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Nonfragile Exponential Synchronization of Delayed
Complex Dynamical Networks With Memory

Sampled-Data Control
Yajuan Liu, Bao-Zhu Guo, Ju H. Park, and Sang-Moon Lee

Abstract— This paper considers nonfragile exponential
synchronization for complex dynamical networks (CDNs) with
time-varying coupling delay. The sampled-data feedback control,
which is assumed to allow norm-bounded uncertainty and
involves a constant signal transmission delay, is constructed
for the first time in this paper. By constructing a suitable
augmented Lyapunov function, and with the help of introduced
integral inequalities and employing the convex combination
technique, a sufficient condition is developed, such that the
nonfragile exponential stability of the error system is guaranteed.
As a result, for the case of sampled-data control free of norm-
bound uncertainties, some sufficient conditions of sampled-data
synchronization criteria for the CDNs with time-varying coupling
delay are presented. As the formulations are in the framework of
linear matrix inequality, these conditions can be easily solved and
implemented. Two illustrative examples are presented to demon-
strate the effectiveness and merits of the proposed feedback
control.

Index Terms— Complex dynamical networks (CDNs), memory
sampled-data control, nonfragile synchronization, time-varying
coupling delay.

I. INTRODUCTION

IN THE past few decades, much attention has been focused
on the study of complex dynamical networks (CDNs) on

account of the ubiquity of such real-word systems, such as the
Internet, World Wide Web, food chain, scientific citation web,
and neural networks, among many others [1]–[4]. CDNs are
a set of interconnected nodes in which one node is a basic
unit with specific contents or dynamics. As one of the most
important collective behaviors, the synchronization problem
has attracted unprecedented attention owing to its potential
applications in biological systems, physics, communication,
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and traffic systems [5]–[8]. Various control schemes have been
proposed to date to deal with the synchronization problem
for CDNs. These include state observer-based control [9],
adaptive control [10], impulsive control [11], and pinning
control [12], [13]. In addition, time delay occurs commonly in
many physical systems, and the existence of time delay may
degrade the quality of system and even lead to oscillation,
divergence, and instability [14]–[17]. It is, therefore, important
to consider the effect of time delays in CDNs.

All the aforementioned works are using continuous-time
feedback. In practical implementation, however, control strat-
egy requires digital feedback [18], and the digital control
takes merits in speed, small size, accuracy, and low cost
during the control process for continuous-time systems. As a
result, it is worthwhile to study sampled-data synchronization
for CDNs. A crucial issue is that the variation of sampling
periods may deteriorate synchronization for the controlled
systems. Therefore, it is important to design a sampled-data
control, so that the CDNs can be synchronized. In fact,
the sampled-data control problem has received considerable
attention in the past decades, and numerous results have been
reported in the literature. In sampled-data control systems, the
input delay approach [19], where the system is modeled as a
continuous-time system with a time-varying sawtooth delay in
the control input induced by a sampler-and-holder, is popular
and has been widely used [20]–[24]. In the framework of the
input delay approach [19], sampled-data synchronization for
CDNs with time-varying coupling delay was studied in [25]
and [26], and several delay-dependent sufficient conditions
were developed to guarantee synchronization for CDNs. It
should be pointed out that the available information on actual
sampling patterns is neglected in [25] and [26], because the
input delay induced by sampler-and-holder is simply treated
as a bounded fast-varying delay. Therefore, the derived syn-
chronization conditions are conservative to some extent. By
introducing some information about actual sampling patterns,
some improvements have been made in [27]–[29]. However,
the information on the actual sampling pattern has not been
fully used in [25]–[29], which may lead to certain degree of
conservatism. Although some improved results were obtained
in [30], a mistake occurs in constructing Lyapunov function
V (t) where P needs to be diagonal, because the existing of
augmented vector in V1(t) and V (tk) should be no larger
than limt→t−1

k
V (tk). In this paper, we avoid this problem

without using the augmented vector. In addition, stabilization
for linear systems is investigated by memory sampled-data
control, which means that the updating signal successfully
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transmitted from the sampler to the controller and to the zero-
order holder (ZOH) at the instant tk has experienced a constant
signal transmission delay [21], [22]. Therefore, it is necessary
to consider the memory sampled-data synchronization for
CDNs with time-varying coupling delay, which comprises the
first motivation for this paper. It should be also noted that
the main difference between the memory and nonmemory
controller is whether or not the updating signal successfully
transmitted the signal from the sampler to the controller
and ZOH at the instant tk has experienced a constant signal
transmission delay η.

In general, an implicit assumption inherent to the control
design is that the controller should be implemented exactly.
However, in practical situations, the exactly implemented
controller struggles to meet the real requirements, because
the inaccuracies or uncertainties occurring in controller imple-
mentation are inevitable in many industrial applications. Such
uncertainties can be attributed to unexpected errors during
the controller implementation, such as analog-to-digital and
digital-to-analog conversion, round-off errors in numerical
computation, and the aging of the components. The uncer-
tainties occurring in the realization of the controller may
also lead to deterioration of the performance or even the
instability of closed-loop systems. Therefore, nonfragile con-
trol approaches that can consider uncertainties emerging in
the controller realization have been investigated by many
researchers [31]–[35]. However, to the best of our knowledge,
a nonfragile sampled-data controller for the synchronization
of CDNs with time-varying coupling delay has never been
addressed, which is the second motivation for this paper.

In light of the reasons aforementioned, we focus, in this
paper, on the design of sampled-data feedback control for
CDNs with time-varying coupling delay. As opposed to
the controller scheme proposed in [25]–[30], norm-bounded
uncertainties and a constant signal transmission delay are con-
sidered in the designed sampled-data control. In order to make
full use of the available information about the actual sampling
pattern, a novel Lyapunov functional is proposed. Based on
this modified Lyapunov function, the convex combination
technique, and an improved inequality [36] that can provide a
more accurate upper bound than Jensen’s inequality for dealing
with the cross-term, a new criterion is derived to ensure
exponential stability for the synchronization error systems. The
considered CDNs with time-varying coupling delay can be
exponentially synchronized. Furthermore, when the sampled-
data controller is free of norm-bound uncertainty, the sufficient
conditions of sampled-data synchronization for CDNs with
time-varying coupling delay are concluded. The results are
formulated in the form of linear matrix inequalities (LMIs) that
are easily solvable using standard software packages. Numer-
ical examples are presented to illustrate the effectiveness and
reduced conservatism of the proposed method.

Notations: The notations used in this paper are standard.
I denotes the identity matrix with appropriate dimensions;
R

n is the n-dimensional Euclidean space; R
m×n denotes the

set of all m × n real matrices; and ‖ · ‖ is the Euclidean
norm for given vector. ∗ denotes the elements below the
main diagonal of a symmetric block matrix. For symmetric

matrices A and B , the notation A > B (respectively, A ≥ B)
means that the matrix A − B is positive definite (respectively,
nonnegative), and λM (·) and λm(·) stand for the largest and
smallest eigenvalues of a given square matrix, respectively.
diag{. . .} is used to denote the block diagonal matrix.

II. PROBLEM STATEMENT

Consider the following CDN that consists of N coupled
nodes of the form:

ẋi(t) = f (xi (t)) + c
N∑

j=1

Gij Ax j (t − τ (t)) + ui (t) (1)

where xi (t) is the state vector; ui (t) is control input of the
node i ; f : R

n → R
n is a continuous vector-valued function;

the scalar constant c denotes the coupling strength; τ (t) is the
time-varying delay satisfying 0 ≤ τ (t) ≤ τ, τ̇ (t) ≤ μ, where
τ > 0 and μ are known constants; A = (ai j )n×n is the constant
inner-coupling matrix between two connected nodes, and
G = (Gij )N×N is an outer-coupling configuration matrix,
where Gij is defined as follows. If there is a connection
between node i and node j , then Gij > 0; Gij = 0, otherwise,
and the diagonal elements of matrix G are defined by

Gii = −
N∑

j=1, j �=i

Gi j (i = 1, 2, . . . , N). (2)

The continuous function f : R
n → R

n is a vector-valued
function, and satisfies the following sector-bound condition
[27]:

[ f (x) − f (y) − U(x − y)]�
× [ f (x) − f (y) − V (x − y)] ≤ 0 ∀x, y ∈ R

n (3)

where U and V are known constant matrices of the appropriate
dimensions. The nonlinear description in (3) is very general,
which includes the Lipschitz condition as a special case.

Let r(t) = xi (t)− s(t) be the error vector, where s(t) ∈ R
n

is the state trajectory of the unforced isolated node
ṡ(t) = f (s(t)). Then, the synchronization error of CDNs can
be written as

ṙi (t) = g(ri (t)) + c
N∑

j=1

Gij Ar j (t − τ (t)) + ui (t) (4)

where i = 1, 2, . . . , N and g(ri (t)) = f (xi (t)) − f (s(t)).
Throughout this paper, it is supposed that only the mea-

surements r(tk) at the sampling instant tk are available, which
are discrete measurements of r(t), and the control signal is
assumed to be generated by using a ZOH function with a
sequence of holding times

0 = t0 < t1 < · · · < lim
k→+∞ tk = +∞. (5)

The sampling is not required to be periodic, but the distance
between any two consecutive sampling instants is assumed to
belong to an interval. Precisely, it is assumed that

tk+1 − tk = hk ≤ h (6)

for all k ≥ 0, where h > 0.
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Consider nonfragile memory sampled-data feedback control
in the form of the following:

ui (t) = (K1i + �K1i (tk))r(tk)

+ (K2i + �K2i (tk))r(tk − η), tk ≤ t < tk+1 (7)

where K1i and K2i are appropriate dimensional control gain
matrices to be determined later, and η is a constant signal
transmission delay.

The uncertainties �K1i (tk) and �K2i (tk) represent the pos-
sible controller gain fluctuations. It is assumed that �K1i (tk)
and �K2i (tk) have the following form:

[�K1i (tk),�K2i (tk)] = Di�(tk)[Eai , Ebi ] (8)

where Di , Eai , and Ebi are known constant matrices with
appropriate dimensions, and �(tk) is an unknown matrix
function satisfying ��(tk)�(tk) ≤ I .

Remark 1: In practical applications, the parameter pertur-
bations are unavoidable, which influence stability and perfor-
mance of the system if they are not treated appropriately. The
nonfragile sampled-data control designed for the synchroniza-
tion of CDNs is to deal with such perturbations. As opposed
to the control scheme proposed in [25]–[29], a constant signal
transmission delay η introduced in [21] and [22] is also
considered for the first time for the synchronization of CDNs
in this paper.

Here, in order to have a simple structure of system equa-
tions, we use the Kronecker product to write system (4) as

ṙ(t) = ḡ(r(t)) + c(G ⊗ A)r(t − τ (t))

+ K1r(tk) + K2r(tk − η) + Dp(tk)

p(tk) = �(tk)q(tk)

q(tk) = Ear(tk) + Ebr(tk − η) (9)

where

r(t) = [
r�

1 (t), r�
2 (t), . . . , r�

N (t)
]�

ḡ(r(t)) = [g�(r1(t)), g�(r2(t)), . . . , g�(rN (t))]�
K1 = diag{K11, K12, . . . , K1N }
K2 = diag{K21, K22, . . . , K2N }
D = diag{D1, D2, . . . , DN }

Ea = diag{Ea1, Ea2, . . . , EaN }
Eb = diag{Eb1, Eb2, . . . , EbN }.

The following definition and lemmas play crucial roles in
the proof of the main results.

Definition 1 [27]: The CDN (1) is said to be exponentially
synchronized if the error dynamic system (9) is exponentially
stable, i.e., there are two constants α, β > 0, such that

‖r(t)‖ ≤ βe−αt sup
−b≤θ≤0

{‖r(θ)‖, ‖ṙ (θ)‖} (10)

where b = max{τ, η}, and α and β are the decay rate and the
decay coefficient, respectively.

Lemma 1 [25]: For any matrix M ∈ R
n×n , M = MT > 0

and β ≤ s ≤ α, the following inequality holds:
−(α − β)

∫ α

β
ẋ�(s)Mẋ(s)ds

≤ −[x(α) − x(β)]�M[x(α) − x(β)].

Lemma 2 (Lower Bounds Lemma [37]): Let f1, f2, . . . ,
fN : R

m → R be in an open subset D of R
m . Then, the

reciprocally convex combination of fi over D satisfies

min
{αi |αi >0,

∑
i αi=1}

∑

i

1

αi
fi (t) =

∑

i

fi (t) + max
gi j

∑

i �= j

gi j (t)

subject to
{

gi j : R
m → R, g j,i (t)

�= gi, j (t),

[
fi (t) gi, j (t)

gi, j (t) f j (t)

]
≥ 0

}
.

Lemma 3 [36]: For any positive definite matrix R and
continuously differentiable function x(t) in [a, b] ∈ R

n , the
following inequality holds:

−(b − a)

∫ b

a
ẋ�(s)Rẋ(s)ds

≤ −[x(b) − x(a)]T R[x(b) − x(a)] − 3	�R	 (11)

where 	 = x(b) + x(a) − (2/(b − a))
∫ b

a x(s)ds.
Lemma 4 [22]: Let z ∈ W [a, b) and z(a) = 0. Then, for

any n × n matrix R > 0, the following inequality holds:
∫ b

a
z�(s)Rz(s)ds ≤ 4(b − a)2

π2

∫ b

a
ż�(s)Rż(s)ds.

Our final objective is to design a nonfragile memory
sampled-data control of (7), such that the error system (9)
is exponentially stable. Therefore, CDN (1) is exponentially
synchronized.

III. MAIN RESULTS

In this section, we first establish the nonfragile exponential
stability for error system (9), and several sufficient conditions
will be presented to ensure stability of the system and to
synthesize the memory sampled-data control of the form (7).

For the sake of simplicity, we use Ii ∈ R
10n×n

(i = 1, 2, . . . , 10) to denote block entry matrices, (such as
I4 = [0, 0, 0, I, 0, 0, 0, 0, 0, 0]�). The notations of others are
defined as

Ū = (I ⊗ U)�(I ⊗ V )

2
+ (I ⊗ V )�(I ⊗ U)

2

V̄ = − (I ⊗ U)� + (I ⊗ V )�

2

v(t) = 1

t − tk

∫ t

tk
r(s)ds

β�(t) = [r�(t), r�(tk), r�(tk − η)]
γ �(t) = [ṙ�(t), 0, 0]
ξ�(t) = [r�(t), r�(t − τ (t)), r�(t − τ ), r�(tk), v

�(t),

r�(tk − η), r�(t − η), ḡ�(r(t)), ṙ�(t), p�(tk)]
 = [0, cF(G ⊗ A), 0, H1, 0, H2, 0, F,−F, F D]
� = ε2

(
I4 E�

a Ea I�
4 + I4 E�

a Eb I�
6 + I6 E�

b Ea I�
4

+ I6 E�
b Eb I�

6 − I10 I�
10

)

W1 = [I, 0, 0,−I, 0, 0, 0, 0, 0, 0]
W2 = [I, 0, 0, I,−2I, 0, 0, 0, 0, 0]

R̃ = [R1, 0, 0, R2, 0, R3, 0, 0, 0, 0]�
� = [I1, I2, I3]
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�1 = 2α I1 P I�
1 + I1 P I�

9 + I9 P I�
1 + I1(Q1 + Q2)I�

1

−(1 − μ)e−2ατ I2 Q1 I�
2 − e−2ατ I3 Q2 I�

3

+τ 2 I9 Q3 I�
9 + η2 I9 Q4 I�

9

−e−2αη[I1 − I7]Q4[I1 − I7]�

+e−2ατ�

⎡

⎣
−Q3 Q3 − T T

∗ − 2Q3 + T + T � Q3 − T
∗ ∗ − Q3

⎤

⎦��

−e−2αh[I1 − I4]M2 I�
4 − e−2αh I4 M�

2 [I1 − I4]�
−e−2αhY �

1 W1 − e−2αhW�
1 Y1 − 3e−2αhY �

2 W2

−3e−2αhW�
2 Y2 + αh2[I1, I4, I6]R[I1, I4, I6]�

+ h2

2
I9 X I�

9 + αh2 I5SI�
5 − h I5 SI�

5

+ h2[α(I1 − I6) + I9]W [α(I1 − I6) + I9]�

− π2

4
e−2αη[I7 − I6]W [I7 − I6]�

− ε1[I1, I8]
[

Ū V̄
∗ I

]
[I1, I8]� + �

+(I1 + γ1 I9 + γ2 I6) + �(I1 + γ1 I9 + γ2 I6)
�

�2 = −e−2αh I4 M3 I�
4 − [I1, I4, I6]R[I1, I4, I6]�

�3 = [I9, I4]M[I9, I4]� + [I1, I4, I6]R[I1, I4, I6]�
+ I1SI�

5 + I5SI�
1 .

Theorem 1: For given any scalars μ, γ1, γ2, positive
constants h and τ , and diagonal matrices

D = diag{D1, D2, . . . , DN }
Ea = diag{Ea1, Ea2, . . . , EaN }
Eb = diag{Eb1, Eb2, . . . , EbN }

the error system (9) is exponentially stable with the decay rate
α if there exist matrices P > 0, Qi > 0 (i = 1, 2, 3, 4)

R =
⎡

⎣
R1 R2 R3
∗ R4 R5
∗ ∗ R6

⎤

⎦ > 0, M =
[

M1 M2
∗ M3

]
> 0

S > 0, W > 0, X > 0, T , Y1, Y2, F =
diag{F1, F2, . . . , FN }, H1 = diag{H11, H12, . . . , H1N }, and
H2 = diag{H21, H22, . . . , H2N } with appropriate dimensions,
and scalars ε1, ε2 > 0 satisfying the following LMIs:

⎡
⎢⎣

�1 + h�3
h2

2
R̃

∗ −h2

2
X

⎤
⎥⎦ < 0 (12)

⎡
⎢⎢⎢⎢⎢⎣

�1 + h�2 hY1 3hY2
h2

2
R̃

∗ −hM1 0 0
∗ ∗ −3hM1 0

∗ ∗ ∗ −h2

2
X

⎤
⎥⎥⎥⎥⎥⎦

< 0 (13)

[
Q3 T
∗ Q3

]
> 0. (14)

Furthermore, the desired control gains are given by

K1i = F−1
i H1i , K2i = F−1

i H2i , i = 1, 2, . . . , N.

Proof: We choose the following Lyapunov functional
candidate:

V (t) =
9∑

i=1

Vi (t), t ∈ [tk, tk+1) (15)

where

V1(t) = e2αtr�(t)Pr(t)

V2(t) =
∫ t

t−τ (t)
e2αsr�(s)Q1r(s)ds

V3(t) =
∫ t

t−τ
e2αsr�(s)Q2r(s)ds

V4(t) = τ

∫ 0

−τ

∫ t

t+α
e2αsṙ�(s)Q3ṙ(s)dsdα

V5(t) = η

∫ 0

−η

∫ t

t+α
e2αsṙ�(s)Q4ṙ(s)dsdα

V6(t) = (h − hk(t))
∫ t

tk
e2αs

[
ṙ(s)
r(tk)

]�
M

[
ṙ(s)
r(tk)

]
ds

V7(t) = (h − hk(t))hk(t)e
2αtβ�(t)Rβ(t)

V8(t) = (h − hk(t))hk(t)e
2αtv�(t)Sv(t)

V9(t) = h2
∫ t

tk−η
e2αsr̄�(s)Wr̄ (s)ds

−π2

4

∫ t−η

tk−η
e2αs(r(s) − r(tk − η))�W

× (r(s) − r(tk − η))ds.

with hk(t) = t − tk , r̄(t) = α(r(t) − r(tk − η)) + ṙ(t).
The time derivative of V1(t), V2(t), and V3(t) can be

calculated as

V̇1(t) = 2αe2αtr�(t)Pr(t) + 2e2αtr�(t)Pṙ (t) (16)

V̇2(t) ≤ e2αt{r�(t)Q1r(t) − (1 − μ)e−2ατ

× r�(t − τ (t))Q1r(t − τ (t))} (17)

V̇3(t) ≤ e2αt {r�(t)Q2r(t) − e−2ατ

× r�(t − τ )Q2r(t − τ )}. (18)

In view of Lemmas 1 and 2, an upper bound of V̇4(t) is
estimated as

V̇4(t) ≤ e2αt
{
τ 2ṙ�(t)Q3ṙ(t)

−τe−2ατ

∫ t

t−τ
ṙ�(s)Q3ṙ(s)ds

}

≤ e2αt
{
τ 2ṙ�(t)Q3ṙ(t)

−τe−2ατ

∫ t

t−τ (t)
ṙ�(s)Q3ṙ(s)ds

−τe−2ατ

∫ t−τ (t)

t−τ
ṙ�(s)Q3ṙ(s)ds

}

≤ e2αt {τ 2ṙ�(t)Q3ṙ(t) + e−2ατX�(t)Q3X (t)}
where X (t) = [r�(t), r�(t − τ (t)), r�(t − τ )]�

Q3 =
⎡

⎣
−Q3 Q3 − T T

∗ −2Q3 + T + T � Q3 − T
∗ ∗ −Q3

⎤

⎦.
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Based on Lemma 1, an upper bound of V̇5(t) is given by

V̇5(t) ≤ e2αt
{
η2ṙ�(t)Q4ṙ(t)

−ηe−2αη

∫ t

t−η
ṙ�(s)Q4ṙ(s)ds

}

≤ e2αt
{
η2ṙ�(t)Q4ṙ(t) − e−2αη[r(t) − r(t − η)]�

×Q4[r(t) − r(t − η)]
}
.

Calculating the time-derivative of V6(t) leads to

V̇6(t) = −
∫ t

tk
e2αs

[
ṙ(s)
r(tk)

]�
M

[
ṙ(s)
r(tk)

]
ds

+ (h − hk(t))e
2αt

[
ṙ(t)
r(tk)

]�
M

[
ṙ(t)
r(tk)

]

≤ −e2αt e−2αh
∫ t

tk

[
ṙ(s)
r(tk)

]�
M

[
ṙ(s)
r(tk)

]
ds

+(h − hk(t))e
2αt

[
ṙ(t)
r(tk)

]�
M

[
ṙ(t)
r(tk)

]

= e2αt
{
−e−2αh

∫ t

tk
ṙ�(s)M1ṙ(s)ds

− 2e−2αhr�(tk)M�
2 [r(t) − r(tk)]

− (t − tk)e
−2αhr�(tk)M3r(tk)

+ (h − (t − tk))

[
ṙ(t)
r(tk)

]�
M

[
ṙ(t)
r(tk)

]}
.

Using Lemma 3, one can obtain

−
∫ t

tk
ṙ�(s)M1ṙ(s)ds

≤ 1

t − tk
ξ�(t)

[
W�

1 M1W1 + 3W�
2 M1W2

]
ξ(t). (19)

Because, for matrices Yi (i = 1, 2), (1/(t − tk))(M1Wi −
(t − tk)Yi )

�M−1
1 (M1Wi − (t − tk)Yi ) ≥ 0, we have

− 1

t − tk
W�

i M1Wi ≤ −Y �
i Wi − W�

i Yi + (t − tk)Y
�
i M−1

1 Yi .

(20)

Calculating V̇7(t) gives

V̇7(t) = 2α(h − hk(t))hk(t)e
2αtβ�(t)Rβ(t)

− e2αthk(t)β
�(t)Rβ(t)

+ (h − hk(t))e
2αtβ�(t)Rβ(t)

+ 2(h − hk(t))hk(t)e
2αtβ�(t)Rγ (t)

≤ e2αt{αh2β�(t)Rβ(t) − hk(t)β
�(t)Rβ(t)

+ 2(h − hk(t))hk(t)ξ
�(t)R̃ṙ(t)

+ (h − hk(t))β
�(t)Rβ(t)}.

For any positive matrix X , it is easy to obtain

2(h − hk(t))hk(t)ξ
�(t)R̃ṙ(t)

≤ h2

2

(
ξ�(t)R̃X−1 R̃�ξ(t) + ṙ�(t)Xṙ (t)

)
.

Finding the time-derivative of V8(t) and V9(t) yields

V̇8(t) ≤ e2αt{αh2v�(t)Sv(t) − hv�(t)Sv(t)

+2(h − hk(t))v
�(t)Sr(t)}

V̇9(t) = e2αt
{

h2r̄�(t)Wr̄ (t) − π2

4
e−2αη

×(r(t−η)−r(tk −η))�W (r(t−η)−r(tk −η))

}
.

From (3), it follows that:

ε1e2αt [g(ri (t)) − Uri (t)]�[g(ri (t)) − V ri (t)] ≤ 0 (21)

which is equivalent to

−ε1e2αt
[

r(t)
ḡ(r(t))

]� [
Ū V̄
∗ I

] [
r(t)

ḡ(r(t))

]
≥ 0. (22)

By (8)

p�(tk)p(tk) ≤ q�(tk)q(tk) (23)

and so there exists a positive scalar ε2 satisfying

ε2e2αt [q�(tk)q(tk) − p�(tk)p(tk)]
= e2αtξ�(t)�ξ(t) ≥ 0.

From (9), it is easy to know that

2e2αt [r�(t)F + γ1ṙ�(t)F + γ2r�(t − ηk)F][−ṙ(t)

+ c(G ⊗ A)r(t − τ (t)) + ḡ(r(t)) + K1r(tk)

+ K2r(tk − η) + Dp(tk)] = 0. (24)

Define F K1 = H and F K2 = L. Then

V̇ (t) ≤ e2αtξ�(t)�ξ(t) (25)

where � = �1 +(h2/2)R̃X−1 R̃� +(t − tk)(�2 +Y �
1 M−1

1 Y1 +
3Y �

2 M−1
1 Y2)+(h −(t − tk))�3. As � is a convex combination

of t − tk and hk − (t − tk), � < 0 if and only if (12) and the
following inequality holds:

�1 + h2

2
R̃X−1 R̃� + h�3 < 0 (26)

�1 + h
(
�2 + Y �

1 M−1
1 Y1 + 3Y �

2 M−1
1 Y2

)

+ h2

2
R̃X−1 R̃� < 0. (27)

By virtue of the Schur complement, (26) is equivalent
to (12), and (27) is equivalent to (13). We then obtain from
(12) and (13) that

V̇ (t) ≤ 0, t ∈ [tk, tk+1). (28)

It follows that for t ∈ [tk, tk+1):

V (t) ≤ V (tk) ≤ V (tk−1) ≤ · · · ≤ V (0). (29)
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As Vi (0) = 0(i = 6, 7, 8), we can obtain that

V (0) = r�(0)Pr(0) +
∫ 0

−τ (0)
e2αsr�(s)Q1r(s)ds

+
∫ 0

−τ
e2αsr�(s)Q2r(s)ds

+ τ

∫ 0

−τ

∫ 0

α
e2αsṙ�(s)Q3ṙ(s)dsdα

+ η

∫ 0

−η

∫ 0

α
e2αsṙ�(s)Q4ṙ(s)dsdα

+ h2
∫ 0

−η
e2αsr̄�(s)Wr̄ (s)ds

≤ λmax(P)‖r(0)‖2 + τλmax(Q1) sup
−b≤θ≤0

{‖r(θ)‖2}

+ τλmax(Q2) sup
−b≤θ≤0

{‖r(θ)‖2}

+ (τ 3λmax(Q3) + η3λmax(Q4)) sup
−b≤θ≤0

{‖ṙ(θ)‖2}

+ 3aηh2λmax(W )

(
sup

−b≤θ≤0
{‖r(θ)‖, ‖ṙ(θ)‖}

)2

≤ γ

(
sup

−b≤θ≤0
{‖r(θ)‖, ‖ṙ(θ)‖}

)2

(30)

where a = 6α2 + 3 and γ = λmax(P) + τ (λmax(Q1) +
λmax(Q2)) + τ 3λmax(Q3) + η3λmax(Q4) + 3aηh2λmax(W ).
On the other hand

V (t) ≥ e2αtλmin(P)‖r(t)‖2. (31)

By (30) and (31), it follows that:

‖r(t)‖ ≤
√

γ

λmin(P)
e−αt sup

−b≤θ≤0
{‖r(θ)‖, ‖ṙ (θ)‖}. (32)

In terms of Definition 1, system (9) is exponentially syn-
chronous with the decay rate α. This completes the proof of
the theorem. �

When there is no uncertainty involved, control (7) and the
error system of (9) are reduced to

ui (t) = K1ir(tk) + K2ir(tk − η), tk ≤ t < tk+1 (33)

ṙ(t) = ḡ(r(t)) + c(G ⊗ A)r(t − τ (t))

+ K1r(tk) + K2r(tk − η). (34)

By Theorem 1, we have Corollary 1 on the syn-
chronization of CDNs with memory sampled-data control.
Here, for notational simplicity, we use Īi ∈ R

9n×n

(i = 1, 2, . . . , 9) to denote block entry matrices (for exam-
ple Ī4 = [0, 0, 0, I, 0, 0, 0, 0, 0]�). The other notations are
defined as

ξ̄�(t) = [r�(t), r�(t − τ (t)), r�(t − τ ), r�(tk), v
�(t)

r�(tk − η), r�(t − η), ḡ�(r(t)), ṙ�(t)]
̄ = [0, cF(G ⊗ A), 0, H1, 0, H2, 0, F,−F]

W̄1 = [I, 0, 0,−I, 0, 0, 0, 0, 0]
W̄2 = [I, 0, 0, I,−2I, 0, 0, 0, 0]

R̄ = [R1, 0, 0, R2, 0, R3, 0, 0, 0]�

�̄ = [ Ī1, Ī2, Ī3]
�̄1 = 2α Ī1 P Ī�

1 + Ī1 P Ī�
9 + Ī9 P Ī�

1 + Ī1(Q1 + Q2) Ī�
1

− (1 − μ)e−2ατ Ī2 Q1 Ī�
2 −e−2ατ Ī3 Q2 Ī�

3 +τ 2 Ī9 Q3 Ī�
9

+ η2 Ī9 Q4 Ī�
9 − e−2αη[ Ī1 − Ī7]Q4[ Ī1 − Ī7]�

+ e−2ατ�̄

⎡

⎣
−Q3 Q3 − T T

∗ − 2Q3 + T + T � Q3 − T
∗ ∗ − Q3

⎤

⎦�̄�

−e−2αh[ Ī1 − Ī4]M2 Ī�
4 − e−2αh Ī4 M�

2 [ Ī1 − Ī4]�
−e−2αhY �

1 W̄1 − e−2αhW̄�
1 Y1 − 3e−2αhY �

2 W̄2

−3e−2αhW̄�
2 Y2 + αh2[ Ī1, Ī4, Ī6]R[ Ī1, Ī4, Ī6]�

+h2

2
Ī9 X Ī�

9 + αh2 Ī5S Ī�
5 − h Ī5S Ī�

5

+h2[α( Ī1 − Ī6) + Ī9]W [α( Ī1 − Ī6) + Ī9]�

−π2

4
e−2αη[ Ī7 − Ī6]W [ Ī7 − Ī6]�

−ε1[ Ī1, Ī8]
[

Ū V̄
∗ I

]
[ Ī1, Ī8]�

+( Ī1 + γ1 Ī9 + γ2 Ī6)̄ + ̄�( Ī1 + γ1 Ī9 + γ2 Ī6)
�

�̄2 = −e−2αh Ī4 M3 Ī�
4 − [ Ī1, Ī4, Ī6]R[ Ī1, Ī4, Ī6]�

�̄3 = [ Ī9, Ī4]M[ Ī9, Ī4]� + [ Ī1, Ī4, Ī6]R[ Ī1, Ī4, Ī6]�
+I1SI�

5 + I5 SI�
1 .

Corollary 1: For given any scalars μ, γ1, γ2 and positive
constants h and τ , the error system (34) is exponentially stable
with the decay rate α if there exist matrices P > 0, Qi > 0
(i = 1, 2, 3, 4)

R =
⎡

⎣
R1 R2 R3
∗ R4 R5
∗ ∗ R6

⎤

⎦ > 0, M =
[

M1 M2
∗ M3

]
> 0,

S > 0, W > 0, X > 0, T , Y1, Y2, F =
diag{F1, F2, . . . , FN }, H1 = diag{H11, H12, . . . , H1N }, and
H2 = diag{H21, H22, . . . , H2N } with appropriate dimensions
and a scalar ε1 > 0 satisfying the following LMIs:

⎡
⎢⎣

�̄1 + h�̄3
h2

2
R̄

∗ −h2

2
X

⎤
⎥⎦ < 0 (35)

⎡
⎢⎢⎢⎢⎢⎣

�̄1 + h�̄2 hY1 3hY2
h2

2
R̄

∗ −hM1 0 0
∗ ∗ −3hM1 0

∗ ∗ ∗ −h2

2
X

⎤
⎥⎥⎥⎥⎥⎦

< 0 (36)

[
Q3 T
∗ Q3

]
> 0. (37)

Furthermore, the desired control gains are given as

K1i = F−1
i H1i , K2i = F−1

i H2i , i = 1, 2, . . . , N.

Remark 2: For sampled-data synchronization of CDNs with
time-varying delay, the choice of the sampling interval is
very important for designing suitable feedback control. It is
obvious that a longer sampling period will result in lower
communication channel occupation, fewer actuations of the
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controller, and less signal transmission [24]. To achieve this
objective, the memory sampled-data controller is employed
here, which may provide a larger sampling period than
that from the conventional sampled-data controllers proposed
in [25]–[30].

Remark 3: Unlike the Lyapunov–Krasovskii function con-
structed in [25]–[29], V7(t), V8(t), and V9(t) have more
information with the actual sampling pattern. In the proof
of Theorem 1, an improved integral inequality [36] that
provides more accuracy than those based on Jensen’s inequal-
ity is employed to estimate the derivative of the Lyapunov
function V6(t).

Remark 4: When K2 = 0 in control (33), the control scheme
for the synchronization of delayed CDNs is reduced to the
conventional control scheme studied in [25]–[29]. Removing
the term r(tk − η) in the constructed Lyapunov function (15),
we have Corollary 2 induced from Corollary 1 directly. Once
again for the simplicity of matrix representation, block entry
matrices Îi ∈ R

7n×n(i = 1, 2, . . . , 7) are defined (for example,
Î4 = [0, 0, 0, I, 0, 0, 0]�). The notations of several matrices
are defined as

ξ̂�(t) = [r�(t), r�(t − τ (t)), r�(t − τ ), r�(tk),

1

t − tk

(∫ t

tk
r(s)ds

)�
, ḡ�(r(t)), ṙ�(t)]

̂ = [0, cF(G ⊗ A), 0, H1, 0, F,−F]
Ŵ1 = [I, 0, 0,−I, 0, 0, 0]
Ŵ2 = [I, 0, 0, I,−2I, 0, 0]

R̂ = [R1, 0, 0, R2, 0, 0, 0]�
�̂ = [ Î1, Î2, Î3]

�̂1 = 2α Î1 P Î�
1 + Î1 P Î�

7 + Î7 P Î�
1 + Î1(Q1 + Q2) Î�

1

−(1 − μ)e−2ατ Î2 Q1 Î�
2 −e−2ατ Î3 Q2 Î�

3 +τ 2 Î7 Q3 Î�
7

+ e−2ατ �̂

⎡

⎣
−Q3 Q3 − T T

∗ −2Q3 + T + T � Q3−T
∗ ∗ −Q3

⎤

⎦�̂�

− e−2αh[ Î1 − Î4]M2 Î�
4 − e−2αh Î4 M�

2 [I 1̂ − Î4]�
− e−2αhY �

1 Ŵ1 − e−2αh Ŵ�
1 Y1 − 3e−2αhY �

2 Ŵ2

− 3e−2αhŴ�
2 Y2 + αh2[ Î1, Î4]R[ Î1, Î4]�

+ h2

2
Î7 X Î�

7 + αh2 Î5S Î�
5 − h Î5 S Î�

5

− ε1[ Î1, Î6]
[

Ū V̄
∗ I

]
[ Î1, Î6]�

+ ( Î1 + γ1 Î7)̂ + ̂�( Î1 + γ1 Î7)
�

�̂2 = −e−2αh Î4 M3 Î�
4 − [ Î1, Î4]R[ Î1, Î4]�

�̂3 = [ Î7, Î4]M[ Î7, Î4]� + [ Î1, Î4]R[ Î1, Î4]�
+ Î5S Î�

1 + Î1S Î�
5 .

Corollary 2: For given any scalars μ, γ1 and positive
constants h and τ , the error system (34) is exponentially stable
with the decay rate α, if there exist matrices P > 0, Qi >
0(i = 1, 2, 3)

R =
[

R1 R2
∗ R4

]
> 0, M =

[
M1 M2
∗ M3

]
> 0,

S > 0, X > 0, T , Y1, Y2, F = diag{F1, F2, . . . , FN }, and
H1 = diag{H11, H12, . . . , H1N } with appropriate dimensions
and a scalar ε1 > 0 satisfying the following LMIs:

⎡

⎢⎣
�̂1 + h�̂3

h2

2
R̂

∗ −h2

2
X

⎤

⎥⎦ < 0 (38)

⎡

⎢⎢⎢⎢⎢⎣

�̂1 + h�̂2 hY1 3hY2
h2

2
R̂

∗ −hM1 0 0
∗ ∗ −3hM1 0

∗ ∗ ∗ −h2

2
X

⎤

⎥⎥⎥⎥⎥⎦
< 0 (39)

[
Q3 T
∗ Q3

]
> 0. (40)

Furthermore, the desired control gains are given as

K1i = F−1
i H1i , i = 1, 2, . . . , N.

Remark 5: It is indicated that Theorem 1 and
Corollaries 1 and 2 only can be applied to time-varying
delay when μ is known and less than one. When μ is
unknown or the time-varying delay τ (t) is not differentiable,
setting Q1 = 0, the corresponding results of Theorem 1 and
Corollaries 1 and 2 can be applied to address these cases.

IV. NUMERICAL EXAMPLES

In this section, the validity of the proposed design method
will be illustrated by two numerical examples.

Example 1: A CDN, including three nodes (1), is considered
in this example. The outer-coupling matrix is assumed to be
G = (Gij )N×N with

G =
⎡

⎣
−1 0 1
0 −1 1
1 1 −2

⎤

⎦.

The inner-coupling matrix A is given as A =
[

1 0
0 1

]
. f (·) is

the nonlinear function, and is taken as

f (xi (t)) =
[−0.5xi1 + tanh(0.2xi1) + 0.2xi2

0.95xi2 − tanh(0.75xi2)

]

which implies that f (·) satisfies (3) with

U =
[−0.5 0.2

0 0.95

]
, V =

[ −0.3 0.2
0 0.2

]
.

The other parameter matrices for uncertainties are given as

Di =
[

1 0
0 1

]
, Eai =

[
0.2 0
0 0.2

]
, Ebi =

[
0.5 0
0 0.5

]
.

For the case where there is no uncertainty, that is �(tk) = 0
and the convergence rate α is not zero, the exponential
synchronized condition in [25], [26], [28], and [29] is not
considered. The exponential synchronized condition proposed
in these papers is not applicable anymore. Taking τ = 0.25,
μ = 0.5, and applying Theorem 1 with c = 0.2, Table I shows
the maximal sampling period with different α and η values.
In addition, applying Corollaries 1 and 2 with c = 0.8, for
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TABLE I

MAXIMUM SAMPLING PERIOD h FOR VARIOUS α
AND η VALUES FOR c = 0.2

TABLE II

MAXIMUM SAMPLING PERIOD h FOR c = 0.8

TABLE III

MAXIMUM SAMPLING PERIOD h FOR VARIOUS c VALUES

different α values, the maximal sampling period is obtained
and summarized in Table II. On the other hand, when α = 0,
τ = 0.25, and μ = 0.5, the comparison of sampling intervals
for a different coupling strength c by Corollaries 1 and 2 with
the results in [25]–[29] is shown in Table III. From the results
of Tables II and III, we can see that the proposed method in
this paper can give larger delay bounds than those in [25]–[29].

To show the effect of the perturbations in controller, taking
�(tk) = sin(tk), α = 0.1, η = 0.05, c = 0.2, τ (t) =
0.125 + 0.125 sin(4t), β1 = 1.2, β2 = 0.1, and solving the
LMIs (12)-(14), the maximum value of h is 0.3932, and the
corresponding nonfragile sampled-data controllers gains are

K11 =
[ −1.2786 −0.1299

0.0207 −2.1688

]

K12 =
[ −1.2786 −0.1299

0.0207 −2.1688

]

K13 =
[ −1.2082 −0.0946

0.0272 −1.9546

]

K21 =
[ −0.1928 −0.0845

0.0060 −0.1055

]

K22 =
[ −0.1928 −0.0845

0.0060 −0.1055

]

K23 =
[ −0.1958 −0.0987

0.0036 −0.1343

]
.

For the initial condition x1(0) = [7,−4]�, x2(0) = [3,−9]�,
x3(0) = [−6, 5]�, and s(0) = [0,−1]�, the response curves
of error systems without control input are shown in Fig. 1.
Using the above-mentioned controller gains, the response
curves of the error systems and control input are given in
Figs. 2 and 3, respectively. From Fig. 2, it is seen that the
synchronization is convergent to zero.

Example 2: In this example, Chua’s circuit is considered as
an unforced isolated node of CDN (1), which is expressed as

Fig. 1. State response of error system without control input in Example 1.

Fig. 2. State response of error system in Example 1.

Fig. 3. Control inputs in Example 1.

the following equation:
⎧
⎪⎨

⎪⎩

ṡ1(t) = σ1(−s1(t) + s2(t) − v(s1(t)))

ṡ2(t) = s1(t) − s2(t) + s3(t)

ṡ3(t) = −σ2s2(t)

(41)

where σ1 = 10, σ2 = 14.87, v(s1) = bs1 + 0.5(a − b)r(s1),
a = −1.27, b = −0.68, and r(s1) = (|s1 + 1| − |s1 − 1|).
Denote s = [s1, s2, s3]�

f (s) =
⎡

⎣
−σ1 − σ1b σ1 0

1 −1 1
0 −σ2 0

⎤

⎦

+
⎡

⎣
−0.5σ1(a − b)r(s1) 0 0

0 0 0
0 0 0

⎤

⎦.

It can be found that f (s) satisfies (3) with

U =
⎡

⎣
2.7 10 0
1 −1 1
0 −14.87 0

⎤

⎦, V =
⎡

⎣
−3.2 10 0

1 −1 1
0 −14.87 0

⎤

⎦.

And the inner-coupling matrix A is given as

A =
⎡

⎣
0.9 0 0
0 0.9 0
0 0 0.9

⎤

⎦.
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TABLE IV

MAXIMUM SAMPLING PERIOD h WITH c = 1

The outer-coupling matrix G = (Gij )N×N is assumed to be

G =
⎡

⎣
−2 1 1
1 −1 0
1 0 −1

⎤

⎦.

The other parameter matrices for uncertainties are given as

Di =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦, Eai =
⎡

⎣
0.3 0 0
0 0.3 0
0 0 0.3

⎤

⎦

Ebi =
⎡

⎣
0.8 0 0
0 0.8 0
0 0 0.8

⎤

⎦.

When there is no uncertainty, that is �(tk) = 0, and α = 0,
τ = 0.04, and μ = 0.01, the compared results of maximal
sampling period h for various c are listed in Table IV. From
Table IV, it is seen that the results calculated based on the
criteria given in this paper are less conservative than those
reported in the existing literature, which shows the advantage
of the proposed method.

To show the effect of the perturbations in the controller,
letting �(tk) = cos(tk), α = 0.1, η = 0.1, τ (t) =
0.05| sin(t)|, c = 0.5, β1 = 0.2, and β2 = 0.1, we solve
the LMIs (12)–(14), the maximum sampling interval h is
0.1022, and the corresponding nonfragile sampled-data con-
troller gains

K11 =
⎡

⎣
−7.4822 −8.3744 −0.5858
0.0441 −2.9294 −0.4713
3.1257 11.0609 −4.3728

⎤

⎦

K12 =
⎡

⎣
−7.6639 −8.3190 −0.6299
0.0427 −3.1465 −0.3562
3.2397 11.4472 −4.3751

⎤

⎦

K13 =
⎡

⎣
−7.6639 −8.3190 −0.6299
0.0427 −3.1465 −0.3562
3.2397 11.4472 −4.3751

⎤

⎦

K21 =
⎡

⎣
−0.3050 0.0142 0.1783
0.1703 −0.1066 −0.1719
0.0746 0.5122 −0.1634

⎤

⎦

K22 =
⎡

⎣
−0.3259 0.0248 0.2213
0.1759 −0.1285 −0.1993
0.0675 0.4179 −0.2664

⎤

⎦

K23 =
⎡

⎣
−0.3259 0.0248 0.2213
0.1759 −0.1285 −0.1993
0.0675 0.4179 −0.2664

⎤

⎦.

The initial values of the dynamical networks are set to
be x1(0) = [2,−3, 5]�, x2(0) = [5,−7, 1]�, x3(0) =
[2,−2, 4]�, and s(0) = [1, 0,−2]�. The response curves
of the error systems without control input are shown in
Fig. 4. Using the above-mentioned controller gain matrices,
the trajectory curves of the error systems and the control input

Fig. 4. State response of error system without control input in Example 2.

Fig. 5. State response of error system in Example 2.

Fig. 6. Control inputs in Example 2.

are given in Figs. 5 and 6, respectively. From Fig. 5, it can be
seen that the synchronization error is tending to zero, which
implies that the synchronization of the CDNs can be achieved
by the designed nonfragile memory sampled-data controller.

V. CONCLUSION

In this paper, a nonfragile memory sampled-data control
for the synchronization of CDNs with time-varying delay was
investigated. A new Lyapunov function has been constructed
for synchronization error systems where the information about
the actual sampling is fully considered. Furthermore, in the
case of no uncertainty, a sampled-data synchronization crite-
rion for delayed CDNs was derived. It is shown that the new
criteria can provide larger sampling period than some existing
criteria using the integral inequality method and reciprocally
convex approach. Two numerical examples are presented to
show the validity of the proposed techniques. In future work,
the new sampled-data approach will be extended to networked
fuzzy systems [38]–[40], Markovian-jump systems [41], and
others.
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