Section 4.2, we undertake a comprehensive convergence analysis. This analysis encompasses the computation of the optimal

isturbance attenuation 𝛾̂. Furthermore, we demonstrate that the solutions to the corresponding finite-dimensional algebraic Riccati equations
onverge, in terms of norm, towards the solution of the operator algebraic Riccati equation. Importantly, we establish that the finite-dimensional
eedback controls, derived from the solutions of the finite-dimensional algebraic Riccati equations, exhibit 𝛾-admissibility for the original
nfinite-dimensional system. This finding provides a feasible and computable approach to seeking the 𝐻∞ state feedback control.

.1. Approximating subspaces and operators

Firstly, we introduce approximating subspaces. Let ℎ → 0 be monotonically decreasing and 0 < ℎ ≤ ℎ0 for some constant ℎ0 > 0. For every ℎ,
et 𝑋ℎ ⊂ 𝐻2(𝛺) ∩𝐻1

0 (𝛺) = (𝐴) be a finite-dimensional subspace which is equipped with the induced norm of 𝐿2(𝛺) and let 𝛱ℎ be the orthogonal
rojection of 𝐿2(𝛺) onto 𝑋ℎ. We assume that 𝑋ℎ possesses the following approximation properties:

(𝑖) ‖𝑥 −𝛱ℎ𝑥‖𝐻𝛼 (𝛺) ≤ 𝐶ℎ𝑠−𝛼‖𝑥‖𝐻𝑠(𝛺), 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝑠 − 𝛼, 𝑠 ≤ 2,
where 𝑥 ∈ 𝐻𝑠

0 (𝛺), 0 ≤ 𝑠 ≤ 1, 𝑠 ≠ 1
2 ; 𝑥 ∈ 𝐻𝑠(𝛺) ∩𝐻1

0 (𝛺), 1 ≤ 𝑠 ≤ 2;
(4.1)

(𝑖𝑖) (inverse approximation property)
‖

‖

‖

𝜕
𝜕𝜈 𝑥ℎ

‖

‖

‖𝐿2(𝛤 )
≤ 𝐶ℎ−3∕2‖𝑥ℎ‖𝐿2(𝛺), 𝑥ℎ ∈ 𝑋ℎ;

(4.2)

(𝑖𝑖𝑖)
‖

‖

‖

‖

𝜕
𝜕𝜈

(𝑥 −𝛱ℎ𝑥)
‖

‖

‖

‖𝐿2(𝛤 )
≤ 𝐶ℎ𝑠−3∕2‖𝑥‖𝐻𝑠(𝛺), 𝑥 ∈ 𝐻𝑠(𝛺) ∩𝐻1

0 (𝛺), 3
2
< 𝑠 ≤ 2; (4.3)

(𝑖𝑣) ‖𝑥ℎ‖𝐻𝛼 (𝛺) ≤ 𝐶ℎ−𝛼‖𝑥ℎ‖𝐿2(𝛺), 0 ≤ 𝛼 ≤ 1, 𝑥ℎ ∈ 𝑋ℎ, (4.4)

where and hereafter 𝐶 denotes constant independent of ℎ but may possibly depend on 𝑠, 𝛼, etc, although they may have different values in different
contexts.

Remark 4.1. Here we choose the same class of approximating subspaces as that in [22]. The approximation properties (4.1)–(4.4) are satisfied
by linear splines defined over a quasi-uniform mesh and vanishing on the boundary 𝛤 .

Next, we introduce approximating operators. Let 𝐴ℎ ∶ 𝑋ℎ → 𝑋ℎ be the approximation of 𝐴, which is given by

(𝐴ℎ𝑓ℎ, 𝑔ℎ)𝐿2(𝛺) = (𝐴𝑓ℎ, 𝑔ℎ)𝐿2(𝛺), 𝑓ℎ, 𝑔ℎ ∈ 𝑋ℎ.

By [16], 𝐴ℎ generates a uniformly exponentially stable analytic semigroup 𝑒𝐴ℎ𝑡 on 𝑋ℎ, i.e.,

‖𝐴𝜌
ℎ𝑒

𝐴ℎ𝑡
‖(𝐿2(𝛺)) ≤

𝐶𝑒−𝜔0𝑡

𝑡𝜌
, ∀𝑡 > 0, 0 ≤ 𝜌 ≤ 1; (4.5)

nd the following estimate holds

‖𝑒𝐴ℎ𝑡𝛱ℎ − 𝑒𝐴𝑡‖(𝐿2(𝛺)) = ‖𝑒𝐴
∗
ℎ𝑡𝛱ℎ −𝛱ℎ𝑒

𝐴∗𝑡
‖(𝐿2(𝛺)) ≤

𝐶ℎ𝛼𝑒−𝜔0𝑡

𝑡𝛼∕2
, ∀𝑡 > 0, 0 ≤ 𝛼 < 2. (4.6)

Let 𝐵ℎ = 𝛱ℎ𝐵 ∶ 𝐿2(𝛤 ) → 𝑋ℎ be the approximation of 𝐵. In fact, from 𝑋ℎ ⊂ (𝐴) ⊂ (𝐴3∕4+𝛽 ) ⊂ (𝐵∗), we know that 𝐵∗𝛱ℎ ∈ (𝐿2(𝛺), 𝐿2(𝛤 ))
is well defined. Hence 𝐵ℎ = 𝛱ℎ𝐵 ∈ (𝐿2(𝛤 ), 𝐿2(𝛺)) can be defined to be the adjoint of 𝐵∗𝛱ℎ, i.e.,

(𝐵ℎ𝑢, 𝑓 )𝐿2(𝛺) = (𝑢, 𝐵∗𝛱ℎ𝑓 )𝐿2(𝛤 ) = −
(

𝑢, 𝜕
𝜕𝜈𝐴∗

𝛱ℎ𝑓
)

𝐿2(𝛤 )
, ∀𝑢 ∈ 𝐿2(𝛤 ), 𝑓 ∈ 𝐿2(𝛺). (4.7)

It is readily seen that 𝐵ℎ𝑢 ∈ 𝑋ℎ for any 𝑢 ∈ 𝐿2(𝛤 ). Hence 𝐵ℎ = 𝛱ℎ𝐵 ∈ (𝐿2(𝛤 ), 𝑋ℎ) is well defined.
Furthermore, let 𝐺ℎ = 𝛱ℎ𝐺 ∈ (𝑉 ,𝑋ℎ) be the approximation of 𝐺 and let 𝑅ℎ = 𝑅||

|𝑋ℎ
∈ (𝑋ℎ, 𝑌 ) be the approximation of 𝑅. Then,

𝐺∗
ℎ = 𝐺∗|

|

|𝑋ℎ
∈ (𝑋ℎ, 𝑉 ) and 𝑅∗

ℎ = 𝛱ℎ𝑅∗ ∈ (𝑌 ,𝑋ℎ).
From above preliminaries, an approximation of the system (2.4) can be defined by:

{

𝑧̇ℎ(𝑡) = 𝐴ℎ𝑧ℎ(𝑡) + 𝐵ℎ𝑢(𝑡) + 𝐺ℎ𝑤(𝑡) in 𝑋ℎ,

𝑧ℎ(0) = 𝛱ℎ𝑧0,
(4.8)

i.e.,

⎧

⎪

⎨

⎪

⎩

𝑑
𝑑𝑡

(𝑧ℎ(𝑡), 𝑓ℎ)𝐿2(𝛺) = (𝐴𝑧ℎ(𝑡), 𝑓ℎ)𝐿2(𝛺) −
(

𝑢(𝑡), 𝜕
𝜕𝜈𝐴∗

𝑓ℎ

)

𝐿2(𝛤 )
+ (𝑤(𝑡), 𝐺∗

ℎ𝑓ℎ)𝑉 , ∀𝑓ℎ ∈ 𝑋ℎ,

𝑧ℎ(0) = 𝛱ℎ𝑧0,

where 𝑧ℎ(𝑡) ∈ 𝑋ℎ is the approximation of 𝑧(𝑡). Finally, the approximating game problem on 𝑋ℎ corresponding to (3.2) now reads

sup
𝑤∈

inf
𝑢∈

𝐽ℎ(𝑢,𝑤;𝛱ℎ𝑧0) = sup
𝑤∈

inf
𝑢∈ ∫

∞

0
(‖𝑅ℎ𝑧ℎ(𝑡)‖2𝑌 + ‖𝑢(𝑡)‖2

𝐿2(𝛤 )
− 𝛾2‖𝑤(𝑡)‖2𝑉 )d𝑡. (4.9)

Likewise, the solution of (4.8) has the following explicit representation:
𝐴ℎ𝑡
7

𝑧ℎ(𝑡) = 𝑒 𝑧ℎ(0) + (𝐿ℎ𝑢)(𝑡) + (𝑊ℎ𝑤)(𝑡),
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where 𝐿ℎ and 𝑊ℎ are defined by

(𝐿ℎ𝑢)(𝑡) = ∫

𝑡

0
𝑒𝐴ℎ(𝑡−𝜏)𝐵ℎ𝑢(𝜏)d𝜏, ∀𝑢 ∈  ,

(𝑊ℎ𝑤)(𝑡) = ∫

𝑡

0
𝑒𝐴ℎ(𝑡−𝜏)𝐺ℎ𝑤(𝜏)d𝜏, ∀𝑤 ∈  .

Since 𝐴ℎ is stable and 𝐵ℎ, 𝐺ℎ are bounded, it has 𝐿ℎ ∈ ( , 𝐿2(0,∞;𝑋ℎ)) and 𝑊ℎ ∈ ( , 𝐿2(0,∞;𝑋ℎ)). Let 𝐿∗
ℎ ∈ ( , ) be the adjoint of 𝐿ℎ

and 𝑊 ∗
ℎ ∈ ( ,) be the adjoint of 𝑊ℎ satisfying

(𝐿ℎ𝑢, 𝑓 ) = (𝑢, 𝐿∗
ℎ𝑓 ) , (𝑊ℎ𝑤, 𝑓 ) = (𝑤,𝑊 ∗

ℎ 𝑓 ) ,∀𝑢 ∈  , 𝑤 ∈  , 𝑓 ∈  .

A straightforward calculation shows that for ∀𝑓 ∈  ,

(𝐿∗
ℎ𝑓 )(𝑡) = ∫

∞

𝑡
𝐵∗
ℎ𝑒

𝐴∗
ℎ(𝜏−𝑡)𝛱ℎ𝑓 (𝜏)d𝜏, (𝑊 ∗

ℎ 𝑓 )(𝑡) = ∫

∞

𝑡
𝐺∗
ℎ𝑒

𝐴∗
ℎ(𝜏−𝑡)𝛱ℎ𝑓 (𝜏)d𝜏.

Define

𝑆ℎ = 𝑊 ∗
ℎ 𝑅

∗
ℎ[𝐼 + 𝑅ℎ𝐿ℎ𝐿

∗
ℎ𝑅

∗
ℎ]

−1𝑅ℎ𝑊ℎ,

𝛾2ℎ,𝑐 = ‖𝑆ℎ‖(),

and let 𝐸ℎ,𝛾 = 𝛾2−𝑆ℎ. By Theorem 3.1, for 𝛾 > 𝛾ℎ,𝑐 , there exists a unique solution {𝑤∗
ℎ, 𝑢

∗
ℎ, 𝑧

∗
ℎ} to the game problem (4.9), which can be represented

as

⎧

⎪

⎨

⎪

⎩

𝑤∗
ℎ(⋅;𝛱ℎ𝑧0) = 𝐸−1

ℎ,𝛾𝑊
∗
ℎ 𝑅

∗
ℎ[𝐼 + 𝑅ℎ𝐿ℎ𝐿

∗
ℎ𝑅

∗
ℎ]

−1𝑅ℎ𝑒
𝐴ℎ⋅𝛱ℎ𝑧0,

𝑢∗ℎ(⋅;𝛱ℎ𝑧0) = −[𝐼 + 𝐿∗
ℎ𝑅

∗
ℎ𝑅ℎ𝐿ℎ]−1𝐿∗

ℎ𝑅
∗
ℎ𝑅ℎ[𝑒𝐴ℎ⋅𝛱ℎ𝑧0 +𝑊ℎ𝑤

∗
ℎ(⋅;𝛱ℎ𝑧0)],

𝑧∗ℎ(⋅;𝛱ℎ𝑧0) = 𝑒𝐴ℎ⋅𝛱ℎ𝑧0 + 𝐿ℎ𝑢
∗
ℎ(⋅;𝛱ℎ𝑧0) +𝑊ℎ𝑤

∗
ℎ(⋅;𝛱ℎ𝑧0).

(4.10)

In addition, there exists an operator 0 ≤ 𝑃ℎ = 𝑃 ∗
ℎ ∈ (𝑋ℎ) satisfying the following algebraic Riccati equation:

(𝑃ℎ𝑓ℎ, 𝐴ℎ𝑔ℎ)𝐿2(𝛺) + (𝐴ℎ𝑓ℎ, 𝑃ℎ𝑔ℎ)𝐿2(𝛺) + (𝑅ℎ𝑓ℎ, 𝑅ℎ𝑔ℎ)𝑌
= (𝐵∗

ℎ𝑃ℎ𝑓ℎ, 𝐵
∗
ℎ𝑃ℎ𝑔ℎ)𝐿2(𝛤 ) − 𝛾−2(𝐺∗

ℎ𝑃ℎ𝑓ℎ, 𝐺
∗
ℎ𝑃ℎ𝑔ℎ)𝑉 , ∀𝑓ℎ, 𝑔ℎ ∈ 𝑋ℎ,

(4.11)

which is given by

𝑃ℎ𝑓ℎ = ∫

∞

0
𝑒𝐴

∗
ℎ𝑡𝑅∗

ℎ𝑅ℎ𝑧
∗
ℎ(𝑡; 𝑓ℎ)d𝑡 = ∫

∞

0
𝑒𝐴

∗
ℎ𝑡𝑅∗

ℎ𝑅ℎ𝛷ℎ(𝑡)d𝑡𝑓ℎ, ∀𝑓ℎ ∈ 𝑋ℎ, (4.12)

where 𝐴ℎ,𝑃ℎ ,𝛾 𝑡 = 𝐴ℎ − 𝐵ℎ𝐵∗
ℎ𝑃ℎ + 𝛾−2𝐺ℎ𝐺∗

ℎ𝑃ℎ generates the analytic exponentially stable 𝐶0-semigroup 𝛷ℎ(𝑡).

4.2. Convergence analysis

Theorem 4.1 following is a special case of [24, theorem 3.3]. Because the proof of Theorem 4.5 later needs a conclusion in the proof of
Theorem 4.1, we give a detailed proof.

Theorem 4.1. The following estimates hold true:

(𝑖) ‖𝐿ℎ − 𝐿‖( ,) = ‖𝐿∗
ℎ − 𝐿∗

‖( , ) ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1
2
; (4.13)

(𝑖𝑖) ‖𝑊ℎ −𝑊 ‖( ,) = ‖𝑊 ∗
ℎ −𝑊 ∗

‖( ,) ≤ 𝐶ℎ𝛼 , ∀𝛼 < 2. (4.14)

Proof. For 𝑓 ∈ 𝐿2(𝛺), one has

𝐵∗(𝑒𝐴
∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)𝑓 = 𝐵∗(𝑒𝐴
∗
ℎ𝑡𝛱ℎ −𝛱ℎ𝑒

𝐴∗𝑡)𝑓 + 𝐵∗(𝛱ℎ − 𝐼)𝑒𝐴
∗𝑡𝑓.

Since 𝑒𝐴∗𝑡𝑓 ∈ 𝐷(𝐴∗) = 𝐷(𝐴) = 𝐻2(𝛺) ∩𝐻1
0 (𝛺) for all 𝑡 > 0, it follows from (2.7), (4.2),(4.3), (4.5) and (4.6) that for any 3

2 < 𝑠 ≤ 2, 0 ≤ 𝛼 < 2,

‖𝐵∗(𝑒𝐴
∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)𝑓‖𝐿2(𝛤 ) ≤ 𝐶
(

‖

‖

‖

‖

𝜕
𝜕𝜈

[𝑒𝐴
∗
ℎ𝑡𝛱ℎ −𝛱ℎ𝑒

𝐴∗𝑡]𝑓
‖

‖

‖

‖𝐿2(𝛤 )
+
‖

‖

‖

‖

𝜕
𝜕𝜈

(𝛱ℎ − 𝐼)𝑒𝐴
∗𝑡𝑓

‖

‖

‖

‖𝐿2(𝛤 )

)

≤ 𝐶(ℎ−3∕2‖[𝑒𝐴
∗
ℎ𝑡𝛱ℎ −𝛱ℎ𝑒

𝐴∗𝑡]𝑓‖𝐿2(𝛺) + ℎ𝑠−3∕2‖𝑒𝐴
∗𝑡𝑓‖𝐻𝑠(𝛺))

≤ 𝐶
(

ℎ−3∕2 ℎ
𝛼𝑒−𝜔0𝑡

𝑡𝛼∕2
‖𝑓‖𝐿2(𝛺) + ℎ𝑠−3∕2‖(−𝐴∗)𝑠∕2𝑒𝐴

∗𝑡𝑓‖𝐿2(𝛺)

)

≤ 𝐶
(

ℎ𝛼−3∕2𝑒−𝜔0𝑡

𝑡𝛼∕2
+ ℎ𝑠−3∕2𝑒−𝜔0𝑡

𝑡𝑠∕2

)

‖𝑓‖𝐿2(𝛺).

Choosing 3
2 < 𝛼 = 𝑠 < 2 gives

‖𝐵∗(𝑒𝐴
∗
ℎ𝑡𝛱 − 𝑒𝐴

∗𝑡)‖ 2 2 ≤ 𝐶ℎ𝛼−3∕2 𝑒
−𝜔0𝑡

. (4.15)
8

ℎ (𝐿 (𝛺),𝐿 (𝛤 )) 𝑡𝛼∕2
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Thus, for any 𝑓 ∈  and 3
2 < 𝛼 < 2, we have

‖(𝐿∗
ℎ − 𝐿∗)𝑓‖2 = ∫

∞

0

‖

‖

‖

‖

∫

∞

𝑡
(𝐵∗

ℎ𝑒
𝐴∗
ℎ(𝜏−𝑡)𝛱ℎ − 𝐵∗𝑒𝐴

∗(𝜏−𝑡))𝑓 (𝜏)d𝜏
‖

‖

‖

‖

2

𝐿2(𝛤 )
d𝑡

≤ 𝐶ℎ2𝛼−3 ∫

∞

0

(

∫

∞

𝑡

𝑒−𝜔0(𝜏−𝑡)

(𝜏 − 𝑡)𝛼∕2
‖𝑓 (𝜏)‖𝐿2(𝛺)d𝜏

)2
d𝑡

≤ 𝐶ℎ2𝛼−3 ∫

∞

0

(

∫

∞

𝑡

𝑒−𝜔0(𝜏−𝑡)

(𝜏 − 𝑡)𝛼∕2
d𝜏

)(

∫

∞

𝑡

𝑒−𝜔0(𝜏−𝑡)

(𝜏 − 𝑡)𝛼∕2
‖𝑓 (𝜏)‖2

𝐿2(𝛺)
d𝜏

)

d𝑡

≤ 𝐶ℎ2𝛼−3 ∫

∞

0 ∫

𝜏

0

𝑒−𝜔0(𝜏−𝑡)

(𝜏 − 𝑡)𝛼∕2
‖𝑓 (𝜏)‖2

𝐿2(𝛺)
d𝑡d𝜏

≤ 𝐶ℎ2𝛼−3‖𝑓‖2 .

his gives (4.13) with 𝜃 = 𝛼 − 3
2 < 1

2 . Next, since 𝐺 ∈ (𝑉 ,𝐿2(𝛺)), it follows from (4.6) that

‖𝐺∗(𝑒𝐴
∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)‖(𝐿2(𝛺),𝑉 ) ≤ 𝐶ℎ𝛼 𝑒
−𝜔0𝑡

𝑡𝛼∕2
, ∀𝛼 < 2,

hich gives (4.14):

‖𝑊 ∗
ℎ −𝑊 ∗

‖( ,) ≤ 𝐶ℎ𝛼 , ∀𝛼 < 2. ■

Theorem 4.2. For any 𝜃 < 1
2 ,

‖𝑆ℎ − 𝑆‖() ≤ 𝐶ℎ𝜃 , (4.16)

hich implies that

|𝛾ℎ,𝑐 − 𝛾𝑐 | ≤ 𝐶ℎ𝜃 → 0. (4.17)

Proof. Since 𝑅ℎ = 𝑅||
|𝑋ℎ

and 𝑅∗
ℎ = 𝛱ℎ𝑅∗, it follows that

𝑆ℎ − 𝑆 = 𝑊 ∗
ℎ 𝑅

∗[𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1𝑅𝑊ℎ −𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑊

= 𝑊 ∗
ℎ 𝑅

∗[𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1(𝑅𝑊ℎ − 𝑅𝑊 ) +𝑊 ∗
ℎ 𝑅

∗([𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1 − [𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1)𝑅𝑊

+ (𝑊 ∗
ℎ 𝑅

∗ −𝑊 ∗𝑅∗)[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅𝑊 .

(4.18)

By (4.13),

‖𝑅𝐿𝐿∗𝑅∗ − 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗
‖(𝐿2(0,∞;𝑌 )) ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1

2
.

n the other hand,

[𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1 − [𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1 = [𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1(𝑅𝐿𝐿∗𝑅∗ − 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗)[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1.

hus

‖[𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1 − [𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1‖(𝐿2(0,∞;𝑌 )) ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1
2
. (4.19)

By (4.14),

‖𝑅𝑊ℎ − 𝑅𝑊 ‖( ,𝐿2(0,∞;𝑌 )) = ‖𝑊 ∗𝑅∗ −𝑊 ∗
ℎ 𝑅

∗
‖(𝐿2(0,∞;𝑌 ),) ≤ 𝐶ℎ𝛼 , ∀𝛼 < 2. (4.20)

hen (4.16) is obtained from (4.18)–(4.20).

emark 4.2. From Theorem 3.3 and (4.17), we obtain 𝛾̂ℎ → 𝛾̂, indicating that to compute the optimal disturbance attenuation 𝛾̂ of the system (2.4),
t suffices to calculate the optimal disturbance attenuation 𝛾̂ℎ of the approximating equations for sufficiently small ℎ. This is significant because
he direct computation of 𝛾̂ is nearly impossible, whereas the computation of 𝛾̂ℎ is performed in a finite-dimensional space using matrix operations
nd can be solved effectively with modern mathematical tools.

heorem 4.3. For fixed 𝛾 > 𝛾𝑐 and any 𝑧0 ∈ 𝐿2(𝛺), the following properties hold true for any 𝜃 < 1
2 :

(𝑖) ‖𝑤∗
ℎ(⋅;𝛱ℎ𝑧0) −𝑤∗(⋅; 𝑧0)‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺); (4.21)

(𝑖𝑖) ‖𝑢∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑢∗(⋅; 𝑧0)‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺); (4.22)

(𝑖𝑖𝑖) ‖𝑧∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑧∗(⋅; 𝑧0)‖ = ‖𝛷ℎ(⋅)𝛱ℎ𝑧0 −𝛷(⋅)𝑧0‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺). (4.23)

Proof. We first prove (i). From the representations of 𝑤∗ give by (3.5) and 𝑤∗
ℎ given by (4.10), we obtain

𝑤∗
ℎ(⋅;𝛱ℎ𝑧0) −𝑤∗(⋅; 𝑧0) = (𝐸−1

ℎ,𝛾 − 𝐸−1
𝛾 )𝑊 ∗

ℎ 𝑅
∗[𝐼 + 𝑅𝐿ℎ𝐿

∗
ℎ𝑅

∗]−1𝑅𝑒𝐴ℎ⋅𝛱ℎ𝑧0
+ 𝐸−1

𝛾 (𝑊 ∗
ℎ 𝑅

∗[𝐼 + 𝑅𝐿ℎ𝐿
∗
ℎ𝑅

∗]−1 −𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1)𝑅𝑒𝐴ℎ⋅𝛱ℎ𝑧0
+ 𝐸−1

𝛾 𝑊 ∗𝑅∗[𝐼 + 𝑅𝐿𝐿∗𝑅∗]−1𝑅(𝑒𝐴ℎ⋅𝛱ℎ𝑧0 − 𝑒𝐴⋅𝑧0)
(4.24)
9

= 𝐼1,ℎ + 𝐼2,ℎ + 𝐼3,ℎ.
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Since 𝛾ℎ,𝑐 → 𝛾𝑐 , there is a constant 0 < ℎ1 ≤ ℎ0 such that when ℎ < ℎ1, it has |𝛾ℎ,𝑐 − 𝛾𝑐 | <
𝛾−𝛾𝑐
2 which implies that 𝛾 − 𝛾ℎ,𝑐 >

𝛾−𝛾𝑐
2 . Then, for ℎ < ℎ1,

𝐸ℎ,𝛾 ≥ (𝛾2 − 𝛾2ℎ,𝑐 )𝐼 ≥ 𝛾
𝛾 − 𝛾𝑐
2

𝐼,

which means that for sufficiently small ℎ, 𝐸−1
ℎ,𝛾 is well-defined. Moreover,

‖𝐸−1
ℎ,𝛾 − 𝐸−1

𝛾 ‖() = ‖[𝛾2𝐼 − 𝑆ℎ]−1(𝑆ℎ − 𝑆)[𝛾2𝐼 − 𝑆]−1‖() ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1
2
. (4.25)

On the other hand, choosing 𝜌 = 0 in (4.5) gives

∫

∞

0
‖𝑒𝐴ℎ𝑡𝛱ℎ𝑧0‖

2
𝐿2(𝛺)

d𝑡 ≤ 𝐶‖𝑧0‖
2
𝐿2(𝛺)

. (4.26)

From (4.19), (4.20), (4.25) and (4.26), we arrive at

‖𝐼1,ℎ‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺), ∀𝜃 < 1
2
, (4.27)

and

‖𝐼2,ℎ‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺), ∀𝜃 < 1
2
. (4.28)

Next, choosing 0 < 𝛼 < 1 in (4.6) gives
(

∫

∞

0
‖𝑒𝐴ℎ𝑡𝛱ℎ𝑧0 − 𝑒𝐴𝑡𝑧0‖

2
𝐿2(𝛺)

d𝑡
)1∕2

≤ 𝐶ℎ𝛼
(

∫

∞

0

𝑒−2𝜔0𝑡

𝑡𝛼
d𝑡
)1∕2

‖𝑧0‖𝐿2(𝛺) ≤ 𝐶ℎ𝛼‖𝑧0‖𝐿2(𝛺) (4.29)

hich, together with (4.19), (4.20) and (4.25), leads to

‖𝐼3,ℎ‖ ≤ 𝐶ℎ𝛼‖𝑧0‖𝐿2(𝛺), ∀𝛼 < 1. (4.30)

4.21) is then concluded from (4.27), (4.28) and (4.30). We next show (ii). Firstly,

𝑢∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑢∗(⋅; 𝑧0) = ([𝐼 + 𝐿∗𝑅∗𝑅𝐿]−1𝐿∗𝑅∗𝑅 − [𝐼 + 𝐿∗
ℎ𝑅

∗𝑅𝐿ℎ]−1𝐿∗
ℎ𝑅

∗𝑅)[𝑒𝐴ℎ⋅𝛱ℎ𝑧0 +𝑊ℎ𝑤
∗
ℎ(⋅;𝛱ℎ𝑧0)]

+ [𝐼 + 𝐿∗𝑅∗𝑅𝐿]−1𝐿∗𝑅∗𝑅[(𝑒𝐴⋅𝑧0 − 𝑒𝐴ℎ⋅𝛱ℎ𝑧0) + (𝑊𝑤∗(⋅; 𝑧0) −𝑊ℎ𝑤
∗
ℎ(⋅;𝛱ℎ𝑧0))].

ollowing the argument of (4.19), we have

‖[𝐼 + 𝐿∗𝑅∗𝑅𝐿]−1 − [𝐼 + 𝐿∗
ℎ𝑅

∗𝑅𝐿ℎ]−1‖( ) ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1
2

hich, together with (4.13), (4.14), (4.21) and (4.29), gives

‖𝑢∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑢∗(⋅; 𝑧0)‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺), ∀𝜃 < 1
2
.

Finally, we consider (iii). Since

𝑧∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑧∗(⋅; 𝑧0) = (𝑒𝐴ℎ⋅𝛱ℎ𝑧0 − 𝑒𝐴⋅𝑧0) + (𝐿ℎ𝑢
∗
ℎ(⋅;𝛱ℎ𝑧0) − 𝐿𝑢∗(⋅; 𝑧0))

+ (𝑊ℎ𝑤
∗
ℎ(⋅;𝛱ℎ𝑧0) −𝑊𝑤∗(⋅; 𝑧0)),

t follows from (4.13), (4.14), (4.21), (4.22) and (4.29) that

‖𝑧∗ℎ(⋅;𝛱ℎ𝑧0) − 𝑧∗(⋅; 𝑧0)‖ ≤ 𝐶ℎ𝜃‖𝑧0‖𝐿2(𝛺), ∀𝜃 < 1
2
. ■

Theorem 4.4. If 𝛾 > 𝛾𝑐 , then for sufficiently small ℎ, the algebraic Riccati Eq. (4.11) admits a nonnegative, self-adjoint solution 𝑃ℎ given by (4.12) and

‖𝑃ℎ𝛱ℎ − 𝑃‖(𝐿2(𝛺)) ≤ 𝐶ℎ𝜃 , ∀𝜃 < 1
2
, (4.31)

here 𝑃 given by (3.15) is the unique solution of the algebraic Riccati Eq. (3.6) in the same sense as stated in Theorem 3.2.

Proof. Since 𝛾ℎ,𝑐 → 𝛾𝑐 as ℎ ↓ and 𝛾 > 𝛾𝑐 , it has 𝛾 > 𝛾ℎ,𝑐 for sufficiently small ℎ. By Theorem 3.1, this implies that the algebraic Riccati Eq. (4.11)
has a nonnegative, self-adjoint solution 𝑃ℎ given by (4.12). As for (4.31), by (2.2), (4.23) and (4.29), it follows that for ∀𝑓 ∈ 𝐿2(𝛺),

‖𝑃ℎ𝛱ℎ𝑓 − 𝑃𝑓‖𝐿2(𝛺) =
‖

‖

‖

‖

∫

∞

0
(𝑒𝐴

∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)𝑅∗𝑅𝑧∗ℎ(𝑡;𝛱ℎ𝑓 ) + 𝑒𝐴
∗𝑡𝑅∗𝑅[𝑧∗ℎ(𝑡;𝛱ℎ𝑓 ) − 𝑧∗(𝑡; 𝑓 )]d𝑡

‖

‖

‖

‖𝐿2(𝛺)

≤ 𝐶
(

∫

∞

0
‖(𝑒𝐴

∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)‖(𝐿2(𝛺))‖𝑧
∗
ℎ(𝑡;𝛱ℎ𝑓 )‖𝐿2(𝛺)d𝑡

+ ∫

∞

0
𝑒−𝜔0𝑡

‖𝑧∗ℎ(𝑡;𝛱ℎ𝑓 ) − 𝑧∗(𝑡; 𝑓 )‖𝐿2(𝛺)d𝑡
)

≤ 𝐶(ℎ𝛼‖𝑓‖𝐿2(𝛺) + ℎ𝜃‖𝑓‖𝐿2(𝛺)) ≤ 𝐶ℎ𝜃‖𝑓‖𝐿2(𝛺), ∀𝜃 < 1
2
. ■

heorem 4.5.

lim ‖𝐵∗𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖ 2 2 = 0. (4.32)
10

ℎ↓0 ℎ (𝐿 (𝛺),𝐿 (𝛤 ))
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Proof. From (3.15) and (4.12), we have

𝐵∗
ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃 = ∫

∞

0
𝐵∗𝑒𝐴

∗
ℎ𝑡𝛱ℎ𝑅

∗𝑅𝛷ℎ(𝑡)𝛱ℎd𝑡 − ∫

∞

0
𝐵∗𝑒𝐴

∗𝑡𝑅∗𝑅𝛷(𝑡)d𝑡

= ∫

∞

0
𝐵∗(𝑒𝐴

∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)𝑅∗𝑅𝛷ℎ(𝑡)𝛱ℎd𝑡 + ∫

∞

0
𝐵∗𝑒𝐴

∗𝑡𝑅∗𝑅(𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡))d𝑡

= 𝐼4,ℎ + 𝐼5,ℎ.

(4.33)

y (4.15),

∫

∞

0
‖𝐵∗(𝑒𝐴

∗
ℎ𝑡𝛱ℎ − 𝑒𝐴

∗𝑡)‖(𝐿2(𝛺),𝐿2(𝛤 ))d𝑡 ≤ 𝐶ℎ𝛼−3∕2 ∫

∞

0

𝑒−𝜔0𝑡

𝑡𝛼∕2
d𝑡, ∀3

2
< 𝛼 < 2.

Note that (4.23) implies

∫

∞

0
‖𝛷ℎ(𝑡)𝑧ℎ0‖

2
𝐿2(𝛺)

≤ 𝐶‖𝑧ℎ0‖
2
𝐿2(𝛺)

, ∀𝑧ℎ0 ∈ 𝑋ℎ. (4.34)

If there exist constants 𝜇, 𝜈 ≥ 0 independent of ℎ such that

‖𝛷ℎ(𝑡)‖(𝑋ℎ) ≤ 𝜇𝑒𝜈𝑡, (4.35)

then by [13, Theorem 4 A.2, p.489] and (4.34), we can obtain

‖𝛷ℎ(𝑡)‖(𝑋ℎ) ≤ 𝑀3𝑒
−𝜔3𝑡,

for some 𝑀3, 𝜔3 > 0 independent of ℎ. Thus

‖𝐼4,ℎ‖(𝐿2(𝛺),𝐿2(𝛤 )) ≤ 𝐶ℎ𝛼−3∕2 ∫

∞

0

𝑒−(𝜔0+𝜔3)𝑡

𝑡𝛼∕2
d𝑡 ≤ 𝐶ℎ𝜃 , ∀𝜃 = 𝛼 − 3

2
< 1

2
. (4.36)

Now we prove (4.35). By [13, Theorem 6.21.2], we have

𝑢∗ℎ(⋅; 𝑧
ℎ
0 ) = −𝐿∗

ℎ𝑅
∗𝑅𝛷ℎ(⋅)𝑧ℎ0 , 𝑤

∗
ℎ(⋅; 𝑧

ℎ
0 ) = 𝛾−2𝑊 ∗

ℎ 𝑅
∗𝑅𝛷ℎ(⋅)𝑧ℎ0 .

It then follows that

𝛷ℎ(𝑡)𝑧ℎ0 = 𝑒𝐴ℎ𝑡𝑧ℎ0 − 𝐿ℎ[𝐿∗
ℎ𝑅

∗𝑅𝛷ℎ(⋅)𝑧ℎ0 ](𝑡) + 𝛾−2𝑊ℎ[𝑊 ∗
ℎ 𝑅

∗𝑅𝛷ℎ(⋅)𝑧ℎ0 ](𝑡). (4.37)

From [22, Lemma 4.8], we get, for any 𝑝 > 4, that

sup
ℎ>0

‖𝐿∗
ℎ‖(𝐿2(0,∞;𝐿2(𝛺)),𝐿𝑝(0,∞;𝐿2(𝛤 ))) < ∞,

sup
ℎ>0

‖𝐿ℎ‖(𝐿𝑝(0,∞;𝐿2(𝛤 )),𝐶([0,∞];𝐿2(𝛺))) < ∞,

which are also valid for the operators 𝑊ℎ and 𝑊 ∗
ℎ . With (4.5) and (4.34) at hand, taking 𝐿2-norm in both sides of (4.37) gives

‖𝛷ℎ(𝑡)𝑧ℎ0‖𝐿2(𝛺) ≤ 𝐶‖𝑧ℎ0‖𝐿2(𝛺), ∀𝑧
ℎ
0 ∈ 𝑋ℎ,

which leads to (4.35).
To handle 𝐼5,ℎ, we first consider ‖𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡)‖(𝐿2(𝛺)). From [23, Proposition 2.3.1] and (4.23),

‖[𝑅(𝜆, 𝐴ℎ,𝑃ℎ ,𝛾 )𝛱ℎ − 𝑅(𝜆, 𝐴𝑃 ,𝛾 )]𝑓‖𝐿2(𝛺) =
‖

‖

‖

‖

∫

∞

0
𝑒−𝜆𝑡(𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡))𝑓d𝑡

‖

‖

‖

‖𝐿2(𝛺)

≤ 𝐶ℎ𝜃‖𝑓‖𝐿2(𝛺), ∀𝜃 < 1
2
,

for all Re(𝜆) > max{0,−𝜔1,−𝜔3} and ∀𝑓 ∈ 𝐿2(𝛺). Hence, for any Re(𝜆) > 0,

‖𝑅(𝜆, 𝐴ℎ,𝑃ℎ ,𝛾 )𝛱ℎ − 𝑅(𝜆, 𝐴𝑃 ,𝛾 )‖(𝐿2(𝛺)) → 0 as ℎ ↓ 0.

By the Trotter–Kato Theorem, it follows that

‖𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡)‖(𝐿2(𝛺)) → 0 as ℎ ↓ 0

uniformly in 𝑡 ∈ [0, 𝑇 ] for any 𝑇 > 0. Recalling 𝐵∗(−𝐴∗)−(3∕4+𝛽) ∈ (𝐿2(𝛺), 𝐿2(𝛤 )), we get from (4.6) that

‖𝐼5,ℎ‖(𝐿2(𝛺),𝐿2(𝛤 )) =
‖

‖

‖

‖

∫

∞

0
𝐵∗(−𝐴∗)−(3∕4+𝛽)(−𝐴∗)3∕4+𝛽𝑒𝐴

∗𝑡𝑅∗𝑅(𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡))d𝑡
‖

‖

‖

‖(𝐿2(𝛺).𝐿2(𝛤 ))

≤ 𝐶 ∫

∞

0

𝑒−𝜔0𝑡

𝑡3∕4+𝛽
‖𝛷ℎ(𝑡)𝛱ℎ −𝛷(𝑡)‖(𝐿2(𝛺))d𝑡 → 0,

(4.38)

where the convergence to zero was guaranteed by the Lebesgue dominated convergence theorem. The desired conclusion then follows from (4.33),
(4.36) and (4.38). ■

Theorem 4.6. For fixed 𝛾 > 𝛾𝑐 , if we choose 𝑢(𝑡) = −𝐵∗
ℎ𝑃ℎ𝛱ℎ𝑧(𝑡) for the original system (2.4) where 𝑃ℎ given by (4.12) is the solution of the algebraic

Riccati Eq. (4.11) in the same sense as stated in Theorem 3.2, then for sufficiently small ℎ, the closed-loop solution 𝑧(⋅) with 𝑧(0) = 0 satisfies

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐵∗

ℎ𝑃ℎ𝛱ℎ𝑧(𝑡)‖2𝐿2(𝛤 )
)d𝑡 ≤ (𝛾2 − 𝛿)∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡, ∀𝑤 ∈  ,

or some 𝛿 > 0 independent of 𝑤, i.e., 𝑢(𝑡) = −𝐵∗𝑃 𝛱 𝑧(𝑡) is a 𝛾-admissible state feedback control for the system (2.4).
11
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Fig. 1. The positional relationship between ∑

𝑎𝑝𝑝(𝐴𝑃 ),
∑

(𝐴𝑃 ) and 𝛤 .

roof. Firstly, the closed-loop system can be written as

𝑧̇(𝑡) = (𝐴 − 𝐵𝐵∗
ℎ𝑃ℎ𝛱ℎ)𝑧(𝑡) + 𝐺𝑤(𝑡), 𝑧(0) = 0.

Let 𝐴𝑃ℎ = 𝐴−𝐵𝐵∗
ℎ𝑃ℎ𝛱ℎ. Then 𝐴𝑃ℎ generates a 𝐶0-semigroup 𝑒𝐴𝑃ℎ 𝑡 due to the fact that 𝐵∗

ℎ𝑃ℎ𝛱ℎ ∈ (𝐿2(𝛺)). Additionally, according to [22, Theorem
4.1] and (4.32), for any given 𝜀 > 0, there are constants 𝑀𝜀 > 0 and ℎ𝜀 > 0 such that, for any sufficiently small ℎ < ℎ𝜀, there holds

‖𝑒𝐴𝑃ℎ 𝑡
‖(𝐿2(𝛺)) ≤ 𝑀𝜀𝑒

(−𝜔2+𝜀)𝑡, ∀𝑡 ≥ 0,

and

‖𝑅(𝜆, 𝐴𝑃ℎ )‖𝐿2(𝛺) ≤ 𝐶 1
|𝜆 + 𝜔2 − 𝜀|

, ∀𝜆 ∈ 𝛴𝑐
𝑎𝑝𝑝(𝐴𝑃 ) = complement of 𝛴𝑎𝑝𝑝(𝐴𝑃 ), (4.39)

where 𝛴𝑎𝑝𝑝(𝐴𝑃 ) = 𝛴𝑎𝑝𝑝(𝐴)∩{𝜆|𝑅𝑒(𝜆) ≤ −𝜔2+𝜀}, and 𝛴app(𝐴) ≡ 𝛴app(𝐴; −𝑎; 𝜃𝑎) is defined as the closed triangular sector containing the axis [−∞,−𝑎]
or some 0 < 𝑎 < 𝜔0 and being delimited by two rays −𝑎 + 𝜌𝑒±𝑖𝜃𝑎 for some 𝜃𝑎 with 𝜋∕2 < 𝜃𝑎 < 𝜋 (see Fig. 1). Let 𝑧̄(⋅) satisfy the following equation

̇̄𝑧(𝑡) = (𝐴 − 𝐵𝐵∗𝑃 )𝑧̄(𝑡) + 𝐺𝑤(𝑡), 𝑧̄(0) = 0,

here 𝑃 , given by (3.15), is the solution of algebraic Riccati Eq. (3.6) in the same sense as in Theorem 3.2. It then follows from the proof of
heorem 3.3 that there exists a constant 𝛿 > 0 independent of 𝑤 such that

∫

∞

0
(‖𝑅𝑧̄(𝑡)‖2𝑌 + ‖𝐵∗𝑃 𝑧̄(𝑡)‖2

𝐿2(𝛤 )
)d𝑡 ≤ (𝛾2 − 2𝛿)∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡, ∀𝑤 ∈  . (4.40)

y Young’s inequality,

∫

∞

0
‖𝑧(𝑡) − 𝑧̄(𝑡)‖2

𝐿2(𝛺)
d𝑡 = ∫

∞

0

‖

‖

‖

‖

‖

(

∫

𝑡

0

(

𝑒𝐴𝑃ℎ (𝑡−𝜏)𝐺𝑤(𝜏) − 𝑒𝐴𝑃 (𝑡−𝜏)𝐺𝑤(𝜏)
)

d𝜏
)

‖

‖

‖

‖

‖

2

𝐿2(𝛺)
d𝑡

≤ 𝐶
(

∫

∞

0
‖𝑒𝐴𝑃ℎ 𝑡 − 𝑒𝐴𝑃 𝑡

‖(𝐿2(𝛺))d𝑡
)2

‖𝑤‖

2
 .

(4.41)

Notice that

𝑅(𝜆, 𝐴𝑃 ) − 𝑅(𝜆, 𝐴𝑃ℎ ) = 𝑅(𝜆, 𝐴𝑃 )𝐵(𝐵∗
ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃 )𝑅(𝜆, 𝐴𝑃ℎ ), (4.42)

Since

𝑅(𝜆, 𝐴𝑃 )𝐵 = [𝐼 + 𝑅(𝜆, 𝐴)𝐵𝐵∗𝑃 ]−1𝑅(𝜆, 𝐴)𝐴1∕4−𝛽𝐴3∕4+𝛽𝐵,

it follows [16, Lemma A.1.] that for sufficiently large |𝜆|,

‖𝑅(𝜆, 𝐴𝑃 )𝐵‖(𝐿2(𝛤 ),𝐿2(𝛺)) ≤
𝐶

|𝜆|1∕4−𝛽
. (4.43)

Since 𝑒𝐴𝑃 𝑡 is analytic and ‖𝑒𝐴𝑃 𝑡
‖(𝑌 ) ≤ 𝑀2𝑒−𝜔2𝑡, it has 𝜎(𝐴𝑃 ) ⊂ 𝛴(𝐴𝑃 ) where 𝛴(𝐴𝑃 ) ≡ 𝛴(𝐴𝑃 ; −𝜔2; 𝜃𝑃 ) is defined as the closed triangular sector

containing the axis [−∞,−𝜔2] and being delimited by the two rays −𝜔2 + 𝜌𝑒±𝑖𝜃𝑃 for some 𝜃𝑃 , with 𝜋∕2 < 𝜃𝑃 < 𝜋. Define 𝛤𝑃 be the path
−𝜔4 + 𝜌𝑒±𝑖𝜃𝛤 , 0 ≤ 𝜌 < ∞ where 0 < 𝜔4 < min{𝜔2, 𝑎} and 𝜋∕2 < 𝜃𝛤 < min{𝜃𝑎, 𝜃𝑃 }. It is easy to see that 𝛤𝑃 ⊂ 𝛴𝑐 (𝐴𝑃 ) ∩ 𝛴𝑐

𝑎𝑝𝑝(𝐴𝑃 ). The first
resolvent equation on 𝑅(𝜆, 𝐴𝑃 ) leads to (4.43) for all 𝜆 ∈ 𝛤𝑃 . Combining (4.39), (4.42) and (4.43) gives

‖𝑅(𝜆, 𝐴𝑃 ) − 𝑅(𝐴𝑃ℎ )‖(𝐿2(𝛺)) ≤
𝐶

‖𝐵∗
ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖(𝐿2(𝛺),𝐿2(𝛤 )), ∀𝜆 ∈ 𝛤𝑃 .
12

|𝜆|5∕4−𝛽



Systems & Control Letters 190 (2024) 105841B.-Z. Guo and Z.-Q. Tan
For any 𝑡 > 0, the Dunford integral representation [25, p. 487] gives

‖𝑒𝐴𝑃 𝑡 − 𝑒𝐴𝑃ℎ 𝑡
‖(𝐿2(𝛺)) =

‖

‖

‖

‖

∫𝛤𝑃
𝑒𝜆𝑡[𝑅(𝜆, 𝐴𝑃 ) − 𝑅(𝜆, 𝐴𝑃ℎ )]d𝜆

‖

‖

‖

‖(𝐿2(𝛺))

≤ 𝐶 ∫𝛤𝑃
|𝑒𝜆𝑡| 1

|𝜆|5∕4−𝛽
‖𝐵∗

ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖(𝐿2(𝛺),𝐿2(𝛤 ))|d𝜆|

≤ 𝐶𝑒−𝜔4𝑡
‖𝐵∗

ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖(𝐿2(𝛺),𝐿2(𝛤 )),

which, together with (4.41), leads to

∫

∞

0
‖𝑧(𝑡) − 𝑧̄(𝑡)‖2

𝐿2(𝛺)
d𝑡 ≤ 𝐶‖𝐵∗

ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖2(𝐿2(𝛺),𝐿2(𝛤 ))
‖𝑤‖

2
 . (4.44)

By (4.32), (4.40) and (4.44), we have

∫

∞

0
‖𝐵∗

ℎ𝑃ℎ𝛱ℎ𝑧(𝑡) − 𝐵∗𝑃 𝑧̄(𝑡)‖2
𝐿2(𝛤 )

d𝑡

≤ 2∫

∞

0
‖𝐵∗

ℎ𝑃ℎ𝛱ℎ(𝑧(𝑡) − 𝑧̄(𝑡))‖2
𝐿2(𝛤 )

d𝑡 + 2∫

∞

0
‖(𝐵∗

ℎ𝑃ℎ𝛱 − 𝐵∗𝑃 )𝑧̄(𝑡)‖2
𝐿2(𝛤 )

d𝑡

≤ 𝐶‖𝐵∗
ℎ𝑃ℎ𝛱ℎ − 𝐵∗𝑃‖2(𝐿2(𝛺),𝐿2(𝛤 ))

‖𝑤‖

2
 . (4.45)

Finally, by (4.32), (4.40),(4.44) and (4.45), we have, for sufficiently small ℎ, that

∫

∞

0
(‖𝑅𝑧(𝑡)‖2𝑌 + ‖𝐵∗

ℎ𝑃ℎ𝛱ℎ𝑧(𝑡)‖2𝐿2(𝛤 )
)d𝑡 ≤ (𝛾2 − 𝛿)∫

∞

0
‖𝑤(𝑡)‖2𝑉 d𝑡, ∀𝑤 ∈  . ■

5. Numerical simulation

In this section, we conduct numerical simulations to validate the obtained results. The system under investigation is a one-dimensional heat
equation describing a uniform thin rod with a unit length.:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑧𝑡(𝑥, 𝑡) = 𝑧𝑥𝑥(𝑥, 𝑡) + 𝑔(𝑥)𝑤(𝑡), 0 < 𝑥 < 1, 𝑡 > 0,

𝑧(0, 𝑡) = 𝑢1(𝑡), 𝑡 ≥ 0,

𝑧(1, 𝑡) = 𝑢2(𝑡), 𝑡 ≥ 0,

𝑧(𝑥, 0) = 𝑧0(𝑥),

(5.1)

where 𝑧(𝑥, 𝑡) represents the temperature at a given time 𝑡 and position 𝑥. The initial state of the temperature is denoted by 𝑧0 ∈ 𝐿2(0, 1). The
temperature profile is perturbed by the term 𝑔(𝑥)𝑤(𝑡), where 𝑤 ∈ 𝐿2(0,∞;R) represents an external disturbance. This disturbance can be regulated
through the boundary control input 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡)]⊤. The cost functional is given by

𝐽 (𝑢,𝑤) = ∫

∞

0

[

∫

1

0
|𝑧(𝑥, 𝑡)|2d𝑥 + ‖𝑢(𝑡)‖2R2 − 𝛾2|𝑤(𝑡)|2

]

d𝑡, (5.2)

i.e., 𝑅 = 𝐼 in (3.1). The approximating spaces 𝑋ℎ ∈ 𝐻1
0 (0, 1) consist of linear splines: 𝑋ℎ = {𝜙𝑁

𝑖 }𝑁𝑖=1 where ℎ = 1
𝑁+1 , 𝑁 = 1, 2,…, and

𝜙𝑁
𝑖 =

⎧

⎪

⎨

⎪

⎩

1 − (𝑁 + 1)
|

|

|

|

𝑥 − 𝑖
𝑁 + 1

|

|

|

|

, 𝑥 ∈
( 𝑖 − 1
𝑁 + 1

, 𝑖 + 1
𝑁 + 1

]

,

0, elsewhere over [0, 1].

Let 𝑧ℎ(𝑥, 𝑡) =
∑𝑁

𝑖=1 𝑧ℎ,𝑖(𝑡)𝜙
𝑁
𝑖 (𝑥) = 𝛷⊤

𝑁 (𝑥)𝑍𝑁 (𝑡) where

𝛷𝑁 (𝑥) = [𝜙𝑁
1 (𝑥), 𝜙𝑁

2 (𝑥),… , 𝜙𝑁
𝑁 (𝑥)]⊤, 𝑍𝑁 (𝑡) = [𝑧ℎ,1(𝑡), 𝑧ℎ,2(𝑡),… , 𝑧ℎ,𝑁 (𝑡)]⊤.

The approximating dynamic of (5.1) is equivalent to

𝑀𝑁 𝑍̇𝑁 (𝑡) = 𝐴𝑁𝑍𝑁 (𝑡) + 𝐵𝑁𝑢(𝑡) + 𝐺𝑁𝑤(𝑡), 𝑍𝑁 (0) =

[

∫

1

0
𝑧0(𝑥)𝜙𝑁

𝑖 (𝑥)d𝑥

]

, (5.3)

and the approximating cost functional is

𝐽𝑁 (𝑢,𝑤) = ∫

∞

0
[𝑍⊤(𝑡)𝑀𝑁𝑍(𝑡) + ‖𝑢(𝑡)‖2R2 − 𝛾2|𝑤(𝑡)|2]d𝑡, (5.4)

where

𝑀𝑁 =

[

∫

1

0
𝜙𝑁
𝑖 (𝑥)𝜙𝑁

𝑗 (𝑥)d𝑥
]

, 𝐴𝑁 =
[

∫

1

0
𝜙𝑁
𝑖 (𝑥)(𝜙𝑁

𝑗 (𝑥))′′d𝑥

]

,

𝐵𝑁 = [(𝜙𝑁
𝑖 (𝑥))′||

|𝑥=0
,−(𝜙𝑁

𝑖 (𝑥))′||
|𝑥=1

], 𝐺𝑁 =

[

∫

1

0
𝑔(𝑥)𝜙𝑁

𝑖 (𝑥)d𝑥

]

,

i.e.,

𝑀𝑁 = 1
6(𝑁 + 1)

⎡

⎢

⎢

⎢

⎢

⎢

4 1 0 ⋯ 0
1 4 1 ⋯ 0
0 1 4 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

, 𝐴𝑁 = (𝑁 + 1)

⎡

⎢

⎢

⎢

⎢

⎢

−2 1 0 ⋯ 0
1 −2 1 ⋯ 0
0 1 −2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

⎤

⎥

⎥

⎥

⎥

⎥

, 𝐵𝑁 = (𝑁 + 1)

⎡

⎢

⎢

⎢

⎢

⎢

1 0
0 0
0 0
⋮

⎤

⎥

⎥

⎥

⎥

⎥

.
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⎣
0 0 0 ⋯ 4

⎦𝑁×𝑁 ⎣
0 0 0 ⋯ −2

⎦𝑁×𝑁 ⎣
0 1

⎦𝑁×2
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v

Fig. 2. Convergence of optimal disturbance 𝛾̂ℎ for 𝑔(𝑥) = 10 (above) and 𝑔(𝑥) = 10 sin𝜋𝑥 (below).

Firstly, we compute the optimal disturbance attenuation 𝛾̂ℎ of (5.3), (5.4) for 𝑔(𝑥) = 10 and 𝑔(𝑥) = 10 sin𝜋𝑥. In other words, compute the minimum
alue of 𝛾 such that there exists an nonnegative self-adjoint solution to the following algebraic Riccati equation:

𝐴⊤
𝑁𝑀−1

𝑁 𝑃𝑁 + 𝑃𝑁𝑀−1
𝑁 𝐴𝑁 +𝑀𝑁 − 𝑃𝑁𝑀−1

𝑁 𝐵𝑁𝐵⊤
𝑁𝑀−1

𝑁 𝑃𝑁 + 𝛾−2𝑃𝑁𝑀−1
𝑁 𝐺𝑁𝐺⊤

𝑁𝑀−1
𝑁 𝑃𝑁 = 0. (5.5)

Fig. 2 illustrates the evolution of the optimal disturbance attenuation 𝛾̂ℎ as 𝑁 ↑ ∞. The figure clearly demonstrates that 𝛾̂ℎ converges in both
scenarios, validating the conclusion of Theorem 4.2. Furthermore, by correlating Fig. 2 with Theorem 4.2, we can infer that the optimal disturbance
attenuation 𝛾̂ of (5.1) and (5.2) satisfies

0.77 < 𝛾̂ < 0.775 ( for 𝑔(𝑥) = 10), 0.61 < 𝛾̂ < 0.615 ( for 𝑔(𝑥) = 10 sin𝜋𝑥).

Next, for some fixed 𝛾 > 𝛾̂, choose sufficiently large 𝑁 and set 𝑃𝑁 to be the solution of the algebraic Riccati Eq. (5.5). Define 𝜋𝑁 ∶ 𝐿2(𝛺) → R𝑁 as

𝜋𝑁𝑓 = [(𝛱ℎ𝑓, 𝜙1), (𝛱ℎ𝑓, 𝜙2),… , (𝛱ℎ𝑓, 𝜙𝑁 )]⊤, ∀𝑓 ∈ 𝐿2(𝛺),

where 𝛱ℎ is the orthogonal projection of 𝐿2(𝛺) onto 𝑋ℎ. Also set 𝐵ℎ and 𝑃ℎ be defined as in Section 4.1. Then,

𝐵∗
ℎ𝑃ℎ𝛱ℎ = 𝐵⊤

𝑁𝑀−1
𝑁 𝑃𝑁𝜋𝑁 .

Let

𝑢(𝑡) = −𝐵⊤
𝑁𝑀−1

𝑁 𝑃𝑁𝜋𝑁𝑧(⋅, 𝑡) (5.6)

in Eq. (5.1) and define

𝜂 =
⎛

⎜

⎜

⎝

∫ ∞
0 [∫ 1

0 |𝑧(𝑥, 𝑡)|2d𝑥 + ‖𝑢(𝑡)‖2
R2 ]d𝑡

∫ ∞
0 |𝑤(𝑡)|2d𝑡

⎞

⎟

⎟

⎠

1
2

,

where 𝑧(⋅, 𝑡) is the closed-loop solution with 𝑧0 = 0. Table 1 provides a comparison of the open-loop and closed-loop values of 𝜂 for the case where
𝑔(𝑥) = 10, 𝑁 = 15, and 𝛾 = 0.78. Similarly, Table 2 compares the open-loop and closed-loop values of 𝜂 for the case where 𝑔(𝑥) = 10 sin𝜋𝑥, 𝑁 = 15,
and 𝛾 = 0.62. Consider different disturbance scenarios:

𝑤(𝑡) ∈ {sin(0.5𝑡)𝜒{𝑡≤50}, 1𝜒{𝑡≤50}, 𝑡
2𝜒{𝑡≤50}},

where

𝜒{𝑡≤50} =

{

1, 0 ≤ 𝑡 ≤ 50,

0, 𝑡 > 50.

From Tables 1 and 2, it is evident that under the feedback control (5.6), the value of 𝜂 < 𝛾 for all three disturbances considered. This observation
validates Theorem 4.6, indicating that the feedback control (5.6) with 𝑁 = 15 is 𝛾-admissible for the system defined by (5.1) and (5.2), specifically,
for the first case, 𝛾 = 0.78, and for the second case, 𝛾 = 0.62. Furthermore, Fig. 3 illustrates the open-loop and closed-loop time evolutions of 𝑧(0.5, 𝑡)
in both scenarios described in Tables 1 and 2, respectively. Here, the disturbance is given as 𝑤(𝑡) = sin 0.5𝑡𝜒{𝑡≤50}. It is clearly seen that the absolute
value of the closed-loop response |𝑧(0.5, 𝑡)| is smaller than that of the open-loop response. This observation intuitively demonstrates the significant
attenuation effect of the feedback control (5.6) on the sine function form of disturbance.
14
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Table 1
The values of 𝜂 for 𝑔(𝑥) = 10, 𝑁 = 15, 𝛾 = 0.78.
𝑢(𝑡) 𝑤(𝑡)

sin 0.5𝑡𝜒{𝑡≤50} 1𝜒{𝑡≤50} 𝑡2𝜒{𝑡≤50}

0 0.9119 0.9117 0.9106
−𝐵⊤

𝑁𝑀−1
𝑁 𝑃𝑁𝜋𝑁𝑧(⋅, 𝑡) 0.7789 0.7787 0.7779

Table 2
The values of 𝜂 for 𝑔(𝑥) = 10 sin𝜋𝑥, 𝑁 = 15, 𝛾 = 0.62.
𝑢(𝑡) 𝑤(𝑡)

sin 0.5𝑡𝜒{𝑡≤50} 1𝜒{𝑡≤50} 𝑡2𝜒{𝑡≤50}

0 0.7166 0.7167 0.7157
−𝐵⊤

𝑁𝑀−1
𝑁 𝑃𝑁𝜋𝑁𝑧(⋅, 𝑡) 0.6157 0.6157 0.6150

Fig. 3. Response 𝑧(0.5, 𝑡) of open (-.) and closed loop (-) to 𝑤(𝑡) = sin 0.5𝑡𝜒{𝑡≤50} for 𝑔(𝑥) = 10, 𝑁 = 15, 𝛾 = 0.78 (above) and for 𝑔(𝑥) = 10 sin𝜋𝑥, 𝑁 = 15, 𝛾 = 0.62 (below).

6. Conclusions

This paper investigates the state feedback control for the 𝐻∞ disturbance-attenuation problem of stable parabolic systems with in-domain
istributed disturbances under Dirichlet boundary control. We employ a Galerkin approximation approach to approximate the original problem.
t is demonstrated that, under four key assumptions, there exists a sequence of matrices 𝑃ℎ that converges in norm to the solution of the

algebraic Riccati equation. These assumptions include (a) 𝐴 ∈ (𝐷(𝐴), 𝐿2(𝛺)) generates an analytic and exponentially stable 𝐶0-semigroup 𝑒𝐴𝑡;
(b) 𝐵 ∈ (𝐿2(𝛤 ), [(𝐴)]′) satisfies 𝐴−𝜂1𝐵 ∈ (𝐿2(𝛤 ).𝐿2(𝛺)) with 0 < 𝜂1 < 1; (c) 𝐺 ∈ (𝑉 ,𝐿2(𝛺)); (d) 𝑅 ∈ (𝐿2(𝛺), 𝑌 ).

While our discussion has focused on the case where the admissibility exponent 𝜂1 of 𝐵 satisfies 3
4 < 𝜂1 < 1, it is worth noting that similar

arguments can be applied to establish the same conclusion for the case of 0 < 𝜂1 < 1. This ensures the generality of our results across different
admissibility ranges for the control operator. Utilizing the sequence 𝑃ℎ, we construct a state feedback control law 𝑢(𝑡) = −𝐵∗

ℎ𝑃ℎ𝛱ℎ𝑧(𝑡) and
demonstrate that it serves as a 𝛾-admissible state feedback for the original PDE system. To the best of our knowledge, this represents the first
result pertaining to the approximation theory of the algebraic Riccati equation with an unbounded control operator in the context of 𝐻∞ control.
uture work will explore extensions to cases where the semigroup 𝑒𝐴𝑡 is not necessarily exponentially stable and where the disturbance operator
may be unbounded. Such extensions could potentially encompass boundary disturbances, further broadening the applicability of our approach.

n intriguing issue worthy of further exploration in the future pertains to the output feedback control built upon the state feedback established in
his paper.
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