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Shear Force Feedback Control of Flexible Robot Arms 

Zheng-Hua Luo, Nobuyulu Kitamura, and Bao-Zhu Guo 

Abstract-For flexible robots with rotational joints it has been shown 
previously, by the first author, that direct strain feedback can damp out 
vibrations very satisfactorily. In this paper, a simple sensor-based output 
feedback control law, called shear force feedback, is newly proposed to 
control vibrations arising from structural flexibility of robots of Cartesian 
or SCARA types. Closed-loop exponential stability of such shear force 
feedback system is proved. Experimental results on set point control and 
trajectory tracking control are reported. It is found that the simple PI + 
shear force feedback can yield good performance for both robot motion 
and vibration suppression. 

I. INTRODUCTION 

Structural flexibility in robotic systems is becoming an issue of 
increasing concern. The demands for high speed, low cost, and low 
energy consumption are main motivations for control of lightweight 
flexible robots. Most of early researches on control of flexible 
robots concentrated on model-based controller design [l], [2], [l 13. 
However, these model-based controllers, originally designed for the 
demands of high performance, may not be easy to implement due 
to uncertainties in design models, large variations of loads on the 
robot’s end-effector, ignored high frequency dynamics (related to 
control and observation spillovers), and the high order of the designed 
controllers. Thus, it is highly desirable to seek simple and robust 
controllers for the control of flexible robot arms. Indeed, there have 
been many studies related to this problem. Various methods such as 
PD feedback of robot joint variables, PD with gravity compensation 
[5], and PD with feedfonvard [8] have been proposed for control of 
robot flexibility. 

In [7], [9], and [12], it is shown that the simple strain feedback 
can damp out vibrations in robots with rotational joints. However, it 
should be pointed out that many industrial robots, especially those 
widely used in automatic manufacturing assembly line, are either 
of S C A M  or Cartesian types (see, respectively, Figs. 1 and 2). 
Although there may exist many causes for the vibrations of these 
robots, we restrict ourselves to the suppression of vibration arising 
from structural flexibility of the robot tip arm. In this case, would the 
strain feedback laws proposed in [9] still work? Unfortunately, the 
answer is in the negative. This assertion is verified experimentally. 
The physical background of this phenomenon lies in the fact that 
vibrations of robot arms with rotational joints are caused by angular 
acceleration at the arm’s root end, while the vibrations in Cartesian 
robots are caused by linear acceleration at the arm’s root end. Theo- 
retically, it can be shown, by using the operator theory in [9], that the 
strain feedback control action does not introduce a damping operator 
for Cartesian robots, as it does for robots with rotational joints. 

The purpose of this paper is to present a new kind of simple control 
method called shear force feedback control for vibration suppression 
in flexible robots of Cartesian and SCARA types. In Section 11, we 
explain what is meant by shear force feedback control. We discuss 
how to implement this simple control law. We also show the closed- 
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Fig. 1. A SCAM robot with a long tip arm 

Fig. 2. 

loop exponential stability under the shear force feedback. In Section 
111, we present experimental results for shear force feedback with 
both set point control and trajectory tracking control, for an X-Y 
Cartesian robot. Conclusions are drawn in Section IV. 

A Cartesian robot with a long tip arm. 

11. SHEAR FORCE FEEDBACK CONTROL 

Consider a Cartesian or SCARA robot with a long tip arm as 
illustrated in Figs. 1 and 2. In industry, these robots are widely used 
in handling objects, assembling parts, packing and detecting detects 
etc. A primary demand for these tasks is high speed movement 
of robots in order to increase productivity. When a robot with a 
long tip arm moves at a high speed, vibration is unavoidable. In 
many industrial applications, this vibration can be a main problem 
in task implementation. In many circumstances, no effective method 
is available to solve this problem except to slow down the robot, 
or to wait till after the movement for vibrations to die down. This 
obviously is not efficient and motivates us to develop active vibration 
control to overcome this difficulty. 

For clarity of statement, we only consider vibration control of 
Cartesian robots. The problems associated with SCARA robots are 
essentially the same and can thus be treated in a similar way. Since 
any motion in the X-Y plane can be decomposed into its X and Y 
components, the vibrations in the X-direction and Y-direction can 
be considered independently. Fig. 3 shows motion of an X-Y robot 
in the X-direction. M represents a moving body driven by control 
motor. One end of the flexible arm is attached to this moving body. 
Let the vibration magnitude of flexible arm at time t and position 
T be w( t ,  T ) .  It is not difficult to show that the dynamic model for 
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Vibration of the tip flexible arm of a Cartesian robot along the 

i 
Fig. 4. An illustration of transformation from rotational motion to linear 
motion via timing belt. 

vibration of flexible arm in the X -direction can be written as 
G(t,  T )  + cywlttt(t, ?-) = -2( t ) ,  
w(t ,  0) = d ( t ,  0) = 0 
d ( t ,  a )  = w"'(t, e )  = 0 

T E ( 0 , t )  

(1) ( w(0, T )  = WO(T), iJ(0, T )  = w1(?-) 

where 2 ( t )  denotes acceleration of the moving body M ,  ti denotes 
time derivative and w' spatial derivative. cy > 0 is a constant 
determined by the arm material. WO(T) and W I ( T )  are respectively 
the initial displacement and initial velocity. In deriving this dynamic 
model, we have assumed that the arm material is uniform and the 
vibration magnitude is small. 

A. Shear Force Feedback 

In the dynamic model (l), the acceleration 2 ( t )  of the moving body 
acts as control input for the vibration of the flexible arm. We can 
measure shear force at the root end of the arm which is proportional 
to w r r r ( t ,  0). we can also control the motion of motor so that 

k ( t )  = -kw"'(t,  0) (2 )  

2 ( t )  = - k t P ( t ,  0). ( 3 )  

where k is an arbitrary constant. Therefore, we have, 

Substituting (3) into (1) yields the shear force feedback controlled 
closed-loop system equation: 

G ( t ,  T )  + cywr"'(t, ?-) - kti"'(t ,  0) = 0 
w ( t ,  0) = W / ( t ,  0) = 0 
d ( t ,  a )  = W / / j ( t ,  a )  = 0 

T E (a,!) 
(4) { w(0, T )  = WO(?-), iJ(0, T )  = W l ( T ) .  

At this point, we have at least three questions which need to be 
clarified. 

1) How to measure the shear force w"'(t, O)? 
2) How to control the motor so that (2) is satisfied? 
3) Is the partial differential (4) exponentially stable? 
As for the first question, there is no commercial shear force sensor 

known to us. However, the bending strain which is proportional to 
d ( t ,  0) can be easily measured by cementing strain gauge foils 
at the arm's root end. Similarly, by cementing strain gauge foils at 
location T = e ( E  is a small constant), close to the root end T = 0, 
we can measure ~ " ( t ,  E). Therefore, one method for measuring shear 
force, w" ' ( t ,  0), is to approximate it by [ ~ " ( t ,  E )  -w"( t ,O) ] /e .  This 
method is adopted in our experiments. Although it is commonly 
recognized that derivation may introduce noise, it is found, by 
experiments, that such treatment is quite acceptable and the noise 
is not severe enough to cause problems. 

For the second question, we can choose a servo motor with a motor 
driver of high gain speed reference type. For such a case, the input 
voltage Vr,f(t) to the motor driver is approximately proportional to 
angular velocity i ( t )  of the motor, i.e., 

Kef(t)  = k f i ( t )  ( 5 )  

where kf > 0 is the back emf constant of the motor. The rotational 
motion of the control motor is transferred into linear motion in the 
X-direction via timing belt as shown in Fig. 4 where p is the radius 
of driving wheel. Then, clearly, 

k ( t )  =pi@). (6)  
Combining (2) and (6), we obtain 

1 k 
P P 

i ( t )  = - k ( t )  = -- W)' / ( t ,  0). 

Substituting (7) into (5) yields 
kkf 111 

V,,f(t) = -- w ( t ,  0). 
P 

(7) 

This is to say, that if we measure the shear force w'"(t, 0) and deter- 
mine the control voltage Vref(t) according to (8), then (2) is satisfied 
as desired and the control closed-loop equation is given by (4). 

The third question is the most important and will be answered in 
next section. 

B. Closed-Loop Exponential Stability of Shear Force Feedback 
This section is devoted to studying the stability of system (4) when 

feedback gain k > 0. We are especially interested in the exponential 
stability. We note that when k = 0, i.e., there is no shear force 
feedback, (4) is a conservative system whose energy never decays 
theoretically. Our objective is to show that the third term -kiJ"'(t ,  0) 
on the left-hand side of (4) is a damping term and shear force feedback 
control can exponentially decay the solution of (4). 

The partial differential in (4) is a nonstandard one and does not 
appear in the existing literature. So a unique solution is not obvious. 
Fortunately, it can be shown, using the concept of A-dependent 
operators proposed in [9], that there exists a unique solution of (4) 
for any k > 0 and smooth initial conditions WO,  w1. We claim that 
this solution is exponentially stable. To this end, we introduce a new 
variable 

(9) y(t, T )  = d ( t ,  T ) .  
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Assume that the initial conditions W O ( T )  and w1 ( T )  are sufficiently 
smooth that the solution of (4) admits continuous spatial derivatives 
of up to sixth order. Taking twice the spatial derivative of both sides 
of the first equation of (4) yields 

(10) 
From the boundary conditions of (4), we see that G ( t ,  0) = 

y(t, T )  + a!y""(t, 7 )  = 0. 

G'( t ,  0) = 0. Hence it is easily verified that 
y ( t ,  e )  = W I / ( t ,  e )  = 0 
y ' ( t ,  a )  = W f l f ( t ,  a )  = 0 

1 
y " ( t ,  0) = w""(t, 0) = -- [G( t ,  0) - k;l"'(t,  O ) ]  

a! 
k k = -WJJ/(t, 0) = -Y/(t, 0) 
cy a 1 y"' ( t ,  0) = W J ~ ~ ~ ~ ( t ,  0) = d ( t ,  0) = 0. 

Also, introducing a new variable 5 according to z = e 
paying attention to the following equalities 

ay - a y  a T  - ay 

d2y aZy 
_ _ -  -- - - 

dx dr  dz d~ 

- 
82' dT2 

a3Y d3Y 
ax3 d T 3  

we obtain the following partial differential equation and the corre- 
sponding boundary conditions 

y(t, x) + a!yrrt l ( t ,  z) = 0 
y ( t ,  0) = 0, y ' ( t ,  0) = 0 

y / " ( t ,  e )  = --Y/(t, e) k (12) 
cy i y" ' ( t ,  a)  = 0. 

This is a standard boundary moment controlled flexible system 
which often appears in existing literature. Energy stored in system 
(12) is dissipative provided k > 0. To see this, define an energy 
function for system (12) as 

Then the time derivative of E ( t )  along the solution of (12) is 
given by 

B ( t )  = i ( t ,  z)Y(t, z) dz + cy y " ( t ,  z)y"(t, z) dz l I' 
k = - - [Y'(t, a)12 5 0. 
a! 

Consequently the energy stored in system (12) is dissipative. 
Indeed the energy dissipates exponentially, which had been long 
unproved by using the energy multiplier method, but is finally proved 
in [3] by making use of a result in Huang [6]. The interested reader 
is referred to [3] for details. 

With y ( t ,  z) shown to be exponentially stable, it is claimed that 
the solution w ( t ,  T )  of (4) is also exponentially stable since w ( t ,  T )  

can be expressed as 

w(t,  7 )  = 1' 1" y ( t ,  z) d z d s  

and the integration operator is bounded. 

force controlled system such as 
It should be pointed out that the exponential stability of a boundary 

y(t, z) + cyy""(t, z) = 0 
y ( t ,  0) = 0, y'(t, 0) = 0 
y " ( t ,  a )  = 0 
y"'(t,  a )  = k y ( t ,  e ) ,  k > 0. 

has been proved earlier by Chen et al. [4] using the energy multiplier 
method. 

In. CONTROL EXPERIMENTS 

A. Experimental Device 
In order to test the shear force feedback control method proposed 

in this paper, an X-Y Cartesian robot as shown in Fig. 5 was used. 
The X and Y axes are respectively driven by two dc motors (68 W) 
with commercial motor drivers of speed reference type. The motor 
shafts are directly (without gear reduction) coupled to the ball-screw 
which converts rotational motion of motors into linear motion in the 
X and Y axes. A moving body can move in the X-axis. The moving 
body and the X-axis can move together in the Y-axis. The movable 
ranges of the X and Y axes are 700 nun. Since there is no gear 
reduction, the moving body can move at a very high speed. 

= 600 nun, which will 
be referred as the X-Y robot's tip arm, is attached to the moving 
body along the Z-axis. The value of the arm material constant a! in 
(1) is identified to be cy = 78.91 [N- m3kg]. When the moving body 
moves at a high speed in the X-Y plane, significant vibrations are 
observed in the end-effector of the tip ann. To detect these vibrations, 
shear force sensors were developed independently for the X and Y 
axes. Each sensor consists of four precision strain gauges, two of 
which are cemented on front surface and the other two on the opposite 
surface of the tip arm. The distance between the two gauge foils on 
each surface is taken to be 10 mm ( E  = 10 mm). Using two (one on 
front surface and one on the opposite surface) of these, we construct 
a 1/2 Wheatstone bridge. The remaining two is used in another 
1/2 Wheatstone bridge. The amplified difference of outputs of these 
two Wheatstone bridges is taken as the shear force signal w r r r ( t ,  0) 
which we need for feedback. Angular positions and velocities were 
measured with encoders and tachometers attached to the motor shafts. 
These signals together with the shear force signals were sent to 
the controller (NEC9801 personal computer with 80386 CPU). The 
control program was written in C language, and the sampling period 
was set at 8 ms. Experimental results on set point control and 
trajectory tracking control are presented in next subsection. 

B. Experimental Results on Set Point Control 
In practical applications, it is necessary to control not only the 

vibrations but also positions of the moving body. Note that vibrations 
should be suppressed without sacrificing performance of position 
servo (transient responses of position variables etc.). Some of the con- 
ventional vibration control methods do not guarantee good responses 
of robot joint positions and rapid decay of vibrations in robot arms 
at the same time. When vibrations are well suppressed, usually the 
responses of robot joint positions become worse (it takes a longer time 
for the robot to reach a given position, or overshoot can be seen). An 
important feature of the shear force feedback control method proposed 
here is that we can suppress vibrations without much affecting good 
transient responses of robot joint positions. This will be illustrated 
by experimental results. 

Since the X-axis and Y-axis are controlled independently with the 
same control law, we describe theoretical formulations only for the 
X-axis in the following. Let Z d  (constant) be the desired position 
of the moving body in the X -axis. To control both the position of 
the moving body and vibration of the tip arm, we determine motor 
input reference voltage Vref(t) by the following PI + shear force 
feedback law 

A thin square aluminum rod with length 

1' Vref(t) = - k l [ z ( t )  - z d ]  - 
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Fig. 5. An X - Y  Cartesian robot used for experiments. 

where k1 2 0 and kZ > 0 are PI feedback gains and k > 0 is 
the shear force feedback gain. The control closed-loop exponential 
stability with k1 = LZ = 0 is given in the last section. When kl 
and kz are not zeros, upon substituting (3, (6), and (15) into (l), we 
obtain the closed-loop system equation as follows 

~ ( t ,  r )  - - k ~ ( t ,  0 )  + n w / / / / ( t ,  r )  P 
k. 

This is a coupled hybrid equation consisting of a stable partial 
differential equation and a stable ordinary differential equation. 
Conditions for the closed-loop exponential stability are not easily 
obtained by the Lyapunov function method. It was not until recently 
that we succeeded in showing that if the feedback gains k,  ICl ,  and 

satisfy 

and 

then the closed-loop system (16) is exponentially stable. In (17) 
A1 represents the first (smallest) eigenvalue of the positive definite 
operator A = d 4 / d x 4  [9].  The derivation of (17) and (18) is too 
long to be included here and can be found in a separate paper [ 101. 
Usually p / k f  is small and (Y is large. For instance, in our experiments, 
p / k f  = 9.25 x lo-’ [m/s . VI, LV = 78.91 [N . m3kg] and 
A1 = 246.74 [rad2/?]. Thus, it can be seen that (17) and (18) are 
satisfied for a very wide range of the three feedback gains. 

For the set point control experiment, the end-effector of the arm 
is commanded to move from the X-Y coordinate origin to a point 
zd  = 100 mm and yd = 100 mm by simultaneously driving the X 
and Y axes. Notice that we use the same control law (15) for control 
of the X and Y axes independently. The PI gains kl and kZ in (15) 
are determined to be 

kl  = 79.20 [V/m], k2 = 0.50 [V/m. s] 

in order to complete the set point control motion in less than 2 s 
without overshoot in the time response of position of the moving 
body. After kl  and k~ are determined, the shear force feedback gain 

PI Control 

PI+ Shear Force Control 

_ _ _ - _ _  

I 
2 4 6 : 10 I2 14 

Time [sec] 

(a) 

2, 

P I  Control 

PI+ Shear Force Control 

I 

Fig. 6. Time responses of the outputs of shear force sensor: (a) sensor output 
along the X-direction; (b) sensor output along the Y-direction. 

k can be chosen by trial and error. We begin by choosing a small 
k .  If the vibration suppression is not so satisfactory, we increase 
k. For IC = 0.85, the outputs of the X and Y shear force sensors 
are displayed with real lines in Fig. 6(a) and (b), respectively. The 
dashed lines in these two figures are the sensor outputs when only 
PI control is implemented (without shear force feedback). It can be 
seen that there is not much noise in these sensor outputs, and that the 
vibrations decay very rapidly when shear force information is used 
for feedback. What is more attractive is that the time responses of 
the moving distances of moving body in the X and Y directions do 
not change much as can be seen from Fig. 7(a) and (b), respectively. 
The real lines denote responses with shear force control, while the 
dashed lines denote responses without shear force control. This is 
because two damping terms - p / k f  ktb”‘(t, 0) andplkf  k l i ( t )  have 
been independently introduced, one for vibration and another for 
motion [see the first and the last equations in (16)l. The corresponding 
time responses of outputs of tachometers [which is proportional to 
the input voltages Vref(t)] for motors of the X and Y axes are 
shown in Fig. 8(a) and (b). It can be seen that the responses do not 
change much before and after shear force feedback. Notice that in 
implementing the above control law, we do not need to know the 
precise values of physical parameters of the motor driving systems 
and the tip arm. 

When the end-effector of the arm is fitted with a payload, the 
stability of shear force controlled closed-loop system is still guaran- 
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Fig. 7. Time responses of the moving distance of the moving body: (a) the 
X-axis component: (b) the Y-axis component. 

teed although the performance may degrade. This point is verified 
experimentally and can be made clear theoretically. 

C. Experimental Results on Trajectory Tracking Control 
In set point control stated above, the desired positions Xd and Y d  in 

the X and Y directions are constants. In trajectory tracking control, 
these desired positions are time varying. We propose the following 
control law for the X-axis control motor 

k f  Vref(t) = - i d ( t )  - k l [ X ( t )  - Z d ( t ) ]  
P 

[X(T) - Z d ( T ) ]  dT - kw:’(t, 0) (19) -kd 
and for the Y-axis control motor 

k f 
x e f ( t )  = - ? i d ( t )  - k l [ y ( t )  - Y d ( t ) ]  

P 
^t 

[ Y ( T )  - Y d ( T ) ] d T  - k w F ( t ,  0) (20) 

where w r ( t ,  0) and w;’(t, 0) are used to distinguish shear force 
sensor output ~ ’ ’ ’ ( t ,  0) in the X and Y directions, respectively. 
The difference between (15) and (19) is that in trajectory tracking 
a feedforward term k d ( t )  [or y d ( t ) ]  is added. A series of desired 
trajectories were given to test the performance of the trajectory 
tracking control law. 

- ICz)  J,” 

2 4 6 -  8 10 12 14 

Time [sec] 

(a) 

1 - - - - - -PI Control 

PI+ Shear Force Control 
2 6  ’t - 

0 
2 4 6 8 10 12 I4 

Time [sec] 

(b) 
Fig. 8. Time responses of the outputs of tachometers [proportional to the 
motor reference input voltage V,.,f(t)]: (a) for the X-axis motor; (b) for the 
Y-axis motor. 

For the end-effector of the arm to follow a circular orbit of radius 
70 mm 4 times in 6 s, we chose 

Z d ( t )  = ’ ~ O C O S  $ Ti!, Y d ( t )  = 70Sin +rt. 

Fig. 9(a) is the trajectory of end-effector when (19) and (20) are 
implemented with shear force feedback gain k = 0. Fig. 9(b) shows 
the result for k = 0.34. It can be seen that the real trajectory 
approaches the reference trajectory in a few minutes after the start. 
These two figures demonstrate that vibration suppression is improved 
a great deal by shear force feedback. 

Experiments were also conducted to make the end-effector follow 
a trigonometric trajectory in the X-Y plane. The results of these 
experiments are shown in Fig. 10 where the real line represents the 
end-effector trajectory without shear force feedback and the line 
with dot marks represents the end-effector trajectory when shear 
force feedback is applied. It is seen that shear force feedback can 
improve the responses of the end-effector, especially at comers where 
vibrations are more likely to occur. 

IV. CONCLUDING REMARKS 
A simple shear force feedback control law has been proposed 

for vibration suppression of Cartesian or SCARA robots with long 
tip arms. The exponential stability of such shear force feedback 
controlled closed-loop system, in the absence of internal damping of 
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--x- Reference 

- Reference 

(b) 
Fig. 9. Traces of end-effector for a circular trajectory: (a) without shear force 
feedback; (b) with shear force feedback. 

the arm material, has been proved by transforming the nonstandard 
partial differential equation into the standard boundary moment 
control system. Experiments on both the set point control and 
the trajectory tracking control were conducted. These experimental 
results demonstrate that shear force feedback can not only damp out 
vibrations satisfactorily, but also maintain high performance in the 
motion of robot. This is very important in practice, since it would 
make no sense if the vibration suppression were achieved at the price 
of sacrificing the performance of motion of robot. The initial control 
objective of flexible robots is simultaneous motionhibration control 
and not vibration suppression only. 

Several remarks are in order. 
All the above discussions are based on the assumption that the 
control motor driver is of speed reference type. If the motor is of 
torque control type, then theoretically it is necessary to feedback 
the time rate of change of shear force. A sensor that can be used 
to measure the time rate of change of shear force needs to be 
developed. 

PI+Shear Force Control 

PI Control 

Fig. 10. Traces of end-effector for a trigonometric trajectory. The real 
line represents trace without shear force feedback the line with dot marks 
represents trace with shear force feedback. 

The control method proposed here can also be used in the 
handling of flexible materials if the end-effector is equipped with 
a sensor which can measure shear force at the contact point of 
flexible materials. 
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