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a b s t r a c t

In this paper, an output tracking problem for a heat equation is considered, where all possible
disturbances produced from an exosystem and a systematic uncertainty are considered and the
performance output is non-collocated with control. The objective is twofold: to look at how the internal
model principle works for the output tracking of PDEs; and to see how to design a robust tracking
error feedback control for PDEs. To this purpose, we first select a frozen case with specially selected
frozen coefficients of the disturbances. For this frozen system, we design a feedforward control by
solving simply regulator equation and an infinite-dimensional extended state observer in terms of
tracking error only which gives an estimation of both states of the frozen plant and exosystem. An
observer-based tracking error feedback control is then designed for the frozen system, which is shown
to be in line with the internal model principle. As a result, the system is shown to be robust to system
uncertainty and disturbances in all channels. The numerical simulations validate the results.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Output regulation or output tracking is one of the major con-
cerns in control theory. In many engineering applications, we are
only concerned with the partial states of the system, which are
called performance outputs, to be regulated and others are kept to
be bounded (Meng & Wei, 2017; Wang & Wu, 2014). At the same
time, the disturbances from both systems and measurements
must be taken into account to guarantee the robustness of the
control so that the closed-loop system can operate normally in
the presence of the disturbances (Christofides, 2001; Deutscher,
2016). In this regard, a systematic research has been carried
out since from 1970s in the name of the internal model prin-
ciple (Davison, 1976; Francis & Wonham, 1976). By the internal
model principle, the robust output tracking is largely simplified
to a dynamic tracking error feedback control which contains
a p-copy of the exosystem, where p ∈ N is the dimension
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of the performance output (Paunonen, 2016). The exosystem is
supposed to generate both reference signals and disturbances.
This powerful method has been applied to nonlinear lumped
parameter systems (Huang, 2004) and even distributed parameter
systems (Deutscher, 2015; Paunonen & Pohjolainen, 2010), where
in latter case, the unboundedness of control and observation
operators increases difficulties in solving the related Sylvester
equations. A systematic generalization of the internal model prin-
ciple to infinite-dimensional systems was made in Paunonen
and Pohjolainen (2014) with unbounded control and observation
operators. However, the disturbance related operators and the
input operator in dynamic tracking error feedback control are
still assumed to be bounded. Unbounded case was investigated
in Paunonen (2017) but the output convergence is limited to
weak convergence due to unboundedness of the output operator
(see also Natarajan, Gilliam, & Weiss, 2014).

On the other hand, progresses on output tracking from
PDE point of view have also been made over the years but the
complexity is quite different depending on the locations of the
control, disturbance and performance output. A non-collocated
output tracking problem was considered in Guo, Shao, and Krstic
(2017), with the harmonic disturbance rejected via adaptive
control method. An early effort along the same line can also be
found in Guo and Guo (2011). Some other interesting regulation
problems can also be solved by constructing special solutions for
regulator equations from which the controllers can be designed
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in terms of kernel equations (Deutscher, 2015, 2016). In partic-
ular, paper Deutscher (2016) obtained a robust output feedback
control based on an observer of an extended PDE–ODE system,
where different to present paper, the reference signal is supposed
to be known although in principle it can use error feedback
only. With a combination of the internal model principle and the
backstepping approach, the regulation problem via state feedback
control has been solved for some PDEs in Deutscher and Ker-
schbaum (2016) and Gabriel and Deutscher. The paper (Deutscher
& Kerschbaum, 2016) considered second-order hyperbolic PDEs
and Gabriel and Deutscher addressed an n-coupled wave equa-
tion, both with spatially varying coefficients, and in-domain and
boundary disturbances. An interesting situation of Gabriel and
Deutscher is that the performance output can be pointwise,
namely, distributed in-domain or defined on a boundary. In Jin
and Guo (2018), an extended state observer was constructed to
estimate the state and the very general external disturbance, but
the control and performance output there are collocated. Other
methods directly for PDEs can also be found in He, Ge, How, Choo,
and Hong (2011) and He, He, and Ge (2015). The state feedback
regulation problem was investigated systematically in Aulisa and
Gilliam (2016).

However, from the applications of the internal model principle
for abstract infinite-dimensional systems to PDEs like those pre-
sented in Natarajan et al. (2014), Paunonen (2017) and Paunonen
and Pohjolainen (2014), there is still a huge gap. Given a PDE, how
to check all assumptions and conditions required in the abstract
form is never an easy task. In this paper, under the guideline
of the internal model principle presented in Paunonen and Po-
hjolainen (2014), we attempt to design a robust tracking error
feedback control for a PDE. The difference from Paunonen and
Pohjolainen (2014) is that our disturbance related operator and
the input operator in dynamic tracking error feedback control are
also unbounded, and compared with Paunonen (2017), we seek
pointwise convergence of the output and do not need to check
some assumptions. The contributions of this paper are: (a) It
demonstrates how to solve robust output tracking for PDEs by
the internal model principle through this example; (b) It reveals
the tricks in observer design behind the general framework which
has been started recently in Paunonen (2020); (c) The method
proposed in this paper is quite general to be applied to other
PDEs, for which an output regulation for a non wellposed Euler–
Bernoulli beam can be similarly developed in Guo and Meng
(2019) during review of the present paper. In addition, another
contribution of the paper is the design of observer for non-
collocated PDEs. All contributions focus indeed on the design of
a dynamic error feedback control. If we look at PDE examples
presented in aforementioned papers, the control design following
abstract results is very complicated. Indeed, there is an observer-
based design theory generally for finite-dimensional systems, see,
e.g., Deutscher (2017) and Huang (2004, Theorem 1.14, p.14). The
core idea of Paunonen (2020) is to generalize observer-based de-
sign for infinite-dimensional systems, where the observer design
must be Lunberger type without much option and the conver-
gence output must be in weak sense due to unboundedness of
the output operator. The present paper is to exemplify the idea
of Paunonen (2020) to a PDE, where differently from (Paunonen,
2020), an observer-based error feedback robust control is pro-
posed directly from PDE point of view without an additional
assumption and the pointwise convergence is guaranteed for the
output tracking error. Roughly speaking, our approach says that
if one can design an extended state observer for any specially
selected frozen coefficients of a coupled PDE with exosystem,
then, an observer based error feedback control contains 1-copy
of the exosystem. This approach is genetic even for MIMO PDEs
by simply expanding the exosystem as v̇ = diag(G,G, . . . ,G)v
from the single exosystem ṗ = Gp(t) (Paunonen, 2020).

The system that we consider in this paper is described by
the following heat equation with disturbances and system uncer-
tainty:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t) + F (x)p(t) + ∆(x)w(x, t),
x ∈ (0, 1), t > 0,

wx(0, t) = Np(t), t ≥ 0,
wx(1, t) = u(t) + Dp(t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1, t ≥ 0,
yc(t) = w(0, t), t ≥ 0,

(1)

where the real function ∆ ∈ C1
[0, 1] represents the system

uncertainty, F (x) ∈ C1×n, N ∈ C1×n and D ∈ C1×n are unknown
coefficients of the in-domain and boundary disturbances, u(t) is
the control, w0(x) is the initial state and yc(t) is the performance
output to be regulated. We consider system (1) in the state space
H = L2(0, 1).

The finite-dimensional exosystem is described by{
ṗ(t) = Gp(t), t > 0,
p(0) = p0,

(2)

where the unknown p ∈ Cn×1. It is assumed that the matrix
G ∈ Cn×n is known and the initial value p0 is unknown.

Denote the reference trajectory by

yref (t) = Mp(t), (3)

and the tracking error by ye(t) = yc(t)−yref (t), whereM ∈ C1×n is
also unknown. The control objective is to design a tracking error
feedback control so that

lim
t→∞

|ye(t)| = lim
t→∞

|yc(t) − yref (t)| = 0, (4)

regardless of the in-domain, input, and non-collocated boundary
disturbances, and systematic uncertainty. It is seen that this is
a typical output tracking problem for infinite-dimensional sys-
tem discussed abstractly in Paunonen (2017) and Paunonen and
Pohjolainen (2014), where the weak convergence of the output
was pursued due to unbounded output operator but here we
seek pointwise convergence. In the literature of PDE systems, the
specialty of system (1) lies in that the performance output is
non-collocated with control, which represents a difficult case in
output tracking for PDEs.

In order to guarantee the robust output regulation, a necessary
condition that the spectrum of the exosystem cannot be the
transmission zeros of the control plant must be assumed. For our
system without disturbances and uncertainty, by taking Laplace
transform, there holds{ syw(x, s) = y′′

w(x, s),
y′
w(0, s) = 0, y′

w(1, s) = û(s),
Yc(s) = w(0, s),

where yw(x, s), û(s) and Yc(s) are the Laplace transforms of w(x, t),
u(t) and yc(t), respectively. The transfer function is then found
to be

T (s) =
2

√
s(e

√
s − e−

√
s)

which has no zero and therefore we do not need any necessary
condition like Assumption 2.2 of Paunonen (2017). Instead, the
following Assumption 1.1 is assumed throughout the paper.

Assumption 1.1. The matrix G is diagonalizable and all eigen-
values of G are located on the imaginary axis and are distinct.

Assumption 1.1 simply means that all the disturbances and
reference signals are produced from finite sum of the harmonic
signals, which has been discussed in Guo and Guo (2011) by
adaptive control method. For notation simplicity, all obvious do-
mains for both time and spatial variables are omitted in equations
hereafter.
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Lemma 1.1. For any α2 > 0, the following system{
εt (x, t) = εxx(x, t),
εx(0, t) = 0,
εx(1, t) = −α2ε(1, t).

(5)

is exponentially stable and

|ε(0, t)| ≤ M̃εe−ω̃ε t∥ε(·, 0)∥, ∀ t ≥ 0,

for some constants M̃ε, ω̃ε > 0.

Proof. The proof of this lemma is simple but we need some facts
for the proof of this result in later sections. Define the system
operator A : (D(A) ⊂ H) → H as follows⎧⎨⎩ Aφ(x) = φ′′(x),

D(A) = {φ(x) ∈ H2(0, 1)|φ′(0) = 0,
φ′(1) = −α2φ(1)},

(6)

which generates an analytic exponentially stable semigroup that

∥ε(·, t)∥ ≤ Mεe−ωε t∥ε(·, 0)∥, (7)

where Mε, ωε > 0 are independent on initial conditions. Next,
it is a simple exercise that A is self-adjoint in H , with compact
resolvent. By theory of functional analysis, there is a sequence
of eigenfunctions of A, which forms an orthonormal basis for H .
Solve the eigenvalue problem Aφ = λφ = ρ2φ, i.e.,{

φ′′(x) = ρ2φ(x),
φ′(0) = 0, φ′(1) = −α2φ(1),

(8)

from which we see obviously that each eigenvalue must be
geometrically simple. Since A is self-adjoint, all λ must be real
and it is easy to check from (8) that λ < 0. Solve (8) to obtain

φ(x) = eρx
+ e−ρx, e2ρ = 1 −

2α2
ρ+α2

= 1 −
2α2
ρ

+ O(ρ−2).

From the second identity, we first solve e2ρ = 1−
2α2
ρ

by Rouché’s
theorem in complex analysis to obtain ρn = nπ i + O(n−1).
Substituting it into e2ρ = 1 −

2α2
ρ

+ O(ρ−2), we then have
O(n−1) =

2α2 i
nπ + O(n−2). Since λ = ρ2, we finally obtain⎧⎪⎪⎨⎪⎪⎩

λ = λn =

[
nπ i + 2α2 i

nπ + O(n−2)
]2

= −4α2 − (nπ )2 + O(n−1),
φ(x) = φn(x) = 2 cos

(
nπ +

2α2
nπ

)
x + O(n−2).

(9)

The solution of (5) can be written in H = L2(0, 1) as

ε(x, t) =

∞∑
n=0

aneλntφn(x), ∥ε(·, 0)∥2
=

∞∑
n=0

|an|2, (10)

where λn < 0 and {φn(x)}∞n=0 forms an orthonormal basis for H .
Therefore, for any t ≥ 1, it follows from (10) that

|ε(0, t)|2 =

⏐⏐⏐⏐⏐
∞∑
n=0

aneλntφn(0)

⏐⏐⏐⏐⏐
2

≤

∞∑
n=0

|anφn(0)|2
∞∑
n=0

e2λnt

≤ C1

∞∑
n=0

|an|2
∞∑
n=0

e2λnt ,

(11)

where C1 > 0 is a constant independent of the initial value. We
may suppose without loss of generality that {λn} is decreasing
with respect to n. From the asymptotic expression of λn in (9),
there exists an integer N > 0 such that 2(λn − λ0) ≤ −nπ as

n > N , which results in

lim
t→∞

∞∑
n=0

e2(λn−λ0)t

= lim
t→∞

N∑
n=0

e2(λn−λ0)t + lim
t→∞

∞∑
n=N+1

e2(λn−λ0)t

≤ lim
t→∞

∞∑
n=N+1

e−nπ t
= lim

t→∞

e−(N+1)π t

1 − e−π t = 0.

This, together with (11), shows that

limt→∞ |ε(0, t)|2 ≤ limt→∞ C2e2λ0t∥ε(·, 0)∥2
= 0, (12)

where C2 > 0 is a constant independent of the initial value. ■

We proceed as follows. In Section 2, we first design a feed-
forward control for the system (1) with specially selected dis-
turbances and system uncertainty, and then an extended state
observer in terms of tracking error for the coupled frozen system
and exosystem is designed. As a result, we obtain an observer-
based error feedback control for frozen system and 1-copy prop-
erty is briefly discussed. In Section 3, we show the robust output
tracking for system (1) with the observer-based error feedback
control designed for the frozen system. Numerical simulations
are presented in Section 4 for illustration, followed by concluding
remarks in Section 5.

2. Observer-based error feedback control design

In this section, we design an observer-based error feedback
control for the system (1) with specially selected disturbances
and system uncertainty. To this purpose, we need three steps.
Firstly, we need to select the special frozen coefficients so that the
coupled system (w, p) is detectable with respect to the tracking
error and design a feedforward control for the frozen system.
Secondly, we design an extended state observer for the coupled
frozen system and exosystem. By these three steps we produce
an observer-based error feedback control by simply substitution
of the states in feedforward control with its estimations obtained
from the extended state observer.

First, the frozen coefficients are chosen as

F (x) ≡ 0, ∆(x) ≡ 0, D = 0,M = M0, N = N0, (13)

where M0 and N0 are chosen to guarantee the existence of the
observer for coupled system (1) and (2) with those frozen coef-
ficients selected from (13). It is noted that the observer design
for this case has its independent significance itself because the
output and control are non-collocated.

With frozen coefficients (13), systems (1) and (2) can be writ-
ten as⎧⎪⎨⎪⎩

ṗ(t) = Gp(t),
wt (x, t) = wxx(x, t),
wx(0, t) = N0p(t), wx(1, t) = u(t),
ye(t) = w(0, t) − M0p(t).

(14)

We design an observer-based error feedback control for frozen
system (14) by three steps.
Step 1: Feedforward control for frozen system. We design a
feedforward control for subsystem w(x, t) in (14). Since the dis-
turbance N0p(t) is on the left end and control is on the right end,
we introduce standardly the variable

ε(x, t) = w(x, t) − f0(x)p(t) with f0(x) ∈ C1×n, (15)

in which f0(x)p(t) is the particular steady state to achieve output
regulation. A simple calculation gives{

εt (x, t) = εxx(x, t),
εx(0, t) = 0, εx(1, t) = u(t) − f ′

0(1)p(t),
ye(t) = ε(0, t),

(16)
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provided that{
f ′′

0 (x) = f0(x)G,

f ′

0(0) = N0, f0(0) = M0,
(17)

which has the obvious solution:

(f0(x), f ′

0(x)) = (M0,N0)e

(
0 G
I 0

)
x
. (18)

It is seen from (16) that the disturbance has been moved to the
control side. This is the role played by the transformation (15).
Compared with (5), we naturally have a feedforward control of
the following

u(t) = −α2ε(1, t) + f ′

0(1)p(t), α2 > 0. (19)

The closed-loop ε-subsystem of (16) therefore becomes{
εt (x, t) = εxx(x, t),
εx(0, t) = 0,
εx(1, t) = −α2ε(1, t),

which by Lemma 1.1 is exponentially stable and |ε(0, t)| con-
verges to zero uniformly exponentially.
Step 2: Observer design for frozen system. Now we are in a
position to design an observer for system (14). To this purpose,
we introduce a transformation

z(x, t) = w(x, t) + g0(x)p(t), (20)

where g0(x) ∈ C1×n. By (14), the extended system of (z(x, t), p(t))
is governed by⎧⎪⎪⎪⎨⎪⎪⎪⎩

zt (x, t) = zxx(x, t),
zx(0, t) = α1z(0, t) − α1ye(t),
zx(1, t) = u(t),
ṗ(t) = Gp(t),
ye(t) = z(0, t) − (f0(0) + g0(0))p(t),

(21)

provided that g0(x) is chosen to satisfy{ g ′′

0 (x) = g0(x)G,

g ′

0(0) = α1[g0(0) + M0] − N0, α1 > 0, α1 ∈ R,

g ′

0(1) = 0.
(22)

It is seen from (21) that a damping for z-part is introduced at
boundary x = 0, and meanwhile the term f0(0) + g0(0) in ye(t)
turns out to play an important role in stabilizing the p-part.
The existence of the solution to (22) is proved by the following
lemma.

Lemma 2.1. The boundary value problem (22) admits a unique
solution.

Proof. Let wj be an eigenvector of G corresponding to the eigen-
value iωj, ωj ∈ R, which will be used throughout the paper. Right
multiply by wj in (22) to obtain{

g ′′

0j(x) = iωjg0j(x),

g ′

0j(0) = α1g0j(0) − N0j + α1M0j, g ′

0j(1) = 0,
(23)

where j = 1, 2, . . . , n, g0j(x) = g0(x)wj, M0j = M0wj and N0j =

N0wj. There are two cases:
Case 1: ωj = 0. In this case, the solution of (23) is found to be

g0j(x) =
N0j − α1M0j

α1
. (24)

Case 2: ωj ̸= 0. We may suppose without loss of generality that
ωj > 0. The general solution of (23) is

g0j(x) = c
(
e
√

iωjx + e2
√

iωje−
√

iωjx
)

, (25)

where c is found to be

c =
α1M0j − N0j√

iωj

(
1 − e2

√
iωj
)

− α1

(
1 + e2

√
iωj
) , (26)

if the denominator above is non-zero which is shown to be always
true. Indeed, if

√
iωj

(
1 − e2

√
iωj
)

− α1

(
1 + e2

√
iωj
)

= 0, then

α1 =kj
1 − e2kj + 2ekj sin kj + i

(
1 − e2kj − 2ekj sin kj

)
2(1 + ekj cos kj)2 + (ekj sin kj)2

,

where kj =
√
2ωj. Since α1 ∈ R, we must have 1 − e2kj −

2ekj sin kj = 0, which however turns out to be wrong. Let
y(x) = e2x + 2ex sin x − 1, x > 0. Then, for any x > 0
y′(x) = 4ex

[
1 + x +

∑
∞

m=1

(
x4m
(4m)! +

x(4m+1)

(4m+1)!

)]
> 0 , which to-

gether with y(0) = 0, shows that y(x) > 0 for all x > 0. Negative
ωj can be treated similarly. Therefore, the solution of (22) always
exists for any α1 > 0 and is found to be

g0(x) = (g01(x), g02(x), . . . , g0n(x))[w1, w2, . . . , wn]
−1. ■ (27)

Let h0(x) = f0(x) + g0(x) where f0(x) and g0(x) satisfy (17) and
(22) respectively. Then, h0(x) satisfies{

h′′

0(x) = h0(x)G,

h′

0(0) = α1h0(0), h′

0(1) = f ′

0(1),
(28)

which admits a unique solution by (17) and Lemma 2.1.
We next design an observer for (21) as follows:⎧⎪⎨⎪⎩
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = u(t),
˙̂p(t) = Gp̂(t) + Q [ye(t) − ẑ(0, t) + h0(0)p̂(t)],

(29)

where Q ∈ Cn×1 will be determined later. Once again, we see the
role played by the term h0(0) in ye(t). By (20), we have produced
an observer for system (14) with ŵ(x, t) = ẑ(x, t) − g0(x)p̂(t) as
an approximation of w(x, t).

Set the observer errors to be z̃(x, t) = z(x, t) − ẑ(x, t), p̃(t) =

p(t) − p̂(t) and then⎧⎨⎩ z̃t (x, t) = z̃xx(x, t),
z̃x(0, t) = α1z̃(0, t), z̃x(1, t) = 0,
˙̃p(t) = [G + Qh0(0)]p̃(t) − Q z̃(0, t).

(30)

A sufficient condition to ensure G + Qh0(0) to be Hurwitz is
that Σ(G, h0(0)) is detectable for which we have the following
Lemma 2.2.

Lemma 2.2. The pair (G, h0(0)) is detectable if and only if H0j(0)
̸= 0 for all j = 1, 2, . . . , n, which is equivalent to{

N0j ̸= 0, if ωj = 0,
M0j
√
iωj(1 − e2

√
iωj ) − N0j(1 + e2

√
iωj ) ̸= 0, if ωj ̸= 0,

(31)

where M0j = M0wj,N0j = N0wj and wj is the eigenvector corre-
sponding to iωj.

Proof. It is known that (G, h0(0)) is detectable if and only if
(G0,H0(0)) is detectable, where G0 = J−1GJ = diag{iωj}, H0(x) =

h0(x)J and J is the eigenvector matrix of G. For any iωj ∈ σ (G),
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j = 1, 2, . . . , n, it is seen that

rank
(

G0 − iωj
H0(0)

)
= n

⇕

rank

⎛⎜⎜⎜⎜⎜⎜⎝

iω1 − iωj 0 0 · · · 0
0 iω2 − iωj 0 · · · 0

0 0
. . . · · · 0

0 · · · 0 iωn−1 − iωj 0
0 · · · 0 0 iωn − iωj

H01(0) H02(0) · · · · · · H0n(0)

⎞⎟⎟⎟⎟⎟⎟⎠
= n,

which is equivalent to H0j(0) ̸= 0 for j = 1, 2, . . . , n.
Case 1: ωj = 0. By (24), it has

H0j(0) = M0j + g0j(0) =
N0j

α1
̸= 0. (32)

Case 2: ωj ̸= 0. By (25) and (26), it has

H0j(0) =

M0j
√
iωj

(
1 − e2

√
iωj
)

√
iωj

(
1 − e2

√
iωj
)

− α1

(
1 + e2

√
iωj
)

−

(
1 + e2

√
iωj
)
N0j√

iωj

(
1 − e2

√
iωj
)

− α1

(
1 + e2

√
iωj
) ̸= 0,

(33)

where the denominator above is non-zero by the proof of
Lemma 2.1. ■

Remark 2.1. With the notation of Lemma 2.2, since

J−1
[G + Qh0(0)]J = G0 + J−1QH0(0),G∗

0 = −G0,

we can take Q = −JH∗

0 (0) = −JJ∗h∗

0(0), where ∗ denotes the
conjugate transpose of the matrix.

Lemma 2.3. Suppose that M0 and N0 satisfy Lemma 2.2, which
makes G + Qh0(0) Hurwitz. Then, the observer (29) is convergent
exponentially to system (21).

Proof. It is seen that the introduction of damping at x = 0 makes
z̃-subsystem in (30) exponentially stable, same to Lemma 1.1:

∥z̃(·, t)∥ ≤ κz̃e−µz̃ t∥z̃(·, 0)∥, (34)

where κz̃, µz̃ > 0. Similarly to (10), we can find the solution of
z̃-subsystem of (30) as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z̃(x, t) =

∞∑
n=0

bneλntφn(x),

∥z̃(·, 0)∥2
=

∞∑
n=0

|bn|2 < ∞,

where (λn, φn) may be different to those in (10) since generally,
α1 ̸= α2, but they have the same asymptotic expressions of (9)
and so we use, by abuse of the notation, the same notation of
(λn, φn). Same as (12), there exists a C3 > 0 independent of initial
value such that

|z̃(0, t)|2 ≤ C3∥z̃(·, 0)∥2e2λ0t , ∀ t ≥ 1, (35)

which implies particularly that z̃(0, t) is convergent to zero ex-
ponentially as t → ∞.

For p̃-subsystem in (30), by (35) and whenever G + Qh0(0) is
Hurwitz
limt→∞ ∥p̃(t)∥2

= limt→∞ ∥e[G+Qh0(0)]t p̃(0)∥2

+ limt→∞ C4∥z̃(·, 0)∥2e2λ0t = 0, (36)

where C4 is independent on initial conditions. ■

Step 3: Observer-based feedback for frozen system. By
Lemma 2.2, we can further simplify M0 and N0 as

N0 = α1M0,M0wj ̸= 0, (37)

where wj are eigenvectors of S appeared in Lemma 2.2. It is
seen that such (M0,N0) always exists because M0 = [1, . . . , 1]
[w1, . . . , wn]

−1 solves M0[w1, . . . , wn] = [1, 1, . . . , 1]. The choice
of (37) is based on the condition (31).

This makes (17) and (28) be updated as{ f ′′

0 (x) = f0(x)G,

f ′

0(0) = N0 = α1M0,

f (0) = M0,

{ h′′

0(x) = h0(x)G,

h′

0(0) = α1h0(0),
h′

0(1) = f ′

0(1),
(38)

which further advise f0(x) ≡ h0(x) and hence g0(x) ≡ 0. In what
follows, all h0(x) are therefore replaced by f0(x).

By the choice of (37), the condition (31) is always satisfied,
that is, Σ(G, h0(0)) = Σ(G,M0) is detectable and hence from
Lemma 2.3 that the observer (29) with (M0,N0) in (37) is also
convergent exponentially to system (21) by selecting Q so that
G + QM0 is Hurwitz.

Since w(x, t) = z(x, t) by the choice of (M0,N0) in (37), by (15),
(29) and (19), a tracking error feedback observer-based control is
designed as⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t) = −α2ẑ(1, t) + [α2f0(1) + f ′

0(1)]p̂(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = u(t),
˙̂p(t) = [G + QM0]p̂(t) + Qye(t) − Q ẑ(0, t).

(39)

Make the transformation

ζ (x, t) = ẑ(x, t) − f0(x)p̂(t). (40)

Then, the controller in (39) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(t) = −α2ζ (1, t) + f ′

0(1)p̂(t),
ζt (x, t) = ζxx(x, t) + f0(x)Q ζ (0, t) − f0(x)Qye(t),
ζx(0, t) = α1ζ (0, t) − α1ye(t),
ζx(1, t) = −α2ζ (1, t),
˙̂p(t) = Gp̂(t) − Q ζ (0, t) + Qye(t).

(41)

Clearly, the controller (41) contains 1-copy of the exosystem. This
is just the internal model that we need for robustness.

Remark 2.2. The controller (39) can be written into the stan-
dard form of dynamic error feedback control in internal model
principle:⎧⎪⎪⎨⎪⎪⎩

d
dt

(
ẑ(·, t)
p̂(t)

)
= G1

(
ẑ(·, t)
p̂(t)

)
+ G2ye(t),

u(t) = K
(

ẑ(·, t)
p̂(t)

)
,

(42)

where G2 is unbounded as in Paunonen (2017).

To end this section, we explain more about the control design
(39). First, for frozen system (14), design feedforward control
(19); Second, for frozen system (14), design an observer (29);
Replace the state in feedback of (19) with the state of the ob-
server (29) to obtain the error feedback control (39). The control
(39) contains naturally 1-copy of the exosystem, which is con-
firmed by (41). This is in line with the internal model principle
for finite-dimensional systems in Deutscher (2017) and Huang
(2004, Theorem 1.14, p.14), and Paunonen (2020) for infinite-
dimensional systems. However, it is hard to know if our observer
is Lunberger type presented in Paunonen (2020). In addition, the
results of Paunonen (2020) are based on previously established
results of Paunonen (2017) where there are a series of abstract
assumptions which are not easy to check. Therefore, we need to
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give a robustness analysis in next section. Another point is that
before (37), we design an observer for system (14) with general
(M0,N0) to show the design principle of the observer, which is of
independent significance itself.

3. Robustness

In this section, we always choose the frozen coefficients
(M0,N0) as that in (37). The closed-loop system with the dynamic
control (39) then becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t) + F (x)p(t) + ∆(x)w(x, t),
wx(0, t) = Np(t),
wx(1, t) = −α2ẑ(1, t) + [α2f0(1) + f ′

0(1)]p̂(t) + Dp(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = −α2ẑ(1, t) + [α2f0(1) + f ′

0(1)]p̂(t),
˙̂p(t) = [G + QM0]p̂(t) + Qye(t) − Q ẑ(0, t),
ye(t) = w(0, t) − Mp(t).

(43)

For w(x, t) in (43), introduce the following transformation

zc(x, t) = w(x, t) − f̂ (x)p(t)

with f̂ (x) ∈ C1×n satisfying{
f̂ ′′(x) = f̂ (x)[G − ∆(x)] − F (x),
f̂ ′(0) = N, f̂ (0) = M,

(44)

whose solution, same as (18), is uniquely expressed by

(f̂ (x), f̂ ′(x)) = (M,N)eA(x)

+

∫ x

0
[01×n, −F (s)]eA(x)−A(s)ds,

A(x) =

∫ x

0

(
0 G − ∆(s)
I 0

)
ds.

(45)

Since the disturbances appear in all channels of the w(·, t) system
in (43), we first make the following transformation to cluster all
external disturbances in all channels into one channel:

z1(x, t) = w(x, t) + ĝ(x)p(t), (46)

where ĝ(x) ∈ C1×n is defined by{
ĝ ′′(x) = ĝ(x)G + ∆(x)f̂ (x) + F (x),
ĝ ′(0) = α1[ĝ(0) + M] − N, ĝ ′(1) = −D,

(47)

which admits a solution by virtue of Lemma 2.1. Then, ĥ(x) =

f̂ (x) + ĝ(x) satisfies{
ĥ′′(x) = ĥ(x)G,

ĥ′(0) = α1ĥ(0), ĥ′(1) = f̂ ′(1) − D,
(48)

which similarly to (17), admits a solution

(ĥ(x), ĥ′(x)) = (ĥ(0), α1ĥ(0))e

(
0 G
I 0

)
x (49)

with ĥ(0) being determined by ĥ′(1) = f̂ ′(1) − D.
In this way, (z1(x, t), ẑ(x, t), p̂(t)) is governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1t (x, t) = z1xx(x, t) + ∆(x)[w(x, t) − f̂ (x)p(t)],
z1x (0, t) = α1ĥ(0)p(t) = α1z1(0, t) − α1ye(t),
z1x (1, t) = −α2ẑ(1, t) + [α2f0(1) + f ′

0(1)]p̂(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = α1ẑ(0, t) − α1ye(t),
ẑx(1, t) = −α2ẑ(1, t) + [α2f0(1) + f ′

0(1)]p̂(t),
˙̂p(t) = [G + QM0]p̂(t) + Qye(t) − Q ẑ(0, t),
ye(t) = z1(0, t) − ĥ(0)p(t).

(50)

It is seen that only one channel and output contain explicitly the
external disturbance except the one caused by the system uncer-
tainty ∆(x), which is the advantage of the introduction of (46).

Now, we make a transformation:( zc(x, t)
ẑc(x, t)
p̂c(t)

)
=

⎛⎝ z1(x, t)
ẑ(x, t)
p̂(t)

⎞⎠−

⎛⎝ ĥ(x)
ĥ(x)
hp̂

⎞⎠ p(t)

=

(
w(x, t)
ẑ(x, t)
p̂(t)

)
−

⎛⎝ f̂ (x)
ĥ(x)
hp̂

⎞⎠ p(t),

(51)

where hp̂ ∈ Cn×n satisfies{
ĥ′(1) = −α2ĥ(1) + [α2f0(1) + f ′

0(1)]hp̂,

hp̂G − [G + QM0]hp̂ = −Q ĥ(0),
(52)

and (zc(x, t), ẑc(x, t), p̂c(t)) is governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zct (x, t) = zcxx(x, t) + ∆(x)zc(x, t),
zcx (0, t) = 0,
zcx (1, t) = −α2ẑc(1, t) + [f ′

0(1) + α2f0(1)]p̂c(t),
ẑct (x, t) = ẑcxx(x, t),
ẑcx (0, t) = α1ẑc(0, t) − α1zc(0, t),
ẑcx (1, t) = −α2ẑc(1, t) + [f ′

0(1) + α2f0(1)]p̂c(t),
˙̂pc(t) = [G + QM0]p̂c(t) + Q [zc(0, t) − ẑc(0, t)],
ye(t) = zc(0, t).

(53)

It is observed that in (51), we choose the same ĥ(x) for both
z1(x, t) and ẑ(x, t) because they have the similar structure. This
is just an observation not the general principle. The system (53)
is just the closed-loop system (43) with p(t) ≡ 0, which is the
purpose of twice transformations first by (46) and second by (51).

Lemma 3.1. For every set of disturbance coefficients and systematic
uncertainty, (52) always admits a solution.

Proof. Suppose that J is the matrix such that⎧⎪⎪⎨⎪⎪⎩
J−1GJ = diag{iωj} = G0,

X = J−1hp̂J, Q0 = J−1Q ,

Ĥ(x) = ĥ(x)J = (Ĥ1(x), Ĥ2(x), . . . , Ĥn(x)),
F0(x) = f0(x)J = (F01(x), F02(x), . . . , F0n(x)).

(54)

Then, (52) is equivalent to{
Ĥ ′(1) + α2Ĥ(1) = [α2F0(1) + F ′

0(1)]X,

XG0 − [G0 + Q0F0(0)]X = −Q0Ĥ(0).
(55)

Suppose that the solution of (55) is of the form X = diag{xj}, j =

1, 2, . . . , n. Then,{
Ĥ ′

j (1) + α2Ĥj(1) = [α2F0j(1) + F ′

0j(1)]xj,
F0j(0)xj = Ĥj(0),

(56)

whose solution, by (49) and (18), is then expressed by

X = diag{xj}, xj =
Ĥj(0)
F0j(0)

, j = 1, 2, . . . , n (57)

and hence

hp̂ = JXJ−1.

This completes the proof of the lemma. ■

We consider (53) in the Hilbert space H .
= (L2(0, 1))2 × Cn

with the following inner product

⟨(φ1, φ2, φ3), (ϕ1, ϕ2, ϕ3)⟩

=

∫ 1

0
φ1(x)ϕ1(x)dx + ν

∫ 1

0
φ2(x)ϕ2(x)dx + φ⊤

3 ϕ3,

for any ν > 0, and (φ1, φ2, φ3), (ϕ1, ϕ2, ϕ3) ∈ H.
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The system (53) is then written as

d
dt

( zc(·, t)
ẑc(·, t)
p̂c(t)

)
= (Ae + ∆)

( zc(·, t)
ẑc(·, t)
p̂c(t)

)
, (58)

where Ae is defined by⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ae(φ1(x), φ2(x), φ3) = (φ′′

1 (x), φ
′′

2 (x), [G + QM0]φ3
+Q [φ1(0) − φ2(0)]), ∀(φ1, φ2, φ3) ∈ D(Ae);
D(Ae) = {∀(φ1, φ2, φ3) ∈ H2(0, 1) × H2(0, 1) × Cn

|

φ′

1(0) = 0, φ′

1(1) = φ′

2(1), φ′

2(0) = α1φ2(0) − α1φ1(0),
φ′

2(1) = −α2φ2(1) + [f ′

0(1) + α2f0(1)]φ3}

(59)

and ∆ is a bounded operator defined by

∆

(
φ1
φ2
φ3

)
=

(
∆(·)φ1

0
0

)
(60)

and ∥∆∥ ≤ ∥∆(·)∥L∞(0,1).

Lemma 3.2. For any α1 > 0 and α2 > 0, the operator Ae generates
a C0-semigroup on H = (L2(0, 1))2 × Cn.

Proof. Introduce the invertible transformation

Γ

(
φ1
φ2
φ3

)
=

(
φ1

φ1 − φ2
φ3

)
.

Define A = Γ AeΓ
−1 which is found to be⎧⎪⎪⎪⎨⎪⎪⎪⎩

A(φ1(x), φ2(x), φ3) = (φ′′

1 (x), φ
′′

2 (x), [G + QM0]φ3
+Qφ2(0)), ∀(φ1, φ2, φ3) ∈ D(A);
D(A) = {∀(φ1, φ2, φ3) ∈ H2(0, 1) × H2(0, 1) × Cn

|

φ′

1(0) = 0, φ′

2(0) = α1φ2(0), φ′

2(1) = 0,
φ′

1(1) = −α2φ1(1) + α2φ2(1) + [f ′

0(1) + α2f0(1)]φ3}.

(61)

For any (φ1, φ2, φ3) ∈ D(A), solving A(φ1, φ2, φ3) = (ϕ1, ϕ2, ϕ3)
leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1(x) = (x − 1)
∫ x

0
ϕ1(s)ds −

∫ x

1
(s − 1)ϕ1(s)ds

−
1
α2

∫ 1

0
ϕ1(s)ds −

∫ 1

0
sϕ2(s)ds −

1
α1

∫ 1

0
ϕ2(s)ds

+
1
α2

[f ′

0(1) + α2f0(1)][G + QM0]
−1

×

[
ϕ3 +

1
α1

Q
∫ 1

0
ϕ2(s)ds

]
,

φ2(x) = x
∫ x

1
ϕ2(s)ds −

∫ x

0
sϕ2(s)ds −

1
α1

∫ 1

0
ϕ2(s)ds,

φ3 = [G + QM0]
−1
[
ϕ3 +

1
α1

Q
∫ 1

0
ϕ2(s)ds

]
,

which advises that A−1 is compact on H. For any (φ1, φ2, φ3) ∈

D(A), we have

Re⟨A(φ1, φ2, φ3), (φ1, φ2, φ3)⟩
= Re(−α2|φ1(1)|2 + α2φ2(1)φ1(1) + [f ′

0(1) + α2f0(1)]
× φ3φ1(1) − ∥φ′

1∥L2(0,1) − να1|φ2(0)|2 − ν∥φ′

2∥L2(0,1)
+ φ⊤

3 [G + QM0]
⊤φ3 + φ2(0)Q⊤φ3)

≤ α2(1 − δ1 − ∥f ′

0(1) + α2f0(1)∥δ2)|φ1(1)|2

−(δ3 −
α2

δ1
)|φ2(1)|2 − ∥φ′

1∥L2(0,1) − (να1 − 2δ3 − ∥Q∥δ4)

×|φ2(0)|2 − (ν − 2δ3)∥φ′

2∥L2(0,1)

+

(
∥G + QM0∥ +

α2∥f ′

0(1) + α2f0(1)∥
δ2

+
∥Q∥

δ4

)
∥φ3∥

2,

where δk > 0, k = 1, 2, 3, 4. Choose δ1 and δ2 small enough
to make 1 − δ1 − ∥f ′

0(1) + α2f0(1)∥δ2 > 0 and choose δ3 and ν

largely enough to make δ3 −
α2
δ1

> 0, να1 − 2δ3 − ∥Q∥δ4 > 0 and
ν − 2δ3 > 0. Then, for any constant MA > 0, there exists

Re⟨(A − MA)(φ1, φ2, φ3), (φ1, φ2, φ3)⟩ ≤ 0,

which advises that A−MA is dissipative. According to the Lumer–
Phillips theorem (Pazy, 1983, theorem 4.3, ch.1), A−MA generates
a C0-semigroup of contractions on H. Therefore, A generates a
C0-semigroup on H and so does Ae by Ae = Γ −1AΓ . ■

Theorem 3.1. Suppose α1, α2 > 0 and G+ QM0 is Hurwitz which
always holds from Lemma 2.3. Then, the semigroup generated by Ae
is exponentially stable:

∥eAet∥ ≤ MAee
−ωAe t , (62)

where MAe , ωAe > 0 are constants independent of the initial values.
For any ∥∆(·)∥L∞(0,1) <

ωAe
MAe

and any initial state (w(·, 0), ẑ(·, 0),
p̂(0)) ∈ (L2(0, 1))2 × Cn, the closed-loop system (43) is uniformly
bounded:

sup
t≥0

[∥w(·, t)∥ + ∥ẑ(·, t)∥ + ∥p̂(t)∥] < ∞, (63)

and internally exponentially stable whence p(t) = 0:

lim
t→∞

[∥w(·, t)∥ + ∥ẑ(·, t)∥ + ∥p̂(t)∥] = 0 (64)

exponentially.

Proof. By Lemma 3.2, we first show that eAt is exponentially
stable. By z̃c(x, t) = zc(x, t) − ẑc(x, t), this is equivalent to the
exponential stability of the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zct (x, t) = zcxx(x, t),
zcx (0, t) = 0,
zcx (1, t) = −α2zc(1, t) + α2z̃c(1, t)

+ [f ′

0(1) + α2f0(1)]p̂c(t),
z̃ct (x, t) = z̃cxx(x, t),
z̃cx (0, t) = α1z̃c(0, t), ẑcx (1, t) = 0,
˙̂pc(t) = [G + QM0]p̂c(t) + Q z̃c(0, t),
ye(t) = zc(0, t).

(65)

First, by Lemma 2.3 (see (34) and (36)), it does have

lim
t→∞

[∥z̃c(·, t)∥ + ∥p̂c(t)∥] = 0 (66)

exponentially and so we only need to show that

lim
t→∞

∥zc(·, t)∥ = 0

exponentially. However, this is a trivial fact because we can write

żc(·, t) = Azc(·, t) − δ(x − 1)ξ (t),

where A is defined by (6), and

ξ (t) =
[
α2f0(1) + f ′

0(1)
]
p̂c(t) + α2z̃c(1, t). (67)

Same as (35), z̃c(1, t) decays exponentially as long as t → ∞.
This, together with (66), shows that

lim
t→∞

ξ (t) = 0 (68)

exponentially. Finally, since by (7), A generates an exponentially
stable C0-semigroup on H , and δ(x − 1) is admissible for eAt (Jin
& Guo, 2018), we conclude immediately from Lemma 1.1 of Zhou
and Guo (2018) (see also Feng & Guo, 2017) that

lim
t→∞

∥zc(·, t)∥ = 0

exponentially.
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We then prove (63) and (64) for any ∥∆(·)∥L∞(0,1) <
ωAe
MAe

,
which by (46) and (51), are equivalent to

lim
t→∞

[∥zc(·, t)∥ + ∥ẑc(·, t)∥ + ∥p̂c(t)∥] = 0

exponentially. This, however, follows from

∥e(Ae+∆)t
∥ ≤ MAee

−(ωAe−MAe ∥∆∥)t . ■ (69)

Remark 3.1. If we write the closed-loop (43) with ∆(x) = 0 as

d
dt

(
w(·, t)
ẑ(·, t)
p̂(t)

)
= Ae

(
w(·, t)
ẑ(·, t)
p̂(t)

)
+ Bep(t), (70)

where Be is unbounded. Then, the Sylvester equation

ΣG = AeΣ + Be (71)

admits a solution Σ , which is the precondition required in
Theorem 6.2 of Paunonen and Pohjolainen (2014) and
Theorem 3.3 of Paunonen (2017). It is noted that (71) is equiv-
alent to the stability of system (53) under the transformations
(46) and (51). This explains the motivation of the introduction
the transformations of (46) and (51). Although for our problem,
(71) always admits solution (Phong, 1991) Σ ∈ L(Cn,H2

−1 × Cn)
where H−1 is the completion of H = L2(0, 1) with respect to
the norm ∥A−1

e ∥, we need actually the solution Σ ∈ L(Cn,H2
×

Cn) (Paunonen, 2017) because we need to solve the closed-loop
system (53) in H2

×Cn. In addition, even if we have the solution
of (71), we still do not know the expression of the tracking
error. Therefore, we need series previous transformations. The
first effort for unbounded Be was investigated in Paunonen (2017)
but we are not able to apply directly the results there because of
series of abstract assumptions which seem not easy to check.

Now, we come to the robust output regulation, which is stated
as the following Theorem 3.2.

Theorem 3.2. For any F (x), M, N, D and any ∥∆(·)∥L∞(0,1) <
ωAe
MAe

with MAe and ωAe being used in (62), the output tracking of the
closed-loop system (43) is guaranteed such that

lim
t→∞

|ye(t)| = 0 (72)

exponentially.

Proof. We first consider the case of ∆(x) ≡ 0. For the closed-loop
system (53) by ye(t) = zc(0, t), set

ε̃(x, t) = zc(x, t) −
1
α2

ξ (t)

with ξ (t) defined by (67), which satisfies⎧⎨⎩ ε̃t (x, t) = ε̃xx(x, t) −
1
α2

ξ̇ (t),
ε̃x(0, t) = 0,
ε̃x(1, t) = −α2ε̃(1, t),

(73)

which is written as
d
dt

ε̃(·, t) = Aε̃(·, t) −
1
α2

ξ̇ (t).

Let {(λn, φn)} be defined by (9) and let 1 be expressed by the
orthonormal basis {φn(x)} in H = L2(0, 1), namely

1 =

∞∑
n=0

cnφn(x),

where by (9), its Fourier coefficient is defined as

cn =

∫ 1

0
φn(x)dx = 2

cos(nπ ) sin( 2α2
nπ )

nπ
+ O(n−2). (74)

Then, likewise (10), we can write the solution of (73) as

ε̃(x, t) =

∞∑
n=0

aneλntφn(x)

−
1
α2

∫ t

0

∞∑
n=0

cnφn(x)eλn(t−s)ξ̇ (s)ds,

where
∞∑
n=0

a2n = ∥ε̃(·, 0)∥2. (75)

Hence,

ε̃(0, t) =

∞∑
n=0

aneλntφn(0)

−
1
α2

∞∑
n=0

cnφn(0)
[
ξ (t) − ξ (0)eλnt

]
−

1
α2

∞∑
n=0

cnφn(0)
∫ t

0
λneλn(t−s)ξ (s)ds. (76)

By (74) and (75), the first and the second terms on the right side
of (76), respectively as (12) and (68), tend to zero exponentially
as t → ∞. As for the third term, suppose

|ξ (t)| ≤ Ce−µt ,

where C > 0 and 0 < µ < min |λn|. Then,⏐⏐⏐⏐∫ t

0
λneλn(t−s)ξ (s)ds

⏐⏐⏐⏐ ≤
Cλn

−λn−µ

[
e−µt

− eλnt
]

≤ C0e−µ0t , ∀ t ≥ 1,

where C0, µ0 > 0 are independent of n. This, together with (74),
shows that the third term on the right side of (76) also tends to
zero exponentially as t → ∞. Therefore we have

lim
t→∞

|zc(0, t)| = lim
t→∞

|ε̃(0, t) +
1
α2

ξ (t)| = 0.

We next consider the case of ∆(x) ̸= 0. In this case, (73) is then
written as⎧⎨⎩ ε̃t (x, t) = ε̃xx(x, t) + ∆(x)ε̃(x, t) +

∆(x)
α2

ξ (t) −
1
α2

ξ̇ (t),
ε̃x(0, t) = 0,
ε̃x(1, t) = −α2ε̃(1, t),

(77)

which can be rewritten as

d
dt

ε̃(·, t) = Ãε̃(·, t) +

[
∆(x)
α2

ξ (t) −
1
α2

ξ̇ (t)
]

,

where Ã = A + ∆(·)I . Since ∆(·) is real, Ã is still an adjoint
operator with compact resolvent and hence there is a sequence
of eigenfunctions of Ã, which forms an orthonormal basis for
H = L2(0, 1). Now, suppose Ãφ = λφ. Then, (λ, φ) satisfies the
eigenvalue problem:{

φ′′(x) = λφ(x) − ∆(x)φ(x),
φ′(0) = 0, φ′(1) = −α2φ(1).

(78)

Let λ = ρ2. The general solutions of (78) are

φ(x) = C1φ1(x) + C2φ2(x),
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where

φ1(x) = eρx
−

1
2ρ

∫ x

0
eρ(x−ξ )∆(ξ )φ1(ξ ) dξ

−
1
2ρ

∫ 1

x
e−ρ(x−ξ )∆(ξ )φ1(ξ ) dξ,

φ2(x) = e−ρx

−
1
2ρ

∫ x

0

(
eρ(x−ξ )

− e−ρ(x−ξ ))∆(ξ )φ2(ξ ) dξ .

After one iteration for φ1(x), one has

φ1(x) = eρx
(
1 −

1
2ρ

∫ x

0
∆(ξ )dξ

−
1
2ρ

∫ 1

x
e−2ρ(x−ξ )∆(ξ )dξ + O(ρ−2)

)
.

Since ∆ ∈ C1
[0, 1], we have

∫ 1

x
e−2ρ(x−ξ )∆(ξ ) dξ =

e−2ρx

2ρ

(
e2ρξ∆(ξ )|1x

−

∫ 1

x
e2ρξ∆′(ξ ) dξ

)
= O(ρ−1),

(79)

and hence

φ1(x) = eρx
(
1 −

1
2ρ

∫ x

0
∆(ξ )dξ + O(ρ−2)

)
. (80)

By(79) and (80), we have (Guo &Wang, 2019, Theorem 3.4, p.218)

φ′

1(x) = ρeρx
−

1
2

∫ x

0
eρx∆(ξ )

(
1 −

1
2ρ

∫ ξ

0
∆(s)ds

+O(ρ−2)
)

dξ +
1
2

∫ 1

x
e−ρ(x−2ξ )∆(ξ )

×

(
1 −

1
2ρ

∫ ξ

0
∆(s)ds + O(ρ−2)

)
dξ,

= eρx
(

ρ −
1
2

∫ x

0
∆(ξ )dξ +

1
4ρ

∫ x

0
∆(ξ )

∫ ξ

0
∆(s)dsdξ

+
1
2

∫ 1

x
e−2ρ(x−ξ )∆(ξ )dξ + O(ρ−2)

)
= eρx

(
ρ −

1
2

∫ x

0
∆(ξ )dξ +

1
8ρ

[∫ x

0
∆(ξ )dξ

]2
+

1
2

∫ 1

x
e−2ρ(x−ξ )∆(ξ )dξ + O(ρ−2)

)

(81)

Similarly,

φ2(x) = e−ρx
(
1 +

1
2ρ

∫ x

0
∆(ξ )dξ + O(ρ−2)

)
,

φ′

2(x) = e−ρx

(
−ρ −

1
2

∫ x

0
∆(ξ )dξ −

1
8ρ

[∫ x

0
∆(ξ )dξ

]2
−

1
2

∫ x

0
e2ρ(x−ξ )∆(ξ )dξ + O(ρ−2)

)
.

(82)

Substitute into the two boundary conditions to have that λ = ρ2

is an eigenvalue if and only if det(B) = 0, where

B =

(
a1 a2
a3 a4

)
, a1 = ρ +

1
2

∫ 1

0
e2ρx∆(x)dx + O(ρ−2),

a2 = −ρ + O(ρ−2),

a3 = eρ

⎛⎜⎝α2 + ρ −

∫ 1
0 ∆(x)dx

2
+

[∫ 1
0 ∆(x)dx

]2
8ρ

−
α2
∫ 1
0 ∆(x)dx
2ρ

+ O(ρ−2)

)
,

a4 = e−ρ

⎛⎜⎝α2 − ρ −

∫ 1
0 ∆(x)dx

2
−

[∫ 1
0 ∆(x)dx

]2
8ρ

−
1
2

∫ 1

0
e2ρ(1−x)∆(x)dx +

α2
∫ 1
0 ∆(x)dx
2ρ

+ O(ρ−2)

)
,

and same to (79),
1
2

∫ 1

0
e2ρx∆(x)dx = O(ρ−1) and

1
2

∫ 1

0
e2ρ(1−x)

∆(x)dx = O(ρ−1).
It is easy to verify that det(B) = 0 if and only if

e2ρ =
−α2 + ρ +

∫ 1
0 ∆(x)dx

2 + O(ρ−1)

α2 + ρ −

∫ 1
0 ∆(ξ )dξ

2 + O(ρ−1)

= 1 − 2
α2 −

1
2

∫ 1
0 ∆(x)dx

α2 + ρ −

∫ 1
0 ∆(ξ )dξ

2 + O(ρ−1)

= 1 +
1
ρ

(∫ 1

0
∆(x)dx − 2α2

)
+ O(ρ−2).

Hence,

ρ = nπ i +
i
(
2α2 −

∫ 1
0 ∆(x) dξ

)
nπ

+ O(n−2), (83)

for large integer n. Therefore,

λ = ρ2
= −(nπ )2 − 4α2 + 2

∫ 1

0
∆(x)dx + O(n−1), (84)

which is similar to (9). By assumption ∥∆(·)∥L∞(0,1) <
ωAe
MAe

, we

have all Re(λ) < 0 for all λ ∈ σ (Ã). The associate eigenfunction is

φ(x) =
1
ρ

⏐⏐⏐⏐ a1 a2
φ1(x) φ2(x)

⏐⏐⏐⏐ = φ2(x) + φ1(x) + O(ρ−2)

= eρx
+ e−ρx

+
[e−ρx

− eρx
]

2ρ

∫ x

0
∆(ξ )dξ + O(ρ−2)

= 2 cos

(
nπx +

2α2 −
∫ 1
0 ∆(ξ )dξ
nπ

x

)
−

1
nπ

∫ x

0
∆(ξ )dξ

× sin

(
nπx +

2α2 −
∫ 1
0 ∆(ξ )dξ
nπ

x

)
+ O(n−2).

(85)

This results in∫ 1

0
φ(x)dx = O(n−2), (86)

which is the same as (74). Following the same procedure for
∆(x) = 0, we can still obtain that limt→∞ |ε̃(0, t)| = 0 ex-
ponentially for system (77). This completes the proof of the
theorem. ■
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Fig. 1. The closed-loop system under (89).

4. Numerical simulations

In this section, we present two examples with different dis-
turbances and system uncertainty to demonstrate the robustness
of the designed controller. The initial states are taken as{

p(0) = (0.3, 0.1, 0.2, 0.3)⊤ , p̂(0) = (0.4, 0.3, 0.2, 0.1)⊤ ,

w(x, 0) =
cos(πx)

2
+

x
2
, ẑ(x, 0) = sinπx,

and the matrix G is

G =

⎛⎜⎝ 0 0.8 0 0
−0.8 0 0 0
0 0 0 2.4
0 0 −2.4 0

⎞⎟⎠ . (87)

The control gains are chosen as α1 = 1.7 and α2 = 1. Set
M0 = (1, 1, 1, 1) and N0 = α1M0, where M0[w1, . . . , wn] =
1

√
2
(1+ i, 1− i, 1− i, 1+ i) with each component nonzero required

by Lemma 2.2. Set Q =
1
60

(−195, −270, 252, −339)⊤ and then
we have

[G + Qh0(0)] ≃

⎛⎜⎝ −3.2 0 0 0
0 −2.4 0 0
0 0 −2 0
0 0 0 −1.6

⎞⎟⎠ . (88)

Fig. 2. The closed-loop system under (90).

The controller (39) is then determined by frozen (M0,N0) and the
tracking error ye(t) only. Fig. 1 depicts the performance of the
closed-loop associated system (43) with{

M = (5, 10, 15, 20), N = (3, 4, 5, 6),
D = (1, 2, 3, 4), F (x) = ( x2 , x,

x
2 , x), ∆(x) ≡ 0. (89)

From Fig. 1(a), it is seen that w(x, t) is bounded. Fig. 1(b) depicts
the output regulation by the controller inputs in Fig. 1(c). For⎧⎪⎨⎪⎩

M = (4, 3, 2, 1), N = (10, 9, 8, 7),

D = (8, 7, 6, 5), F (x) =

( x
3
,
x
4
, x,

x
5

)
,

∆(x) ≡ 0.01,
(90)

the same controller can also stabilize the closed-loop system, as
shown in Fig. 2 where w(x, t) is bounded and furthermore w(0, t)
is regulated to track yref (t) as time involves. In both figures, the
control is seen to be bounded as time evolves. This can be clearly
seen from (52)

u(t) = −α2[ẑ(1, t) − ĥ(1)p(t)] + [α2f0(1) + f ′

0(1)]
×[p̂(t) − hp̂p(t)] + ĥ′(1)p(t)

= −α2ẑc(1, t) + [α2f0(1) + f ′

0(1)]p̂
c(t) + ĥ′(1)p(t).

(91)
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5. Concluding remarks

In this paper, under the guidance of the internal model princi-
ple, we design an observer based dynamic tracking error feedback
control to realize output tracking for a heat equation. Since the
observer design is the key step towards the control design, we
explain step by step the observer design process for slightly gen-
eral frozen uncertainty. However, for the dynamic error feedback
control, we only need an observer for some more specially frozen
uncertainties, which turns out to be 1-copy of the exosystem. The
error feedback control is shown to be robust to all disturbances
from in-domain, non-collocated and input channels, and system
uncertainty, from which we see clearly why the internal model
is not simply an observer. The method is general and systematic
in the spirit of internal model principle presented in a recent
communication (Paunonen, 2020) and can be applied to other
PDEs like recent work (Guo & Meng, 2019) after this paper. The
Associate editor proposed input saturation problem considered
in Deutscher (2017), which would be an interesting problem in
future works. In addition, it seems that it is difficult to formu-
late all possible system uncertainties from PDE point of view,
here we only consider a simple case although we believe that
our controller is always conditionally robust as claimed by the
internal model principle. Finally, our approach is genetic even for
MIMO PDEs. For instance, for m-output, we simply expand the
single exo-system ṗ(t) = Gp(t) as v̇(t) = diag(G,G, . . . ,G)v(t)
(Paunonen, 2020) and follows the procedures of this paper to
construct robust output error feedback control. The last point
is that our system happens no zeros and therefore there is no
necessary condition to be pre-assumed. However, for other PDEs
like those considered in Guo and Meng (2019), this assumption
about zeros must be pre-assumed.
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