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a b s t r a c t

In this paper, we are concerned with the boundary feedback stabilization of a one-dimensional Euler–
Bernoulli beam equation with the external disturbance flowing to the control end. The active disturbance
rejection control (ADRC) and sliding mode control (SMC) are adopted in investigation. By the ADRC ap-
proach, the disturbance is estimated through an extended state observer and canceled online by the ap-
proximated one in the closed-loop. It is shown that the external disturbance can be attenuated in the
sense that the resulting closed-loop systemunder the extended state feedback tends to any arbitrary given
vicinity of zero as the time goes to infinity. In the second part, we use the SMC to reject the disturbance
by removing the condition in ADRC that the derivative of the disturbance is supposed to be bounded. The
existence and uniqueness of the solution for the closed-loop via SMC are proved, and the monotonicity of
the ‘‘reaching condition’’ is presentedwithout the differentiation of the slidingmode function, forwhich it
may not always exist for the weak solution of the closed-loop system. The numerical simulations validate
the effectiveness of both methods.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the past three decades, the Euler–Bernoulli beam equation
has been a representative model for the control of systems gov-
ernedbypartial differential equations (PDEs). This is spurred by the
outer space applications, such as flexible linkmanipulators and an-
tennas, for which the suppression of the vibration by the boundary
feedback is a central issue.We refer Han, Benaroya, andWei (1999)
for engineering interpretation of the beam equations.

There are many works contributed to the stabilization of the
beam equation. The examples can be found in Chen, Delfour, Krall,
and Payre (1987), Guo and Yu (2001), He, Ge, How, Choo, and Hong
(2011), He, Zhang, and Ge (2012), Luo, Guo, and Morgul (1999),
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Luo, Kitamura, and Guo (1995), Nguyen and Hong (2012) and the
references therein. However, most of the control designs for the
beam equation are collocated control based on the passive princi-
ple and do not take the disturbance into account. The earlier non-
collocated control design for the beam equation is Luo and Guo
(1997). Recently, a powerful backsteppingmethod is introduced to
stabilize the Euler–Bernoulli beam equation via completely non-
collocated control (Smyshlyaev, Guo, & Krstic, 2009). Once again,
the external disturbance is not considered in these works.

There are several different approaches to deal with the un-
certainties in system control. The sliding mode control (SMC)
that is inherently robust is the most popular one that has been
studied widely for both finite-dimensional systems and infinite-
dimensional counterparts. For the latter, many works require the
input and output operators are to be bounded (Pisano, Orlov,
& Usai, 2011). Recently, a boundary SMC controller for a one-
dimensional heat equation with boundary input disturbance is de-
signed in Cheng, Radisavljevic, and Su (2011). In Guo, Guo, and
Shao (2011), Krstic (2010), the adaptive controls are designed
for one-dimensional wave equations in which the uncertainties
are the unknown parameters in disturbance. Another powerful
method in dealing with uncertainties is based on Lyapunov func-
tional approach. In Ge, Zhang, and He (2001), a boundary con-
trol is designed by the Lyapunov method for an Euler–Bernoulli
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beam equation with spatial and boundary disturbance. Generally
speaking, there are not so many works, to the best of our knowl-
edge, to the stabilization of the beam equation with disturbance.

The active disturbance rejection control (ADRC), as an uncon-
ventional design strategy,was first proposed byHan in 1990s (Han,
2009). It has been now acknowledged to be an effective control
strategy for lumped parameter systems in the absence of proper
models and in the presence of model uncertainty. Its power has
been demonstrated by many engineering practices such as mo-
tion control, tension control in web transport and strip precessing
systems, DC–DC power converts in power electronics, continuous
stirred tank reactor in chemical and process control,micro-electro-
mechanical systems gyroscope (Gao, 2006; Guo & Zhao, 2011; Han,
2009). For more details on practical perspectives, we refer to a
nice recent review paper Zheng and Gao (2010). The main idea of
the ADRC is using the estimation/cancellation strategy in dealing
with the uncertainties. Its convergence has been proved for finite-
dimensional systems in Guo and Zhao (2011). Very recently, this
approach is successfully applied to the attenuation of disturbance
for a one-dimensional anti-stable wave equation in Guo and Jin
(2013).

In this paper, we are concerned with the stabilization of a one-
dimensional Euler–Bernoulli beam equation with uncertainty at
the input boundary via both SMC and ADRC approaches. The sys-
tem is governed by the following PDEs:

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,
uxxx(1, t) = U(t)+ d(t), t > 0,

(1)

where u(x, t) is the transverse displacement of the beam at time
t and position x, U is the control input through shear force, d is
the external disturbance at the control end. This one end fixed and
another end free beam equation (1) models typically the vibration
control of a single link flexible robot arm with the external distur-
bance in the free (working) end (see e.g., Han et al., 1999, Luo &
Guo, 1997).

It is well-known that when there is no disturbance, the collo-
cated feedback control U(t) = kut(1, t), k > 0 will stabilize
exponentially the system (1) (Chen et al., 1987). However, this sta-
bilizer is not robust to the external disturbance. For instance, when
d(t) = d is a constant, the system (1) under the feedback U(t) =

kut(1, t) has a solution (u, ut) =

−

d
2x

2
+

d
6x

3, 0

. Therefore, in

the presence of the disturbance, the control must be re-designed.
We proceed as follows. In Section 2, we use the ADRC approach

to attenuate the disturbance by designing an estimator to estimate
the disturbance. After canceling the disturbance by the approxi-
mated one, we design the collocated like feedback controller. The
closed-loop system is shown to tend any arbitrary given vicinity of
zero as the time goes to infinity. Section 3 is devoted to the distur-
bance rejection by the SMC approach, in which the boundedness
of the disturbance required in ADRC is removed. The existence and
uniqueness of the solution are proved, and themonotonicity of the
‘‘reaching condition’’ is presentedwithout the differentiation of the
sliding mode function, for which it does not always exist for the
weak solution of the closed-loop system. The numerical simula-
tions are presented in Section 4 for illustration of the effectiveness
of both methods.

2. Feedback via active disturbance rejection control

In this section, we suppose that the unknown disturbance d
and its derivative ḋ are bounded measurable. That is, |d(t)| 6 M,
|ḋ(t)| 6 M for some M > 0 and all t > 0. The ADRC approach
is used to attenuate the disturbance, which is an estimation/
cancellation strategy. Let

y1(t) =

 1

0
x2ut(x, t)dx, y2(t) = ux(1, t), t > 0. (2)

We consider the system (1) in the energy Hilbert state space de-
fined by

H = {(f , g)⊤ ∈ H2(0, 1)× L2(0, 1)|f (0) = f ′(0) = 0}, (3)

where the inner product induced norm is given by

∥(f , g)⊤∥
2

=

 1

0
[|f ′′(x)|2 + |g(x)|2]dx, ∀(f , g)⊤ ∈ H .

Define the operator A as follows:A(f , g)⊤ = (g,−f (4))⊤, ∀(f , g)⊤ ∈ D(A),
D(A) = {(f , g)⊤ ∈ H ∩ (H4(0, 1)× H2(0, 1))|

g(0) = g ′(0) = f ′′(1) = f ′′′(1) = 0}.
(4)

Then it is easy to verify that A∗
= −A in H . The solution of (1) is

equivalent to

d
dt


u
ut


= A


u
ut


+ B[U(t)+ d(t)],

B = (0,−δ(x − 1))⊤.

It is well-known that B is admissible to the semigroup generated
by A (Weiss, 1989). So for any initial value (u(·, 0), ut(·, 0))⊤ ∈

H,U ∈ L2loc(0,∞), there exists a unique (weak) solution (u,ut)
⊤

∈

H to (1), which satisfies

d
dt


u
ut


,


f
g


=


u
ut


,A∗


f
g


− g(1)[U(t)+ d(t)],

∀(f , g)⊤ ∈ D(A∗),

that is,

d
dt

 1

0
[uxx(x, t)f ′′(x)+ ut(x, t)g(x)]dx

=

 1

0
[−uxx(x, t)g ′′(x)+ ut(x, t)f (4)(x)]dx

− g(1)[U(t)+ d(t)], ∀ (f , g)⊤ ∈ D(A∗).

Let (f , g)⊤ = (0, x2)⊤ ∈ D(A∗) = D(A). By the equalities above,
it follows that

ẏ1(t) =
d
dt

 1

0
x2ut(x, t)

= −

 1

0
uxx(x, t)g ′′(x)dx − g(1)[U(t)+ d(t)]

= −[U(t)+ d(t)] − 2ux(1, t). (5)

Design the high gain estimator as follows (Guo & Zhao, 2011):
˙̂y(t) = −(U(t)+ d̂(t))− 2y2(t)−

1
ε
(ŷ(t)− y1(t)),

˙̂d(t) =
1
ε2
(ŷ(t)− y1(t)),

(6)

where ε > 0 is the design small parameter, and d̂ is regarded as an
approximation of d. Let

ỹ(t) = ŷ(t)− y1(t), d̃(t) = d̂(t)− d(t) (7)
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be the errors. Then ỹ, d̃ satisfy

d
dt


ỹ(t)
d̃(t)


=

−
1
ε

−1

1
ε2

0

 
ỹ(t)
d̃(t)



+


0

−1


ḋ(t) = A


ỹ(t)
d̃(t)


+ Bḋ(t). (8)

The collocated like state feedback controller to (1) is designed as
follows:

U(t) = kut(1, t)− d̂(t), k > 0. (9)

It is clearly seen that the control design in (9) is an estimation/
cancellation strategy. The second term in (9) is used to eliminate,
in real time, the effect of the disturbance. The first term is the usual
control thatmakes the closed-loop system (1) exponentially stable
without the disturbance (Chen et al., 1987). Under the feedback (9),
the closed-loop system of (1) becomes

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,
uxxx(1, t) = kut(1, t)− d̂(t)+ d(t), t > 0,

˙̂y(t) = −kut(1, t)− 2y2(t)−
1
ε
(ŷ(t)− y1(t)), t > 0,

˙̂d(t) =
1
ε2
(ŷ(t)− y1(t)), t > 0.

(10)

Remark 2.1. The choice of feedback again k in (9) is a complicated
problem. From numerical simulation, there is an optimal feedback
gain k, but it is very hard to give an analytic analysis. We refer the
numerical result to Wang and Yao (2000).

Using the error variables (ỹ, d̃) defined in (7), we can write the
equivalent system of (10) as follows:

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,
uxxx(1, t) = kut(1, t)− d̃(t), t > 0,

˙̃y(t) = −
1
ε
ỹ(t)− d̃(t), t > 0,

˙̃d(t) =
1
ε2

ỹ(t)− ḋ(t), t > 0.

(11)

We can solve (ỹ, d̃), the ODE part of (11) separately:
ỹ(t)
d̃(t)


= eAt


ỹ(0)
d̃(0)


+

 t

0
eA(t−s)Bḋ(s)ds, (12)

where A, B are defined in (8). A simple exercise shows that

eAtB =


λ1λ2

λ1 − λ2
ε2(eλ1t − eλ2t),

λ2eλ1t − λ1eλ2t

λ1 − λ2

⊤

,

where

λ1 =
1
2ε

[1 +
√
3i], λ2 =

1
2ε

[1 −
√
3i]

are eigenvalues of A. By this fact, we see that the solution (ỹ, d̃) of
(12) satisfies (taking the uniform boundedness of ḋ into account)

(ỹ(t), d̃(t)) → 0 as t → ∞, ε → 0. (13)
Remark 2.2. It is seen from (11) that (ỹ, d̃) is an external model
for the ‘‘u part’’ of the system. The approach is very similar to
the external model principle in Medvedev and Hillerström (1995)
but it is different to the internal model principle in Immonen and
Pohjolainen (2006) where the disturbance is produced from an
exogenous system, and the dynamical behavior of the disturbances
must be similar to that of the reference signals.

Now we consider the ‘‘u part’’ of the system (11) which is re-
written as

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,
uxxx(1, t) = kut(1, t)− d̃(t), t > 0.

(14)

Define operator A as

A(f , g)⊤ = (g,−f (4))⊤, ∀(f , g)⊤ ∈ D(A),

D(A) = {(f , g)⊤ ∈ H ∩ (H4(0, 1)× H2(0, 1))|g(0)

= g ′(0) = 0, f ′′(1) = 0, f ′′′(1) = kg(1)}.

(15)

With the operator A at hand, we can write system (14) into an
evolutionary equation in H :

d
dt


u
ut


= A


u
ut


+ Bd̃, B =


0

δ(x − 1)


. (16)

It is well-known that A generates an exponential stable C0-semi-
group eAt on H (Chen et al., 1987; Guo & Yu, 2001). Now we show
that B is admissible for eAt (Weiss, 1989). Actually, a straightfor-
ward computation givesA∗(ϕ, ψ)⊤ = (−ψ, ϕ(4))⊤, ∀(ϕ, ψ)⊤ ∈ D(A∗),

D(A∗) = {(ϕ, ψ)⊤ ∈ H ∩ (H4(0, 1)× H2(0, 1))|ψ(0)
= ψ ′(0) = 0, ϕ′′(1) = 0, ϕ′′′(1) = −kψ(1)}.

(17)

The dual system to (14) is
u∗

tt(x, t)+ u∗

xxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u∗(0, t) = u∗

x (0, t) = 0, t > 0,
u∗

xx(1, t) = 0, t > 0,
u∗

xxx(1, t) = ku∗

t (1, t), t > 0,
yo(t) = u∗

t (1, t), t > 0.

(18)

Since A generates a C0-semigroup solution, and so does for A∗.
Hence system (18) associates with a C0-semigroup solution. Define
the energy function to (18) as

E(t) =
1
2

 1

0
[u∗2

xx (x, t)+ u∗2
t (x, t)]dx.

Differentiate E(t)with respect to t along the solution to (18) to ob-
tain

Ė(t) = −ku∗2
t (1, t). (19)

Integrating from 0 to T with respect to t in the above equation, we
have T

0
u∗2
t (1, t)dt =

1
k
(E(0)− E(T )) 6

1
k
E(0), ∀T > 0. (20)

On the other hand,

A∗−1

ϕ(x)
ψ(x)


=


G1(x)+ G2(x)

−ϕ(x)


,

G1(x) =
k(x3 − 3x2)ϕ(1)

6
,

G2(x) =

 x

0

 y

0

 1

z

 1

ξ

ψ(τ)dτdξdzdy,

B∗A∗−1

ϕ
ψ


= −ϕ(1).

(21)
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So B∗A∗−1 is bounded from H to C. This together with (20) shows
that B∗ is admissible for eA∗t , and so is B for eAt . By Weiss (1989),
it follows that for any initial value (u(·, 0), ut(·, 0))⊤ ∈ H , there
exists a unique solution (u(·, t), ut(·, t))⊤ ∈ H provided that d̃ ∈

L2loc(0,∞). The solution can be written as
u(·, t)
ut(·, t)


= eAt


u(·, 0)
ut(·, 0)


+

 t

0
eA(t−s)Bd̃(s)ds. (22)

By (13), for any given ε0 > 0, there exist t0 > 0 and ε1 > 0 such
that |d̃(t)| < ε0 for all t > t0 and 0 < ε < ε1. We rewrite the
solution of (22) as

u(·, t)
ut(·, t)


= eAt


u(·, 0)
ut(·, 0)


+ eA(t−t0)

×

 t0

0
eA(t0−s)Bd̃(s)ds +

 t

t0
eA(t−s)Bd̃(s)ds. (23)

The admissibility of B implies that t

0
eA(t−s)Bd̃(s)ds

2

H

6 Ct∥d̃∥2
L2loc(0,t)

6 t2Ct∥d̃∥2
L∞(0,t), ∀d̃ ∈ L∞(0,∞) (24)

for some constant Ct that is independent of d̃. Since eAt is exponen-
tially stable, it follows from Proposition 2.5 of Weiss (1989) that t

t0
eA(t−s)Bd̃(s)ds

 =

 t

0
eA(t−s)B(0 �

t0
d̃)(s)ds


6 L∥d̃∥L∞(0,∞) 6 Lε0, (25)

where L is a constant that is independent of d̃, and

(u�
τ
v)(t) =


u(t), 0 6 t 6 τ ,
v(t − τ), t > τ.

(26)

Suppose that ∥eAt
∥ 6 L0e−ωt for some L0, ω > 0. By (23), (24), and

(25), we have
u(·, t)
ut(·, t)

 6 L0e−ωt


u(·, 0)
ut(·, 0)

 + L0Ct0

× e−ω(t−t0)∥d̃∥L∞(0,t0) + Lε0. (27)

As t → ∞, the first two terms of (27) tend to zero. The result is
then proved by the arbitrariness of ε0.

We summarize the above as the following theorem.

Theorem 2.1. Suppose that both d and ḋ are bounded measurable.
Then for any initial value (u(·, 0), ut(·, 0))⊤ ∈ H , the closed-loop
system (28) of (1) following

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,
uxxx(1, t) = kut(1, t)− d̂(t)+ d(t), t > 0,
˙̂y(t) = −kut(1, t)− 2ux(1, t)

−
1
ε


ŷ(t)−

 1

0
x2ut(x, t)dx


, t > 0,

˙̂d(t) =
1
ε2


ŷ(t)−

 1

0
x2ut(x, t)dx


, t > 0,

(28)

admits a unique solution (u, ut)
⊤

∈ C(0,∞; H). Moreover, the so-
lution of system (28) tends to any arbitrary given vicinity of zero as
t → ∞, ε → 0.
3. Feedback via sliding mode control

In this section, we use the SMC to reject the disturbance by
removing the condition that ḋ is supposed to be bounded in ADRC.
That is, in this section, the disturbance is assumed to satisfy |d(t)| 6
M for all t > 0 for some M > 0 only.

Choose the sliding surface

S =


(f , g)⊤ ∈ H | f (1)−

 1

0
k(x)g(x)dx

+ 2
 1

0
k(x)f (x)dx = 0


, (29)

which is a closed-subspace in H , wherek(4)(x)+ 4k(x) = 0, 0 < x < 1,
k(0) = k′(0) = k′′(1) = 0,
k′′′(1) = 2, k(1) < 0.

(30)

The solution to (30) is found explicitly as (Polyanin & Zaitsev,
1995, p. 615)

k(x) = C1[cosh x sin x − sinh x cos x] + C2 sinh x sin x,

C1 =
cosh 1 cos 1

cos2 1 + cosh2 1
,

C2 = −
(sinh 1 cos 1 + cosh 1 sin 1)

cos2 1 + cosh2 1
,

k(1) =
sin 2 − sinh 2

2(cos2 1 + cosh2 1)
< 0.

(31)

The corresponding sliding mode function is then

S(t) = u(1, t)−

 1

0
k(x)ut(x, t)dx + 2

 1

0
k(x)u(x, t)dx. (32)

On the sliding surface S(t) = 0, the system (1) becomes
utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,

u(1, t) =

 1

0
k(x)ut(x, t)dx − 2

 1

0
k(x)u(x, t)dx, t > 0.

(33)

It is a trivial exercise to show that in the sliding surface S, sys-
tem (33) associates with a C0-semigroup of contractions solution,
which is displayed by the dissipativity of the following function
E0(t):

E0(t) =
1
2

 1

0
[u2

t (x, t)+ u2
xx(x, t)]dx,

ρ0(t) =

 1

0
xut(x, t)ux(x, t)dx.

(34)

Actually, differentiating E0(t) and ρ0(t) along the solution of sys-
tem (33) gives

Ė0(t) = −ut(1, t)uxxx(1, t) = k(1)u2
xxx(1, t) 6 0,

ρ̇0(t) = −uxxx(1, t)ux(1, t)−
3
2

 1

0
u2
xx(x, t)dx

+
1
2
u2
t (1, t)−

1
2

 1

0
u2
t (x, t)dx.

(35)
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Then for sufficiently small δ > 0, it has

d
dt
(E0(t)+ δρ0(t)) 6 −γ E0(t), (36)

for someγ > 0. This shows that system (33) is exponentially stable
in S.

Next we seek the finite ‘‘reaching condition’’ by designing the
sliding mode feedback. Differentiating the sliding surface function
formally gives

Ṡ(t) = ut(1, t)−

 1

0
k(x)utt(x, t)dx + 2

 1

0
k(x)ut(x, t)dx

= ut(1, t)+ k(1)uxxx(1, t)− 2S(t)

= ut(1, t)+ k(1)(U(t)+ d(t))− 2S(t). (37)

It is seen from above that if we choose the controller

U(t) = −k−1(1)[ut(1, t)− 2S(t)]

+ (M + η)sign(S(t)), η > 0, (38)

then it has

S(t)Ṡ(t) 6 k(1)η|S(t)|, (39)

which is just the finite ‘‘reaching condition’’ since k(1)η < 0. How-
ever, we do not know if Ṡ always exists which is remarkably differ-
ent to the ordinary differential equation systems. Also, comparing
the controller (38) with (9) in ADRC, we see that the energy of the
controller in SMC is much higher than that in ADRC because in any
circumstances, the controller (38) copes with the worst case of the
disturbance. In other words, the controller for d(t) is the same as
that for d(t) = M .

Under the state feedback controller (38), the closed-loop system
of (1) is

utt(x, t)+ uxxxx(x, t) = 0, x ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = 0, t > 0,
uxx(1, t) = 0, t > 0,

uxxx(1, t) = −k−1(1)[ut(1, t)− 2S(t)]
+ (M + η)sign(S(t))+ d(t)

= −k−1(1)ut(1, t)+ 2k−1(1)S(t)+ d̃(t), t > 0,

(40)

where S(t) is defined by (32), and

d̃(t) = (M + η)sign(S(t))+ d(t). (41)

Define the operator A0 as follows:

A0(f , g)⊤ = (g,−f (4))⊤, ∀(f , g)⊤ ∈ D(A0),

D(A0) =


(f , g)⊤ ∈ H ∩ (H4(0, 1)× H2(0, 1))| g(0)

= g ′(0) = 0, f ′′(1) = 0, f ′′′(1) = −k−1(1)g(1)

+ 2k−1(1)

f (1)−

 1

0
k(x)g(x)dx

+ 2
 1

0
k(x)f (x)dx


.

(42)

Then system (40) can be written as
d
dt
(u(·, t), ut(·, t))⊤ = A0(u(·, t), ut(·, t))⊤ + B0d̃(t),

B0 = (0,−δ(x − 1))⊤. (43)

Lemma 3.1. Let A0 be defined by (42). Then A0 generates a C0-
semigroup on H .
Proof. For any (f , g)⊤ ∈ D(A0), it is computed that

Re

A0(f , g)⊤, (f , g)⊤


= −Re f ′′′(1)g(1) = k−1(1)|g(1)|2 − 2k−1(1)

× Re

f (1)−

 1

0
k(x)g(x)dx + 2

 1

0
k(x)f (x)dx


g(1)

6 −k−1(1)
f (1)−

 1

0
k(x)g(x)dx + 2

 1

0
k(x)f (x)dx

2
6 −4k−1(1)

 1

0
|f ′′(x)|2dx +

 1

0
k2(x)dx

 1

0
|g(x)|2dx

+ 4
 1

0
k2(x)dx

 1

0
|f ′′(x)|2dx


6 L1∥(f , g)∥2

for some L1 > 0 that is independent of (f , g)⊤, where we used the
fact |f (x)| 6

 1
0 |f ′′(x)|2dx for any x ∈ [0, 1]. So for any M1 > L1,

A0 − M1 is dissipative in H .
A direct computation shows that A∗

0 , the adjoint of A0, is given
by

A∗

0(f (x), g(x))
⊤

= (−g(x)+ k−1(1)g(1)k(x),

f (4)(x)+ 2k−1(1)g(1)k(x))
⊤
,

D(A∗

0) =

(f , g)⊤ ∈ H ∩ (H4(0, 1)× H2(0, 1))|g(0)

= g ′(0) = 0, f ′′(1) = 0, f ′′′(1) = k−1(1)g(1)

.

(44)

Then for any (f , g)⊤ ∈ D(A∗

0),

Re

A∗

0(f , g)
⊤, (f , g)⊤


= k−1(1)|g(1)|2 − 2k−1(1)

× Re

f (1)−

 1

0
k(x)g(x)dx + 2

 1

0
k(x)f (x)dx


g(1)

6 L1∥(f , g)∥2.

So, A0 − M1 and (A0 − M1)
∗ are dissipative in H . By Lemma 3.2

below A0 is a closed operator. This together with Corollary 4.4 of
Pazy (1983) on p. 15 shows thatA0−M1 generates a C0-semigroup
of contractions on H . Therefore, A0 generates a C0-semigroup
on H . �

Lemma 3.2. Let A0,B0 be defined by (42) and (43) respectively.
Then B0 is admissible to the semigroup generated by A0.

Proof. For any (ϕ, ψ)⊤ ∈ H , find that (f , g)⊤ ∈ D(A∗

0) such that

(A∗

0 − 2M2
2 )(f , g)

⊤
= (ϕ, ψ)⊤, (45)

where M2 > 0 is a constant. Then from the definition of A∗

0
and the boundary conditions on the left hand in (44), we can get
g(x) = k−1(1)g(1)k(x)−2M2

2 f (x)−ϕ(x), and (Polyanin & Zaitsev,
1995, p. 654)

f (x) = C3[cosh(M2x) sin(M2x)− sinh(M2x) cos(M2x)]
+ C4 sinh(M2x) sin(M2x)

−
1

4M3
2

 x

0
[sinh(M2(x − y)) cos(M2(x − y))

− cosh(M2(x − y)) sin(M2(x − y))]h(y)dy, (46)

where

h(x) = ψ(x)− 2M2
2ϕ(x)+ 2(M2

2 − 1)k−1(1)g(1)k(x). (47)

For simplicity, we choose 2M2
2 > M1 such that cosM2 = 0, sinM2

= 1. Taking the boundary condition on the right hand in (44) and
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f (1) = −
1

2M2
2
ϕ(1) into account, we can get

g(1) = L2


−

1
M2

 1

0
sinh(M2(1 − y))

× cos(M2(1 − y))(ψ(y)− 2M2
2ϕ(y))dy

+ tanhM2

 1

0
cosh(M2(1 − y)) cos(M2(1 − y))

× (ψ(y)− 2M2
2ϕ(y))dy + ϕ(1)


,

C3 = −
1

4M3
2 coshM2

 1

0
[cosh(M2(1 − y)) sin(M2(1 − y))

+ sinh(M2(1 − y)) cos(M2(1 − y))]h(y)dy,

C4 =
1

2M2
2 coshM2

 1

0
cosh(M2(1 − y))

× cos(M2(1 − y))h(y)dy − k−1(1)g(1)


,

(48)

where

L2 =


2(M2

2 − 1)k−1(1)
M2

 1

0
sinh(M2(1 − y))

× cos(M2(1 − y))k(y)dy − 2(M2
2 − 1)k−1(1)

× tanhM2

 1

0
cosh(M2(1 − y)) cos(M2(1 − y))

× k(y)dy + tanhM2k−1(1)

−1

. (49)

Therefore, (A∗

0 − 2M2
2 )

−1 exists and is bounded, and

B∗

0 (A
∗

0 − 2M2
2 )

−1(ϕ, ψ)⊤ = −g(1),

which is bounded from H to C. Consider the dual system:

d
dt
(p(·, t), q(·, t))⊤ = A∗

0(p(·, t), q(·, t))
⊤.

Then we have
pt(x, t) = −q(x, t)+ k−1(1)q(1, t)k(x),
qt(x, t) = p(4)(x, t)+ 2k−1(1)q(1, t)k(x),
p(0, t) = p′(0, t) = q(0, t) = q′(0, t) = 0,
p′′(1, t) = 0, p′′′(1, t) = k−1(1)q(1, t),
y0(t) = −q(1, t).

(50)

Define

F(t) =
1
2

 1

0
[q2(x, t)+ p2xx(x, t)]dx.

Since A0 generates a C0-semigroup on H , and so does A∗

0 , there
exist constants ω,Mω such that F(t) 6 MωeωtF(0) for all t > 0.
Finding the derivative of F(t) along the solution of (50) gives

k−1(1)q2(1, t) = Ḟ(t)− 2k−1(1)
 1

0
k(x)q(x, t)dx

× q(1, t)− k−1(1)
 1

0
k′′(x)p′′(x, t)dxq(1, t),
which implies

q2(1, t) 6 k(1)Ḟ(t)+ 4
 1

0
k(x)q(x, t)dx

2

+
1
4
q2(1, t)

+

 1

0
k′′(x)p′′(x, t)dx

2

+
1
4
q2(1, t)

6 k(1)Ḟ(t)+ 4
 1

0
k2(x)dx

 1

0
q2(x, t)dx

+

 1

0
k′′2(x)dx

 1

0
p′′2(x, t)dx +

1
2
q2(1, t).

Hence for any given T > 0, we have

1
2

 T

0
q2(1, t)dt 6 k(1)[F(T )− F(0)]

+ 4
 T

0

 1

0
k2(x)dx

 1

0
q2(x, t)dxdt

+

 T

0

 1

0
k′′2(x)dx

 1

0
p′′2(x, t)dxdt

6 DT F(0),

where DT > 0 is independent of F(0). This fact together with
the boundedness of B∗

0 (A
∗

0 − 2M2
2 )

−1 completes the proof (Weiss,
1989). �

Weare now in a position to show themain result of this section.

Theorem 3.1. Suppose that d is bounded measurable and S(t) is de-
fined by (32). Then for any (u(·, 0), ut(·, 0))⊤ ∈ H, S(0) ≠ 0, there
exists a t0 > 0 such that (40) admits a unique solution (u, ut)

⊤
∈

C(0, t0; H) and S(t) = 0 for all t > t0. Moreover, S(t) is continuous,
monotone in [0, t0]. On the sliding surface S(t) = 0, the system (1) be-
comes (33) which is exponentially stable.
Proof. Weneed only to prove that S(t) is continuous, monotone in
[0, t0]. Suppose without lost of generality that S(0) > 0 since the
proof for S(0) < 0 is similar.

Since by Lemma 3.2, B0 is admissible for eA0t , the solution to
the system (40) can be written as

(u(·, t), ut(·, t))⊤ = eA0t(u(·, 0), ut(·, 0))⊤

+

 t

0
eA0(t−s)B0d̃(s)ds. (51)

(51) simply means, for all (f , g)⊤ ∈ D(A∗

0), that

d
dt

 1

0
[uxx(x, t)f ′′(x)+ ut(x, t)g(x)]dx

=

 1

0
{uxx(x, t)[−g ′′(x)+ k−1g(1)k′′(x)]

+ ut(x, t)[f (4)(x)+ 2k−1(1)g(1)k(x)]}dx. (52)

Substitute (f , g)⊤ = (k, 2k)⊤ ∈ D(A∗

0) into (52) to obtain

d
dt


−2u(1, t)+ 2

 1

0
(k(x)ut(x, t)− 2k(x)u(x, t))dx


= −2k(1)d̃(t), (53)

which is

Ṡ(t) = k(1)d̃(t) for S(t) ≠ 0. (54)

This shows that S is continuous in the interval where S ≠ 0.
Moreover, (39) holds true. Therefore, there exists a t0 > 0 such that
S(t) is monotone in [0, t0] and S(t) = 0 for all t > t0. In particular,
if S(0) = 0, then t0 = 0. This completes the proof. �
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Fig. 1. Displacements and tracking of disturbance with d(t) = 4 sin(2t2) (unbounded derivative).
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Fig. 2. Displacements and tracking of disturbance with d(t) = 4 sin(2t) (bounded derivative).
4. Numerical simulation

In this section, the finite difference method is applied to com-
pute the displacements numerically for both ADRC and SMC to
illustrate the effect of the controllers. Fig. 1(a) and (b) show the
displacements of system (40) and (10) respectively. Fig. 1(c) plots
the disturbance d and its tracked signal d̂ by the extended state
observer. Here the steps of space and time are taken as 0.02 and
0.0001, respectively. We choose ε = 0.01, k = 2,M = 5, d(t) =

4 sin(2t2), and the initial value:

u(x, 0) = x, ut(x, 0) = −x. (55)

Since |d| < 4 is bounded but |ḋ| is unbounded, it is seen from Fig. 1
that system (40) converges satisfactorily yet system (10) demon-
strates oscillation around the equilibrium. So ADRC may not work
for the disturbancewith unbounded derivative. This is coincidence
with the theoretical results.

Fig. 2 displays the displacements of system (40) and (10) respec-
tively, bothwith the disturbance d(t) = 4 sin(2t). In this case, both
d and ḋ are uniformly bounded. All parameters and the initial value
as well are taken the same as that in Fig. 1. It is seen that in this
case, both ADRC and SMC are convergent satisfactorily. In addition,
d̂ tracks well the true value of disturbance d.

5. Concluding remarks

In this paper, we deal with the stabilization of an Euler–
Bernoulli beam systemwhich has disturbance on the input bound-
ary. Both the active disturbance rejection control (ADRC) and the
sliding mode control (SMC) approaches are adopted. By the ADRC,
we are able to estimate the disturbance and cancel the disturbance
in the feedback loop. The most advantage of the ADRC lies in its
economy in the controller yet with the price that the disturbance
should have the bounded derivative and the disturbance can only
be attenuated. By SMC approach, we can remove the restriction of
the boundedness of the disturbance and the rejection of the dis-
turbance can be achieved. The existence and uniqueness of the
solution for the closed-loop systemby SMC are proved. The ‘‘reach-
ing condition’’ is presented without differentiation of the sliding
mode function for which it may not exist for the weak solution of
the closed-loop system. The price for SMC is that the gain in the
controller is high (in the worst case of the disturbance), and pos-
sibly there is the chattering problem caused by the discontinuity
of the controller. The numerical simulations validate the theoret-
ical results. We also point out that both methods are by the state
feedback (similar to Cheng et al., 2011 by the SMC). This causes the
practical implementation problem. However, it would be the first
step toward the output pointwise feedback control in the further
research.
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