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Trajectory Planning Approach to Output
Tracking for a 1-D Wave Equation

Hongyinping Feng , Bao-Zhu Guo , and Xiao-Hui Wu

Abstract—In this article, we propose a trajectory planning
approach to deal with various of the noncollocated configu-
rations of output tracking through a one-dimensional wave
equation. We mainly consider two noncollocated config-
urations: the performance output is noncollocated to the
control input and the disturbance is noncollocated to
the measurement output. By proper trajectory planning, the
noncollocated configurations can be converted into the col-
located ones so that the conventional method can be ap-
plied. An error-based feedback is proposed to realize the
output tracking. Finally, as an application, the output track-
ing with general harmonic disturbance and reference signal
are exemplified. Numerical simulation shows that the pro-
posed approach is very effective.

Index Terms—Error-based feedback, noncollocated con-
figuration, observer, output tracking, wave equation.

I. INTRODUCTION

OUTPUT tracking is one of the fundamental issues in con-
trol theory. In most of the situations, we are only con-

cerned with the performance output tracking for a control system
and, importantly, the reference signal is usually not specified due
to disturbance. At the same time, we need to guarantee that all
the states of internal loops are uniformly bounded and the sys-
tem is internally asymptotically stable when the disturbance and
reference are disconnected to the system. The output tracking
has been studied systematically for lumped parameter systems
by the internal model principle (IMP) since from [2], [3], [9].
Partial results have been generalized to the infinite-dimensional
systems, see, for instance, [1], [4], [5], [21], [24], [28]–[30],
among many others. A recent interesting work is [25] where
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output tracking problem was considered for a general 2 × 2
system of first-order linear hyperbolic partial differential equa-
tions (PDEs) but no uncertainty and disturbance were taken into
consideration. Very recently, a noncollocated output tracking
problem was considered in [15] by adaptive control method and
an early effort by adaptive control can also be found in [16], by
rejecting the harmonic disturbance only.

In our previous work [11], we proposed a new active distur-
bance rejection control to stabilize an antistable wave equation.
This method can also be applied to deal with interior unknown
dynamics in [34] and output tracking in [33]. The idea of this
estimation and cancelation strategy was applied to an output
tracking for a heat equation with unbounded control and un-
bounded observation in [22]. The main idea of [22] is that an
extended state observer can be constructed to estimate the state
and the general external disturbance, but the control and per-
formance output are collocated. The same idea was applied in
[35] to an output regulation problem for a wave equation with
general boundary disturbance where the control and regulated
output are also collocated.

As aforementioned, the IMP is one of the most powerful
systematic approaches in dealing with output regulation and
output tracking, which has been extensively studied for abstract
infinite-dimensional regular linear systems in [27], [29], and
the references therein. However, the applications from abstract
theory to PDEs usually need to show existence of solutions to
some Sylvester equations, which turns out to be a difficult, see,
for instance, a one-dimensional (1-D) heat example presented
in [29, sec. 9]. A recent study shows that the regulation problem
can also be solved by constructing special solutions for regulator
equations from which the controllers can be designed in terms
of kernel equations [5], [6]. With a combination of the IMP
and backstepping approach, the regulation problem via state
feedback control has been solved for some PDEs in [7] and [12].
In [7], second-order hyperbolic PDEs with spatially varying
coefficient was discussed and the disturbances can be in-domain
and boundary disturbances, and in [12], an n-coupled wave
equation with spatially varying coefficients was considered with
both in-domain as well as boundary disturbances. An interesting
situation of [12] is that the regulated output can be pointwise or
distributed in-domain or defined on a boundary.

In this article, we propose a direct method to solve various of
noncollocated output tracking problems for a 1-D wave equa-
tion via error-based feedback control. We demonstrate the whole
process of the control design in terms of the technique of tra-
jectory planning. The problem that we consider is the output
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tracking for the following 1-D wave equation:{
wtt(x, t) = wxx(x, t), x ∈ (0, 1), t > 0

wx(0, t) = d(t), wx(1, t) = u(t), t ≥ 0
(1.1)

where u(t) is the control input and d(t) is the external distur-
bance. For a given reference signal yref (t), we aim at designing
an error-based feedback control so that

w(0, t) → yref (t) as t→ ∞. (1.2)

The only measurement available for the control design is the
tracking error between the performance output w(0, t) and the
reference signal yref (t)

ye(t) = yref (t) − w(0, t). (1.3)

There are a couple of reasons to consider model (1.1). First, it is
a suitable PDE to demonstrate the approach without involving
much complicated mathematics for our approach is quite general
to be applied to other PDEs. Second, the system (1.1) is a hyper-
bolic PDE, which means that it is truly infinite-dimensional. One
cannot truncate it into high-order ordinary differential equations
(ODEs) because the high frequencies are just as important as low
frequencies. In addition, there are many engineering problems
that can be well described by output tracking of the wave equa-
tion like wharf gantry cranes carrying cargo in marine industry
[20], container cranes in port automation, and flexible links in
gantry robots. One of the typical examples is the flexible crane
system, which consists of a cable and payload. The actuator is
fixed at one end of the cable and the other end is the payload. The
payload driven by the controller needs to achieve the tracking
of given commands. This physical mechanism can be modeled
as an output tracking of wave equation, for details, we refer to
[17]. Other engineering problems of output tracking of the wave
equation can be found in piezoelectric stack actuators [26] and
moving string systems with tip payload [18].

The reference signal yref (t) and the disturbance d(t) are sup-
posed to be generated by an exosystem of the following:{

v̇(t) = Gv(t)

d(t) = Qv(t), yref (t) = Fv(t)
(1.4)

where G ∈ Cn×n , Q ∈ C1×n , and F ∈ C1×n are known but
the initial state v(0) is unknown, which makes both yref (t) and
d(t) unknown to some extent.

When the input u(t) ≡ 0, system (1.1) and exosystem (1.4)
constitute a cascade observation system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wtt(x, t) = wxx(x, t)

wx(0, t) = Qv(t), wx(1, t) = 0

v̇(t) = Gv(t)

ye(t) = Fv(t) − w(0, t).

(1.5)

For notational simplicity, we omit in equations hereafter the
obvious domains for both time t and spatial variable x when
there is no confusion. For a continuous complex function f :
C → C defined over complex plane C, the matrix f(G) can be
defined, see, for instance [19, Definition 1.2, p. 3]. In the output

regulation problems (1.1) and (1.2), we always assume that

(G,FG sinhG+Q coshG) is observable (1.6)

which is almost equivalent to the approximate observability
of system (1.5). It is seen from (1.5) that exosystem (1.4) is
independent of the control plant (1.1) and the information trans-
mission from the exosystem to the control plant is unidirec-
tional. Precisely, the signal of the exosystem enters the control
plant as a disturbance wx(0, t) = Qv(t) and also through the
error-based feedback control due to ye(t) = Fv(t) − w(0, t).
Roughly speaking, the assumption (1.6) implies that the whole
information of the exosystem is injected into the control plant,
and the observer can therefore be possibly designed. When the
assumption (1.6) does not hold, there exist some dynamic of ex-
osystem, which cannot be reflected by the measured output. In
fact, when the pair (G,FG sinhG+Q coshG) is not observ-
able, by Hautus’s lemma, there exist λ ∈ σ(G) and 0 �= h ∈ Cn

such that

(FG sinhG+Q coshG)h = 0 and Gh = λh. (1.7)

Define v(t) = eλth and

w(x, t) = [F cosh(xG) + xQG(xG)] v(t) (1.8)

where

G(z) =

{ sinh z
z

, z �= 0, z ∈ C

1, z = 0.
(1.9)

By a simple computation, it is easy to check that such a de-
fined (w,wt, v) is a nonzero solution of system (1.5). However,
the measured regulation error ye(t) = yref (t) − w(0, t) ≡ 0. In
other words, assumption (1.6) is not stronger than approximately
observable for system (1.5).

The problem (1.1) is significantly special from two aspects.
First, the measurement for controller design is only the error
between performance output and reference. Since the signals of
the disturbance and the state are mixed up in the measurement,
we need to separate them properly before making an estimation
rather estimating them directly. This configuration brings a big
obstacle for state observer or disturbance estimator design. Sec-
ond, the control and performance output are noncollocated. This
implies that the control action must propagate through the entire
spatial domain to reach the performance output to perform the
function, which requires a deep understanding about the control
plant.

We proceed as follows. In Section II, we first design an ob-
server for a transformed system of (1.1), which gives an estimate
of v(t) by the first time trajectory planning. To transfer the dis-
turbance from noncollocated position to the control end, we use
the second time trajectory planning in Section III. As a result,
an error-based control is designed. The stability analysis for the
closed-loop system is performed in Section IV. In Section V,
we consider another noncollocated problem where the regulated
output and disturbance are noncollocated. Finally, we apply the
result to harmonic disturbance, which covers particularly the
result of [15] in Section VI. The proofs of the main results
are presented in Section VII. In Section VIII, we present some
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numerical simulations for illustration, followed by conclusions
in Section IX.

Some notations: the spectrum of the operator A is denoted
by σ(A), the inner product of Hilbert space L2(0, 1) is denoted
by 〈·, ·〉L2 (0,1) , and the corresponding norm is denoted by ‖ ·
‖L2 (0,1) .

II. TRAJECTORY PLANNING FOR OBSERVER DESIGN

Before designing an observer for (1.1), we need to separate the
disturbance properly from the measured error. In this section, we
introduce a new idea by constructing a proper trajectory so that
the disturbance appears in both the equation and the output. The
motivation will be seen clearly once the observer is designed.
Suppose that this “proper trajectory” takes the following form:{

φ1tt(x, t) = φ1xx(x, t)

φ1(0, t) = P1v(t), φ1x(0, t) = P2v(t)
(2.1)

where P1 and P2 are n-dimensional row vectors, which will be
determined later. Inspired by [8, Ch. 4] and [23, Ch. 12], we try
to find a special solution of system (2.1) in the following form:

φ1(x, t) =
∞∑
n=0

αn (t)
xn

n!
. (2.2)

Substituting (2.2) into system (2.1), it can be found that the
coefficients αn (t) satisfies{

α̈n (t) = αn+2(t), n = 0, 1, 2, . . .

α0(t) = P1v(t), α1(t) = P2v(t)
(2.3)

which produces in turn

φ1(x, t) =
∞∑
n=0

[
P1v

(2n)(t)
x2n

(2n)!
+ P2v

(2n)(t)
x2n+1

(2n+ 1)!

]

=

[
P1

( ∞∑
n=0

G2nx2n

(2n)!

)
+P2

( ∞∑
n=0

G2nx2n+1

(2n+ 1)!

)]
v(t).

(2.4)

That is

φ1(x, t) = [P1 cosh(xG) + xP2G(xG)] v(t) (2.5)

where G is defined by (1.9). Since G is continuous on C, the
matrix G(xG) is well defined for any x ∈ [0, 1]. In addition

φ1x(1, t) = (P1G sinhG+ P2 coshG)v(t). (2.6)

Choose P1 and P2 specially so that

P1G sinhG+ P2 coshG = 0 (2.7)

which results in φ1x(1, t) = 0. Define the transform

w1(x, t) = w(x, t) − φ1(x, t). (2.8)

System (1.1) is then transformed into⎧⎪⎨
⎪⎩
w1tt(x, t) = w1xx(x, t)

w1x(0, t) = Q1v(t), w1x(1, t) = u(t)

ye(t) = F1v(t) − w1(0, t)

(2.9)

where

F1 = F − P1 , Q1 = Q− P2 . (2.10)

Superficially, (2.9) and (1.1) take the same form but in (1.1),
the Q in d(t) = Qv(t) is fixed whereas, in (2.9), Q1 can be
regulated, which will be seen in the sequel. We then design
an observer for system (2.9) in incorporating v̇(t) = Gv(t) as
follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ŵ1tt(x, t) = ŵ1xx(x, t)

ŵ1x(0, t) = c1 [ŵ1(0, t) + ye(t)]

+c2 [ŵ1t(0, t) + ẏe(t)]

ŵ1x(1, t) = u(t)
˙̂v(t) = Gv̂(t) + [ye(t) − F1 v̂(t) + ŵ1(0, t)]K

(2.11)

where c1 , c2 are positive constants and K is a column vector
such that the matrix G−KF1 is Hurwitz. The motivation of
this observer design seems a little bit intricate. However, it
becomes clear after examination of the error dynamics. In fact,
let

w̃1(x, t) = w1(x, t) − ŵ1(x, t), ṽ(t) = v(t) − v̂(t). (2.12)

If we choose P1 and P2 specially such that

Q1 − c1F1 − c2F1G

= Q− P2 − c1(F − P1) − c2(F − P1)G = 0 (2.13)

then, the error (w̃1 , ṽ) is governed by “target” stable wave equa-
tion ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

w̃1tt(x, t) = w̃1xx(x, t)

w̃1x(0, t) = c1w̃1(0, t) + c2w̃1t(0, t)

w̃1x(1, t) = 0
˙̃v(t) = (G−KF1)ṽ(t) + w̃1(0, t)K.

(2.14)

System (2.14) is a cascade of two exponentially stable systems,
and hence, is expected to be exponentially stable. Now it is
clear: We add the “damping” term c1w̃1(0, t) + c2w̃1t(0, t) at
the left end of the string, and at the same time, make the matrix
G−KF1 be Hurwitz by proper construction of K. The idea of
such construction is inspired by [10] where various of coupled
systems were proposed by decoupling the coupled system as
the controlled plants with their dynamic feedbacks. We consider
system (2.14) in the state space

H = H1(0, 1) × L2(0, 1) × Cn (2.15)

in which the inner product is equipped with

〈(f1 , g1 , h1), (f2 , g2 , h2)〉H = 〈f ′1 , f ′2〉L2 (0,1)

+ 〈g1 , g2〉L2 (0,1) + c1f1(0)f2(0) + 〈h1 , h2〉Cn

∀ (fi, gi , hi) ∈ H, i = 1, 2. (2.16)

System (2.14) can be written abstractly as

d

dt
(w̃1(·, t), w̃1t(·, t), ṽ(t))

= A1(w̃1(·, t), w̃1t(·, t), ṽ(t)) (2.17)
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where the operator A1 : D(A1) ⊂ H → H is defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1(f, g, h) = (g, f ′′, (G−KF1)h+ f(0)K)

∀ (f, g, h) ∈ D(A1) =
{
(f, g, h) | f ∈ H2(0, 1)

g ∈ H1(0, 1), h ∈ Cn , f ′(1) = 0

f ′(0) = c1f(0) + c2g(0)
}
.

(2.18)

The following Lemma 2.1 shows that (2.11) is indeed an
observer for (2.9).

Lemma 2.1: Suppose that c1 , c2 > 0, K ∈ Cn×1 , F1 ∈
C1×n , and the matrix G−KF1 is Hurwitz. Then, the oper-
ator A1 defined by (2.18) generates an exponentially stable
C0-semigroup eA1 t on H, i.e., there exist two positive constants
LA1 and ωA1 such that∥∥eA1 t

∥∥ ≤ LA1 e
−ωA1 t ∀ t ≥ 0. (2.19)

The well-posedness of the open-loop system (2.9) and ob-
server (2.11) is presented in Theorem 2.1.

Theorem 2.1: Suppose that c1 , c2 > 0,Q1 , F1 ∈ C1×n ,K ∈
Cn×1 , the matrix G−KF1 is Hurwitz, and Q1 − c1F1 −
c2F1G = 0. Then, for any initial state (w1(·, 0), w1t(·, 0),
v(0), ŵ1(·, 0), ŵ1t(·, 0), v̂(0)) ∈ H2 and u ∈ L2

loc(0,∞), sys-
tems (1.4), (2.9), and (2.11) admit a unique solution (w1 , w1t ,
v, ŵ1 , ŵ1t , v̂) ∈ C([0,∞);H2) such that

‖(w1(·, t) − ŵ1(·, t), w1t(·, t) − ŵ1t(·, t)
v(t) − v̂(t))‖H ≤ L1e

−ω1 t , t ≥ 0 (2.20)

where L1 and ω1 are two positive constants.
To end this section, we point out that the introduction of

the trajectory planning is mainly for the observer design. Our
observer (2.11) is for system (2.9) where Q1 is regulatable not
for original system (1.1) where Q is fixed. The error-based
observer design turns out to be the most difficult problem in the
output tracking for PDEs.

III. TRAJECTORY PLANNING FOR CONTROLLER DESIGN

By virtue of (2.9), we can estimate successfully the distur-
banceQv(t) byQv̂(t). However, (2.9) is not suitable for control
design because the control and disturbance are still “noncollo-
cated” there. To overcome this difficulty, we need a different
trajectory planning to move the disturbance from the left end to
the control end so that the control can cancel the disturbance in
the feedback loop. This is the objective of this section.

Similar to (2.1), we suppose that the desired trajectory satis-
fies the following equation:{

φ2tt(x, t) = φ2xx(x, t)

φ2(0, t) = Fv(t), φ2x(0, t) = Qv(t)
(3.1)

which, similar to (2.1), admits a special solution

φ2(x, t) = [F cosh(xG) + xQG(xG)]v(t). (3.2)

If we define the transform

w2(x, t) = w(x, t) − φ2(x, t) (3.3)

the controlled plant (1.1) can be converted into⎧⎪⎨
⎪⎩
w2tt(x, t) = w2xx(x, t)

w2x(0, t) = 0, w2x(1, t) = Q2v(t) + u(t)

ye(t) = −w2(0, t)

(3.4)

where

Q2 = −(FG sinhG+Q coshG). (3.5)

Now we can say a few words on the motivation. Compared with
the original system (1.1) with control and disturbance not being
collocated, the disturbance has been moved to the control end in
system (3.4), and more importantly, the measured output track-
ing error in original system (1.1) has become a usual boundary
measurement in system (3.4). Since

w(0, t) = w2(0, t) + φ2(0, t)

= w2(0, t) + Fv(t) = w2(0, t) + yref (t) (3.6)

if we can stabilize system (3.4), then, w2(0, t) → 0 and hence
w(0, t) → yref (t). In other words, the output tracking problem
is transformed into stabilization problem for system (3.4), which
is much easy to be dealt with.

By (2.8) and (3.3)

w2(x, t) = w1(x, t) + φ1(x, t) − φ2(x, t)

= w1(x, t) + Φ(x)v(t) (3.7)

where Φ : [0, 1] → Cn is a vector valued function given by

Φ(x) = (P1 − F ) cosh(xG) + x(P2 −Q)G(xG). (3.8)

The following Proposition 3.1 gives an estimate of w2(x, t)
in terms of the measured output tracking error.

Proposition 3.1: Under the assumptions in Theorem 2.1, for
any initial state

(w2(·, 0), w2t(·, 0), v(0), ŵ1(·, 0), ŵ1t(·, 0), v̂(0)) ∈ H2

and u ∈ L2
loc(0,∞), systems (1.4), (2.11), and (3.4) admit a

unique solution

(w2 , w2t , v, ŵ1 , ŵ1t , v̂) ∈ C([0,∞);H2) (3.9)

such that

‖(ε0(·, t), ε1(·, t), v(t) − v̂(t))‖H ≤ L2e
−ω2 t , t ≥ 0 (3.10)

where L2 and ω2 are two positive constants, and{
ε0(x, t) = w2(x, t) − [ŵ1(x, t) + Φ(x)v̂(t)]

ε1(x, t) = w2t(x, t) − [ŵ1t(x, t) + Φ(x)Gv̂(t)].
(3.11)

This shows that system (2.11) can be regarded as a state observer
of system (3.4) as well.

Now we are in a position to design an observer-based sta-
bilizing output feedback control for system (3.4). Thanks to
Proposition 3.1, we have an estimate ŵ1(·, t) + Φ(·)v̂(t) for
w2(·, t), and ŵ1t(·, t) + Φ(·)Gv̂(t) forw2t(·, t). Hence, the con-
trol design for (3.4) is the same as the disturbance free counter-
part after canceling the disturbance Q2v(t) by Q2 v̂(t), which
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now reads

u(t) = −Q2 v̂(t) − c3 [ŵ1t(1, t) + Φ(1)Gv̂(t)]

− c4 [ŵ1(1, t) + Φ(1)v̂(t)]

= − Ψ1 v̂(t) − c4ŵ1(1, t) − c3ŵ1t(1, t) (3.12)

where c3 , c4 are positive tuning parameters and the vector Ψ1 ∈
C1×n is defined by

Ψ1 = Q2 + c3Φ(1)G+ c4Φ(1). (3.13)

Solving equations (2.7) and (2.13), we obtain that⎧⎪⎨
⎪⎩
P1 = −[Q− F (c1I + c2G)] coshG[f1(G)]−1

P2 = [Q− F (c1I + c2G)]G sinhG[f1(G)]−1

f1(G) = G sinhG+ (c1I + c2G) coshG

(3.14)

provided that the matrix f1(G) is invertible. It then follows from
(2.10) and (3.14) that

F1 = (FG sinhG+Q coshG)[f1(G)]−1 . (3.15)

Combining (1.1), (2.11), and (3.12), and taking the parameter
matrices (3.15), (3.5), and (3.13) into account, we derive the
closed-loop system as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇(t) = Gv(t)

wtt(x, t) = wxx(x, t)
wx(0, t) = Qv(t)

wx(1, t) = −Ψ1 v̂(t) − c4ŵ1(1, t) − c3ŵ1t(1, t)

ŵ1tt(x, t) = ŵ1xx(x, t)

ŵ1x(0, t) = c1 [ŵ1(0, t) + ye(t)]

+c2 [ŵ1t(0, t) + ẏe(t)]

ŵ1x(1, t)=−Ψ1 v̂(t) − c4ŵ1(1, t) − c3ŵ1t(1, t)
˙̂v(t) = Gv̂(t) + [ye(t) − F1 v̂(t) + ŵ1(0, t)]K

ye(t) = Fv(t) − w(0, t)

(3.16)

where K is a column vector such that the matrix G−KF1 is
Hurwitz. For the sake of easy reading, the corresponding tuning
vectors are clustered as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ψ1 = c3Φ(1)G+ c4Φ(1)

−(FG sinhG+Q coshG)

F1 = (FG sinhG+Q coshG)[f1(G)]−1

f1(G) = G sinhG+ (c1I + c2G) coshG

P1 = −[Q− F (c1I + c2G)] coshG[f1(G)]−1

P2 = [Q− F (c1I + c2G)]G sinhG[f1(G)]−1

Φ(1) = (P1 − F ) coshG+ (P2 −Q)G(G)

= −(FG sinhG+Q coshG)f0(G)[f1(G)]−1

f0(G) = coshG+ (c1I + c2G)G(G).

(3.17)

Remark 3.1: We point out that the trajectory planning can be
realized also by a well-established solution using the regulator

equations. Actually, put (1.1) and (1.4) together to obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̇(t) = Gv(t)

wtt(x, t) = wxx(x, t)

wx(0, t) = Qv(t), wx(1, t) = u(t)

ye(t) = Fv(t) − w(0, t).

(3.18)

Introduce the tracking error

e(x, t) = w(x, t) − Σ(x)v(t) with Σ(x) ∈ C1×n (3.19)

in which Σ(x)v(t) is the particular steady state to achieve output
regulation in the presence of modeled disturbance. A simple
calculation gives⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̇(t) = Gv(t)

ett(x, t) = exx(x, t)

ex(0, t) = 0, ex(1, t) = −Σ′(1)v(t) + u(t)

ye(t) = −e(0, t)

(3.20)

provided that Σ(x) is the solution of the following regulator
equation: {

Σ′′(x) = Σ(x)G2

Σ′(0) = Q, Σ(0) = F
(3.21)

which has a solution

Σ(x) = F cosh(xG) + xQG(xG). (3.22)

It is seen that the e-subsystem in (3.20) is almost the same
as (3.4). It is therefore sufficient to stabilize system (3.20) to
achieve output tracking.

From Sections II and III, we see that double trajectory plan-
nings are performed in the whole process of the controller (3.12)
design. Both of them are carried out in the spirit of estima-
tion and cancelation strategy. The first trajectory planning is
used to estimate simultaneously the disturbance and the state.
After the first planning, observer (2.11) is designed success-
fully to estimate both the disturbance d = Qv and the state
(w1(·, t), w1t(·, t)). In order to compensate the disturbance by
its estimation, we need the second trajectory planning to convert
the disturbance into the control channel, which can be seen from
(2.9) and (3.4) where the disturbance and control are collocated.
The second trajectory planning of designing state feedback can
be replaced by a well-established output regulation method, but
through trajectory planning, we can see clearly why the feedback
control should be what it likes by transforming a noncollocated
problem into a collocated one.

The initial idea of this trajectory planning method comes
from the monograph [23, Ch. 12] where the trajectory plan-
ning was used to generate a state reference trajectory for PDEs.
This approach has been applied to tracking control design for
wave equation in [26]. Theoretically, output regulation prob-
lem (1.1) can also be solved by the internal model princi-
pal but the existence of solutions of some Sylvester equations
needs to be justified, which is not so easy for a PDE (see,
e.g., [29, Sec. 9]).
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IV. EXPONENTIAL STABILITY OF THE CLOSED-LOOP SYSTEM

In this section, we consider exponential stability for the
closed-loop system (3.16). Let⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w2(x, t) = w(x, t) − Φ2(x)v(t)

w2t(x, t) = wt(x, t) − Φ2(x)Gv(t)

w̃1(x, t) = w(x, t) − Φ1(x)v(t) − ŵ1(x, t)

w̃1t(x, t) = wt(x, t) − Φ1(x)Gv(t) − ŵ1t(x, t)

ṽ(t) = v(t) − v̂(t)

(4.1)

where {
Φ1(x) = P1 cosh(xG) + xP2G(xG)

Φ2(x) = F cosh(xG) + xQG(xG).
(4.2)

In terms of transformation (4.1), the closed-loop system (3.16)
can be converted into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2tt(x, t) = w2xx(x, t)

w2x(0, t) = 0

w2x(1, t) = Ψ1 ṽ(t) + c3w̃1t(1, t) − c3w2t(1, t)

+c4w̃1(1, t) − c4w2(1, t)

w̃1tt(x, t) = w̃1xx(x, t)

w̃1x(0, t) = c1w̃1(0, t) + c2w̃1t(0, t)

w̃1x(1, t) = 0
˙̃v(t) = (G−KF1)ṽ(t) + w̃1(0, t)K

(4.3)

where F1 , Ψ1 are given by (3.17), and K is a column vector
such that the matrix G−KF1 is Hurwitz. We consider system
(4.3) in the state space X = H1(0, 1) × L2(0, 1) ×H equipped
with the inner product

〈(f1 , g1 , φ1 , ψ1 , h1), (f2 , g2 , φ2 , ψ2 , h2)〉X
= 〈f ′1 , f ′2〉L2 (0,1) + 〈g1 , g2〉L2 (0,1)

+ c4f1(1)f2(1) + 〈(φ1 , ψ1 , h1), (φ2 , ψ2 , h2)〉H
∀ (fi, gi , φi, ψi, hi) ∈ X , i = 1, 2. (4.4)

Let

X1(t) = (w2(·, t), w2t(·, t), w̃1(·, t), w̃1t(·, t), ṽ(t)). (4.5)

System (4.3) can be written abstractly as

d

dt
X1(t) = A1X1(t) (4.6)

where the operator A1 : D(A1)(⊂ X ) → X is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1(f, g, φ, ψ, h) = (g, f ′′,A1(φ, ψ, h))

∀(f, g, φ, ψ, h) ∈ D(A1) =
{

(f, g, φ, ψ, h) ∈ X
∣∣∣

f ∈ H2(0, 1), g ∈ H1(0, 1), f ′(0) = 0

f ′(1) = −c4f(1) + c4φ(1) − c3g(1) + c3ψ(1)

+Ψ1h, (φ, ψ, h) ∈ D(A1)
}

(4.7)

with A1 being given by (2.18).

Lemma 4.1: Suppose that ci > 0, i = 1, 2, 3, 4, K ∈ Cn×1 ,
Ψ1 , F1 ∈ C1×n , and the matrixG−KF1 is Hurwitz. Then, the
operator A1 defined by (4.7) generates an exponentially stable
C0-semigroup eA1 t on X , i.e., there exist two positive constants
LA1 and ωA1 such that∥∥eA1 t

∥∥ ≤ LA1 e
−ωA1 t ∀ t ≥ 0. (4.8)

The main result of this article is Theorem 4.1.
Theorem 4.1: Suppose that (1.6), ci > 0, i = 1, 2, 3, 4, and

the matrix G satisfies

σ(G) ⊂ {λ | Reλ ≥ 0}. (4.9)

Then, for any initial state

(w(·, 0), wt(·, 0), v(0), ŵ1(·, 0), ŵ1t(·, 0), v̂(0)) ∈ H2

the closed-loop system (3.16) with setting (3.17) admits a unique
solution

(w,wt, v, ŵ1 , ŵ1t , v̂) ∈ C([0,∞);H2) (4.10)

satisfying

|Qv(t) −Qv̂(t)| + |ye(t)| ≤ L3e
−ω3 t ∀ t ≥ 0 (4.11)

for some constants L3 > 0 and ω3 > 0. Moreover,
1) If supt∈[0,∞) ‖v(t)‖Cn < +∞, then, the state of closed-

loop (3.16) is uniformly bounded, i.e.,

sup
t∈[0,∞)

‖(w(·, t), wt(·, t), v(t)

ŵ1(·, t), ŵ1t(·, t), v̂(t))‖H2 < +∞; (4.12)

2) When v(t) ≡ 0, then, there exist two positive constants
L4 and ω4 such that

‖(w(·, t), wt(·, t), v(t), ŵ1(·, t)

ŵ1t(·, t), v̂(t))‖H2 ≤ L4e
−ω4 t , t ≥ 0. (4.13)

V. DIFFERENT NONCOLLOCATED CONFIGURATION

In this section, we continue to consider system (1.1) but the
performance output is at the control end

ye(t) = yref (t) − w(1, t) → 0 as t→ ∞ (5.1)

where w(1, t) is the performance output and yref (t) is still the
reference signal generated by exosystem (1.4).

It turns out that the state feedback controller design in this
case is slightly easier than the previous one. The reason behind
this lies in that the control can take action on the performance
output directly, for it is relatively “close” to the performance
output. However, the disturbance estimation in this case is more
difficult than the previous one. This is because the measurement
is noncollocated to the disturbance. In this case, we need the
trajectory planning to convert the noncollocated configuration
into a collocated one. Suppose now that the desired auxiliary
trajectory satisfies the following system:{

φ3tt(x, t) = φ3xx(x, t), x ∈ (0, 1), t > 0

φ3(0, t) = P3v(t), φ3x(0, t) = Qv(t), t ≥ 0
(5.2)
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where P3 ∈ C1×n will be determined later. Similar to (2.4),
system (5.2) admits a special solution

φ3(x, t) = Φ3(x)v(t) (5.3)

where

Φ3(x) = P3 cosh(xG) + xQG(xG) (5.4)

and G is defined by (1.9). If we let

w3(x, t) = w(x, t) − φ3(x, t) (5.5)

then, the error w3(x, t) is governed by⎧⎪⎨
⎪⎩
w3tt(x, t) = w3xx(x, t)

w3x(0, t) = 0, w3x(1, t) = Q0v(t) + u(t)

ye(t) = F0v(t) − w3(1, t)

(5.6)

where {
F0 = F − P3 coshG−QG(G)

Q0 = −P3G sinhG−Q coshG.
(5.7)

Once again, the measurement/disturbance noncollocated con-
figuration in original system (1.1) has been transferred into a
collocated one in system (5.6).

Similar to Section II, the observer for system (5.6) and (1.4)
can be designed as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ŵ3tt(x, t) = ŵ3xx(x, t)

ŵ3x(0, t) = 0

ŵ3x(1, t) = −c1 [ŵ3(1, t) + ye(t)]

−c2 [ŵ3t(1, t) + ẏe(t)] + u(t)
˙̂v(t) = Gv̂(t) + [ye(t) + ŵ3(1, t) − F0 v̂(t)]K0

(5.8)

where c1 , c2 are positive tuning parameters, andK0 is a column
vector such that the matrix G−K0F0 is Hurwitz. If we choose
specially P3 ∈ C1×n in (5.7) such that

Q0 + c1F0 + c2F0G = 0 (5.9)

and let

w̃3(x, t) = w3(x, t) − ŵ3(x, t), ṽ(t) = v(t) − v̂(t) (5.10)

then, the error (w̃3 , ṽ) is governed by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w̃3tt(x, t) = w̃3xx(x, t)

w̃3x(0, t) = 0

w̃3x(1, t) = −c1w̃3(1, t) − c2w̃3t(1, t)
˙̃v(t) = (G−K0F0)ṽ(t) + w̃3(1, t)K0

(5.11)

which is a cascade of two exponentially stable systems. System
(5.11) can be written abstractly as

d

dt
(w̃3(·, t), w̃3t(·, t), ṽ(t)) = A2(w̃3(·, t), w̃3t(·, t), ṽ(t))

where the operator A2 : D(A2) ⊂ H → H is defined by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A2(f, g, h) = (g, f ′′, (G−K0F0)h+ f(1)K0)

∀(f, g, h) ∈ D(A2) =
{

(f, g, h) | f ∈ H2(0, 1)

g ∈ H1(0, 1), h ∈ Cn , f ′(0) = 0

f ′(1) = −c1f(1) − c2g(1)
}
.

(5.12)

Lemma 5.1: Suppose that c1 , c2 > 0, K0 ∈ Cn×1 , F0 ∈
C1×n , and the matrix G−K0F0 is Hurwitz. Then, the op-
erator A2 defined by (5.12) generates an exponentially stable
C0-semigroup eA2 t on H, i.e., there exist two positive constants
LA2 and ωA2 such that∥∥eA2 t

∥∥ ≤ LA2 e
−ωA2 t ∀ t ≥ 0. (5.13)

Proof: System (5.11) is a cascade of two exponentially stable
systems and hence is exponentially stable. The proof is very
similar to Lemma 2.1 and we omit the details. �

Theorem 5.1 gives well-posedness of the open-loop system
(5.6) and observer (5.8).

Theorem 5.1: Suppose that c1 , c2 > 0, K0 ∈ Cn×1 , Q0 ,
F0 ∈ C1×n , the matrix G−K0F0 is Hurwitz, and (5.9) holds.
Then, for any initial state

(w3(·, 0), w3t(·, 0), v(0), ŵ3(·, 0), ŵ3t(·, 0), v̂(0)) ∈ H2

and u ∈ L2
loc(0,∞), systems (1.4), (5.6), and (5.8) admit a

unique solution (w3 , w3t , v, ŵ3 , ŵ3t , v̂) ∈ C([0,∞);H2) such
that

‖(w3(·, t) − ŵ3(·, t), w3t(·, t) − ŵ3t(·, t)
v(t) − v̂(t))‖H ≤ L5e

−ω5 t , t ≥ 0 (5.14)

where L5 and ω5 are two positive constants.
In order to transfer the output regulation problem into a sta-

bilization problem, we need the following trajectory planning:{
φ4tt(x, t) = φ4xx(x, t), x ∈ (0, 1), t > 0

φ4(1, t) = Fv(t), φ4x(0, t) = Qv(t), t ≥ 0.
(5.15)

System (5.15) has a special solution{
φ4(x, t) = Φ4(x)v(t)

Φ4(x) = P4 cosh(xG) + xQG(xG)
(5.16)

where P4 is a row vector such that Φ4(1) = F . If we define the
transform

w4(x, t) = w(x, t) − φ4(x, t) (5.17)

the controlled plant can then be converted into⎧⎪⎨
⎪⎩
w4tt(x, t) = w4xx(x, t)

w4x(0, t) = 0, w4x(1, t) = −Φ′
4(1)v(t) + u(t)

ye(t) = −w4(1, t).

(5.18)

Now, the output regulation problem of the original system (1.1)
has been converted into the stabilization problem of system
(5.18). It therefore suffice to stabilize system (5.18). In terms of
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the observer (5.8), the error-based feedback control is naturally
designed as

u(t) = Φ′
4(1)v̂(t) − c3w4t(1, t) − c4w4(1, t)

= Φ′
4(1)v̂(t) + c3 ẏe(t) + c4ye(t) (5.19)

where c3 and c4 are positive tuning parameters. Combining
(5.19), (5.8), and (1.1), we obtain the following closed-loop
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v̇(t) = Gv(t)

wtt(x, t) = wxx(x, t)
wx(0, t) = Qv(t)

wx(1, t) = Φ′
4(1)v̂ + c3 ẏe(t) + c4ye(t)

ŵ3tt(x, t) = ŵ3xx(x, t)

ŵ3x(0, t) = 0

ŵ3x(1, t) = −c1 [ŵ3(1, t) + ye(t)] + c4ye(t)

−c2 [ŵ3t(1, t) + ẏe(t)] + Φ′
4(1)v̂ + c3 ẏe(t)

˙̂v(t) = Gv̂(t) + [ye(t) + ŵ3(1, t) − F0 v̂(t)]K0

ye(t) = Fv(t) − w(1, t)

(5.20)

where K0 is a column vector such that the matrix G−K0F0 is
Hurwitz. For the sake of easy reading, the corresponding tuning
vectors are clustered as follows:

⎧⎪⎨
⎪⎩
F0 = (FG sinhG+Q)[f1(G)]−1

f1(G) = G sinhG+ (c1I + c2G) coshG

Φ′
4(1) = [FG sinhG+Q][coshG]−1 .

(5.21)

In order to prove the stability of the closed-loop system (5.20),
we first consider the following transformed system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w4tt(x, t) = w4xx(x, t)

w4x(0, t) = 0

w4x(1, t) = −Φ′
4(1)ṽ(t) − c4w4(1, t)

−c3w4t(1, t)

w̃3tt(x, t) = w̃3xx(x, t)

w̃3x(0, t) = 0

w̃3x(1, t) = −c1w̃3(1, t) − c2w̃3t(1, t)
˙̃v(t) = (G−K0F0)ṽ(t) + w̃3(1, t)K0 .

(5.22)

System (5.22) can be written abstractly in X as

d

dt
X2(t) = A2X2(t) (5.23)

where

X2(t) = (w4(·, t), w4t(·, t), w̃3(·, t), w̃3t(·, t), ṽ(t)) (5.24)

and the operator A2 : D(A2) ⊂ X → X is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A2(f, g, φ, ψ, h) = (g, f ′′,A2(φ, ψ, h))

∀(f, g, φ, ψ, h) ∈ D(A2)

D(A2) =
{

(f, g, φ, ψ, h) ∈ X |
f ∈ H2(0, 1), g ∈ H1(0, 1), f ′(0) = 0

f ′(1) = −c4f(1) − c3g(1) − Φ′
4(1)h

(φ, ψ, h) ∈ D(A2)
}

(5.25)

with A2 being defined by (5.12).
Lemma 5.2: Suppose that ci > 0, i = 1, 2, 3, 4, and the ma-

trix G−K0F0 is Hurwitz. Then, the operator A2 defined by
(5.25) generates an exponentially stable C0-semigroup eA2 t on
X , i.e., there exist two positive constantsLA2 and ωA2 such that∥∥eA2 t

∥∥ ≤ LA2 e
−ωA2 t ∀ t ≥ 0. (5.26)

Proof: The proof is very similar to Lemma 4.1 and we omit
the details. �

The main result of this section is in Theorem 5.2.
Theorem 5.2: Suppose that (G,FG sinhG+Q) is observ-

able, ci > 0, i = 1, 2, 3, 4, coshG is invertible, and (4.9) holds.
Then, for any initial state

(w(·, 0), wt(·, 0), v(0), ŵ3(·, 0), ŵ3t(·, 0), v̂(0)) ∈ H2

the closed-loop system (5.20) with setting (5.21) admits a unique
solution

(w,wt, v, ŵ3 , ŵ3t , v̂) ∈ C([0,∞);H2) (5.27)

satisfying

|Qv(t) −Qv̂(t)| + |ye(t)| ≤ L6e
−ω6 t ∀ t ≥ 0 (5.28)

for some constants L6 > 0 and ω6 > 0. Moreover,
1) If supt∈[0,∞) ‖v(t)‖Cn < +∞, then, the state of the

closed-loop (5.20) is uniformly bounded, i.e.,

sup
t∈[0,∞)

‖(w(·, t), wt(·, t), v(t)

ŵ3(·, t), ŵ3t(·, t), v̂(t))‖H2 < +∞ (5.29)

2) When v(t) ≡ 0, there exist two positive constants L7 and
ω7 such that

‖(w(·, t), wt(·, t), v(t), ŵ3(·, t)
ŵ3t(·, t), v̂(t))‖H2 ≤ L7e

−ω7 t , t ≥ 0. (5.30)

VI. APPLICATION TO HARMONIC SIGNALS

In this section, we apply the obtained results to a general
harmonic disturbance and harmonic reference signal. We only
consider the noncollocated performance output tracking (1.3).
Another case (5.1) can be treated analogously.

Suppose that all the frequencies of the reference signal and
disturbance are

0 = ω0 < ω1 < ω2 < · · · < ωm , m ∈ N. (6.1)
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Define the system matrix G by

G = diag
(
G0 , G1 , G2 , . . . , Gm

)
(6.2)

where G0 = 0

Gj =
(

0 ωj
−ωj 0

)
, j = 1, 2, . . . ,m. (6.3)

Let F,Q ∈ C1×(2m+1) . With this setting, the outputs Fv(t) and
Qv(t) of exosystem (1.4) can represent the general harmonic
signals by proper choosing the initial state.

In [15] and [16], all the amplitudes of the harmonic distur-
bance were estimated, which increases the order of the system
rapidly, and since each component of estimates of the ampli-
tudes is asymptotically convergent only, the convergence there
is very slow. By the approach developed in this article, we es-
timate d(t) as a whole. By Theorem 4.1, the proposed output
feedback law works well provided (1.6) and (4.9) hold.

Proposition 6.1: Suppose that the matrix G is defined
by (6.2) and F,Q ∈ C1×(2m+1) . Then, the (G,FG sinhG+
Q coshG) is observable provided that

〈e1 , FG sinhG+Q coshG〉2C2m + 1 �= 0 (6.4)

and

〈e2j , FG sinhG+Q coshG〉2C2m + 1

+ 〈e2j+1 , FG sinhG+Q coshG〉2C2m + 1 �= 0 (6.5)

for any j = 1, 2, . . . ,m, where

ej = (0, . . . , 0, 1, 0 . . . , 0)�, j = 1, 2, . . . , 2m+ 1. (6.6)

VII. PROOFS OF THE MAIN RESULTS

Proof of Lemma 2.1: For convenience, let G̃ = G−KF1 . For
any (f̂ , ĝ, ĥ) ∈ H, we solve the equationA1(f, g, h) = (f̂ , ĝ, ĥ)
to get ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f(x) = f(0) +
∫ x

0

∫ τ

1
ĝ(s)dsdτ

g(x) = f̂(x), h = G̃−1
(
ĥ−Kf(0)

)
f(0) = − 1

c1

[
c2 f̂(0) +

∫ 1

0
ĝ(s)ds

]
.

(7.1)

This implies that A−1
1 is compact on H. Hence, σ(A1), the

spectrum of A1 , consists of the isolated eigenvalues of finite
algebraic multiplicity only. For any (f, g, h) ∈ D(A1)

Re 〈A1(f, g, h), (f, g, h)〉H
= Re〈(g, f ′′, G̃h+ f(0)K), (f, g, h)〉H
≤ −c2 |g(0)|2 + Re〈G̃h, h〉Cn + Re〈f(0)K,h〉Cn

≤M1‖(f, g, h)‖2
H (7.2)

where M1 is a positive constant that is independent of (f, g, h).
The inequality (7.2) implies that A1 −M1 is dissipative in H.
This together with 0 ∈ ρ(A1) implies that D(A1) is densely
defined in H ([32, Proposition 3.1.6, p. 71]). Define the operator

A1 by⎧⎪⎨
⎪⎩
A1(f, g) = (g, f ′′), ∀(f, g) ∈ D(A1)

D(A1) = {(f, g) ∈ H2(0, 1) ×H1(0, 1)

| f ′(1) = 0, f ′(0) = c1f(0) + c2g(0)}.
(7.3)

By [14], the operator A1 generates an exponentially stable C0-
semigroup eA 1 t on H1(0, 1) × L2(0, 1). There is a sequence of
generalized eigenfunctions {(fk , gk )}∞k=1 ofA1 , which forms a
Riesz basis for H1(0, 1) × L2(0, 1). Suppose that {hi}ni=1 is a
sequence of generalized eigenvectors of G̃, which forms a basis
for Cn . A simple computation shows that {(0, 0, hi)}ni=1 is a
set of the generalized eigenvectors of A1 . Owing to the finite
dimension of G̃, there exits an M > 0 such that λk /∈ σ(G̃) for
all k ≥M . Since (fk , gk ) is a generalized eigenfunction of A1
associated with λk , for each k ≥M , there exists an nλk ∈ N
such that

(λk −A1)nλk (fk , gk ) = 0. (7.4)

We can define a sequence {(fjk , gjk , hjk )}
nλk
j=0 by the following

equations:

(λk − G̃)hj−1
k − fj−1

k (0)K = hjk , j = 1, 2, . . . , nλk

where h
nλk

k = 0, (f 0
k , g

0
k ) = (fk , gk ) and

(fjk , g
j
k ) = (λk −A1)(f

j−1
k , gj−1

k ), j = 1, 2, . . . , nλk . (7.5)

By a simple computation, the sequence

{(f 0
k , g

0
k , h

0
k )}∞k=M ∪ {(0, 0, hi)}ni=1 (7.6)

is a sequence of generalized eigenfunctions of A1 . Note that the
sequence

{(fk , gk , 0)}Mk=1 ∪ {(f 0
k , g

0
k , h

0
k )}∞k=M ∪ {(0, 0, hi)}ni=1 (7.7)

forms a Riesz basis for H. It follows from [13, Th. 6.3]
that there are a constant N > M and generalized eigenvec-
tors {(f̃k , g̃k , h̃k )}Nk=1 of A1 such that {(f̃k , g̃k , h̃k )}Nk=1 ∪
{(f 0

k , g
0
k , h

0
k )}∞k=N+1 forms a Riesz basis for H. As a result,

the spectrum-determined growth condition holds true for A1 .
On the other hand, we have

σ(A1) ⊂ σ(A1) ∪ σ(G̃). (7.8)

Indeed, suppose that λ ∈ σ(A1) and A1(f, g, h) = λ(f, g, h)
with 0 �= (f, g, h) ∈ D(A1). It follows from (2.18) and (7.3)
that (f, g) ∈ D(A1) and λ ∈ σ(A1), provided (f, g) �= 0. When
(f, g) = 0, then h �= 0 and it follows from (2.18) that h ∈ D(G̃)
and λ ∈ σ(G̃). So (7.8) is true. Owing to (7.8) and the expo-
nential stabilities of eA 1 t and eG̃t , the operator A1 generates an
exponentially stableC0-semigroup. This completes the proof of
the Lemma. �

Remark 7.1: The exponential stability of system (2.14) can
be proved directly by the Lyapunov analysis like [31]. However,
for this 1-D problem, our approach here is much simpler and
profound in the sense that the system (2.14) is a Riesz spectral
system with spectrum-determined growth condition. Certainly,
the Lyapunov approach has merits to deal with possibly the
high-dimensional PDEs.
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Proof of Theorem 2.1: Since systems (1.4) and (2.9)
consist of a cascade system, they admit a unique
solution (w1 , w1t , v) ∈ C([0,∞);H) for any (w1(·, 0),
w1t(·, 0), v(0)) ∈ H and u ∈ L2

loc(0,∞). By Lemma 2.1,
system (2.14) with initial state (w̃1(·, 0), w̃1t(·, 0), ṽ(0)) =
(w1(·, 0) − ŵ1(·, 0), w1t(·, 0) − ŵ1t(·, 0), v(0) − v̂(0)) admits
a unique solution (w̃1 , w̃1t , ṽ) ∈ C([0,∞);H) such that

‖(w̃1(·, t), w̃1t(·, t), ṽ(t))‖H
≤ LA1 e

−ωA1 t‖(w̃1(·, 0), w̃1t(·, 0), ṽ(0))‖H, t ≥ 0. (7.9)

Let ⎧⎪⎨
⎪⎩
ŵ1(x, t) = w1(x, t) − w̃1(x, t)

ŵ1t(x, t) = w1t(x, t) − w̃1t(x, t)

v̂(t) = v(t) − ṽ(t).

(7.10)

Noting that Q1 − c1F1 − c2F1G = 0, it is easy to verify that
such a defined (w1 , w1t , v, ŵ1 , ŵ1t , v̂) ∈ C([0,∞);H2) solves
the systems (1.4), (2.9), and (2.11). Moreover, (2.20) can be
obtained directly by combining (7.9) and (7.10). The proof is
complete. �

Proof of Proposition 3.1: For any initial state
(w2(·, 0), w2t(·, 0), v(0)) ∈ H and u ∈ L2

loc(0,∞), it is
well known that the control plant (3.4) admits a unique solution
(w2 , w2t , v) ∈ C([0,∞);H). By Theorem 2.1, the solution of
systems (1.4), (2.9), and (2.11) is well posed. It follows from
(3.7) and (2.12) that

ε0(x, t) = w2(x, t) − ŵ1(x, t) − Φ(x)v̂(t)

= w1(x, t) + Φ(x)v(t) − ŵ1(x, t) − Φ(x)v̂(t)

= w̃1(x, t) + Φ(x)ṽ(t) (7.11)

and

ε1(x, t) = w2t(x, t) − ŵ1t(x, t) − Φ(x)Gv̂(t)

= w1t(x, t) + Φ(x)Gv(t)−ŵ1t(x, t)−Φ(x)Gv̂(t)

= w̃1t(x, t) + Φ(x)Gṽ(t) (7.12)

where w̃1(x, t) and ṽ(x, t) are defined by (2.12). Combining
(2.20), (2.12), (7.12), and (7.11), we can arrive at (3.10). This
completes the proof of the proposition. �

Proof of Lemma 4.1: For any (f̂ , ĝ, φ̂, ψ̂, ĥ) ∈ X , we solve
A1(f, g, φ, ψ, h) = (f̂ , ĝ, φ̂, ψ̂, ĥ) to obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

g(x) = f̂(x), f(x) =
∫ x

1

∫ τ

0
ĝ(s)dsdτ + f(1)

f(1) = − 1
c4

[ ∫ 1

0
ĝ(s)ds+ c3 f̂(1)

− (Ψ1h+ c3ψ(1) + c4φ(1))
]

(φ, ψ, h) = A−1
1 (φ̂, ψ̂, ĥ).

(7.13)

Hence, A −1
1 ∈ L(X ) is compact on X and σ(A1), consisting of

isolated eigenvalues of finite algebraic multiplicity only. Similar
to Lemma 2.1, there exists a positive constant M2 such that
A1 −M2 is dissipative in X . Hence, D(A1) is densely defined
in H due to [32, Proposition 3.1.6, p. 71]. Define the operator

A2 by⎧⎪⎨
⎪⎩
A2(f, g) = (g, f ′′) ∀(f, g) ∈ D(A2)

D(A2) = {(f, g) ∈ H2(0, 1) ×H1(0, 1)

| f ′(1) = −c4f(1) − c3g(1), f ′(0) = 0}.
(7.14)

By [14], A2 generates an exponentially stable C0-semigroup
eA 2 t on H1(0, 1) × L2(0, 1) and there is a sequence of gener-
alized eigenfunctions {(γi, ϕi)}∞i=1 ofA2 , which forms a Riesz
basis forH1(0, 1) × L2(0, 1). Owing to Lemma 2.1, there exists
a sequence of the generalized eigenfunctions {(φ0

k , ψ
0
k , h

0
k )}∞k=1

of A1 , which forms a Riesz basis for H.
For any (φ0

k , ψ
0
k , h

0
k ), suppose that (f 0

k , g
0
k , φ

0
k , ψ

0
k , h

0
k ) is a

generalized eigenfunction of A1 associated with λk . Then, there
exists a positive integer nλk such that

(λk − A1)nλk (f 0
k , g

0
k , φ

0
k , ψ

0
k , h

0
k ) = 0 (7.15)

and

(λk − A1)nλk
−1(f 0

k , g
0
k , φ

0
k , ψ

0
k , h

0
k ) �= 0. (7.16)

Owing to the cascade structure of A1 , (φ0
k , ψ

0
k , h

0
k ) is also a

generalized eigenfunction of A1 and hence

(λk −A1)nλk (φ0
k , ψ

0
k , h

0
k ) = 0. (7.17)

Using (7.17), generalized eigenfunction (f 0
k , g

0
k , φ

0
k , ψ

0
k , h

0
k ) can

be represented by a sequence {(fjk , gjk , φjk , ψjk , hjk )}
nλk
j=0 that is

given by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λkf
j−1
k − gj−1

k = fjk

λ2
kf

j−1
k − λkf

j
k − fj−1

kxx = gjk

fj−1
kx (0) = 0

fj−1
kx (1) = −c3 [λkfj−1

k (1) − fjk (1)]

−c4fj−1
k (1) + Ψ1h

j−1
k + c3ψ

j−1
k (1)

+c4φ
j−1
k (1)

(7.18)

where (f
nλk

k , g
nλk

k ) = 0, and

(φjk , ψ
j
k , h

j
k ) = (λk −A1)(φ

j−1
k , ψj−1

k , hj−1
k ) (7.19)

j = 1, 2, . . . , nλk . By the general ordinary differential equation
theory, the function (f 0

k , g
0
k ) is always well defined. Hence

{(γi, ϕi, 0, 0, 0)}∞i=1 ∪ {(f 0
k , g

0
k , φ

0
k , ψ

0
k , h

0
k )}∞k=1 (7.20)

is a sequence of the generalized eigenfunctions of A1 that forms
a Riesz basis forX . As a result, the spectrum-determined growth
condition holds true for A1 .

On the other hand, similar to (7.8), we also have

σ(A1) ⊂ σ(A2) ∪ σ(A1). (7.21)

In fact, suppose that μ ∈ σ(A1) and A1(f, g, φ, ψ, h) =
μ(f, g, φ, ψ, h) with 0 �= (f, g, φ, ψ, h) ∈ D(A1). It follows
from (4.7) and (7.14) that (φ, ψ, h) ∈ D(A1) and μ ∈ σ(A1),
provided (φ, ψ, h) �= 0. When (φ, ψ, h) = 0, one can obtain
that (f, g) �= 0. By (4.7), it follows that (f, g) ∈ D(A2) and
μ ∈ σ(A2). Therefore, (7.21) holds.
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Owing to the exponential stabilities of eA1 t and eA 2 t , (7.21)
shows that the operator A1 generates an exponentially stable
C0-semigroup. The proof is complete. �

Proof of Theorem 4.1: By assumptions (4.9) and (1.6), it fol-
lows from Lemma 9.1 and Proposition 9.1 that the pair (G,F1)
is observable. Hence, there exists a vector K ∈ Cn×1 such that
the matrix G−KF1 is Hurwitz. Using the initial state of the
closed-loop system (3.16), we can define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w2(x, 0) = w(x, 0) − Φ2(x)v(0)

w2t(x, 0)) = wt(x, 0) − Φ2(x)Gv(0)

w̃1(x, 0) = w(x, 0) − Φ1(x)v(0) − ŵ1(x, 0)

w̃1t(x, 0) = wt(x, 0)−Φ1(x)Gv(0)−ŵ1t(x, 0)

ṽ(0) = v(0) − v̂(0)

(7.22)

where Φ1 and Φ2 are defined by (4.2). By Lemma 4.1, sys-
tem (4.3) with the initial state (7.22) admits a unique solution
(w2 , w2t , v, w̃1 , w̃1t , ṽ) ∈ C([0,∞);X ) such that (7.9) holds.
Define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(x, t) = w2(x, t) + Φ2(x)v(t)

wt(x, t) = w2t(x, t) + Φ2(x)Gv(t)

ŵ1(x, t) = w(x, t) − Φ1(x)v(t) − w̃1(x, t)

ŵ1t(x, t) = wt(x, t)−Φ1(x)Gv(t)−w̃1t(x, t)

v̂(t) = v(t) − ṽ(t).

(7.23)

Then, such a defined (w,wt, v, ŵ1 , ŵ1t , v̂) satisfies (4.10) and
solves the closed-loop system (3.16). The convergence (4.11)
and the boundedness (4.12) can be obtained by (7.9) and (7.23)
easily. When v(t) ≡ 0, (4.13) follows directly from (4.8) and
transform (7.23). This completes the proof of the theorem. �

Proof of Theorem 5.1: For any (w3(·, 0), w3t(·, 0), v(0)) ∈
H and u ∈ L2

loc(0,∞), it is well known that the cascade of
systems (1.4) and (5.6) admits a unique solution (w3 , w3t , v) ∈
C([0,∞);H). By Lemma 5.1, system (5.11) with the initial
state

(w̃3(·, 0), w̃3t(·, 0), ṽ(0))

= (w3(·, 0) − ŵ3(·, 0), w3t(·, 0) − ŵ3t(·, 0), v(0) − v̂(0))

admits a unique solution (w̃3 , w̃3t , ṽ) ∈ C([0,∞);H) such that

‖(w̃3(·, t), w̃3t(·, t), ṽ(t))‖H
≤ LA2 e

−ωA2 t‖(w̃3(·, 0), w̃3t(·, 0), ṽ(0))‖H, t ≥ 0. (7.24)

Define ⎧⎪⎨
⎪⎩
ŵ3(x, t) = w3(x, t) − w̃3(x, t)

ŵ3t(x, t) = w3t(x, t) − w̃3t(x, t)

v̂(t) = v(t) − ṽ(t).

(7.25)

In view of (5.9), it is easy to verify that such a defined (w3 ,
w3t , v, ŵ3 , ŵ3t , v̂) ∈ C([0,∞);H2) solves the systems (1.4),
(5.6), and (5.8). Moreover, (5.14) can be obtained directly by
combining (7.24) and (7.25). �

Proof of Theorem 5.2: Owing to the assumption in Theo-
rem 5.2, Proposition 9.1 and Lemma 9.1 in Appendix, the pair
(G,F0) is observable. Hence, there exists a vector K0 ∈ Cn×1

such that the matrix G−K0F0 is Hurwitz. Using the initial
state of the closed-loop system (5.20), we can define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w4(x, 0) = w(x, 0) − Φ4(x)v(0)

w4t(x, 0)) = wt(x, 0) − Φ4(x)Gv(0)

w̃3(x, 0) = w(x, 0) − Φ3(x)v(0) − ŵ3(x, 0)

w̃3t(x, 0) = wt(x, 0)−Φ3(x)Gv(0)−ŵ3t(x, 0)

ṽ(0) = v(0) − v̂(0)

(7.26)

where Φ1 and Φ2 are defined, respectively, by (5.4) and (5.16).
By Lemma 5.2, system (5.22) with the initial state (7.26) admits
a unique solution (w4 , w4t , v, w̃3 , w̃3t , ṽ) ∈ C([0,∞);X ) such
that (7.24) holds. Define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w(x, t) = w4(x, t) + Φ4(x)v(t)

wt(x, t) = w4t(x, t) + Φ4(x)Gv(t)

ŵ3(x, t) = w(x, t) − Φ3(x)v(t) − w̃3(x, t)

ŵ3t(x, t) = wt(x, t)−Φ3(x)Gv(t) − w̃3t(x, t)

v̂(t) = v(t) − ṽ(t).

(7.27)

Then, such a defined (w,wt, v, ŵ3 , ŵ3t , v̂) satisfies (5.27) and
solves the closed-loop system (5.20). The convergence (5.28)
and the boundedness (5.29) can be obtained by (5.17) and (7.27)
easily. When v(t) ≡ 0, (5.30) follows directly from (5.26) and
transform (7.27). This completes the proof. �

Proof of Proposition 6.1: By a simple computation, f1(λ) =
λ sinh λ + (c1 + c2λ) cosh λ �= 0 for any λ ∈ σ(G) ⊂ iR. This
implies that matrix f1(G) is invertible. The first part of this
proposition is proved.

Now, we prove the remaining part of the proposition. Let

FG sinhG+Q coshG = (J0 , J1 , J2 , . . . , Jm ) (7.28)

with Ji ∈ C1×2 , i = 1, 2, . . . ,m, J0 ∈ C. Then, the conditions
(6.4) and (6.5) imply that

|J0 | �= 0, ‖Ji‖C2 �= 0, i = 1, 2, . . . ,m. (7.29)

By the Kalman rank condition for observability, (Gi, Ji) is ob-
servable for all i = 0, 1, 2, . . . ,m. Using (6.2) and (7.28), we
can conclude that (G,FG sinhG+Q coshG) is observable. �

VIII. NUMERICAL SIMULATIONS

In order to validate the theoretical results, we make some
numerical simulations for closed-loop system (3.16). The dis-
turbance and the reference signal are generated by a system
matrix (6.2) with m = 3, ω1 = 1, ω2 = 2, and ω3 = 0.5. The
corresponding parameters are chosen as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F = (1, 1, 1, 1, 1, 0, 0), Q = (1, 0, 0, 0, 0, 1, 0)

c1 = 1, c2 = 0.9, c3 = 0.9, c4 = 1

K = (6.075,−8.4588,−2.9198,−9.8477

1.8211, 12.8729,−1.7207)�.

(8.1)

With this setting, the eigenvalues of G−KF1 are

σ(G−KF1) = {−1,−1,−1,−1.5,−1.5,−1.5,−2}.
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Fig. 1. Planning trajectories. (a) First trajectory φ1 . (b) Second trajec-
tory φ2 .

Fig. 2. Tracking performance. (a) Qv and its estimate Qv̂. (b) Output
tracking.

Fig. 3. Displacement of closed-loop system (3.16). (a) w (x, t).
(b) ŵ1 (x, t).

The initial states are selected as{
w(x, 0) = cos 2πx,wt(x, 0)= ŵ1(x, 0) = ŵ1t(x, 0) = 0

v = (3, 1, 1, 1, 1, 0, 1), v̂ = (0, 0, 0, 0, 0, 0, 0).

The numerical results are programmed in MATLAB. The time
step and the space step are taken as 0.0005 and 0.001, respec-
tively. The first and the second planning trajectories are plotted
in Fig. 1(a) and 1(b), respectively. The φ1 is used for disturbance
estimation, and φ2 is used for output regulation. The disturbance
estimation is plotted in Fig. 2(a) and the output tracking is plot-
ted in Fig. 2(b). Both of them show that the convergence is
effectively and smoothly. The solution of the closed-loop sys-
tem (3.16) is plotted in Fig. 3, which shows that all states are
obviously bounded.

IX. CONCLUSION

In this article, we demonstrate the panorama of the output
tracking for a 1-D wave equation via error-based feedback con-
trol. Our main focus is on the difficult one: the control is at
the right end yet the performance output is at the left end. To
deal with this noncollocated problem, we use double trajectory
plannings. The first trajectory planning is to estimate the state
and disturbance and the second one is to design an error-based
feedback control. Another case where the output is noncol-
located to the disturbance is also discussed by the trajectory
planning. The exponential output tracking is concluded and all
the states of subsystems in the closed loop are shown to be uni-
formly bounded, and the closed loop is shown to be internally
exponentially stable. The results cover all similar researches in
literature with harmonic external disturbance as a consequence
where the control and performance are always at the same end.
The numerical simulations validate the theoretical results. Fi-
nally, we point out that all convergence including the tracking
error are exponentially, which is much stronger than asymptotic
convergence in many existing literatures.

APPENDIX

Proposition 9.1: Let G ∈ Cn×n , F ∈ C1×n , and f : C →
C be a continuous function. Suppose that the matrix f(G) ∈
Cn×n is invertible. Then, (G,F ) is observable if and only if
(G,Ff(G)) is observable.

Proof: For any v ∈ Ker(λ −G) ∩ Ker(F ) with λ ∈ σ(G), it
has

Ff(G)v = f(λ)Fv = 0. (9.1)

Hence

Ker(λ −G) ∩ Ker(F ) ⊂ Ker(λ −G) ∩ Ker(Ff(G)). (9.2)

On the other hand, for v ∈ Ker(λ −G) ∩ Ker(Ff(G))

0 = Ff(G)v = f(λ)Fv. (9.3)

Since f(G) ∈ Cn×n is invertible, f(λ) �= 0 for any λ ∈ σ(G).
It then follows from (9.3) that Fv = 0, that is,

Ker(λ −G) ∩ Ker(Ff(G)) ⊂ Ker(λ −G) ∩ Ker(F ). (9.4)

By Hautus’s lemma, (9.2) and (9.4), (G,F ) is observable if and
only if (G,Ff(G)) is observable. �

Lemma 9.1: Suppose that the matrix G satisfies (4.9). Then,
for any c1 , c2 > 0, the matrix G sinhG+ (c1I + c2G) coshG
is always invertible.

Proof: Consider the following wave equation:⎧⎪⎨
⎪⎩
vtt(x, t) = vxx(x, t)

vx(0, t) = c1v(0, t) + c2vt(0, t)

vx(1, t) = 0.

(9.5)

By a simple computation, the characteristic equation of (9.5) is
found to be

λ sinh λ + (c1 + c2λ) cosh λ = 0. (9.6)
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Since system (9.5) is exponentially stable, it follows from (4.9)
that

λ0 sinh λ0 + (c1 + c2λ0) cosh λ0 �= 0 ∀ λ0 ∈ σ(G). (9.7)

This implies that all the eigenvalues of G sinhG+ (c1I +
c2G) coshG are nonzero and hence G sinhG+ (c1I +
c2G) coshG is invertible.

ACKNOWLEDGMENT

The authors would like thank anonymous referees for their
constructive comments, which have improved substantially the
manuscript. In particular, the Remark 3.1 comes completely
from one referee’s comment.

REFERENCES
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