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a b s t r a c t

In this paper, we propose a newmethod, by designing an unknown input type state observer, to stabilize
an unstable 1-d heat equation with boundary uncertainty and external disturbance. The state observer
is designed in terms of a disturbance estimator. A stabilizing state feedback control is designed for the
observer by the backstepping transformation, which is an observer based output feedback stabilizing
control for the original system. The well-posedness and stability of the closed-loop system are concluded.
The numerical simulations show that the proposed scheme is quite effectively. This is a first result on
active disturbance rejection control for a PDE with both boundary uncertainty and external disturbance.
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1. Introduction

Disturbance attenuation or rejection is one of the major con-
cerns in modern control theory. Since from the 1970s, there are
many methods developed to cope with uncertainty in control
systems and most of these methods are generalized to systems
described by partial differential equations (PDEs). Among them,
internal model principle for special type of disturbances (Rebar-
ber & Weiss, 2003) and adaptive control for unknown parame-
ters (Krstic, 2010) are earlier active disturbance rejectionmethods
in dealing with uncertainty by exploiting estimation/cancellation
strategy. Other popular methods include sliding mode con-
trol (Guo & Jin, 2013) and robust control method (Christofides,
2001) where the completely unknown uncertainty is passively
attenuated.

The idea of estimation/cancellation from internal model prin-
ciple and adaptive rejection control is later developed in large
scale as active disturbance rejection control (ADRC) (Han, 2009)
where not only external disturbance but also internal uncertainty
are estimated in terms of input and output. The uncertainties dealt
with by ADRC are much more complicated. It can be the cou-
pling between unknown internal system dynamics, the external
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disturbance, and the superadded unknown part of control input,
or even if whatever the part that is hardly dealt with by practition-
ers (Guo & Zhao, 2015). ADRC has been applied to state feedback
stabilization for PDEs with external disturbance (Guo & Jin, 2013).
The output feedback stabilization for PDEs by ADRC is, however,
very complicated. In Guo and Jin (2015), an unknown input ob-
server is first designed for stabilization of 1-d wave equation with
external disturbance. However, the observer in Guo and Jin (2015)
was designed by variable structure control method, which is very
technical and brings many mathematical difficulties. In addition,
the extended state observer (ESO) used in ADRC utilizes usually the
high gain which is very restrictive from engineering control point
of view. So there are several challenges in applying ADRC to PDEs in
following typical situations: (a) the total disturbance contains not
only external disturbance but also internal uncertainty; (b) output
feedback instead of state feedback; (c) the high gain problem in
ESO; (d) a finite order derivative of total disturbance is required to
be bounded.

In this paper, we meet these challenges by considering un-
known type state observer and output feedback stabilization for
the following one-dimensional heat equation with boundary un-
known nonlinear uncertainty and external disturbance:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt (x, t) = wxx(x, t), x ∈ (0, 1), t > 0,
wx(0, t) = −qw(0, t), t ≥ 0,
wx(1, t) = f (w(·, t)) + d(t) + u(t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1,
y(t) = (w(0, t), w(1, t)) , t ≥ 0,

(1)
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where q ∈ R, y(t) is the output (measurement), u(t) is the input
(control), w0(x) is the initial value, f (·) is an unknown nonlinear
function that represents the boundary uncertainty, and d(t) is the
external disturbance. The ‘‘f (w(·, t)) + d(t)’’ is called the ‘‘total
disturbance’’ in active disturbance rejection control. When q > 0,
the uncontrolled system (1) may become unstable. For the sake of
simplicity, we drop the obvious time and spatial domains in the
rest of the paper.

The model (1) is a general 1-d heat equation with boundary
convection. Let k be the thermal conductivity of a solid rod, and
let h be the convection heat transfer coefficient which varies with
the type of flow, the geometry of the body and flow passage area,
the physical properties of the fluid, the average surface and fluid
temperatures, and many other parameters. The pure convection
boundary condition, physically meaning that the temperature gra-
dient within the solid at the surface is coupled to the convective
flux at the solid–fluid interface, is prescribed by

− kwx(∂, t) = ±h(w(∂, t) − w∞(t)),

where ∂ = 0 or 1 represents the boundary and w∞(t) is the am-
bient fluid temperature. The special case of zero fluid temperature
w∞(t) = 0, given by

− kwx(∂, t) = ±hw(∂, t),

represents convection into a fluid medium at zero temperature,
noting that a common practice is to redefine or shift the tempera-
ture scale such that the fluid temperature is now zero. When k, h,
and w∞(t) are not known, the convection boundary condition at
x = 1 leads to the boundary condition of system (1) at x = 1.
For more details of physical modeling of heat equation, we refer
to Hahn and Özisik (2012).

To illustrate the physical model, we give a sketch of (1) with
q = 0 in Fig. 1 which depicts flow of heat in a rod that is insulated
everywhere except the two ends, where the heat of the right end is
controlled by a steam chest with placement of a thermometer and
the left end is insulated.

Heat equation with unstable term or source term has been
extensively studied by the method of backstepping. Examples can
be found in Baccoli, Pisano, andOrlov (2015),Meurer (2012), Krstic
(2006), Krstic and Smyshlyaev (2008) and Smyshlyaev and Krstic
(2007), to name just a few. The backstepping approach is powerful
and is still valid to other distributed parameter systems that are
corrupted by disturbance or unknown parameters (Aamo, 2013;
Krstic, 2010). There are many other works for the parabolic sys-
tems control. For classical output regulation theory for distributed
parameter system, we refer to (Aulisa & Gilliam, 2016). Recently,
the backstepping-based robust output regulation for boundary
controlled parabolic PDEs was discussed in Deutscher (2016). In
addition, there exist othermethods to copewith disturbance or un-
known parameters such as the slidingmode control (Orlov, Pisano
& Usai, 2011), unknown input observer based control (Chauvin,
2012), and the internal model principle (Rebarber &Weiss, 2003).
Our work, however, is different from the existing ones. The main
objective of this paper is to propose a new method to cope with
the control-matched disturbance that consists of not only exter-
nal disturbance but also boundary uncertainty. The approach is
inspired by the method of ADRC and is different from the existing
results in papers for instance (Aamo, 2013; Chauvin, 2012; Guo
& Jin, 2015) where the unknown input observers for distributed
parameter systems have been designed.

Weproceed as follows. In Section 2,we first present a target sys-
tem as a preliminary for the design of state observer. An unknown
input type infinite-dimensional state observer is proposed in Sec-
tion 3, where the estimation/cancellation strategy in ADRC is used
without invoking high gain. The observer could lead immediately
to a total disturbance estimator. A state feedback stabilizing control

Fig. 1. One-dimensional heated rod.

for the observer is designed in Section 4,which is an observer based
feedback control for original system. To do this, the backstepping
transformation is applied. Section 5 is devoted to well-posedness
and asymptotic stability for the closed-loop system. Numerical
simulations are presented in Section 6 to validate the theoretical
results, followed by the concluding remarks in Section 7.

2. Preliminary: target system for observer

We first consider a stable heat equation:{ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t), ẑx(1, t) = G(t),
ẑ(x, 0) = ẑ0(x),

(2)

where c0 > 0 is a constant, ẑ0(x) is the initial value, and G ∈

L2loc(0, ∞) is a given function. System (2) can be written as an
evolution equation in H := L2(0, 1):

d
dt

ẑ(·, t) = Aẑ(·, t) + BG(t), (3)

whereB = δ(x−1)with δ(·) theDirac distribution, and the operator
A is given by{

[Af ](x) = f ′′(x), ∀ f ∈ D(A),
D(A) =

{
f ∈ H2(0, 1) | f ′(0) = c0f (0), f ′(1) = 0

}
.

(4)

Lemma 2.1. For any ẑ0 ∈ H and G ∈ L2loc(0, ∞), there exists a
unique solution ẑ ∈ C(0, ∞;H) to system (2) such that the following
statements hold:
(i) If we assume further that G ∈ L∞(0, ∞), then there exists a positive
constant LB, independent of t, such that

sup
t∈[0,∞)

∥ẑ(·, t)∥H ≤ ∥ẑ0∥H + LB∥G∥L∞(0,∞) < +∞; (5)

(ii) If G(t) → 0 as t → ∞, then

∥ẑ(·, t)∥H → 0 as t → ∞. (6)

Proof. Inequality (5) is straightforward by noticing that A gener-
ates a C0-semigroup eAt of contractions on H and B is admissible
for eAt by invoking Remark 2.6 of Weiss (1989). The convergence
(6) is a direct result in Feng and Guo (2014) or Guo and Jin (2013)
where the admissibility of B and Remark 2.6 of Weiss (1989) are
also used. □

Next, consider the following coupled heat system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εt (x, t) = εxx(x, t),
εx(0, t) = c0ε(0, t), εx(1, t) = d̃x(1, t),
d̃t (x, t) = d̃xx(x, t),
d̃x(0, t) = c0d̃(0, t), d̃(1, t) = 0,
ε(x, 0) = ε0(x), d̃(x, 0) = d̃0(x),

(7)

where (ε0(x), d̃0(x)) is the initial value. System (7) will serve as a
target system for the observer design in next section. We consider
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system (7) in the Hilbert space X = H2 with the inner product

⟨(f1, g1), (f2, g2)⟩X =

∫ 1

0
f1(x)f2(x)dx

+

∫ 1

0
[2g1(x)g2(x) − g1(x)f2(x) − f1(x)g2(x)]dx

(8)

for any (fi, gi) ∈ X, i = 1, 2. It is easy to see that the above inner
product is well-defined. Indeed, for any (f , g) ∈ X ,

∥(f , g)∥2
X =

∫ 1

0
[|f (x)|2dx − g(x)f (x) − f (x)g(x)]dx

+ 2
∫ 1

0
|g(x)|2dx ≥

1
3

∫ 1

0
[|f 2(x)| + |g(x)|2]dx.

(9)

System (7) can be written as an evolution equation in X:

d
dt

(ε(·, t), d̃(·, t)) = A (ε(·, t), d̃(·, t)) (10)

where the operator A is given by⎧⎨⎩[A (f , g)](x) = (f ′′(x), g ′′(x)), ∀(f , g) ∈ D(A ),
D(A ) = {(f , g) ∈ (H2(0, 1))2 | f ′(0) = c0f (0),
g ′(0) = c0g(0), f ′(1) = g ′(1), g(1) = 0}.

(11)

Lemma2.2. For any (ε0, d̃0) ∈ X, system (7) admits a unique solution
(ε, d̃) ∈ C(0, ∞; X). Moreover, there exist two positive constants LA

and ωA such that

∥ε(·, t)∥H + ∥d̃(·, t)∥H ≤ LA e−ωA t , ∀ t ≥ 0. (12)

Proof. For any (f , g) ∈ D(A ),

Re⟨A (f , g), (f , g)⟩X
= Re

[
⟨f ′′, f ⟩H + 2⟨g ′′, g⟩H − ⟨g ′′, f ⟩H − ⟨f ′′, g⟩H

]
= Re

[
−c0|f (0)|2 − ∥f ′

∥
2
H − 2c0|g(0)|2

− 2∥g ′
∥
2
H + 2c0g(0)f (0) + 2⟨f ′, g ′

⟩H
]

≤ −
c0
3

|f (0)|2 −
c0
2

|g(0)|2 −
1
3
∥f ′

∥
2
H −

1
2
∥g ′

∥
2
H ≤ 0,

(13)

which shows that A is dissipative in X . On the other hand, for any
(f̂ , ĝ) ∈ X , we solve A (f , g) = (f̂ , ĝ) to obtain⎧⎪⎪⎨⎪⎪⎩

g(x) = c0(x − 1)g(0) −

∫ 1

x

∫ α

0
ĝ(s)dsdα,

f (x) = f (0) + xg ′(1) −

∫ x

0

∫ 1

α

f̂ (s)dsdα,

(14)

where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g(0) = −
1

1 + c0

∫ 1

0

∫ α

0
ĝ(s)dsdα,

g ′(1) = c0g(0) +

∫ 1

0
ĝ(s)ds,

f (0) =
1
c0

g ′(1) −
1
c0

∫ 1

0
f̂ (s)ds.

(15)

This shows that A −1
∈ L(X) is compact on X . By the Lumer–

Phillips theorem Pazy (1983, Theorem 1.4.3), A generates a C0-
semigroup of contractions on X . The remaining proof is for (12).
To this purpose, define the Lyapunov functional:

L(t) =
1
2
∥ε(·, t)∥2

H + ∥d̃(·, t)∥2
H −

1
2

∫ 1

0
ε(x, t)d̃(x, t)dx

−
1
2

∫ 1

0
ε(x, t)d̃(x, t)dx.

(16)

By Hölder’s inequality,

|ε(x, t)| ≤ |ε(0, t)| +

∫ 1

0
|εx(x, t)|dx

≤ |ε(0, t)| +

(∫ 1

0
|εx(x, t)|2dx

)1/2

,

(17)

which implies that

∥ε(·, t)∥2
H ≤ 2|ε(0, t)| + 2∥εx(·, t)∥2

H. (18)

Since d̃(1, t) = 0, we have ∥d̃(·, t)∥2
H ≤ ∥d̃x(·, t)∥2

H. Therefore, by
a simple computation, it follows that

1
6

[
∥ε(·, t)∥2

H + ∥d̃(·, t)∥2
H

]
≤ L(t)

≤ 4
[
∥εx(·, t)∥2

H + ∥d̃x(·, t)∥2
H + ε2(0, t)

]
.

(19)

Find the derivative of L(t) along the solution of system (7) to obtain

L̇(t) = −c0ε2(0, t) − 2c0d̃2(0, t) + c0d̃(0, t)ε(0, t)

+ c0d̃(0, t)ε(0, t) − ∥εx(·, t)∥2
H − 2∥d̃x(·, t)∥2

H

+ ⟨d̃x(·, t), εx(·, t)⟩H + ⟨d̃x(·, t), εx(·, t)⟩H

≤ −
c0
3

ε2(0, t) −
c0
2
d̃2(0, t)

−
1
3
∥εx(·, t)∥2

H −
1
2
∥d̃x(·, t)∥2

H

≤ −β

[
∥εx(·, t)∥2

H + ∥d̃x(·, t)∥2
H + ε2(0, t)

]
≤ −

β

4
L(t),

(20)

where β = min{
1
2 ,

1
3 , c0}. Finally, (20) together with (19), yields

(12). □

3. Unknown input state observer

In this section, we design a state observer in terms of input and
output (u(t), y(t)) for system (1) in the presence of unknown input.
There are three important steps. First, the ‘‘total disturbance’’ is
separated from the control and is brought into an (‘‘relatively
good’’) exponentially stable system where the total disturbance
is considered as somehow an inhomogeneous term; second, the
total disturbance is estimated in the framework of this well stable
system; and the last, the total disturbance is compensated leading
to an unknown type observer which is actually an alternative
extended state observer (ESO). More specially, we split the whole
process into the following three steps.
Step 1: Construct an auxiliary system which brings the total distur-
bance into an exponentially stable system.

The auxiliary system is designed as follows:⎧⎪⎨⎪⎩
zt (x, t) = zxx(x, t),
zx(0, t) = −qw(0, t) − c0[w(0, t) − z(0, t)],
zx(1, t) = u(t),
z(x, 0) = z0(x),

(21)

where c0 > 0 is a constant, z0(x) is the initial value. System (21) is
completely determined by input and output of the original system
(1) and hence is known. However, the error between uncertain
system (1) and known system (21) is independent of control and
satisfies (2) with G(t) = f (w(·, t)) + d(t). Precisely, ẑ(x, t) =

w(x, t) − z(x, t) satisfies{ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t), ẑx(1, t) = f (w(·, t)) + d(t),
ẑ(x, 0) = ẑ0(x) = w0(x) − z0(x).

(22)
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It is seen that although the known system (21) and the original
uncertain system (1) are different, their error is a ‘‘relatively good’’
system (22): The linear part is exponentially stable and the total
disturbance f (w(·, t)) + d(t) is an inhomogeneous term of (22).
Moreover, the control does not appear in system (22) so that we
only need to concentrate on estimation of the total disturbance
from (22) only without taking care of the control. The exponen-
tial stability of (22) guarantees that all subsystems involved in
estimation of disturbance are uniformly bounded as claimed in
Lemma 2.1. In this sense, we say that system (21) separates the to-
tal disturbance f (w(·, t))+d(t) from the control u(t) and introduces
the total disturbance into a ‘‘relatively good’’ system (22) which is
our starting point of estimating f (w(·, t)) + d(t).
Step 2: Design an disturbance estimator for (22).

Since (22) obtained from Step 1 is independent of control u(t),
we are able to design an observer for (22), which turns out a
disturbance estimator. This is realized by designing the following
system:⎧⎨⎩

d̂t (x, t) = d̂xx(x, t),
d̂x(0, t) = c0d̂(0, t), d̂(1, t) = ẑ(1, t),
d̂(x, 0) = d̂0(x),

(23)

where d̂0(x) is the initial value that can be chosen arbitrarily. Since
ẑ(1, t) = w(1, t) − z(1, t) is known, system (23) is completely
determined by input and output of the original system (1). The
construction of system (23) is based on ‘‘relatively good’’ system
(22) only. We shall see that system (23) serves as a disturbance
estimator. In fact, if we let

d̃(x, t) = ẑ(x, t) − d̂(x, t), (24)

then, a simple computation shows that the error d̃(x, t) is governed
by⎧⎨⎩d̃t (x, t) = d̃xx(x, t),

d̃x(0, t) = c0d̃(0, t),
d̃(1, t) = 0,

(25)

which is an exponentially stable system. In fact, system (25) has
the system operator as follows:⎧⎨⎩

[Af ](x) = f ′′(x), ∀f ∈ D(A),
D(A) =

{
f ∈ H2(0, 1) |

f ′(0) = c0f (0), f (1) = 0
}
,

(26)

which generates an exponentially stable C0-semigroup eAt on H.
Hence, there exist two positive constants LA andωA > 0 such thateAt

 ≤ LAe−ωAt , t ≥ 0. (27)

It is easy to show that ωA ≥ 1 (by direct energy differentiation).
Moreover, we have Lemma 3.1.

Lemma3.1. For any initial value d̃(·, 0) ∈ D(A), system (25) admits a
unique classical solution d̃(·, t) ∈ C(0, ∞;D(A)) such that d̃x(1, ·) ∈

C(0, ∞) and

|d̃x(1, t)| ≤ C0LAe−ωAt , t ≥ 0, (28)

where C0 > 0 is independent of t.

Proof. SinceA generates an exponentially stable C0-semigroup on
H, for d̃(·, 0) ∈ D(A), system (25) admits a unique classical solution
d̃ ∈ C(0, ∞;D(A)) such that

∥d̃xx(·, t)∥H ≤ ∥d̃xx(·, 0)∥HLAe−ωAt , t ≥ 0. (29)

Define

φ(t) =

∫ 1

0
(x − 1)d̃(x, t)dx. (30)

Finding the derivative φ(t) along the solution of (25) yields

φ̇(t) = d̃x(0, t) + d̃(0, t) =

(
1 +

1
c0

)
d̃x(0, t). (31)

On the other hand,

φ̇(t) =

∫ 1

0
(x − 1)d̃xx(x, t)dx ≤

(∫ 1

0
|d̃xx(x, t)|

2
dx

) 1
2

, (32)

which, together with (31) and (29), leads to

|d̃x(0, t)| ≤
c0

1 + c0
φ̇(t) ≤

c0
1 + c0

∥d̃xx(·, t)∥H

≤
c0LA
1 + c0

∥d̃xx(·, 0)∥He−ωAt , t ≥ 0.
(33)

By Hölder’s inequality,

|d̃x(1, t)| ≤ |d̃x(0, t)| +

⏐⏐⏐⏐∫ 1

0
d̃xx(x, t)dx

⏐⏐⏐⏐
≤ |d̃x(0, t)| + ∥d̃xx(·, t)∥H.

(34)

Therefore, (28) follows from (34), (33), and (29) with

C0 =
c0LA
1 + c0

∥d̃xx(·, 0)∥H + LA∥d̃(·, 0)∥H. □ (35)

On the other hand, it follows from (22) and (24) that

d̃x(1, t) = [f (w(·, t)) + d(t)] − d̂x(1, t), (36)

which, together with (28), implies that d̂x(1, t) can be regarded as
an approximate of the total disturbance f (w(·, t))+d(t) as t → ∞.
Very importantly, d̂x(1, t) gives sufficient estimation of f (w(·, t))+
d(t) in the sense that the error [f (w(·, t)) + d(t)] − d̂x(1, t) is
independent of the total disturbance by (25), (28), and (36). This
is a remarkable advantage of this design.
Step 3: Compensate the total disturbance by its estimate to obtain
estimator based observer.

The observer can be designed as⎧⎪⎨⎪⎩
ŵt (x, t) = ŵxx(x, t),
ŵx(0, t) = −qw(0, t) − c0[w(0, t) − ŵ(0, t)],
ŵx(1, t) = d̂x(1, t) + u(t),
ŵ(x, 0) = ŵ0(x),

(37)

where ŵ0(x) is the initial value that can be chosen arbitrarily. It
is seen that the observer (37) is the same as the corresponding
observer for disturbance free system designed, except the term
d̂x(1, t) which is used to compensate the unknown total distur-
bance. Notice that system (37) is completely determined by input
and output of system (1).

Combining Steps 1–3, we obtain an unknown input observer for
system (1) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŵt (x, t) = ŵxx(x, t),
ŵx(0, t) = −qw(0, t) − c0[w(0, t) − ŵ(0, t)],
ŵx(1, t) = d̂x(1, t) + u(t),
d̂t (x, t) = d̂xx(x, t),
d̂x(0, t) = c0d̂(0, t),
d̂(1, t) = w(1, t) − z(1, t),
zt (x, t) = zxx(x, t),
zx(0, t) = −qw(0, t) − c0[w(0, t) − z(0, t)],
zx(1, t) = u(t),
ŵ(x, 0) = ŵ0(x), d̂(x, 0) = d̂0(x), z(x, 0) = z0(x),

(38)

where z(x, t) is an auxiliary variable, d̂(x, t) is used for disturbance
estimation, and ŵ(x, t) is considered as an approximate of w(x, t)
as t → ∞. Once again, system (38) is completely determined by
input and output of original system (1). In addition, we see that the
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unknown input observer (38) is actually a linear system, which is
an interesting fact for nonlinear system (1).

Theorem 3.1. For any u ∈ L2loc(0, ∞) and w0 ∈ H = L2(0, 1),
suppose that system (1) admits a unique solution w ∈ C(0, ∞;H)
such that [f (w)+d] ∈ L2loc(0, ∞)which is satisfiedwhen f satisfies the
global Lipschitz condition like in Remark 3.1. Then, the state observer
(38) is well-posed and for any (ŵ0, d̂0, z0) ∈ H3, (38) admits a unique
solution (ŵ, d̂, z) ∈ C(0, ∞;H3) satisfying

∥w(·, t) − ŵ(·, t)∥H → 0 as t → ∞. (39)

Proof. By the invertible transformation:⎛⎜⎝ŵ

d̂
z
ẑ

⎞⎟⎠ =

⎛⎜⎝ I −I 0 0
0 0 −I I
I 0 0 −I
0 0 0 I

⎞⎟⎠
⎛⎜⎝w

ε

d̃
ẑ

⎞⎟⎠ , (40)

the solution of observer (38) is well defined if and only if the
solution of the following system is well defined:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t), x ∈ (0, 1),
wx(0, t) = −qw(0, t),
wx(1, t) = f (w(·, t)) + d(t) + u(t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t), ẑx(1, t) = f (w(·, t)) + d(t),
εt (x, t) = εxx(x, t),
εx(0, t) = c0ε(0, t), εx(1, t) = d̃x(1, t),
d̃t (x, t) = d̃xx(x, t),
d̃x(0, t) = c0d̃(0, t), d̃(1, t) = 0.

(41)

It is seen that the ‘‘(ε, d̃)-part’’ is independent of the ‘‘(w, ẑ)-part’’
and happens to be system (7). By Lemma 2.2, the ‘‘(ε, d̃)-part’’ with
the initial values{

ε0(x) = w0(x) − ŵ0(x),
d̃0(x) = w0(x) − z0(x) − d̂0(x)

(42)

admits a unique solution (ε, d̃) ∈ C(0, ∞;H2) such that

∥ε(·, t)∥H + ∥d̃(·, t)∥H → 0 as t → ∞. (43)

Next, since ‘‘(w, ẑ)-part’’ is a cascade system of ‘‘w-subsystem’’
and ‘‘ẑ-subsystem’’, we can solve ‘‘w-subsystem’’ first. Under the
assumptions, the ‘‘w-part’’ of system (41) admits a unique solution
w ∈ C(0, ∞;H) such that [f (w) + d] ∈ L2loc(0, ∞). Using the
cascaded structure of ‘‘(w, ẑ)-part’’, the ‘‘ẑ-part’’ of system (41) is a
linear system with an inhomogeneous term [f (w(·, t)) + d(t)] ∈

L2loc(0, ∞). By Lemma 2.1, the ‘‘ẑ-part’’ of system (41) with the
initial value ẑ0(x) = w0(x) − z0(x) admits a unique solution ẑ ∈

C(0, ∞;H). Finally, (w, ε, d̃, ẑ) ∈ C(0, ∞;H4) is well defined.
Owing to the equivalent transformation (40), a simple computa-
tion shows that (ŵ, d̂, z, ẑ) ∈ C(0, ∞;H4) is well defined and
(ŵ, d̂, z) ∈ C(0, ∞;H3) is a solution of system (38). Using the
transformation (40) again, it follows that

ε(x, t) = w(x, t) − ŵ(x, t), (44)

and the convergence (39) follows from (43). □

Remark 3.1. Sincewe are only interested in the control design and
the closed-loop system, the well-posedness of the open-loop sys-
tem (1) is not touched in Theorem 3.1. In TheoremA.1 of Appendix,
we present the existence of solution to (1) under global Lipschitz
condition on f from which the condition of f (w(·, t)) ∈ L2loc(0, ∞)
required in Theorem 3.1 is satisfied.

Remark 3.2. It follows from the three steps in the beginning of the
section that we propose a very different scheme of the observer

design with control-matched disturbance and collocated obser-
vation. From asymptotic stabilization point of view however, the
disturbance and control should be matched since otherwise, there
is no channel to cancel the disturbance even if we know about the
disturbance. From observer design point of view, control matched
or not does not matter because our observer design process does
not rely on the position of the control and our observation signal is
not always in the control end. For example, consider the following
problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt (x, t) = wxx(x, t), x ∈ (0, 1), t > 0,
wx(0, t) = −qw(0, t) + u(t), t ≥ 0,
wx(1, t) = f (w(·, t)) + d(t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1,
y(t) = (w(0, t), w(1, t)) , t ≥ 0.

(45)

It is seen that the control and the disturbance are unmatched. How-
ever, by exploiting our approach, we can also design an unknown
input observer for system (45). Indeed, construct the following
auxiliary system to bring the disturbance into an exponentially
stable system:{zt (x, t) = zxx(x, t),
zx(0, t) = −qw(0, t) − c0[w(0, t) − z(0, t)] + u(t),
zx(1, t) = 0.

(46)

If we let ẑ(x, t) = w(x, t) − z(x, t), then ẑ(x, t) is governed by (22).
The rest of the observer design is the same as for system (1) in this
section.

Corollary 3.1. In addition to the assumptions in Theorem 3.1, we
assume further that the initial state (w0, d̂0, z0) satisfies the compat-
ibility condition:

(w0 − z0 − d̂0) ∈ D(A). (47)

Then there exists a unique solution (d̂, z) ∈ C(0, ∞;H2) to the
‘‘(d̂, z)-part’’ of (38) such that⏐⏐⏐d̂x(1, t) − [f (w(·, t)) + d(t)]

⏐⏐⏐ → 0 as t → ∞. (48)

Proof. Let (ε, d̃) ∈ C(0, ∞;H2) be the solution of (7) with the
initial values{

ε0(x) = w0(x) − ŵ0(x),
d̃0(x) = w0(x) − z0(x) − d̂0(x),

(49)

and let ẑ ∈ C(0, ∞;H) be the solution of (2) with the initial value
ẑ0(x) = w0(x)− z0(x) and G(t) = f (w(·, t))+ d(t). Then, (ŵ, d̂, z) ∈

C(0, ∞;H3) is well defined in terms of (40). By compatibility
condition (47), d̃(·, 0) ∈ D(A). The convergence (48) then follows
from (28) and (36). □

4. Observer based feedback design

To beginwith, we notice that any state feedback for system (37)
is an output feedback for original system (1). So in this section,
we consider feedback stabilization for system (37). First we use
a backstepping transformation to deal with the unstable term in
system (37). Let (see e.g. Krstic, 2010)

w̃(x, t) = [(I + P)ŵ](x, t)

= ŵ(x, t) + q
∫ x

0
eq(x−s)ŵ(s, t)ds, (50)

which is invertible and its inverse is given by

ŵ(x, t) = [(I + P)−1w̃](x, t)

= w̃(x, t) − q
∫ x

0
w̃(s, t)ds.

(51)
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A direct computation shows that w̃(x, t) is governed by⎧⎨⎩
w̃t (x, t) = w̃xx(x, t) + q(q + c0)eqxε(0, t),
w̃x(0, t) = −(q + c0)ε(0, t),
w̃x(1, t) = d̂x(1, t) + u(t) + qw̃(1, t),

(52)

where ε(x, t) = w(x, t) − ŵ(x, t) is given by (44). A stabilizing
feedback control can then be designed as

u(t) = −d̂x(1, t) − (q + c1)w̃(1, t), (53)

where c1 is a positive tuning parameter, to make system (52) as{
w̃t (x, t) = w̃xx(x, t) + q(q + c0)eqxε(0, t),
w̃x(0, t) = −(q + c0)ε(0, t),
w̃x(1, t) = −c1w̃(1, t).

(54)

It is seen from (54) that the ‘‘unstable’’ boundary condition
ŵx(0, t) = −qw(0, t) in observer (37) is replaced by the ‘‘stable’’
inhomogeneous term in (54). By (53) and (50), it follows that

u(t) = −d̂x(1, t) − (c1 + q)ŵ(1, t)

−q(c1 + q)
∫ 1

0
eq(1−s)ŵ(s, t)ds.

(55)

This is a stabilizing state feedback control for observer (37) and
consequently an observer based output feedback control for origi-
nal system (1). The closed-loop of system (1) now reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt (x, t) = wxx(x, t),
wx(0, t) = −qw(0, t),
wx(1, t) = f (w(·, t)) + d(t) − d̂x(1, t)

− (c1 + q)ŵ(1, t) − q(c1 + q)
∫ 1

0
eq(1−s)ŵ(s, t)ds,

d̂t (x, t) = d̂xx(x, t),
d̂x(0, t) = c0d̂(0, t), d̂(1, t) = w(1, t) − z(1, t),
zt (x, t) = zxx(x, t),
zx(0, t) = −qw(0, t) − c0[w(0, t) − z(0, t)],
zx(1, t) = −d̂x(1, t) − (c1 + q)ŵ(1, t)

− q(c1 + q)
∫ 1

0
eq(1−s)ŵ(s, t)ds,

ŵt (x, t) = ŵxx(x, t),
ŵx(0, t) = −qw(0, t) − c0[w(0, t) − ŵ(0, t)],
ŵx(1, t) = −(c1 + q)ŵ(1, t)

− q(c1 + q)
∫ 1

0
eq(1−s)ŵ(s, t)ds.

(56)

Now we state our main result of this paper.

Theorem 4.1. Suppose that d ∈ L∞(0, ∞) and f ∈ C(H;R). Then,
for any (w0, ŵ0, d̂0, z0) ∈ H4, the closed-loop system (56) admits a
unique solution (w, ŵ, d̂, z) ∈ C(0, ∞;H4) which satisfies:(w(·, t), ŵ(·, t))


H2 → 0 as t → ∞ (57)

and

sup
t∈[0,∞)

(d̂(·, t), z(·, t))
H2

< +∞. (58)

If we assume further that d ≡ 0 and f (0) = 0, then system is stable
in the sense(w(·, t), ŵ(·, t), d̂(·, t), z(·, t))


H4

→ 0 as t → ∞. (59)

In other words, when the external disturbance is disconnected to the
system, the closed-loop system is internally asymptotically stable.

5. Stability of closed-loop

We first consider the following linear system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt (x, t) = εxx(x, t),
εx(0, t) = c0ε(0, t), εx(1, t) = d̃x(1, t),
d̃t (x, t) = d̃xx(x, t),
d̃x(0, t) = c0d̃(0, t), d̃(1, t) = 0,
w̃t (x, t) = w̃xx(x, t) + q(q + c0)eqxε(0, t),
w̃x(0, t) = −(q + c0)ε(0, t),
w̃x(1, t) = −c1w̃(1, t),
ε(x, 0) = ε0(x), d̃(x, 0) = d̃0(x), w̃(x, 0) = w̃0(x),

(60)

which can be rewritten as an evolutionary equation in X = H3:
d
dt

(ε(·, t), d̃(·, t), w̃(·, t)) = A(ε(·, t), d̃(·, t), w̃(·, t)), (61)

where the operator A is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[A(f , g, h)](x) =

{
f ′′(x), g ′′(x),

h′′(x) + q(q + c0)eqxf (0)
)
, ∀(f , g, h) ∈ D(A),

D(A) =

{
(f , g, h) ∈ (H2(0, 1))3 | f ′(0) = c0f (0),

g ′(0) = c0g(0), f ′(1) = g ′(1), g(1) = 0,
h′(0) = −(q + c0)f (0), h′(1) = −c1h(1)

}
.

(62)

The inner product of X is defined by:

⟨(f1, g1, h1), (f2, g2, h2)⟩X = ⟨(f1, g1), (f2, g2)⟩X

+ γ

∫ 1

0
h1(x)h2(x)dx, ∀ (fi, gi, hi) ∈ X , i = 1, 2,

(63)

where γ is small enough so that A is dissipative in X and will be
determined later. It is easy to see that the above inner product is
well-defined.

Proposition 5.1. The operator A generates an exponentially stable
C0-semigroup on X . That is, for any (ε0, d̃0, w̃0) ∈ X , system (60)
admits a unique solution (ε, d̃, w̃) ∈ C(0, ∞;X ) and there exist
L1, ω1 > 0 such that(ε(·, t), d̃(·, t), w̃(·, t))


X

≤ L1e−ω1t , t ≥ 0. (64)

Proof. Define the Lyapunov functional for system (60):

G(t) = L(t) +
γ

2
∥w̃(·, t)∥2

H, (65)

where L(t) is defined by (16) and γ > 0. By (19), there exist two
positive constants µ1 and µ2, independent of time t , such that

µ1

[
∥ε(·, t)∥2

H + ∥d̃(·, t)∥2
H + ∥w̃(·, t)∥2

H

]
≤ G(t)

≤ µ2

[
∥εx(·, t)∥2

H + ∥d̃x(·, t)∥2
H + ∥w̃x(·, t)∥2

H + w̃2(1, t)
]
.
(66)

We find the derivative of G(t) along the solution of system (60) to
obtain

Ġ(t) ≤ −
c0
3

ε2(0, t) −
c0
2
d̃2(0, t) −

1
3
∥εx(·, t)∥2

H

−
1
2
∥d̃x(·, t)∥2

H − c1γ w̃2(1, t) + (q + c0)γ |w̃(0, t)||ε(0, t)|

− γ ∥w̃x(·, t)∥2
H + q(q + c0)γ |ε(0, t)

⟨
eqx, w̃(·, t)

⟩
H|.

(67)

By Hölder’s inequality and Young’s inequality, it follows that⏐⏐ε(0, t)⟨eqx, w̃(·, t)
⟩
H

⏐⏐ ≤ |ε(0, t)| eq
∫ 1

0
|w̃(x, t)| dx

≤ eq |ε(0, t)| ∥w̃(·, t)∥H ≤
κe2q

2
|ε(0, t)|2 +

1
2κ

∥w̃(·, t)∥2
H ,

(68)
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and

|w̃(0, t)ε(0, t)| ≤
κ

2
ε2(0, t) +

1
2κ

w̃2(0, t), (69)

where κ is a positive constant so that

κ > max
{(

1 +
4
π2

)
q + c0

2
+

2q(q + c0)
π2 ,

(2 + q)(q + c0)
2c1

}
.

(70)

We combine (67), (68), and (69) to obtain

Ġ(t) ≤ −

[
c0
3

−
1
2
γ κ(q + c0) −

1
2
κγ q(q + c0)e2q

]
ε2(0, t)

−
c0
2
d̃2(0, t) −

1
3
∥εx(·, t)∥2

H −
1
2
∥d̃x(·, t)∥2

H

− c1γ w̃2(1, t) +
γ (q + c0)

2κ
w̃2(0, t)

− γ ∥w̃x(·, t)∥2
H +

γ q(q + c0)
2κ

∥w̃(·, t)∥2
H.

(71)

By Poincaré inequality,

∥w̃(·, t)∥2
H ≤ w̃2(1, t) +

4
π2 ∥w̃x(·, t)∥2

H, (72)

and by Agmon’s inequality,

|w̃(0, t)|2 ≤ |w̃(1, t)|2 + 2∥w̃(·, t)∥H∥w̃x(·, t)∥H

≤ 2w̃2(1, t) +

(
4
π2 + 1

)
∥w̃x(·, t)∥2

H.
(73)

We combine (71), (20), and (73) to obtain

Ġ(t) ≤ −

[
c0
3

−
1
2
γ κ(q + c0) −

1
2
κγ q(q + c0)e2q

]
ε2(0, t)

−
c0
2
d̃2(0, t) −

1
3
∥εx(·, t)∥2

H −
1
2
∥d̃x(·, t)∥2

H

−

[
c1 −

q + c0
κ

−
q(q + c0)

2κ

]
γ w̃2(1, t)

−

[
1 −

(
1 +

4
π2

)
q + c0
2κ

−
2q(q + c0)

κπ2

]
γ ∥w̃x(·, t)∥2

H.

(74)

Set⎧⎪⎪⎨⎪⎪⎩
ϑ0 = c1 −

q + c0
κ

−
q(q + c0)

2κ
,

ϑ = 1 −

(
1 +

4
π2

)
q + c0
2κ

−
2q(q + c0)

κπ2 .

Then ϑ, ϑ0 > 0 thanks to (70). If we pick γ small enough so that(
c0
3

−
1
2
γ κ(q + c0) −

1
2
κγ q(q + c0)e2q

)
> 0, (75)

then (74) becomes

Ġ(t) ≤ −
1
3
∥εx(·, t)∥2

H −
1
2
∥d̃x(·, t)∥2

H

−ϑ0γ w̃2(1, t) − ϑγ ∥w̃x(·, t)∥2
H

≤ −θ

[
∥εx(·, t)∥2

H + ∥d̃x(·, t)∥2
H

+ ∥w̃x(·, t)∥2
H + w̃2(1, t)

]
,

(76)

where

θ = min
{
1
3
,
1
2
, ϑγ , ϑ0γ

}
. (77)

This together with (66) yields

Ġ(t) ≤ −
θ

µ2
G(t). (78)

Finally, the above process could also be applied to compute

⟨A(f , g, h), (f , g, h)⟩X ≤ 0, ∀ (f , g, h) ∈ D(A). (79)

So A is dissipative in X . This together with (78) shows that the C0-
semigroup generated by A is exponentially stable. This completes
the proof of the proposition. □

Proof of Theorem 4.1. Since the closed-loop system (56) is a still a
nonlinear system, direct treatment seems difficult. Hence, we first
convert the closed-loop system (56) into an almost linear one of
the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt (x, t) = εxx(x, t),
εx(0, t) = c0ε(0, t), εx(1, t) = d̃x(1, t),
d̃t (x, t) = d̃xx(x, t),
d̃x(0, t) = c0d̃(0, t), d̃(1, t) = 0,
w̃t (x, t) = w̃xx(x, t) + q(q + c0)eqxε(0, t),
w̃x(0, t) = −(q + c0)ε(0, t),
w̃x(1, t) = −c1w̃(1, t),
ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t),
ẑx(1, t) = f (ε(·, t) + (I + P)−1w̃(·, t)) + d(t),
ε(x, 0) = ε0(x), d̃(x, 0) = d̃0(x), w̃(x, 0) = w̃0(x),
ẑ(x, 0) = ẑ0(x)

(80)

by the following invertible transformation:⎛⎜⎝w

d̂
z
ŵ

⎞⎟⎠ =

⎛⎜⎜⎝
I 0 (I + P)−1 0
0 −I 0 I
I 0 (I + P)−1

−I
0 0 (I + P)−1 0

⎞⎟⎟⎠
⎛⎜⎝ ε

d̃
w̃

ẑ

⎞⎟⎠ , (81)

where (I + P)−1 is defined as (51). Although system (80) is still a
nonlinear one but it can be divided into two linear subsystems. The
‘‘(ε, d̃, w̃)-part’’, which happens to be system (60), is independent
of the ‘‘ẑ-part’’. Therefore, we can first solve the linear ‘‘(ε, d̃, w̃)-
part’’, and then solve ‘‘ẑ-part’’ which has linear principal and non-
linear inhomogeneous term f (ε(·, t) + (I + P)−1w̃(·, t)) + d(t)
which has been obtained from the linear part. This is a remarkable
mathematical merit of this design.

Define⎧⎪⎪⎨⎪⎪⎩
ε0(x) = w0(x) − ŵ0(x),
d̃0(x) = w0(x) − z0(x) − d̂0(x),

w̃0(x) = ŵ0(x) + q
∫ x

0
eq(x−s)ŵ0(s)ds.

(82)

Then (ε0, d̃0, w̃0) ∈ X . By Proposition 5.1, system (60) with
the initial conditions (82) admits a unique solution (ε, d̃, w̃) ∈

C(0, ∞;X ) such that (64) holds.
The continuity of the function f (·) implies that

sup
t∈[0,∞)

|f (ε(·, t) + (I + P)−1w̃(·, t))| < +∞. (83)

Since (ε, d̃, w̃) ∈ C(0, ∞;X ) is well defined, the ‘‘ẑ-part’’ of system
(80) now becomes a linear system with an inhomogeneous term
f (ε(·, t) + (I + P)−1w̃(·, t)) + d(t). That is⎧⎪⎨⎪⎩

ẑt (x, t) = ẑxx(x, t),
ẑx(0, t) = c0ẑ(0, t),
ẑx(1, t) = f (ε(·, t) + (I + P)−1w̃(·, t)) + d(t),
ẑ(x, 0) = ẑ0(x),

(84)

with the initial value ẑ0(x) = w0(x)−z0(x). Owing to d ∈ L∞(0, ∞),
it follows from (83) that [f (w(·, t)) + d(t)] ∈ L∞(0, ∞). Therefore,
by Lemma 2.1, the solution ẑ ∈ C(0, ∞;H) is well defined and

sup
t∈[0,∞)

∥ẑ(·, t)∥H < +∞. (85)
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Now,we have obtained that (ε, d̃, w̃, ẑ) ∈ C(0, ∞;H4) is a solution
of system (80). Owing to the equivalent transformation (81), it is
easy to find that (w, ŵ, d̂, z) ∈ C(0, ∞;H4) solves closed-loop
system (56) and satisfies (58).

When d ≡ 0 and f (0) = 0, it follows from (64) and the
continuity of f (·) that

|f (ε(·, t) + (I + P)−1w̃(·, t))| → 0 as t → ∞. (86)

By Lemma 2.1, the solution ẑ ∈ C(0, ∞;H) satisfies

∥ẑ(·, t)∥H → 0 as t → ∞, (87)

which, together with (64) and (81), leads to (59) easily. This com-
pletes the proof of the theorem. □

Corollary 5.1. In addition to the assumptions in Theorem 4.1, if
we assume further that the initial state (w0, ŵ0, d̂0, z0) satisfies the
compatibility condition (47), then convergence (48) holds, which
implies that d̂x(1, t) can be regarded as an approximate of the total
disturbance f (w(·, t)) + d(t) as t → ∞.

Proof. By Proposition 5.1, system (60) with the initial conditions
(82) admits a unique solution (ε, d̃, w̃) ∈ C(0, ∞;X ). By compat-
ibility condition (47), d̃(·, 0) ∈ D(A). Since the ‘‘d̃-part’’ in system
(60) is independent of the other part, the convergence (48) then
follows from (28) and (36). □

Remark 5.1. When there is no total disturbance, system (80) be-
comes a linear coupled system. By Proposition 5.1, it is easy to find
that system (80) is exponentially stable and so is for the closed-
loop (56) due to (81). This property is not only important itself in
applications but is also crucial to asymptotic stability of the closed-
loop system in the presence of total disturbance because the total
disturbance is only approximately (not completely) canceled in
real time.

6. Numerical simulation

To demonstrate our controller visually, we present in this sec-
tion some numerical simulations for system (56). The finite dif-
ference scheme is adopted in discretization. The numerical results
are programmed in Matlab. The time step and the space step are
taken as dt = 0.001 and dx = 0.05, respectively. Obviously, the
total disturbance like f (w(·, t)) =

∫ 1
0 w2(x, t)dx satisfies condition

of Theorem 4.1 but our class may cover more. To showcase nu-
merically, we choose total disturbance to be f (w(·, t)) + d(t) =∫ 1
0 w3(x, t)dx + 0.1ξ (t) which does not satisfy condition of The-

orem 4.1 but the closed-loop is still convergent as shown below,
where ξ (t) is the sawtooth disturbance generated by Matlab. The
heat equation with an integral condition can model various physi-
cal phenomena in the context of chemical engineering, thermoe-
lasticity, population dynamics, heat conduction process, control
theory,medical science, life sciences, and so forth. The initial values
and the tuning parameters are chosen asw(x, 0) = 1−x, ŵ(x, 0) =

d̂(x, 0) = z(x, 0) = 0, q = 1, c0 = c1 = 10. The solution of
system (56) is plotted in Fig. 2. The feedback control, and the total
disturbance and its estimate d̂x(1, t) are plotted in Fig. 3(a), and
the uncontrolled system is plotted in Fig. 3(b). It is seen that the
disturbance is estimated effectively. The convergence is very fast
and smooth.

7. Concluding remarks

In this paper, we propose a new method to stabilize 1-d un-
stable heat equation with unknown boundary uncertainty and

(a) w(x, t).

(b) ŵ(x, t).

(c) z(x, t).

(d) d̂(x, t).

Fig. 2. Simulation for system (56).

external disturbance on control boundary. A new type of unknown
input state observer is designed with essentially estimation of un-
known input, which is very different to variable structure method
in Guo and Jin (2015). It is remarkable that the convergence rate
of disturbance estimation is independent of the disturbance itself,
which implies that the uncertainty is sufficiently estimated in real
time. In addition, the proposed disturbance estimator does not use
high gain that is very different from the existing results (Guo &
Zhao, 2015). By exploiting backstepping method, we are able to
design a stabilizing feedback control for the observer and hence
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(a) Control law and disturbance estimation.

(b) System (1) without control.

Fig. 3. Feedback control, disturbance estimation, and uncontrolled system.

an observer based output feedback for original unstable system
with unknown input. This is a first effort not only estimating the
external disturbance but also internal uncertainty for a PDE system.
The approach is easy to be applied for other PDEs.

The approach used in this paper seems difficult to extend
to disturbances acting in-domain (unless the control is also in-
domain) and at the unactuated boundary because we need the
control to compensate the disturbance (unless we do not pursue
the asymptotic stability).

Finally, we indicate a possible problem that needs further in-
vestigation. This is about the infinite-dimensional nature of the
extended state observer. The convergence of the discrete scheme
for infinite-dimensional observer makes the feedback controller
practically applicable and hence is an important issue to be ad-
dressed in the future work.

Appendix

For any q > 0, we define the operator Aq as the following:{
[Aqf ](x) = f ′′(x), ∀ f ∈ D(Aq),
D(Aq) =

{
f ∈ H2(0, 1)|f ′(0) = −qf (0), f ′(1) = 0

}
.

Then Aq generates a C0-semigroup on H. In addition, it follows
from Liu and Wang (2015, Lemma 2.2) that the operator B =

δ(x − 1) is admissible to the C0-semigroup eAqt . Now, we write
system (1) into the following abstract form:

d
dt

w(·, t) = Aqw(·, t) + B[f (w(·, t)) + d(t) + u(t)]. (88)

Theorem A.1. Suppose that the initial state w0 ∈ H, d, u ∈

L2loc(0, ∞) and function f ∈ C(H;R) satisfies the Lipschitz condition:

|f (v1) − f (v2)| ≤ L∥v1 − v2∥H, ∀ v1, v2 ∈ H (89)

for some positive constant L. Then, system (1) admits a unique solution
w ∈ C(0, ∞;H), which can be written as

w(·, t) = eAqtw0

+

∫ t

0
eAq(t−s)B[f (w(·, s)) + d(s) + u(s)]ds, ∀t ≥ 0.

(90)

Proof. The proof is very similar to Pazy (1983, Theorem 1.2, p.184)
where the Banach contraction principle is utilized to treat the
nonlinear term. Here we only give a sketch of the proof. For initial
state w0(x) and T > 0, we define a mapping P : C(0, T ;H) →

C(0, T ;H) by

Pv(·, t) := eAqtw0

+

∫ t

0
eAq(t−s)B[f (v(·, s)) + d(s) + u(s)]ds.

(91)

Owing to the admissibility of the operator B, this mapping
is well defined. Define the norm on C(0, T ;H) by ∥v∥∞ =

supt∈[0,T ]∥v(·, t)∥ for ∀ v ∈ C(0, T ;H). Then, a simple computation
gives

∥Pv1(·, t) − Pv2(·, t)∥H

=

∫ t

0
eAq(t−s)B[f (v1(·, s)) − f (v2(·, s))]ds


H

≤ LBT |f (v1(·, s)) − f (v2(·, s))|L∞(0,T )
≤ LBTL∥v1 − v2∥∞,

(92)

where LB is a positive constant independent of T . Hence,

∥Pv1(·, t) − Pv2(·, t)∥∞ ≤ LBTL∥v1 − v2∥∞. (93)

For T small enough T < 1
LBL

and by a well known Banach con-
traction principle P has a unique fixed point w in C(0, T ;H). This
fixed point is the desired solution of integral equation (90) on
[0, T ]. Similarly, this local solution can be extended to [0, 2T ]. As a
consequence, the global solution can be obtained by induction. □
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