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a b s t r a c t

In this paper, we consider boundary output regulation for an Euler–Bernoulli beam equation which
can describe typically the flexible arm of robots. The reference signal and disturbance are generated
by a finite-dimensional exosystem. The measurements are angular and angular velocity of the right
end where the control is imposed. However, the performance output is on the left end which is non-
collocated with control, a difficult case in practice where the control takes time to perform its force
from the right end to the left. The objective is to design an output feedback controller to regulate the
displacement of the left end to track the reference signal. We first design a state feedback regulator to
make the performance output track the reference signal exponentially. An observer is then constructed
to recover the state, with which, an output feedback regulator is designed by replacing state feedback
with its estimation. The closed-loop system is shown to admit a unique bounded solution and the
tracking error converges to zero exponentially. Some numerical simulations are presented to illustrate
the effectiveness of the proposed output feedback regulator.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible structures such as flexible robot arms are widely
used in aerospace technologies, satellites, flexible manipulators,
and other industry applications. In many situations, the Euler–
Bernoulli beam equation can well describe the flexible arms.
Because of light weight and high speed, the vibration of flexible
arms is inevitable, which reduces accuracy in industrial stream-
lines. Vibration control for Euler–Bernoulli beam has therefore
been considered by many researchers. Some of works can be
found in Chen, Delfour, Krall, and Payre (1987), Chen, Krantz,
Ma, Wayne, and West (1988), Conrad and Pierre (1990), Luo
and Guo (1997), Smyshlyaev, Guo, and Krstic (2009) and Xu and
Sallet (1992) and the references therein. Most of these works
are related to stabilization problem. Recently, the disturbance
rejection problem has been addressed for Euler–Bernoulli beam
systems in Ge, Zhang, and He (2011), He, Zhang, and Ge (2013)
and Jin and Guo (2015).
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On the other hand, output regulation is one of the central
issues in control theory. Many industry processes can be formu-
lated as regulation problem like the military field. The output
regulation was started initially for finite-dimensional systems
like (Byrnes, Priscoli, & Isidori, 1997; Callier & Desoer, 1980;
Desoer & Lin, 1985) from which many results have been extended
to infinite-dimensional systems and some examples can be found
in Byrnes, Laukó, Gilliam, and Shubov (2000), Deutscher (2015),
Deutscher (2017), Paunonen and Pohjolainen (2010), Paunonen
and Pohjolainen (2014), Xu and Dubljevic (2017a), Xu and Dublje-
vic (2017b) and Xu, Pohjolainen, and Dubljevic (2017). The most
profound result in this regard is the internal model principal
which has been generalized from lumped parameter systems
into distributed parameter systems. For bounded control and
observation, we refer to Paunonen and Pohjolainen (2010) and
unbounded control and observation can be found in Paunonen
and Pohjolainen (2014). In Xu and Dubljevic (2017a), an observer-
based output regulator was designed for an abstract infinite-
dimensional system with bounded control and unbounded ob-
servation. Adaptive control method has also been applied to
regulation problem for a wave equation in Guo and Guo (2016)
where the unknown constant coefficients in harmonic distur-
bance were identified. Recently, in Deutscher (2015), an output
regulation problem for a heat equation was discussed by means
of backstepping approach (Krstic & Smyshlyaev, 2008), where
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the control and observation were allowed to be unbounded and
the disturbance and reference signals are generated by a finite-
dimensional exosystem. In addition, the output can be either
bounded or unbounded. This method was generalized to regula-
tion problem for a coupled wave equation with unbound control
and observation in Gu, Wang, and Guo (2018), where the output
was supposed to be bounded. In Jin and Guo (2018), we designed
an output regulator for a heat equation with unbounded con-
trol and unbounded observation. The main idea of Jin and Guo
(2018) is that an extended state observer can be constructed
to estimate the state and the general external disturbance, but
the control and performance output are matched. There are also
some other works related to motion planning of beam equation.
In Shifman (1990), a tracking problem for an Euler–Bernoulli
beam was discussed, where the reference trajectory is the same
as the Euler–Bernoulli beam except the control channel, and the
displacement and velocity of the beam are supposed to be known
in control design. In Meurer, Thull, and Kugi (2008) and Schröck,
Meurer, and Kugi (2011), the differential flatness method, a pow-
erful tool for tracking problem, was applied to flexible beam
motion planning. For these beam works, no disturbance was
considered.

In this paper, we consider output regulation problem for an
Euler–Bernoulli beam equation described by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt (x, t) + uxxxx(x, t) + f (x)d1(t) = 0, x ∈ (0, 1), t > 0,
uxx(0, t) = d2(t), t ≥ 0,
uxxx(0, t) = d3(t), t ≥ 0,
u(1, t) = 0, uxx(1, t) = U(t), t ≥ 0,
ym(t) = {ux(1, t), uxt (1, t)}, t ≥ 0,
yc(t) = u(0, t), t ≥ 0,
u(x, 0) = u0(x), ut (x, 0) = u1(x), x ∈ [0, 1],

(1)

where u(t) is the state, U(t) the control (input), ym(t) the mea-
sured output, and yc(t) is the performance output to be regulated.
The f ∈ C[0, 1] represents the intensity of unknown spatial
disturbance d1 ∈ C(0, ∞), and d2, d3 ∈ C(0, ∞) are boundary dis-
turbances. Please note that for notational simplicity, we assume
all uniform linear mass density, the uniform flexural rigidity, and
the length of the beam to be one (by space and time scaling),
without loss of generality.

The disturbances and reference signal are supposed to be
generated by an exosystem as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇(t) = Sv(t), t > 0,

d1(t) = p⊤

d1
v(t), t ≥ 0,

d2(t) = p⊤

d2
v(t), t ≥ 0,

d3(t) = p⊤

d3
v(t), t ≥ 0,

yref (t) = p⊤
r v(t), t ≥ 0,

v(0) = v0 ∈ Cn.

(2)

Here S = diag(Sd, Sr ) is a block diagonalizable matrix with all
eigenvalues on the imaginary axis which is standard because
the disturbance represented by the eigenvalues on the left plane
diminishes itself as time involves and those represented by the
eigenvalues on the right plane requires infinite control force, that
is, the v-subsystem can be divided into two decoupled subsys-
tems:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇d(t) = Sdvd(t), t > 0,

d1(t) = q⊤

d1
vd(t), t ≥ 0,

d2(t) = q⊤

d2
vd(t), t ≥ 0,

d3(t) = q⊤

d3
vd(t), t ≥ 0,

vd(0) = vd0 ∈ Cn1 ,

(3)

and⎧⎨⎩
v̇r (t) = Srvr (t), t > 0,
yref (t) = q⊤

r vr (t), t ≥ 0,
vr (0) = vr0 ∈ Cn2 ,

(4)

where (v⊤

d , v⊤
r )⊤ = v and n = n1+n2. In addition, we assume that

the eigenvalues of Sd are distinct and (q⊤
r , Sr ) is observable. The

reference signal yref (t) is also measurable. Our target is to design
an output feedback controller U(t) such that

lim
t→∞

[yc(t) − yref (t)] = lim
t→∞

[u(0, t) − yref (t)] = 0, (5)

in the presence of disturbances. Meanwhile, the state of the
closed-loop system is required to be bounded. From now on, we
omit initial value and domain for all systems when there is no
confusion for simplicity.

The system (1) describes well the movement of the flexible
robot arms. The left end is in free movement yet both bending
moment and share force are affected by unknown disturbances,
and the displacement is required to be regulated to track a
reference signal. The control end is pinned which is a typical case
in applications yet the bending moment is actuated. The internal
disturbance is not uniform by the introduction of the intensity
function f (x).

We point out that there are very limited literature on out-
put regulation for PDEs with non-collocated control and regu-
lated output. The heat equation (parabolic type) was considered
in Deutscher (2015). A special output regulation with reference
(set point) zero for wave equation (hyperbolic type) was devel-
oped in Guo, Shao, and Krstic (2017). This paper is the first paper
for beam equation (Petrovsky type) with non-collocated control
and regulated output.

We proceed as follows. In Section 2, we design a state feedback
controller for tracking control system (1) where the disturbances
are assumed to be known. In Section 3, we construct a state ob-
server for system (1) and exosystem (2) in terms of the measured
output and the reference signal. It is shown that the observer
error decays exponentially as time goes to infinity. An output
regulator is designed by replacing the state with its estimation
obtained in Section 4. By means of C0-semigroup and admissibil-
ity theory for linear infinite-dimensional systems, the closed-loop
system is shown to admit a unique bounded solution and the
displacement of the left end tracks reference signal exponen-
tially. Some numerical simulations are presented in Section 5 to
illustrate the effect of the proposed control law, following up
concluding remarks in Section 6.

2. State feedback regulator

To design an output feedback, we need state feedback first.
In this section, we assume that all states of systems (1) and (2)
are known. We propose a state feedback controller for tracking
control system (1) as follows:

U(t) = −k1uxt (1, t) − k2ux(1, t) + m⊤
v v(t), (6)

where k1, k2 > 0 are tuning parameters, m⊤
v is an n-dimensional

row vector to be determined later. It is noted that the first two
terms are used to stabilize internally exponentially the system
(disturbance free system), and the third term is for output track-
ing. The closed-loop of systems (1) and (2) under the controller
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(6) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇(t) = Sv(t),

utt (x, t) + uxxxx(x, t) + f (x)p⊤

d1
v(t) = 0,

uxx(0, t) = p⊤

d2
v(t),

uxxx(0, t) = p⊤

d3
v(t),

u(1, t) = 0,

uxx(1, t) = −k1uxt (1, t) − k2ux(1, t) + m⊤

v v(t).

(7)

Now we find m⊤
v so that the tracking condition (5) holds. To

this end, we introduce a transformation

e(x, t) = u(x, t) − g⊤(x)v(t), (8)

so that the tracking error e(0, t) = u(0, t)−yref (t) → 0 by proper
choice of g(x). In this way, v(t) and e(x, t) are governed by⎧⎪⎪⎨⎪⎪⎩

v̇(t) = Sv(t),
ett (x, t) + exxxx(x, t) = 0,
exx(0, t) = exxx(0, t) = e(1, t) = 0,
exx(1, t) = −k1ext (1, t) − k2ex(1, t),

(9)

provided that g⊤(x) is chosen to satisfy⎧⎨⎩g (4)(x) + (S⊤)2g(x) + f (x)pd1 = 0,
g ′′(0) = pd2 , g ′′′(0) = pd3 , g(1) = 0,
g ′′(1) + k1S⊤g ′(1) + k2g ′(1) = mv.

(10)

It is well known that the e-part of system (9) is well-posed and
exponentially stable (Gnedin, 1992) in the state space

H1 = {(f , g)⊤ ∈ H2(0, 1) × L2(0, 1)|f (1) = 0} (11)

with the norm

∥(f , g)⊤∥
2
H1

=

∫ 1

0
[|f ′′(x)|2 + |g(x)|2]dx

+k2|f ′(1)|2, ∀ (f , g)⊤ ∈ H1.

(12)

In particular, e(0, t) → 0 exponentially as t → ∞. Next, the
tracking error

u(0, t) − yref (t) = e(0, t) + g⊤(0)v(t) − p⊤
r v(t)

= e(0, t) → 0, (13)

if we choose

g(0) = pr . (14)

Substituting (14) into (10) brings us to solve the following bound-
ary value problem (BVP):⎧⎪⎨⎪⎩

g (4)(x) + (S⊤)2g(x) + f (x)pd1 = 0,
g ′′(0) = pd2 , g ′′′(0) = pd3 ,
g(1) = 0, g(0) = pr .

(15)

The solvability of BVP (15) is guaranteed by succeeding
Lemma 2.1 and the proof is arranged in Appendix.

Lemma 2.1. Assume that S has distinct eigenvalues on the imagi-
nary axis only. Then, BVP (15) admits a unique solution.

The mv in (6) can be determined by

m⊤

v =
d2g⊤

dx2

⏐⏐⏐⏐
x=1

+ k1
dg⊤

dx

⏐⏐⏐⏐
x=1

S + k2
dg⊤

dx

⏐⏐⏐⏐
x=1

. (16)

Theorem 2.1. Let g(x) be the solution of (15) and mv = g ′′(1) +

k1S⊤g ′(1) + k2g ′(1). For any initial value (v⊤

0 , u0, u1)⊤ ∈ Cn
×

H1, the closed-loop system (7) admits a unique bounded solution
(v⊤(t), u(·, t), ut (·, t))⊤ ∈ C(0, ∞;Cn

× H1). Moreover,

u(0, t) − yref (t) → 0 exponentially as t → ∞.

Proof. From transformation (8), we find the solution to (7) as
(v⊤(t), u(x, t), ut (x, t))⊤ = (v⊤(t), e(x, t) + g⊤(x)v(t), et (x, t) +

g⊤(x)Sv(t))⊤ and

∥(v⊤(t), u(·, t), ut (·, t))⊤∥
2
Cn×H1

= ∥(v⊤(·))∥2
Cn + ∥(u(·, t), ut (·, t))⊤∥

2
H1

≤ ∥(v⊤(·))∥2
Cn + 2∥(e(·, t), et (·, t))⊤∥

2
H1

+ 2∥(g⊤(·)v(t), g⊤(·)Sv(t))⊤∥
2
H1

= ∥(v⊤(·))∥2
Cn + 2∥(e(·, t), et (·, t))⊤∥

2
H1

+ 2
∫ 1

0

[⏐⏐(g⊤)′′(x)v(t)
⏐⏐2 +

⏐⏐g⊤(x)Sv(t)
⏐⏐2] dx

+ 2k2|(g⊤)′(1)v(t)|2.

(17)

Since all eigenvalues of S are located on the imaginary axis, v(t)
and Sv(t) are bounded as t → ∞. Since g(x) is the solution
of (15) with g⊤

∈ (C2
[0, 1])n, both ∥(g⊤(·)v(t), g⊤(·)Sv(t))⊤∥

2
H1

∥(v⊤(·))∥2
Cn are uniformly bounded, and ∥(e(·, t), et (·, t))⊤∥

2
H1

de-
cays exponentially, there exists constant L > 0 depending on
initial value (v⊤

0 , u0, u1) such that

∥(v⊤(t), u(·, t), ut (·, t))⊤∥Cn×H1 ≤ L, ∀ t ≥ 0. (18)

Now we consider the tracking performance. By (13), it follows
that the tracking error e(0, t) has the estimation:

|e(0, t)|2 ≤

⏐⏐⏐⏐ ∫ 1

0
ex(x, t)dx

⏐⏐⏐⏐2
≤ L1∥(e(·, t), et (·, t))⊤∥

2
H1

, L1 > 0.
(19)

Since ∥(e(·, t), et (·, t))⊤∥H1 decays exponentially, so does
e(0, t) → 0 exponentially as t → ∞. □

3. Observer design

In this section, we assume that the disturbance is unknown
yet reference is known. Then, v(t) in state feedback controller (6)
needs to be estimated. We design a state observer as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂vd(t) = Sdv̂d(t) + kd[ûx(1, t) − ux(1, t)],
˙̂vr (t) = Sr v̂r (t) + kr [q⊤

r v̂r (t) − yref (t)],

ûtt (x, t) + ûxxxx(x, t) + f (x)q⊤

d1
v̂d(t)

+γ1(x)[ûxt (1, t) − uxt (1, t)]

+γ2(x)[ûx(1, t) − ux(1, t)] = 0,

ûxx(0, t) = q⊤

d2
v̂d(t), ûxxx(0, t) = q⊤

d3
v̂d(t),

û(1, t) = 0,

ûxx(1, t) = −c1[ûxt (1, t) − uxt (1, t)]

−c2[ûx(1, t) − ux(1, t)] + U(t),

(20)

where γ1, γ2 ∈ C[0, 1], c1 > 0, c2 > 0 are the tuning constant
parameters, kr is chosen such that Sr + krq⊤

r is Hurwitz which
follows from the observability of (q⊤

r , Sr ). Then, the error variables



4 F.-F. Jin and B.-Z. Guo / Automatica 109 (2019) 108507

ṽd = v̂d − vd, ṽr = v̂r − vr , ũ = û − u are governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃vd(t) = Sdṽd(t) + kdũx(1, t),
˙̃vr (t) = (Sr + krq⊤

r )ṽr (t),

ũtt (x, t) + ũxxxx(x, t) + f (x)q⊤

d1
ṽd(t)

+γ1(x)ũxt (1, t) + γ2(x)ũx(1, t) = 0,

ũxx(0, t) = q⊤

d2
ṽd(t), ũxxx(0, t) = q⊤

d3
ṽd(t),

ũ(1, t) = 0,

ũxx(1, t) = −c1ũxt (1, t) − c2ũx(1, t).

(21)

We need to prove that the error system (21) is stable. To this pur-
pose, since Sr +krq⊤

r is Hurwitz, the variable ṽr is decoupled from
others and is exponentially stable. For ṽd and ũ, we introduce a
transformation{

ṽd(t) = ṽd(t), ṽr (t) = ṽr (t),
ε(x, t) = ũ(x, t) + h⊤(x)ṽd(t).

(22)

to make (21) slightly simpler. In this way, ε(x, t) satisfies

εtt (x, t) + εxxxx(x, t)

= ũtt (x, t) + ũxxxx(x, t) + h⊤(x) ¨̃vd(t) + (h⊤(x))(4)ṽd(t)

= −f (x)q⊤

d1 ṽd(t) − γ1(x)ũxt (1, t) − γ2(x)ũx(1, t)

+h⊤(x)[S2d ṽd(t) + Sdkdũx(1, t) + kdũxt (1, t)]

+(h⊤(x))(4)ṽd(t) = 0,

(23)

provided that we choose⎧⎨⎩
d4h⊤(x)
dx4

= −h⊤(x)S2d + f (x)q⊤

d1 ,

γ1(x) = h⊤(x)kd, γ2(x) = h⊤(x)Sdkd.
(24)

The boundary condition of ε(x, t) at x = 0 gives{
εxx(0, t) = q⊤

d2
ṽd(t) + (h⊤)′′(0)ṽd(t) = 0,

εxxx(0, t) = q⊤

d3
ṽd(t) + (h⊤)′′′(0)ṽd(t) = 0,

(25)

provided

(h⊤)′′(0) = −qd2 , (h⊤)′′′(0) = −qd3 . (26)

Similarly, the boundary condition at x = 1 gives⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε(1, t) = h⊤(1)ṽd(t) = 0,

εxx(1, t) + c1εxt (1, t) + c2εx(1, t)

= (h⊤)′′(1)ṽd(t) + c1ṽ⊤

d (t)S⊤

d (h⊤)′(1)

+c2ṽ⊤

d (t)(h⊤)′(1) = 0,

(27)

provided

h(1) = 0,
(h⊤)′′(1) + c1S⊤

d (h⊤)′(1) + c2(h⊤)′(1) = 0. (28)

For ṽd(t), we have

˙̃vd(t) =
(
Sd − kd(h⊤)′(1)

)
ṽd(t) + kdεx(1, t). (29)

Combining (23), (25), (27) and (29), we obtain⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̃vd(t) =
[
Sd − kd(h⊤)′(1)

]
ṽd(t) + kdεx(1, t),

˙̃vr (t) = (Sr + krq⊤
r )ṽr (t),

εtt (x, t) + εxxxx(x, t) = 0,

εxx(0, t) = εxxx(0, t) = ε(1, t) = 0,

εxx(1, t) = −c1εxt (1, t) − c2εx(1, t),

(30)

where h(x) satisfies the boundary value problem (BVP) of the
following:⎧⎪⎨⎪⎩

h(4)(x) = −(S2d )
⊤h(x) + f (x)qd1 ,

h′′(0) = −qd2 , h
′′′(0) = −qd3 , h(1) = 0,

h′′(1) + c1S⊤

d h′(1) + c2h′(1) = 0.

(31)

Lemma 3.1. Assume that all eigenvalues of Sd are distinct and are
located on the imaginary axis. Then, the BVP (31) admits a unique
solution.

The proofs for Lemmas 3.1 and 3.2 are arranged in Appendix.
Now we are in a position to show that there exists kd such that

Sd − kd dh⊤

dx

⏐⏐
x=1 is Hurwitz.

Lemma 3.2. The numerator of the transfer matrix T⊤

d (s) =
N⊤
d (s)

Dd(s)
of (1) from (d1, d2, d3)⊤ to one of output signal ux(1, t) is

Nd(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1

0
R(s, y)f (y)dy

−r2

(
1 − j
√
2

√
s, 1
)

−2r1

(
1 − j
√
2

√
s, 1
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (32)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(s, y) = r1

(
1 − j
√
2

√
s, 1
)
r2

(
1 − j
√
2

√
s, y
)

−r2

(
1 − j
√
2

√
s, 1
)
r1

(
1 − j
√
2

√
s, y
)

,

r1(s, y) =
sinh(sy) + sin(sy)

2s
,

r2(s, y) = cosh(sy) + cos(sy).

(33)

The pair ( dh
⊤

dx

⏐⏐
x=1, Sd) is observable if and only if

N⊤

d (µi)

⎛⎜⎜⎝
q⊤

d1
wi

q⊤

d2
wi

q⊤

d3
wi

⎞⎟⎟⎠ ̸= 0, i = 1, 2, . . . , n1, (34)

where wi is the eigenvector of Sd corresponding to the eigenvalue µi
of Sd.

Note that dh∗
i

dx

⏐⏐
x=1 =

dh⊤

dx |x=1wi ̸= 0, i = 1, 2, . . . , n1 as long as
the eigenvalues of Sd satisfy the conditions in Lemma 3.2. When
this is satisfied, ( dh

⊤

dx |x=1, Sd) is observable. Then, there exists kd
such that Sd − kd dh⊤

dx |x=1 is Hurwitz. Going back to system (30),
the PDE-part is exponentially stable. This together with Sd −

kd dh⊤

dx

⏐⏐
x=1 and Sr + krq⊤

r being Hurwitz shows that system (30)
is exponentially stable. By the inverse transformation of (22),

ũ(x, t) = ε(x, t) − h⊤(x)ṽd(t), (35)

where h(x) is the classical solution of BVP (31).

Theorem 3.1. Assume that N⊤

d (µi)
(
q⊤

d1
wi, q⊤

d2
wi, q⊤

d3
wi

)⊤

̸=

0(i = 1, 2, . . . , n1), where Nd(s) is defined in Lemma 3.2. Let h(x)
be the classical solution of (31). Choose kd such that Sd − kd dh⊤

dx

⏐⏐
x=1

is Hurwitz, and let c1 > 0, c2 > 0, γ1(x) = h⊤(x)kd, γ2(x) =

h⊤(x)Sdkd. Then, the observer (20) converges to system (3), (4)
and (1) exponentially, that is, the observer error system (21) is
well-posed and exponentially stable.
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Proof. This is a consequence of the equivalence between (21) and
(30) by invertible transformation (22). The PDE-part of system
(30) is{

εtt (x, t) + εxxxx(x, t) = 0,
εxx(0, t) = εxxx(0, t) = ε(1, t) = 0,
εxx(1, t) = −c1εxt (1, t) − c2εx(1, t).

(36)

Consider system (36) in the state space H1, which is well known
exponentially stable in H1 (Gnedin, 1992): There exist L1, δ1 > 0
such that

∥(ε(·, t), εt (·, t))⊤∥H1

≤ L1e−δ1t∥(ε(·, 0), εt (·, 0))⊤∥H1 , t > 0,
(37)

which implies that{
|ε(0, t)| ≤ L′e−δ1t∥(ε(·, 0), εt (·, 0))⊤∥H1 , t > 0,
|εx(1, t)| ≤ L′′e−δ1t∥(ε(·, 0), εt (·, 0))⊤∥H1 , t > 0,

for some L′ > 0, L′′ > 0.
For the ODE part, a straightforward computation gives⎧⎪⎪⎨⎪⎪⎩
ṽr (t) = e(Sr+kr q⊤

r )t ṽr (0),
ṽd(t) = e(Sd−kdh⊤(0))t ṽd(0)

+

∫ t

0
e(Sd−kdh⊤)(t−s)kdεx(1, s)ds,

(38)

from which we can estimate that

∥ṽr (t)∥Cn2 = ∥e(Sr+kr q⊤
r )t ṽr (0)∥Cn2

≤ Lre−δr t∥ṽr (0)∥Cn2 ,
(39)

∥ṽd(t)∥Cn1 ≤ ∥e(Sd−kdh⊤)t ṽd(0)∥Cn2

+ ∥

∫ t

0
e(Sd−kdh⊤)(t−s)kdεx(1, s)ds∥Cn2

≤ Lde−δdt∥ṽd(0)∥Cn2

+ L2e−δ3t∥(ε(·, 0), εt (·, 0))⊤∥H1 ,

(40)

for some Lr > 0, Ld > 0, L2 > 0, δr > 0, δd > 0, δ3 > 0.
Combining (37), (39) and (40), we obtain

∥(ṽ⊤

d (t), ṽ⊤

r (t), ε(·, t), εt (·, t))⊤∥Cn1×Cn2×H1
≤ L4e−δ4t∥(ṽ⊤

d (0), ṽ⊤

r (0), ε(·, 0), εt (·, 0))⊤∥Cn1×Cn2×H1 ,

for some L4 > 0, δ4 > 0. By (22), we define a bounded invertible
operator P0 : Cn

× H1 → Cn
× H1 by

(ṽ⊤

d (t), ṽ⊤
r (t), ũ(x, t), ũt (x, t))⊤

= P0(ṽ⊤

d (t), ṽ⊤
r (t), ε(x, t), εt (x, t))⊤

= (ṽ⊤

d (t), ṽ⊤
r (t), ε(x, t) − h⊤(x)ṽd(t), εt (x, t)

−h⊤(x)(Sd − kdh⊤(0))ṽd(t) − h⊤(x)kdε(0))⊤.

Then,

∥(ṽ⊤

d (t), ṽ⊤
r (t), ũ(·, t), ũt (·, t))⊤∥Cn×H1

≤ L5e−δ5t∥(ṽ⊤

d (0), ṽ⊤
r (0), ũ(x, 0), ũt (x, 0))⊤∥Cn×H1 .

(41)

We thus complete the proof of the theorem. □

4. Output feedback regulator

In this section we design an output feedback regulator for
system (1). In light of state feedback regulator in Section 2, we
design an output feedback regulator as follows

U(t) = −k1uxt (1, t) − k2ux(1, t) + m⊤
v v̂(t), (42)

where v̂(t) = (v̂r (t), v̂d(t))⊤, mv = (g⊤)′′(1) + k1(g⊤)′(1)S +

k2(g⊤)′(1), and g(x) is the solution of (15). The difference between
the output feedback regulator and the state feedback is only the

state of the exosystem. In the output feedback, we just replace
v(t) in state feedback controller (6) by its estimation v̂(t). The
closed-loop of system (1), (3), (4), and (20) under the controller
(42) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇d(t) = Sdvd(t), v̇r (t) = Srvr (t),

d1(t) = q⊤

d1
vd(t), d2(t) = q⊤

d2
vd(t),

d3(t) = q⊤

d3
vd(t), yref (t) = q⊤

r vr (t),

utt (x, t) + uxxxx(x, t) + f (x)q⊤

d1
vd(t) = 0,

uxx(0, t) = q⊤

d2
vd(t), uxxx(0, t) = q⊤

d3
vd(t),

u(1, t) = 0,

uxx(1, t) = −k1uxt (1, t) − k2ux(1, t) + m⊤

v v̂(t),
˙̂vd(t) = Sdv̂d(t) + kd[ûx(1, t) − ux(1, t)],
˙̂vr (t) = Sr v̂r (t) + kr [q⊤

r v̂r (t) − yref (t)],

ûtt (x, t) + ûxxxx(x, t) + f (x)q⊤

d1
v̂d(t)

+γ1(x)[ûxt (1, t) − uxt (1, t)]

+γ2(x)[ûx(1, t) − ux(1, t)] = 0,

ûxx(0, t) = q⊤

d2
v̂d(t), ûxxx(0, t) = q⊤

d3
v̂d(t),

û(1, t) = 0,

ûxx(1, t) = −c1ûxt (1, t) + (c1 − k1)uxt (1, t)

−c2ûx(1, t) + (c2 − k2)ux(1, t) + m⊤
v v̂(t),

(43)

where h(x) is the classical solution of (31), kd, kr are chosen so
that Sd − kd dh⊤

dx |x=1 and Sr + krq⊤
r are Hurwitz, c1 > 0, c2 > 0,

k1 > 0, k2 > 0, γ1(x) = h⊤(x)kd, γ2(x) = h⊤(x)Sdkd.
We consider system (43) in the state space H = (Cn1 × Cn2 ×

H1)2 equipped with the inner product induced norm

∥(ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤∥
2
H

= ∥ξ1∥
2
Cn1 + ∥ξ2∥

2
Cn2 +

∫ 1

0
[|f ′′

1 (x)|
2
+ |g1(x)|2]dx

+ ∥η1∥
2
Cn1 + ∥η2∥

2
Cn2 +

∫ 1

0
[|f ′′

2 (x)|
2
+ |g2(x)|2]dx

+ k2|f ′

1(1)|
2
+ c2|f ′

2(1)|
2
,

∀ (ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤ ∈ H.

(44)

Define the system operator A of (43) by

A(ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤

= (Sdξ1, Srξ2, g1, −f (4)1 − fq⊤

d1
ξ1, Sdη1)

+kd(f ′

2(1) − f ′

1(1)), Srη2 + kr (q⊤
r η2 − q⊤

r ξ2),

g2, −f (4)2 − fq⊤

d1
η1 − γ1(g ′

2(1) − g ′

1(1))

−γ2(f ′

2(1) − f ′

1(1))
⊤,

∀ (ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤ ∈ D(A),

(45)

with

D(A) = {(ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤ ∈ H|

A(ξ1, ξ2, f1, g1, η1, η2, f2, g2)⊤ ∈ H,

f ′′

1 (0) = q⊤

d2
ξ1, f ′′′

1 (0) = q⊤

d3
ξ1,

f ′′

1 (1) = −k1g ′

1(1) − k2f ′

1(1, t) + m⊤(η⊤

1 , η⊤

2 )
⊤,

f ′′

2 (0) = q⊤

d2
η1, f ′′′

2 (0) = q⊤

d3
η1,

f ′′

2 (1) = −c1g ′

2(1) − c2f ′

2(1, t) + (c1 − k1)g ′

1(1)

+(c2 − k2)f ′

1(1) + m⊤(η⊤

1 , η⊤

2 )
⊤
}.
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Then, system (43) can be written as an abstract evolutionary
equation in H:

d
dt

(vd(t), vr (t), u(·, t), ut (·, t),

v̂d(t), v̂r (t), û(·, t), ût (·, t))⊤

= A(vd(t), vr (t), u(·, t), ut (·, t),
v̂d(t), v̂r (t), û(·, t), ût (·, t))⊤.

(46)

Now we state the main result of this paper.

Theorem 4.1. Assume N⊤

d (µi)
(
q⊤

d1
wi, q⊤

d2
wi, q⊤

d3
wi

)⊤

̸= 0(i =

1, 2, . . . , n1), where Nd(s) is defined in Lemma 3.2. Let h(x) be the
solution of (31). The kd is chosen so that Sd − kd(h⊤)′(1) is Hurwitz,
and c1 > 0, c2 > 0, k1 > 0, k2 > 0, γ1(x) = h⊤(x)kd, γ2(x) =

h⊤(x)Sdkd. For any initial value (vd(0), vr (0), u(·, 0), ut (·, 0), v̂d(0),
v̂r (0), û(·, 0), ût (·, 0))⊤ ∈ H, system (46) admits a unique bounded
solution (vd(t), vr (t), u(·, t), ut (·, t), v̂d(t), v̂r (t), û(·, t), ût (·, t))⊤ ∈

C(0, ∞;H). Moreover, the tracking error u(0, t) − yref (t) → 0
exponentially as t → ∞: There exist constants M > 0, ω > 0
such that

|u(0, t) − yref (t)| ≤ Me−ωt .

Proof. Define an invertible operator P : H → H by

P(vd(t), vr (t), u(·, t), ut (·, t), v̂d(t), v̂r (t), û(·, t), ût (·, t))⊤

= (vd(t), vr (t), u(·, t), ut (·, t), v̂d(t) − vd(t),
v̂r (t) − vr (t), û(·, t) − u(·, t), ût (·, t) − ut (·, t))⊤.

(47)

By the observer error (ṽd, ṽr , ũ, ũt ), we obtain an equivalent sys-
tem of (43):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇d(t) = Sdvd(t), v̇r (t) = Srvr (t),

d1(t) = q⊤

d1
vd(t), d2(t) = q⊤

d2
vd(t),

d3(t) = q⊤

d3
vd(t), yref (t) = q⊤

r vr (t),

utt (x, t) + uxxxx(x, t) + f (x)q⊤

d1
vd(t) = 0,

uxx(0, t) = q⊤

d2
vd(t), uxxx(0, t) = q⊤

d3
vd(t),

uxx(1, t) = −k1uxt (1, t) − k2ux(1, t)

+m⊤
v v(t) + m⊤ṽ(t), u(1, t) = 0,

˙̃vd(t) = Sdṽd(t) + kdũx(1, t),
˙̃vr (t) = (Sr + krq⊤

r )ṽr (t),

ũtt (x, t) + ũxxxx(x, t) + f (x)q⊤

d1
ṽd(t)

+γ1(x)ũxt (1, t) + γ2(x)ũx(1, t) = 0,

ũxx(0, t) = q⊤

d2
ṽd(t), ũxxx(0, t) = q⊤

d3
ṽd(t),

ũ(1, t) = 0, ũxx(1, t) = −c1ũxt (1, t) − c2ũx(1, t).

(48)

From Theorem 3.1, we know that the decoupled (ṽd, ṽr , ũ, ũt )⊤-
part is exponentially stable. In particular, ṽ(t) decays exponen-
tially. The (vd, vr , u, ut )⊤-part which is the same as system (7)
except one more term m⊤ṽ(t) in uxx(1, t) is governed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇d(t) = Sdvd(t), v̇r (t) = Srvr (t),

d1(t) = q⊤

d1
vd(t), d2(t) = q⊤

d2
vd(t),

d3(t) = q⊤

d3
vd(t), yref (t) = q⊤

r vr (t),

utt (x, t) + uxxxx(x, t) + f (x)q⊤

d1
vd(t) = 0,

uxx(0, t) = q⊤

d2
vd(t), uxxx(0, t) = q⊤

d3
vd(t),

uxx(1, t) = −k1uxt (1, t) − k2ux(1, t)

+m⊤
v v(t) + m⊤ṽ(t), u(1, t) = 0.

(49)

By the same transformation (8), we can find that e(x, t) is gov-
erned by{ett (x, t) + exxxx(x, t) = 0,
exx(0, t) = exxx(0, t) = e(1, t) = 0,
exx(1, t) = −k1ext (1, t) − k2ex(1, t) + m⊤ṽ(t).

(50)

We claim that system (50) is also exponentially stable. Indeed,
consider system (50) in the state space H1. Define the system
operator A2 by⎧⎪⎨⎪⎩
A2(f , g)⊤ = (g, −f (4))⊤, ∀ (f , g)⊤ ∈ D(A2),
D(A2) = {(f , g)⊤ ∈ H4(0, 1) × H2(0, 1)|

A2(f , g)⊤ ∈ H1, f ′′(0) = f ′′′(0) = 0,
f ′′(1) = −k1g ′(1) − k2f ′(1)}.

(51)

Then, system (50) can be written as an abstract evolutionary
equation in H1:

d
dt

(e(·, t), et (·, t))⊤

= A2(e(·, t), et (·, t))⊤ + B2m⊤ṽ(t),
(52)

where B2 = (0, −δ′(x − 1))⊤. It is well known A2 generates
an exponentially stable C0-semigroup eA2t on H1 (Gnedin, 1992).
Direct computations show that the adjoint operator A∗

2 of A2 is
given by⎧⎪⎨⎪⎩
A∗

2(f , g)
⊤

= (−g, f (4))⊤, ∀ (f , g)⊤ ∈ D(A∗

2),
D(A∗

2) = {(f , g)⊤ ∈ H4(0, 1) × H2(0, 1)|
A∗

2(f , g)
⊤

∈ H1, f ′′(0) = f ′′′(0) = 0,
f ′′(1) = k1g ′(1) − k2f ′(1)}.

(53)

For any (f , g)⊤ ∈ H1, B∗A∗−1(f , g)⊤ = f ′(1) which indicates that
B∗A∗−1 is bounded. The dual system is governed by⎧⎪⎨⎪⎩

ptt (x, t) + pxxxx(x, t) = 0,
pxx(0, t) = pxxx(0, t) = p(1, t) = 0,
pxx(1, t) = −k1pxt (1, t) − k2px(1, t),
y∗
o(t) = −pxt (1, t),

(54)

which is exponentially stable. Define the Lyapunov function

E∗(t) =
1
2

∫ 1

0
[p2t (x, t) + p2xx(x, t)]dx +

k2
2
p2x (1, t).

Differentiate E∗(t) along the solution of system (54) to yield

Ė∗(t) = −k1p2xt (1, t) ≤ 0. (55)

Integrating (55) with respect to t from 0 to T , we obtain∫ T

0
p2xt (1, t)dt ≤

1
k1

E(0), (56)

which together with the boundedness of B∗A∗−1 implies that B∗

is admissible for eA
∗t . As a result, B2 is admissible for eA2t (Weiss,

1989). Therefore, the solution of (52) can be written as

(e(·, t), et (·, t))⊤ = eA2t (e(·, 0), et (·, 0))⊤

+

∫ t

0
eA2(t−s)B2m⊤ṽ(s)ds,

(57)

which is also exponentially stable on H1 by the method in The-
orem 2 and Eq.(60) of Su, Guo, Wang, and Krstic (2017) because
ṽ(t) decays exponentially.

By the inverse transformation of (8), similar to the proof of
Theorem 2.1, system (49) admits a unique bounded solution in
Cn1 × Cn2 × H1. The tracking error is

u(0, t) − yref (t) = e(0, t) → 0 (58)

exponentially because system (50) decays exponentially. □
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Fig. 1. Displacements of PDEs’ part of closed-loop system (43).

5. Numerical simulation

In this section, we present some numerical simulations to il-
lustrate the effectiveness of the proposed feedback control. In the
closed-loop system (43), we choose the matrix of the exosystem
as

Sd =

(
0 −2

2 0

)
, Sr =

(
0 −4

4 0

)
, q⊤

d1
= (1, 2),

q⊤

d2 = (0, 2), q⊤

d3 = (2, 0), qr = (15, 25),

(59)

and the parameters are chosen to be c1 = 0.5, c2 = 1, k1 =

0.2, k2 = 0.5. For simplicity, set f (x) = 1, x ∈ (0, 1) and kr =

(−5, 1)⊤ which makes Sr +krqr stable. From Lemmas 2.1 and 3.1,
g(x) and h(x) can then be obtained by (15) and (31) respectively,
and we choose kd = (−4, 8)⊤ which makes Sd − kd(h⊤)′(1) stable
and the γ1(x) and γ2(x) can be obtained via boundary condition
of (24). The initial values are taken as:⎧⎪⎨⎪⎩
u0(x) = 3x + 5 cos(πx) + 2, u1(x) = 3 + 3 cos(πx),
û0(x) = 4 sin(πx), û1(x) = 3(x − 1) − 4 sin(πx),
vd(0) = (5, −2)⊤, vr (0) = (0, 1)⊤,

v̂d(0) = (6, −4)⊤, v̂r (0) = (1, 2)⊤.

(60)

The finite element method is applied to compute the solution
numerically. Let h = 0.1 and N = 1/h. We give [0, 1] an N
equipartition with nodes xi = ih, i = 0, 1, 2, . . . ,N . On the node
xi, two finite element basis functions are selected as

φ2i+1(x) =

⎧⎨⎩(x − xi)(x − xi−1)2/h2, x ∈ [xi−1, xi],
(x − xi)(x − xi+1)2/h2, x ∈ [xi, xi+1],

0, others,

φ2i+2(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(h − xi + x)2(2(xi − x) + h)

h3 , x ∈ [xi−1, xi],

(h + xi − x)2(2(x − xi) + h)
h3 , x ∈ [xi, xi+1],

0, others.
For node xN = 1, only one basis function φ2N+1 is selected.
There are totally 2N + 1 basis functions which satisfy the natural
boundary conditions φi(1) = 0, i = 1, 2 · · · , 2N + 1. We consider
the Galerkin approximation solution of the system (43) in the fi-
nite dimensional space generated by these basis functions, which
takes the form

uN (x, t) =
∑2N+1

i=1 ai(t)φi(x), ûN (x, t) =

2N+1∑
i=1

bi(t)φi(x),

where ai(t) and bi(t) are determined by standard finite element
Galerkin method to satisfy some ODEs. To solve the ODEs, the step
of time is set to be 0.01.

Figs. 1(a) and 1(b) display the solutions of PDE part u(x, t)
and û(x, t) in the closed-loop system (43). It is seen that the
displacement of u(x, t) and û(x, t) is bounded and û(x, t) can track

Fig. 2. Trajectory of ODEs’ part of closed-loop system (43).

Fig. 3. Control trajectory and boundary tracking performance in closed-loop
system (43).

Fig. 4. Displacements of PDEs’ part of closed-loop system (43) with output noise.

u(x, t) well after t = 20. Fig. 2(a) indicates that the estimation
v̂d(t) can track vd(t) after t = 7. Similarly from Fig. 2(b), v̂r (t)
converges to vr (t) rapidly because this part is decoupled from
others. Fig. 3(a) presents the trajectory of the controller. Fig. 3(b)
displays the tracking performance of the boundary displacement
u(0, t). After t = 20, u(0, t) tracks the reference signal yref (t)
satisfactorily which illustrates the effectiveness of the proposed
output regulator.

When the measured output signal is contaminated by external
noise, we consider the case where the first component of the
measurement becomes ux(1, t) + 2 cos(10t) with high frequency
noise 2 cos(10t). The counterparts of Figs. 1–3 become Figs. 4–6
respectively. It is seen from Fig. 5(a) that the tracking perfor-
mance of exosystem is affected by output noise apparently. But
the output tracking works well from Fig. 6(b).

6. Concluding remarks

In this paper, we develop an output feedback control scheme
to solve output regulation for an Euler–Bernoulli beam equa-
tion, where the performance output is on the left end which
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Fig. 5. Trajectory of ODEs’ part of closed-loop system (43) with output noise.

Fig. 6. Control trajectory and boundary tracking performance in closed-loop
system (43) with output noise.

is non-collocated with the control at the right end. This is a
difficult case because the boundary control at boundary x = 1
must go through the entire interval [0, 1] to reach the regulated
boundary x = 0 to take effect. The basic idea is to design an
observer to recover the states of the plant and the disturbance.
We suppose all disturbance and reference signals are produced by
a finite-dimensional exosystem which covers general harmonic
disturbances, and the harmonic disturbance can be considered
as an approximation of periodic signal. This is also the general
formulation for disturbance in the framework of the internal
model principle.

As indicated in introduction, a regulation problem for a one-
dimensional wave equation suffered from harmonic boundary
disturbance with unknown amplitudes was consider recently
in Guo et al. (2017). The method adopted there is the adaptive
control method to estimate all amplitudes. Compared with (Guo
et al., 2017), there are some advantages by the approach devel-
oped in this paper: (a) the order of controller is much lower
than (Guo et al., 2017) because (Guo et al., 2017) needs to
estimate all amplitudes of harmonic disturbance; (b) the ex-
ponentially convergence is much faster than (Guo et al., 2017)
where only asymptotically convergence was possible. This can
even be seen from numerical simulations in both papers because
in Guo et al. (2017), it must wait all the amplitudes to be con-
vergent before the output being convergent; (c) our disturbance
allows in-domain and boundary disturbances, which is much
complicated than a single disturbance discussed in Guo et al.
(2017). Finally, the reference signal of Guo et al. (2017) is zero
(output regulation), while our reference signal is usually not zero
(output tracking).

More interesting problem is the output regulation for general
bounded reference signal and disturbances like paper (Jin & Guo,
2018), which is considered as future work.

Appendix. Proof of three lemmas

Due to the page limitation, we put the proofs of Lemmas 2.1,
3.1 and 3.2 into

‘‘http://lsc.amss.ac.cn/~bzguo/papers/Jinguobeam.pdf’’.
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