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a b s t r a c t 

The active disturbance rejection control (ADRC), first proposed by Jingqing Han in the 1980s is an uncon- 

ventional design strategy. It has been acknowledged to be an effective control strategy in the absence of 

proper models and in the presence of model uncertainty. Its power was originally demonstrated by nu- 

merical simulations, and later by many engineering practices. For the theoretical problems, namely, the 

convergence of the tracking differentiator which extracts the derivative of reference signal; the extended 

state observer used to estimate not only the state but also the “total disturbance”, by the output; and the 

extended state observer based feedback, progresses have also been made in the last few years from non- 

linear lumped parameter systems to distributed parameter systems. The aim of this paper is to review 

the origin, idea and development of this new control technology from a theoretical perspective. Empha- 

sis will be focused on output feedback stabilization for uncertain systems described by partial differential 

equations. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The capability of dealing with uncertainty is one of the major

concerns in modern control theory. There are many well developed

control design approaches to cope with uncertainty in control sys-

tems. These include the adaptive control for vary or initially uncer-

tain parameters; the internal model principle for regulator prob-
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ems, the sliding mode control and high gain control for uncer-

ain systems, and robust control which is a paradigm shift in con-

rol theory for internal variation and external disturbance. Most of

hese approaches, however, focus on the worst case scenario which

akes the controller rather conservative. The two exceptions are

he adaptive control and internal model principle in which the idea

f real time estimation/cancelation leads to significant saving of

ontrol energy. Let us start with these two approaches to see how

nd why they are working. 

The adaptive control approach was emerged in the 1950s and

esurged in the 1970s due to study of uncertain system control

n large scale after 1970s ( Whitaker, Yamron, and Kezer, 1958 . For

DEs, we refer to Krstic, 2010 ). In the adaptive control approach,

he bound of uncertainty is not used and the control varies with

http://dx.doi.org/10.1016/j.arcontrol.2017.05.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/arcontrol
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he uncertainty. Consider feedback stabilization for the following

ystem: 

˙ 
 (t) = θ f (x (t)) + u (t) , (1.1)

here θ is an unknown parameter and u ( t ) is the control. If we

an find an estimator ˆ θ (t) for the parameter: 

ˆ (t) → θ as t → ∞ , (1.2)

hen a stabilizing feedback control can be designed as follows: 

 (t) = −x (t) − ˆ θ (t ) f (x (t )) , (1.3)

here the second term in the controller (1.3) is used to cancel

he corresponding uncertainty term in (1.1) . Substituting (1.3) into

1.1) , we can obtain the closed-loop system: 

˙ x (t) = 

˜ θ (t ) f (x (t )) − x (t) , 
˜ θ (t) = θ − ˆ θ (t) . 

(1.4) 

 Lyapunov function for system (1.4) can be chosen as 

 (t) = 

1 

2 

x 2 (t) + 

1 

2 

˜ θ2 (t) . 

he derivative of V ( t ) along the solution of (1.4) is found to be 

dV (x (t) , ˜ θ (t)) 

dt 
= −x 2 (t) + 

˜ θ (t )[ ˙ ˜ θ (t ) + x (t ) f (x (t ))] = −x 2 (t) , 

(1.5) 

rovided 

˙ ˜ θ (t) = −x (t) f (x (t)) , and the closed-loop system becomes

˙ x (t) = 

˜ θ (t ) f (x (t )) − x (t) , 
˙ ˜ θ (t) = −x (t ) f (x (t )) . 

(1.6) 

otice that the order of the system is increased by one due to the

ntroduction of the variable ˆ θ (t) . By Lasalle’s invariance principle

nd (1.5) , it follows that the solution of the system (1.6) satisfies 

 (t) → 0 as t → ∞ . (1.7)

he remaining question is: Is ˆ θ (t) → θ (t → ∞ ) ? or equivalently
˜ (t) → 0(t → ∞ ) ? Its answer is not necessarily. Actually, by

asalle’s invariance principle, when 

˙ V (t) = 0 , we can only con-

lude that x (t) = 0 . So ˜ θ = 

˜ θ0 may be a nonzero constant satis-

ying ˜ θ0 f (0) = 0 . We therefore have two cases: a) f (0) � = 0 and
˜ 
0 = 0 ; and b) f (0) = 0 and (x (t) , ˜ θ (t)) = (0 , ˜ θ0 ) is a solution of

1.6) . The latter case implies that ˜ θ (t) → 0(t → ∞ ) is not neces-

arily valid. The former case is just the “persistent exciting” (PE)

ondition which is f (0) � = 0 for this problem. Nevertheless, in ei-

her case, we always have 

˜ (t) f (x (t)) → 0 as t → ∞ , (1.8)

egardless of whether the parameter update law 

˙ ˆ θ (t) = x (t ) f (x (t ))

s convergent or not. In other words, the uncertain term θ f ( x ( t )) of

he system (1.1) is always canceled asymptotically by the feedback

ontrol (1.3) . 

Now we look at the process of internal model principle (IMP)

n dealing with external disturbance, which was first introduced

n Francis and Wonham (1976) (for PDEs, we refer to Rebarber &

eiss, 2003 ). Consider once again stabilization for the system: 

˙ 
 (t) = a (t) + u (t) , (1.9)

here u ( t ) is the control and a (t) = θ sin ωt is an external distur-

ance in which the frequency ω is supposed to be known while

he constant amplitude θ is unknown. Since ä (t) = −ω 

2 a (t) , we

an increase the order of system (1.9) as 
 

˙ x (t) = a (t) + u (t) , 

ä (t) = −ω 

2 a (t) , 
y (t) = x (t) , 

(1.10) 
here the output of system (1.10) is the state of original system

1.9) . Write (1.10) in matrix form: 

˙ X (t) = AX (t) + Bu (t) , 
y (t) = CX (t) , 

(1.11) 

here 

 (t) = (x (t ) , a (t ) , ˙ a (t )) � , A = 

( 

0 1 0 

0 0 1 

0 −ω 

2 0 

) 

, 

 = 

( 

1 

0 

0 

) 

, C = (1 , 0 , 0) . 

 simple calculation shows that 

ank 

( 

C 
CA 

CA 

2 

) 

= 3 . 

o system (1.10) or (1.11) is observable. Design the Luenberger ob-

erver as 

˙ ˆ 
 (t) = A ̂

 X (t) + Bu (t) + L (C ̂  X (t) − x (t)) , 

here ˆ X (t) = ( ̂  x (t ) , ̂  a (t ) , z(t )) � , and L = (� 1 , � 2 , � 3 ) 
� is selected

uch that A + LC is Hurwitz. Then we have 
 

 

 

˙ ˆ x (t) = 

ˆ a (t) + u (t) + � 1 ( ̂  x (t) − x (t)) , 
˙ ˆ a (t) = z(t) + � 2 ( ̂  x (t) − x (t)) , 

˙ z (t) = −ω 

2 ˆ a (t) + � 3 ( ̂  x (t) − x (t)) . 

(1.12) 

n system (1.10) , both a ( t ) and ˙ a (t) are regarded as extra state vari-

bles. The stabilizing feedback control can thus be designed as 

 (t) = − ˆ a (t) − x (t) , (1.13)

here the first term is used to cancel the external disturbance. In

ther words, as in the case of adaptive control, we also have used

he strategy of estimation and cancelation in the IMP approach. 

The active disturbance rejection control (ADRC) further system-

tically developed the estimation and cancelation approach and

reatly enhance its power in dealing with uncertainty in systems.

e would like to explain this point by considering feedback stabi-

ization of (1.9) again yet in this case, 

 (t) = f (x (t ) , d(t ) , t ) , (1.14)

hich can be used to models (combination of) unknown time-

arying, state-dependent internal uncertainty, and external distur-

ance. The term a ( t ) is referred to as “total disturbance” in ADRC.

he key idea is that regardless of the composition nature of the

atter what a ( t ) is, it is considered as a signal of time and is re-

ected in the measured output of system. We write system (1.9) as

 

˙ x (t) = a (t) + u (t) , 
˙ a (t) = 

˙ a (t) , 
y (t) = x (t) , 

(1.15) 

here y ( t ) is the output of extended system (1.15) . The exact ob-

erverbility of system (1.15) is a trivial problem because if ( y ( t ),

 ( t )) ≡ 0, t ∈ [0, T ], then a (t) = 0 , t ∈ [0 , T ] and x (0) = 0 ( Cheng,

u, and Shen, 2010 , p.5, Definition 1.2) for any T > 0. This means

hat y ( t ) contains all information of a ( t ). Then a natural idea is:

f we can estimate a ( t ) from y ( t ) to obtain ˆ a (t) ≈ a (t) , then we

an also cancel the a ( t ) in the feedback-loop u (t) = − ˆ a (t) + u 0 (t)

here u 0 ( t ) is a new control. Consequently, system (1.15) can be

pproximated as 

˙ 
 (t) = u 0 (t) , (1.16)

hich is a linear time-invariant system and we have therefore

any methods to deal with it. Now, the problem is how the es-

imation of the total disturbance can be achieved: “ ̂  a (t) ≈ a (t) ”. 
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Here came Han with his systematic method of total disturbance

estimation ( Han, 2009 and references therein for his original pa-

pers in Chinese). The answer is his extended state observer (ESO).

For system (1.15) , a linear ESO can be designed as {
˙ ˆ x (t) = 

ˆ a (t) + u (t) + c 1 ( ̂  x (t) − x (t)) , 
˙ ˆ a (t) = c 2 ( ̂  x (t) − x (t)) , 

(1.17)

where c 1 and c 2 are tuning parameters. Let ˜ x (t) = ˆ x (t) − x (t) and

˜ a (t) = ˆ a (t) − a (t) be the errors. Then {
˙ ˜ x (t) = 

˜ a (t) + c 1 ̃  x (t) , 
˙ ˜ a (t) = c 2 ̃  x (t) − ˙ a (t) . 

(1.18)

The solution of system (1.18) is found to be 

( ̃  x (t) , ̃  a (t)) = e A 0 t ( ̃  x (0) , ̃  a (0)) + 

∫ t 

0 

e A 0 (t−s ) B 0 ̇ a (s ) ds, (1.19)

where 

A 0 = 

(
c 1 1 

c 2 0 

)
, B 0 = 

(
0 

−1 

)
. (1.20)

Hence, the derivative ˙ a (t) of the total disturbance needs to be uni-

formly bounded: 

| ̇ a (t) | ≤ M, ∀ t ≥ 0 . (1.21)

Otherwise, the second term in the error solution (1.19) may not be

convergent to zero as t → ∞ . 

The condition (1.21) can be relaxed to be uniform boundedness

of a ( t )’s derivative of some finite order if an ESO of higher order

is used. The second is to make e A 0 t exponentially stable with large

decay rate. Following the high gain observer design, we may take

c 1 = −2 

ε 
, c 2 = − 2 

ε 2 
. (1.22)

In this case, it is easily shown that 

‖ e A 0 t ‖ ≤ L 

ε 
e −

1 
ε t , ‖ e A 0 t B 0 ‖ ≤ Le −

1 
ε t (1.23)

for some constant L > 0 independent of t and ε. By (1.21) and

(1.23) , it follows from (1.19) that the solution of (1.19) can be esti-

mated as 

‖ ( ̃  x (t) , ̃  a (t)) ‖ ≤ L 

ε 
e −

1 
ε t ‖ ( ̃  x (0) , ̃  a (0)) ‖ + LMε. (1.24)

The first term on the right-hand side of the above inequality tends

to zero as t → ∞ , and the second term tends to zero as ε → 0. In

any case, we have 

ˆ x (t) → x (t ) , ̂  a (t ) → a (t) , as t → ∞ , ε → 0 . (1.25)

Now that we have the estimate of a ( t ) at hand, we can design

an ESO-based stabilizing feedback control for system (1.9) as 

u (t) = − ˆ a (t) − x (t) , (1.26)

where the first term − ˆ a (t) is used to eliminate the effect of the

total disturbance and the second tern −x (t) aims to provide stabi-

lizing feedback control for linear system (1.16) . Under the feedback

(1.13) , the closed-loop system of (1.9) becomes ⎧ ⎨ 

⎩ 

˙ x (t) = −x (t) − ˆ a (t) + a (t) , 
˙ ˆ x (t) = −x (t) + c 1 ( ̂  x (t) − x (t)) , 
˙ ˆ a (t) = c 2 ( ̂  x (t) − x (t)) . 

(1.27)

Let ˜ x (t) = ˆ x (t) − x (t ) , ˜ a (t ) = ˆ a (t) − a (t) . We have the following

equivalent description of (1.27) : { 

˙ x (t) = −x (t) − ˜ a (t) , 
˙ ˜ x (t) = 

˜ a (t) + c 1 ̃  x (t) , 
˙ ˜ a (t) = c 2 ̃  x (t) − ˙ a (t) . 

(1.28)
ince ( ̃  x (t) , ̃  a (t)) → 0 as t → ∞ and ε → 0 , it immediately follows

hat 

 (t) → 0 as t → ∞ , ε → 0 

r equivalently 

 (t) → 0 , ̂  x (t) → 0 , ̂  a (t) − a (t) → 0 , as t → ∞ , ε → 0 . (1.29)

his is the separation principle of estimation and control, which

an be carried out separately. 

Notice that the ESO (1.17) provides an asymptotic estimation of

he total disturbance; and this estimation can be directly used in

he control (1.26) to cancel the disturbance. This part of the control

s called the “rejector” of disturbance in Gao (2015) , albeit from

ifferent point of view. This part is also similar to the feed-forward

ontrol in that they both modify the system dynamics before fur-

her feedback control is applied. Moreover, the fact that the total

isturbance can be completely cancelled separately allows the de-

ign of feedback control without being over conservative (as in the

ase of robust control) and of efficient in energy saving, as con-

rmed in Zheng and Gao (2012) . It seems any other control would

ardly give better result in dealing with the total disturbance than

he control u (t) = − ˆ a (t) + u 0 (t) which adopts the strategy of esti-

ation and cancellation, much alike our experience in dealing with

ncertainty in daily life. 

The ADRC has been widely applied in many engineering sys-

ems since it was proposed. Examples can be found in MEMS elec-

rostatic actuator ( Dong & Edwards, 2010 ), DC-DC power converter

 Sun & Gao, 2005 ), flight vehicles control ( Xia & Fu, 2013 ), gasoline

ngines ( Xue et al., 2015 ), hydraulic systems control ( Yao, Jiao, &

a, 2014 ), to name just a few. In our recent monograph ( Guo &

hao, 2016 ), an overview introduction of many engineering appli-

ations is included. Our previous survey paper ( Guo & Zhao, 2015 )

ntroduces the ADRC from a theoretical perspective for nonlinear

umped parameter systems. In this paper, our focus is mainly on

DRC to distributed parameter control systems. However, to show-

ase a panoramic view of ADRC, we present some basic materi-

ls of ADRC for ODEs in next section. In Section 3 , we give a

ew concept of the observability for systems with disturbance. It

s about whether or not the output contains sufficient information

n both system state and disturbance. In Section 4 , we showcase

he whole process of designing a type of ESO for a Euler–Bernoulli

eam equation. In Section 5 , a multi-dimensional wave equation is

riefly discussed, follows by Section 6 with some concluding re-

arks. 

. ADRC for ODEs 

Roughly speaking, the ADRC is composed of three parts. The

rst part is the tracking differentiator (TD) which extracts the

erivative of reference signal, note that in the PID controller used

n most of industrial control systems, the derivative action “D” is

eldom used because of it’s sensitive to high frequency noise. In

DRC, TD severs not only as the derivative extractor, but also as

 transient profile that the output of plant can reasonably follow

o avoid setpoint jump in PID. The second part, the most impor-

ant part, is the extended state observer (ESO). As a generalization

f the classical state observer in control theory, the ESO provides

stimates of both state and total disturbance in terms of output.

he last part of ADRC is the TD and ESO based output feedback

ontrol which achieve output tracking, which specializes to system

tabilization when the reference signal is zero. 

Let us begin with the introduction of the TD. Let f : R 

n → R

e a locally Lipschitz continuous function, f (0) = 0 . Suppose that

he zero equilibrium state of the following reference-free system is
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˙ x 1 (t) = x 2 (t) , 
˙ x 2 (t) = x 3 (t) , 

. . . 
˙ x n (t) = f (x 1 (t) , x 2 (t ) , . . . , x n (t )) , 

(2.1) 

or any given initial value. If the reference signal v ( t ) is differen-

iable and satisfies sup t∈ [0 , ∞ ) | v (n +1) (t) | < ∞ , then the solution of

he following tracking differentiator: 

D : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ z 1 R (t) = z 2 R (t) , 
˙ z 2 R (t) = z 3 R (t) , 

. . . 

˙ z nR (t) = R 

n f 

(
z 1 R (t) − v (t ) , 

z 2 R (t ) 

R 

, . . . , 
z nR (t ) 

R 

(n −1) 

)
, 

(2.2) 

s convergent in the sense that for every a > 0, 

lim 

 →∞ 

| z 1 R − v (t) | = 0 uniformly on [ a, ∞ ) , (2.3)

nd for any given initial value. This result was first proved in Guo

nd Zhao (2011a) . In the linear case, this tracking differentiator is

hown to be the high gain tracking differentiator ( Guo & Zhao,

013b ). In control practice, the setpoint v ( t ) is often given as a

tep function, which is not appropriate for most dynamics sys-

ems because it amounts to asking the output and, therefore, the

ontrol signal, to make a sudden jump ( Han, 2009 ). This can be

voided by letting the output track z 1 R ( t ) instead of v ( t ). Other vari-

bles produced from TD (2.2) are considered as the derivatives of

 ( t ): z iR (t) ≈ v (i −1) (t) in the sense of generalized derivative ( Guo &

hao, 2013b ). 

For an n -dimensional SISO nonlinear system 

x (n ) (t) = f (t , x (t ) , ˙ x (t ) , . . . , x (n −1) (t ) , w (t )) + bu (t) , 
y (t) = x (t) , 

hich can be written as 
 

 

 

 

 

 

 

 

 

 

 

˙ x 1 (t) = x 2 (t) , 
˙ x 2 (t) = x 3 (t) , 

. . . 
˙ x n (t) = f (t , x 1 (t ) , . . . , x n (t ) , w (t )) + bu (t) , 

y (t) = x 1 (t) , 

(2.4) 

here y ( t ) is the output (observation), u ( t ) is the input (control),

 ∈ C 1 ([0 , ∞ ) , R ) is the external disturbance, f ∈ C 1 (R 

n +2 , R ) rep-

esents the nonlinear dynamic function of the plant which is pos-

ibly unknown, and b > 0 is a constant control coefficient which

s not exactly known, but we have the nominal value b 0 that is

ufficiently closed to b . The objective of control design is to make

he output y ( t ) track a given reference signal v ( t ), and at the same

ime x i ( t ) track z iR (t) ≈ v (i −1) (t) for every i = 2 , 3 , . . . , n . It is obvi-

us that this general formulation covers not only the special out-

ut regulation problem, but also the output feedback stabilization

y setting v ( t ) ≡ 0. In configuration of ADRC, we also want to con-

rol the convergence rate, that is, x i (t) − z iR (t) ≈ x ∗
i 
(t) where x ∗

i 
(t)

atisfies the target asymptotically stable system of the following: 
 

 

 

 

 

 

 

˙ x ∗1 (t) = x ∗2 (t) , 
˙ x ∗2 (t) = x ∗3 (t) , 

. . . 
˙ x ∗n (t) = ϕ(x ∗1 (t ) , . . . , x ∗n (t )) , ϕ(0 , 0 , . . . , 0) = 0 . 

(2.5) 

Now we design an ESO to estimate both the state and the “total

isturbance” given by 

 n +1 (t) = f (t , x 1 (t ) , x 2 (t ) , · · · , x n (t ) , w (t )) + (b − b 0 ) u (t) , (2.6)
hich is considered as an extra variable in ADRC. In Guo and Zhao

2011b) , a high gain ESO for system (2.4) was designed as 

SO : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ˆ x 1 (t) = 

ˆ x 2 (t) + ε n −1 g 1 

(
y (t) − ˆ x 1 (t) 

ε n 

)
, 

˙ ˆ x 2 (t) = 

ˆ x 3 (t) + ε n −2 g 2 

(
y (t) − ˆ x 1 (t) 

ε n 

)
, 

. . . 

˙ ˆ x n (t) = 

ˆ x n +1 (t) + g n 

(
y (t) − ˆ x 1 (t) 

ε n 

)
+ u (t) , 

˙ ˆ x n +1 (t) = 

1 

ε 
g n +1 

(
y (t) − ˆ x 1 (t) 

ε n 

)
, 

(2.7) 

here g i (·)(i = 1 , 2 , · · · , n ) are nonlinear functions to be chosen

nd ε is the high gain constant. When g i ( ·) are linear functions,

2.7) is reduced to linear ESO. The convergence of ESO (2.7) was

rst proved in Guo and Zhao (2011b) : 

ˆ 
 i (t) − x i (t) → 0 as t → ∞ , ε → 0 , i = 1 , 2 , · · · , n + 1 . (2.8)

n particular, ˆ x n +1 (t) gives an estimate of the total disturbance

 n +1 (t) as t → ∞ . 

The third and the last link of ADRC is to design an extended

tate observer-based output feedback control: 

DRC : u (t) = 

1 

b 0 
[ ϕ( ̂  x (t) − z R (t)) + z (n +1) R (t) − ˆ x n +1 (t)] , (2.9)

here ˆ x (t) = ( ̂  x 1 (t ) , ̂  x 2 (t ) , . . . , ̂  x n (t ) , ̂  x n +1 (t )) is the solution of

2.7) and z R (t) = (z 1 R (t) , z 2 R (t ) , . . . , z nR (t ) , z (n +1) R (t )) is the solu-

ion of (2.2) . It is seen that the term ˆ x n +1 (t) in controller (2.9) is

sed to cancel the total disturbance. The other terms are just the

inear design to make x i (t) − z iR (t) = x ∗
i 
(t) . The closed-loop system

hus becomes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ x 1 (t) = x 2 (t) , 
˙ x 2 (t) = x 3 (t) , 

. . . 
˙ x n (t) = f (t , x (t ) , w (t )) + (b − b 0 ) u (t) + b 0 u (t) , 

˙ ˆ x 1 (t) = 

ˆ x 2 (t) + ε n −1 g 1 

(
y (t) − ˆ x 1 (t) 

ε n 

)
, 

. . . 

˙ ˆ x n +1 (t) = 

1 

ε 
g n +1 

(
y − ˆ x 1 (t) 

ε n 

)
, 

u (t) = 

1 

b 0 
[ ϕ( ̂  x (t) − z R (t)) + z (n +1) R (t) − ˆ x n +1 (t)] . 

(2.10) 

he convergence of the closed-loop system (2.10) has been proven

n Zhao and Guo (2016b) . For MIMO systems, convergence for ESO

as presented in Guo and Zhao (2012) and convergence for closed-

oop was given in Guo and Zhao (2013a) . Other generalization to

ow triangle systems can be found in Zhao and Guo (2016a) . The

ethod of attenuating the peaking value through a time-varying

ain was introduced in Zhao and Guo (2015) . Generalization to

tochastic systems can be found in Guo, Wu, and Zhou (2016) . The

ontrol unmatched problem was considered recently in Guo and

u (2017) . 

Starting from the next section, we shall focus on output feed-

ack stabilization for uncertain PDEs by ADRC. The generaliza-

ion of ADRC to PDEs is rather complicated. The research started

rom full state feedback stabilization of PDEs with external distur-

ances, first for 1-d PDEs in Guo and Jin (2013a, 2013b) and Guo,

iu, and Robust (2014a) and then for multi-dimensional PDEs in
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Guo and Zhou (2014, 2015) . The main idea is to convert the PDE’s

problem into associated ODE’s by test functions with understand-

ing that a PDE solution is understood as weak solution. The output

feedback stabilization for multi-dimensional PDEs with corrupted

output was discussed respectively in Guo and Zhou (2016) or Feng

and Guo (2016b) . In particular, Feng and Guo (2016b) proposed

a distributed tracking differentiator which significantly simplifies

the related result of Guo and Zhou (2016) . A first result on out-

put feedback stabilization for 1-d wave equations was presented

in Guo and Jin (2015) where a variable structured unknown input

state observer was designed; generalization to other PDEs turns

out to be difficult. Very recently, we proposed in Feng and Guo

(2017) a different approach on output feedback stabilization for

uncertain PDEs by ADRC, which can be easily used to deal with

multi-dimensional PDEs. In particular, the approach proposed in

Feng and Guo (2017) removes two limitations for ADRC of lumped

parameter systems in the context of infinite dimensional systems.

More precisely, first, in sharp contrast to (1.21) , the boundedness

of the derivative of total disturbance or any finite order derivative

of total disturbance is not required; and second, the high gain like

(1.22) or (2.7) is not explicitly used. The following sections are con-

centrated on the approach developed in Feng and Guo (2017) . As

indicated in the beginning for ODEs, for the purpose of the total

disturbance estimation, the measured output should be observable

in that it contains adequate information of the total disturbance.

However, the observability for uncertain PDEs is rather compli-

cated. Our study is based on two basic facts: (a) when there is no

disturbance, the system is exactly observable in the classical sense;

and (b) the disturbance should be present in the measured output

so that it can be recognized to “certain extent”. The level of this

recognition is dependent on this extent. 

3. Observability for uncertain infinite-dimensional systems 

Consider the following infinite-dimensional system with exter-

nal disturbance: {
˙ x (t) = Ax (t) + B [ f (x (t)) + d(t)] , t > 0 , 

y (t) = Cx (t) , t ≥ 0 , 
(3.1)

where A is the system operator, B the control operator, C the out-

put operator, and f (x (t)) + d(t) the total disturbance that consists

of the internal dynamic uncertainty f ( x ( t )) and the external distur-

bance d ( t ). We consider system (3.1) in the state space X with the

control space U and the output space Y . We use X −1 to denote the

dual Hilbert space of D ( A ) with the pivot space X ( Weiss, 1989 ). 

As mentioned at the end of last section, observability for system

(3.1) should reflects two facts: (a) the uncertainty is identifiable;

and (b) the disturbance-free system is exactly observable. The for-

mer implies that the output contains sufficient information about

the uncertainty. The latter guarantees that when there is no uncer-

tainty, the state can be uniquely continuously recovered from the

output. The definition of exactly observability for system (3.1) is

given below. 

Definition 1. System (3.1) is said to be exactly observable in X if 

(i) when [ f (x (t)) + d(t)] = 0 and u (t) = 0 , there exist an inter-

val [0, T ], T > 0 and a constant c T > 0 such that ∫ T 

0 

| y (t) | 2 dt ≥ c T ‖ x (0) ‖ 

2 
X , ∀ x (0) ∈ X ; (3.2)

(ii) the total disturbance is asymptotically identifiable in the

sense of 

y (t) = 0 , ∀ t ∈ [0 , ∞ ) ⇒ [ f (x (t)) + d(t)] ∈ L p (0 , ∞;U) , (3.3)

where 2 ≤ p < ∞ . 
When f (x (t)) + d(t) ≡ 0 , the exact observability in the sense of

efinition 1 is the same as the traditional exact observability given

y Tucsnak and Weiss (2009 , Definition 6.1.1, p.173). From condi-

ion (ii) of Definition 1 , it is seen that we do not “recognize” the

otal disturbance f (x (t)) + d(t) exactly, but with a possible error

n L p (0, ∞ ; U ). This is based on the asymptotical stability result of

emma 3.1 which claims that an exponentially stable system re-

ains asymptotically stable even if it is perturbed by an inhomo-

eneous term of L p (0, ∞ ; U ). 

emma 3.1. Let ˜ f ∈ L p (0 , ∞;U) with 2 ≤ p < ∞ . Suppose that the

perator A generates an exponentially stable C 0 -semigroup e A t on X

nd the control operator B ∈ L (U, X −1 ) is admissible for e A t . Then, for

ny x (0) ∈ X, system 

˙ x (t) = A x (t) + B ̃

 f (t) , t ≥ 0 

(3.4)

dmits a unique mild solution x ∈ C(0 , ∞; X ) ∩ H 

1 
loc 

(0 , ∞; X −1 ) such

hat 

lim 

t→∞ 

‖ x (t) ‖ X = 0 . (3.5)

roof. The well-posedness of the solution can be found in Tucsnak

nd Weiss (2009 , Proposition 4.2.5, p.118). For the convergence, we

efer the reader to Wolfgang, Charles, Matthias, and Frank (2001 ,

roposition 1.3.5(b)) and Oostveen and Curtain (1998) . �

As an application of Definition 1 , let us consider the following

ncertain Euler–Bernoulli beam equation: 
 

 

 

 

 

 

 

w tt (x, t) + w xxxx (x, t) = 0 , x ∈ (0 , 1) , t > 0 , 

w xxx (0 , t) = w xx (0 , t) = w (1 , t) = 0 , t ≥ 0 , 

w xx (1 , t) = f (w (·, t) , w x (·, t)) + d(t) + u (t) , t ≥ 0 , 

w (x, 0) = w 0 (x ) , w t (x, 0) = w 1 (x ) , x ∈ [0 , 1] , 
y (t) = ( w t (0 , t) , w x (1 , t) , w xt (1 , t) ) , t ≥ 0 , 

(3.6)

here ( w 0 ( x ), w 1 ( x )) is the initial state, u ( t ) is the input (control),

 ( t ) is the output (measurement) and f (w (·, t) , w x (·, t)) + d(t) is

he total disturbance that consists of the boundary interior uncer-

ainty f ( ·) and the external disturbance d ( t ). System (3.6) models

 vibrating flexible beam that is free at the end x = 0 and is con-

rolled on the other end x = 1 and w ( x, t ) represents the displace-

ent of the beam at x ∈ (0, 1) and t ≥ 0. In the rest of the paper,

e drop off obvious spatial and time domains without confusion. 

heorem 3.1. System (3.6) is exactly observable in the sense of

efinition 1 . 

roof. When f (·) + d(t) = 0 and u (t) = 0 , by a simple multiplier

echnique, it can be easily shown that there exists τ > 0 such that

 τ

0 

| w t (0 , t) | 2 dt ≥ c τ‖ (w 0 , w 1 ) ‖ 

2 
H 

, (3.7)

here c τ > 0 is a constant, which means that condition (i) of

efinition 1 is satisfied. We only need to show condition (ii). When

 (t) = 0 for all t ∈ [0, ∞ ), w ( x, t ) is governed by 
 

 

 

 

 

w tt (x, t) + w xxxx (x, t) = 0 , 

w xxx (0 , t) = w xx (0 , t) = 0 , 

w (1 , t) = w x (1 , t) = 0 , 

w (x, 0) = w 0 (x ) , w t (x, 0) = w 1 (x ) , 

(3.8)

nd 

 

 

 

 

 

w tt (x, t) + w xxxx (x, t) = 0 , 

w xxx (0 , t) = −w t (0 , t) , w xx (0 , t) = 0 , 

w x (1 , t) = w (1 , t) = 0 , 

w (x, 0) = w 0 (x ) , w t (x, 0) = w 1 (x ) . 

(3.9)

ystem (3.8) is a conservative system that ‖ (w (·, t) , w t (·, t)) ‖ =
 (w 0 , w 1 ) ‖ for all t ≥ 0. And system (3.9) is a well known expo-

entially stable system: ‖ ( w ( ·, t ), w t ( ·, t )) ‖ → 0 as t → ∞ . There-

ore, for any t ≥ 0, ‖ ( w ( ·, t ), w t ( ·, t )) ‖ ≡ 0 which implies that
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f (w (·, t) , w x (·, t)) + d(t) = w xx (1 , t) = 0 . This completes the proof

f the theorem. �

Theorem 3.1 implies that the output y ( t ) is always observ-

ble regardless of the function f ( ·). As a consequence, the out-

ut y ( t ) contains sufficient information of the total disturbance

f (w (·, t) , w x (·, t)) + d(t) therefore we can use y ( t ) to estimate the

ncertainty. System (3.6) serves as a benchmark example to show

ur design idea for uncertain PDEs in next section. 

. Output feedback stabilization 

In this section, we design, in terms of the output y ( t ), a dis-

urbance estimator which can also serve as a new unknown in-

ut type state observer for system (3.6) . The disturbance estimator

esign relies on the hidden regularity of the beam equation. This

s very different to the ADRC for lumped parameter systems dis-

ussed in Section 2 where the high-gain is used in ESO. 

.1. Unknown input observer 

We first design a disturbance estimator for system (3.6) . To this

urpose, we first introduce the following auxiliary system to bring

he total disturbance f (·) + d(t) into an exponentially stable sys-

em: 
 

 

 

 

 

z tt (x, t) + z xxxx (x, t) = 0 , 

z xxx (0 , t) = c 1 [ w t (0 , t) − z t (0 , t)] , 
z xx (0 , t) = z(1 , t) = 0 , 

z xx (1 , t) = c 0 [ w x (1 , t) − z x (1 , t)] + u (t) , 

(4.1) 

here c 1 is a positive tuning parameter. System (4.1) depends only

n the input and output of the original plant (3.6) and therefore is

ompletely known. Although system (4.1) and the original uncer-

ain system (3.6) are different, the error system is an “ideal envi-

onment” for disturbance estimation. Actually, if we set 

ˆ 
 (x, t) = w (x, t) − z(x, t) , (4.2)

hen the error ˆ z (x, t) is governed by 
 

 

 

 

 

ˆ z tt (x, t) + ̂

 z xxxx (x, t) = 0 , 

ˆ z xxx (0 , t) = −c 1 ̂  z t (0 , t) , 
ˆ z xx (0 , t) = 

ˆ z (1 , t) = 0 , 

ˆ z xx (1 , t) = −c 0 ̂  z x (1 , t) + f (w (·, t) , w x (·, t)) + d(t) . 

(4.3) 

ystem (4.3) can be written abstractly as 

d 

dt 
( ̂ z (·, t) , ̂  z t (·, t)) = A 0 ( ̂ z (·, t) , ̂  z t (·, t)) 

+ B[ f (w (·, t) , w x (·, t)) + d(t)] , (4.4) 

here the operators A 0 and B are defined, respectively, by 

 

A 0 ( f, g) = (g, − f (4) ) , ∀ ( f, g) ∈ D (A 0 ) , 

D (A 0 ) = { ( f, g) ∈ H 

4 (0 , 1) × H 

2 (0 , 1) | 
g(1) = f (1) = f ′′ (0) = 0 , f ′′′ (0) = −c 1 g(0) , f ′′ (1) = −c 0 f 

′ (1) } .
(4.5) 

nd B = (0 , −δ′ (x − 1)) with δ( ·) being the Dirac distribution. It is

ell known that the operator A 0 generates an exponentially sta-

le C 0 -semigroup e A 0 t and the operator B is admissible to the C 0 -

emigroup e A 0 t ( Guo, Zhou, AL-Fhaid, Younas, & Asiri, 2014b ). Since

he linear part of system (4.3) is exponentially stable and is inde-

endent of the control, the disturbance estimator design for system

4.3) is much easier than for the original system (3.6) . Moreover,

he exponential stability of linear part of (4.3) guarantees that all

he subsystems involved in estimation of total disturbance are uni-

ormly bounded, provided that the total disturbance is uniformly

ounded with respect to time t . In this sense, we can say that sys-

em (4.1) separates the total disturbance from the original system
3.6) and introduces the total disturbance into a “relatively good”

ystem (4.3) which is our starting point to estimate the total dis-

urbance. 

Now, we design an observer for system (4.3) : 
 

 

 

 

 

 

 

ˆ d tt (x, t) + 

ˆ d xxxx (x, t) = 0 , 

ˆ d xxx (0 , t) = −c 1 ˆ d t (0 , t) , 
ˆ d xx (0 , t) = 

ˆ d (1 , t) = 0 , 

ˆ d x (1 , t) = 

ˆ z x (1 , t) = [ w x (1 , t) − z x (1 , t)] , 

(4.6) 

hich turns out to be a total disturbance estimator. Notice that

ystem (4.6) depends only on the input and output of the original

ystem (3.6) , as it is in terms of only the signals w x (1, t ) and z x (1,

 ). We now show that the observer (4.6) can provide an estimation

f the total disturbance in system (4.3) . As matter of fact, if we let

˜ 
 (x, t) = 

ˆ z (x, t) − ˆ d (x, t) , (4.7)

hen the error ˜ d (x, t) is governed by 
 

 

 

˜ d tt (x, t) + 

˜ d xxxx (x, t) = 0 , 

˜ d xxx (0 , t) = −c 1 ˜ d t (0 , t) , ˜ d xx (0 , t) = 0 , 

˜ d (1 , t) = 

˜ d x (1 , t) = 0 , 

(4.8) 

hich is exponentially stable ( Guo & Jin, 2013a ). We consider sys-

em (4.8) in the state space 

 1 = { ( f, g) ∈ H 

2 (0 , 1) × L 2 (0 , 1) | f (1) = f ′ (1) = 0 } , (4.9)

hose inner product is given by 

 

( f 1 , g 1 ) , ( f 2 , g 2 ) 〉 H 1 
= 

∫ 1 

0 

[ f ′′ 1 (x ) f ′′ 
2 
(x ) + g 1 (x ) g 2 (x )] dx, 

∀ ( f i , g i ) ∈ H 1 , i = 1 , 2 . (4.10) 

ystem (4.8) can be written as the following evolutionary equation:

d 

dt 
( ̃  d (·, t) , ˜ d t (·, t))) = A 1 ( ̃  d (·, t) , ˜ d t (·, t)) , (4.11)

here the operator A 1 is given by 

 

A 1 ( f, g) = (g, − f (4) ) , ∀ ( f, g) ∈ D (A 1 ) , 

D (A 1 ) = { ( f, g) ∈ H 

4 (0 , 1) × H 

2 (0 , 1) | f ′′ (0) = f (1) = f ′ (1) = 0 , 

g(1) = g ′ (1) = 0 , f ′′′ (0) = −c 1 g(0) } . 
(4.12) 

t is well known that the operator A 1 generates a C 0 -semigroup of

ontractions on H 1 ( Chen, Delfour, Krall, & Payre, 1987; Guo & Jin,

013a ). As a result, there exist constants L A 1 , ω A 1 > 0 such that 

 e A 1 t ‖ ≤ L A 1 e 
−ω A 1 t , t ≥ 0 . (4.13)

oreover, we have the following results on hidden regularity. 

emma 4.1. For any initial state ( ̃  d (·, 0) , ˜ d t (·, 0)) ∈ H 1 , system

4.8) admits a unique solution ( ̃  d , ˜ d t ) ∈ C(0 , ∞;H 1 ) satisfying the

idden regularity 

˜ 
 xx (1 , t) ∈ L 2 (0 , ∞ ) . (4.14)

f the initial value ( ̃  d (·, 0) , ˜ d t (·, 0)) ∈ D (A 1 ) , the solution is classical

nd satisfies: 

˜ 
 xx (1 , t) → 0 as t → ∞ . (4.15)

roof. By semigroup theory, system (4.8) admits a unique solution

( ̃  d (·, t) , ˜ d t (·, t)) ∈ C(0 , ∞;H 1 ) such that 

 ( ̃  d (·, t) , ˜ d t (·, t)) ‖ H 1 
≤ L A 1 e 

−ω A 1 t ‖ ( ̃  d (·, 0) , ˜ d t (·, 0)) ‖ H 1 
, t ≥ 0 . 

(4.16) 

o prove the hidden regularity (4.14) , we define 

(t) = 

∫ 1 

0 

x ̃  d x (x, t) ̃  d t (x, t) dx. (4.17)
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w  
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e  

(

d  

H  

i

‖
 

I  

s  

a

 

w

〈
 

W

 

g

T  

o  

[  
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a

‖

 

P(
 

t⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

 

S  

(  
Then 

| φ(t) | ≤ 1 

2 

‖ ( ̃  d (·, t) , ˜ d t (·, t)) ‖ 

2 
H 1 

, ∀ t ≥ 0 . (4.18)

Finding the derivative of φ( t ) along the solution of system (4.8) ,

we can obtain 

˙ φ(t) = 

∫ 1 

0 

x ̃  d tx (x, t) ̃  d t (x, t) dx −
∫ 1 

0 

x ̃  d x (x, t) ̃  d xxxx (x, t) dx 

= 

1 

2 

˜ d 2 t (1 , t) − 1 

2 

∫ 1 

0 

˜ d 2 t (x, t) dx 

+ 

∫ 1 

0 

( ̃  d x (x, t) + x ̃  d xx (x, t)) ̃  d xxx (x, t) dx 

= 

1 

2 

˜ d 2 t (1 , t) + 

1 

2 

˜ d 2 xx (1 , t) − 1 

2 

∫ 1 

0 

[ ̃  d 2 t (x, t) + 3 ̃

 d 2 xx (x, t)] dx. 

(4.19)

Hence, for any τ > 0, 

∫ τ

0 

˜ d 2 xx (1 , t) dt ≤ 2 φ(τ ) − 2 φ(0) + 3 

∫ t 

0 

‖ ( ̃  d (·, t) , ˜ d t (·, t)) ‖ 

2 
H 1 

dt 

≤ ‖ ( ̃  d (·, 0) , ˜ d t (·, 0)) ‖ 

2 
H 1 

(
2 + 3 L 2 A 1 

∫ τ

0 

e −2 ω A 1 t dt 

)

≤ ‖ ( ̃  d (·, 0) , ˜ d t (·, 0)) ‖ 

2 
H 1 

(
2 + 

3 L 2 A 1 
2 ω A 1 

)
. (4.20)

This easily leads to (4.14) due to the arbitrariness of τ . When

( ̃  d (·, 0) , ˜ d t (·, 0)) ∈ D (A 1 ) , the solution is classical and satisfies: 

‖ ( ̃  d t (·, t) , ˜ d tt (·, t)) ‖ H 1 
≤ L A 1 e 

−ω A 1 t ‖ ( ̃  d t (·, 0) , − ˜ d xxxx (·, 0)) ‖ H 1 
, 

∀ t ≥ 0 . (4.21)

On the other hand, it follows from (4.17) that 

˙ φ(t) = 

∫ 1 

0 

x ̃  d x (x, t) ̃  d tt (x, t) dx + 

∫ 1 

0 

x ̃  d tx (x, t) ̃  d t (x, t) dx 

≤ C[ ‖ ( ̃  d t (·, t) , ˜ d tt (·, t)) ‖ H 1 
+ ‖ ( ̃  d (·, t) , ˜ d t (·, t)) ‖ H 1 

] , (4.22)

where C is a positive constant. In view of (4.16) and (4.21) , we can

easily obtain (4.15) from (4.22) . �

On the other hand, a formal computation from (4.7) and

(4.3) shows that 

˜ d xx (1 , t) = −c 0 [ w x (1 , t) − z x (1 , t)] 

+ [ f (w (·, t) , w x (·, t)) + d(t)] − ˆ d xx (1 , t) , (4.23)

Owing to (4.14) , c 0 [ w x (1 , t) − z x (1 , t)] + 

ˆ d xx (1 , t) can be regarded

as an approximate of f ( w ( ·, t ), w x ( ·, t )) + d(t) with a possible error

in L 2 (0, ∞ ). That is, 

{ [ f (w (·, t) , w x (·, t)) + d(t)] − c 0 [ w x (1 , t) − z x (1 , t)] − ˆ d xx (1 , t) } 
∈ L 2 (0 , ∞ ) . (4.24)

The major advantage of this design is that c 0 [ w x (1 , t) − z x (1 , t)] +
ˆ d xx (1 , t) gives an adequate estimation of the total disturbance

f (w (·, t) , w x (·, t)) + d(t) in the sense that the total disturbance

does not appear in error system (4.8) . 

Putting systems (4.1) and (4.6) together, we have obtained an

unknown input state observer for system (3.6) : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z tt (x, t) + z xxxx (x, t) = 0 , 

z xxx (0 , t) = c 1 [ w t (0 , t) − z t (0 , t)] , 
z xx (0 , t) = z(1 , t) = 0 , 

z xx (1 , t) = c 0 [ w x (1 , t) − z x (1 , t)] + u (t) , 
ˆ d tt (x, t) + 

ˆ d xxxx (x, t) = 0 , 

ˆ d xxx (0 , t) = −c 1 ˆ d t (0 , t) , 
ˆ d xx (0 , t) = 

ˆ d (1 , t) = 0 , 

ˆ d x (1 , t) = w x (1 , t) − z x (1 , t) , 

(4.25)

hich is determined completely by the input and output of system

3.6) . Notice that that no high gain is used in (4.25) and bound-

dness is not required for derivatives of the total disturbance. By

4.2) and (4.7) , we have 

˜ 
 (x, t) = w (x, t) − z(x, t) − ˆ d (x, t) . (4.26)

ence, the exponential stability of (4.16) implies that the unknown

nput state observer (4.25) converges exponentially: 

 ̃

 d (·, t) ‖ H 1 
= ‖ [ z(·, t) + 

ˆ d (·, t)] − w (·, t) ‖ H 1 
→ 0 as t → ∞ . 

(4.27)

n this way, we obtain an disturbance estimator and a state ob-

erver simultaneously. In other words, (4.25) can be considered as

n ESO for system (3.6) . Introduce 

H 0 = 

{
( f, g) ∈ H 

2 (0 , 1) × L 2 (0 , 1) | f (1) = 0 

}
(4.28)

hose inner product is given by 

 ( f 1 , g 1 ) , ( f 2 , g 2 ) 〉 H 0 
= 

∫ 1 

0 

f ′′ 1 f 
′′ 
2 

dx + g 1 g 2 dx + c 0 f 
′ 
1 (1) f ′ 

2 
(1) , 

∀ ( f i , g i ) ∈ H 0 , i = 1 , 2 . (4.29)

e consider system (4.25) in the space H 

2 
0 

. 

We first discuss the properties of well-posedness and conver-

ence for the state observer (4.25) . 

heorem 4.1. Suppose that the solution (w, w t ) ∈ C(0 , ∞;H 0 )

f system (3.6) with u ∈ L 2 
loc 

(0 , ∞ ) is well-posed and

 f (w (·, t) , w x (·, t)) + d(t)] ∈ L 2 
loc 

(0 , ∞ ) . Then, for any initial value

( ̂  d (·, 0) , ˆ d t (·, 0) , z(·, 0) , z t (·, 0)) ∈ H 

2 
0 
, there exists a unique solution

( ̂  d , ˆ d t , z, z t ) ∈ C(0 , ∞;H 

2 
0 ) to ESO (4.25) such that 

 [ f (w (·, t) , w x (·, t)) + d(t)] − c 0 [ w x (1 , t) − z x (1 , t)] − ˆ d xx (1 , t) } 
∈ L 2 (0 , ∞ ) , (4.30)

nd 

 ([ z(·, t) + 

ˆ d (·, t)] − w (·, t) , [ z t (·, t) + 

ˆ d t (·, t)] − w t (·, t)) ‖ H 1 

≤ L A 1 e 
−ω A 1 t ‖ ([ z(·, 0) + 

ˆ d (·, 0)] 

− w (·, 0) , [ z t (·, 0) + 

ˆ d t (·, 0)] − w t (·, 0)) ‖ H 1 
, t ≥ 0 . (4.31)

roof. By the invertible transformation 

 

w 

z 
ˆ d 

) 

= 

( 

I 0 0 

I 0 −I 
0 −I I 

) ( 

w 

˜ d 
ˆ z 

) 

, (4.32)

he state observer (4.25) is equivalent to the following system: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ z tt (x, t) + ̂

 z xxxx (x, t) = 0 , 

ˆ z xxx (0 , t) = −c 1 ̂  z t (0 , t) , 
ˆ z xx (0 , t) = 

ˆ z (1 , t) = 0 , 

ˆ z xx (1 , t) = −c 0 ̂  z x (1 , t) + f (w (·, t) , w x (·, t)) + d(t) , 
˜ d tt (x, t) + 

˜ d xxxx (x, t) = 0 , 

˜ d xxx (0 , t) = −c 1 ˜ d t (0 , t) , 
˜ d xx (0 , t) = 

˜ d (1 , t) = 

˜ d x (1 , t) = 0 . 

(4.33)

ince [ f (w (·, t) , w x (·, t)) + d(t)] ∈ L 2 
loc 

(0 , ∞ ) and the “ ˜ d -part” of

4.33) is independent of the other part, the admissibility of B and
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a  
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t
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‖  
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‖  

I  

s

P  

d  

f⎛
⎜⎜⎜⎜⎜⎝
S  

b⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
a⎧⎪⎨
⎪⎩
T  

e  

i

emma 4.1 imply that the solution of system (4.33) is well defined.

wing to (4.26), (4.31) follows from (4.16) . Finally, (4.30) can be

btained from (4.14) and (4.23) directly. �

emark 4.1. It is seen that in state observer (4.25) , we use neither

igh gain nor discontinuous output injection ( Guo & Jin, 2015 ).

his is remarkably different from conventional ones for both ODEs

nd PDEs. More importantly, we did not assume the bounded-

ess for any order derivative of the total disturbance. It should be

ointed out that Han’s conventional ESO ( Han, 2009 ) as given in

2.7) is just one design in ADRC. There should been other ESO de-

ign methods in which the use of high gain is not necessary, as

n adaptive control and control based on internal model principle.

ur ESO for infinite-dimensional systems developed in this section

ffers such a new design. 

emark 4.2. The ESO (4.25) is not always convenient for control

esign because we know from (4.27) that [ z(x, t) + 

ˆ d (x, t)] is only

n approximate of w ( x, t ) and that the control appears in z -system

4.1) only. To avoid this problem, we may design an approximate

ˆ  (x, t) of w ( x, t ) directly by compensating the total disturbance

ith its approximate claimed by (4.30) . Specifically, we can design

 

 

 

 

 

ˆ w tt (x, t) + 

ˆ w xxxx (x, t) = 0 , 

ˆ w xxx (0 , t) = k [ w t (0 , t) − ˆ w t (0 , t)] , k > 0 , 

ˆ w xx (0 , t) = 

ˆ w (1 , t) = 0 , 

ˆ w xx (1 , t) = −c 0 [ w x (1 , t) − z x (1 , t)] + 

ˆ d xx (1 , t) + u (t) , 

(4.34) 

hich produces another ESO for system (3.6) as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ w tt (x, t) + 

ˆ w xxxx (x, t) = 0 , 

ˆ w xxx (0 , t) = k [ w t (0 , t) − ˆ w t (0 , t)] , 
ˆ w xx (0 , t) = 

ˆ w (1 , t) = 0 , 

ˆ w xx (1 , t) = −c 0 [ w x (1 , t) − z x (1 , t)] + 

ˆ d xx (1 , t) + u (t) , 
z tt (x, t) + z xxxx (x, t) = 0 , 

z xxx (0 , t) = c 1 [ w t (0 , t) − z t (0 , t)] , 
z xx (0 , t) = z(1 , t) = 0 , 

z xx (1 , t) = c 0 [ w x (1 , t) − z x (1 , t)] + u (t) , 
ˆ d tt (x, t) + 

ˆ d xxxx (x, t) = 0 , 

ˆ d xxx (0 , t) = −c 1 ˆ d t (0 , t) , 
ˆ d xx (0 , t) = 

ˆ d (1 , t) = 0 , 

ˆ d x (1 , t) = w x (1 , t) − z x (1 , t) . 

(4.35) 

n the new ESO (4.35) , we consider ˆ w (x, t) as an approximate of

 ( x, t ) and −c 0 [ w x (1 , t) − z x (1 , t)] − ˆ d xx (1 , t) the approximate of

he total disturbance f (·, t) + d(t) in the same of (4.30) . In many

ituations, such as the unstable wave equation in Feng and Guo

2014) , the ESO type of (4.35) is more suitable than (4.25) since

ˆ  (x, t) ≈ w (x, t) . Certainly, (4.35) serves as a different unknown in-

ut observer for system (3.6) . The issue of unknown input observer

s seldom touched for PDEs. By our approach, we have designed

wo different unknown input observers (4.25) and (4.35) without

sing discontinuous injection of the output error. The key step in

chieving this design is the uncertainty estimation and compensa-

ion. 

.2. Stabilizing output feedback control 

With the state observer (4.25) at hand, we can naturally design

n observer based stabilizing output feedback as follows: 

 (t) = [ − ˆ d xx (1 , t) − c 0 w x (1 , t) + c 0 z x (1 , t)] 

− c 2 w xt (1 , t) − c 3 w x (1 , t) , c 2 , c 3 > 0 , (4.36) 

here the first three terms in bracket are used to cancel the to-

al disturbance and the other terms are stabilizing output feedback

ontrol for system (3.6) in the absence of total disturbance. This

mplies we have adopt the estimation and cancelation strategy in
eedback control (4.36) in the spirit of active disturbance rejec-

ion control. Under the controller (4.36) , we incorporate systems

4.1) and (4.6) to obtain the closed-loop of system (3.6) as follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w tt (x, t) + w xxxx (x, t) = 0 , 

w xxx (0 , t) = w xx (0 , t) = w (1 , t) = 0 , 

w xx (1 , t) = f (w (·, t) , w x (·, t)) + d(t) 

− [ ̂  d xx (1 , t) + c 0 w x (1 , t) − c 0 z x (1 , t)] 
− c 2 w xt (1 , t) − c 3 w x (1 , t) , 

z tt (x, t) + z xxxx (x, t) = 0 , 

z xxx (0 , t) = c 1 [ w t (0 , t) − z t (0 , t)] , 
z xx (0 , t) = z(1 , t) = 0 , 

z xx (1 , t) = − ˆ d xx (1 , t) − c 2 w xt (1 , t) − c 3 w x (1 , t) , 
ˆ d tt (x, t) + 

ˆ d xxxx (x, t) , 
ˆ d xxx (0 , t) = c 1 ˆ d t (0 , t) , 
ˆ d xx (0 , t) = 

ˆ d (1 , t) = 0 , 

ˆ d x (1 , t) = w x (1 , t) − z x (1 , t) . 

(4.37) 

heorem 4.2. Suppose that f ∈ C(R 

2 ; R ) and d ∈ L ∞ (0, ∞ ) . Then, for

ny initial state (w (·, 0) , w t (·, 0) , z(·, 0) , z t (·, 0) , ˆ d (·, 0) , ˆ d t (·, 0)) ∈
 

3 
0 
, the closed-loop system (4.37) admits a unique solution

(w, w t , z, z t , ˆ d , ˆ d t ) ∈ C(0 , ∞;H 

3 
0 
) such that: 

sup 

∈ [0 , ∞ ) 

‖ (w (·, t) , w t (·, t) , z(·, t) , z t (·, t) , ˆ d (·, t) , ˆ d t (·, t)) ‖ H 

3 
0 

< + ∞ . 

(4.38) 

oreover, there exist L, ω > 0 such that 

 

(w (·, t) , w t (·, t)) ‖ H 0 
≤ Le −ωt , t ≥ 0 . (4.39)

f we assume further that f (0) = 0 and d ( t ) ≡ 0, then, 

 (w (·, t) , w t (·, t) , z(·, t) , z t (·, t) , ˆ d (·, t) , ˆ d t (·, t)) ‖ H 

3 
0 

→ 0 as t → ∞ .

(4.40) 

n other words, when the external disturbance is disconnected to the

ystem, the closed-loop system is internally asymptotically stable. 

roof. Since system (4.37) is a nonlinear system, it is not easy to

ealt with it directly. Fortunately, by the following invertible trans-

ormation: 
 

 

 

 

 

 

 

w 

w t 

z 
z t 
ˆ d 
ˆ d t 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

1 0 0 0 0 0 

0 1 0 0 0 0 

I 0 0 0 −I 0 

0 I 0 0 0 −I 
0 0 −I 0 I 0 

0 0 0 −I 0 I 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

w 

w t 

˜ d 
˜ d t 
ˆ z 
ˆ z t 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (4.41) 

ystem (4.37) is transformed into the equivalent system described

y the “(w, ˜ d ) -part”
 

 

 

 

 

 

 

 

 

 

 

 

 

w tt (x, t) + w xxxx (x, t) = 0 , 

w xxx (0 , t) = w xx (0 , t) = w (1 , t) = 0 , 

w xx (1 , t) = 

˜ d xx (1 , t) − c 2 w xt (1 , t) − c 3 w x (1 , t) , 
˜ d tt (x, t) + 

˜ d xxxx (x, t) = 0 , 

˜ d xxx (0 , t) = c 1 ˜ d t (0 , t) , 
˜ d xx (0 , t) = 

˜ d (1 , t) = 

˜ d x (1 , t) = 0 , 

(4.42) 

nd the “ˆ z -part”
 

 

 

 

 

ˆ z tt (x, t) + ̂

 z xxxx (x, t) = 0 , 

ˆ z xxx (0 , t) = c 1 ̂  z t (0 , t) , 
ˆ z xx (0 , t) = 

ˆ z (1 , t) = 0 , 

ˆ z xx (1 , t) = −c 0 ̂  z x (1 , t) + f (w (·, t) , w x (·, t)) + d(t) , 

(4.43) 

hough still nonlinear, the equivalent system can be treated by lin-

ar approach, since the “(w, ˜ d ) -part” is a linear system; and more

mportantly, it is decoupled from the “ˆ z -part”. 
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The “(w, ˜ d ) -part” can be written, in the Hilbert space H 0 × H 1 ,

as the following abstract from: 

d 

dt 
(w (·, t) , w t (·, t) , ˜ d (·, t) , ˜ d t (·, t)) 

= A (w (·, t) , w t (·, t) , ˜ d (·, t) , ˜ d t (·, t)) , (4.44)

where the operator A is given by ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

A ( f, g, φ, ψ) = (g, − f (4) , ψ, −φ(4) ) , ∀ ( f, g, φ, ψ) ∈ D (A ) , 
D (A ) = { ( f, g, φ, ψ) ∈ H 

4 (0 , 1) × H 

2 (0 , 1) | 
f ′′′ (0) = f ′′ (0) = f (1) = g(1) = 0 , 

f ′′ (1) = φ′′ (1) − c 2 g 
′ (1) − c 3 f 

′ (1) , 
φ(1) = ψ(1) = φ′ (1) = ψ 

′ (1) = φ′′ (0) = 0 , φ′′′ (0) = − c 1 ψ(0) } .
(4.45)

Now we prove that the operator A defined by (4.45) generates

an exponentially stable C 0 -semigroup on H 0 × H 1 . Indeed, for any

( ̂  f , ̂  g , ˆ φ, ˆ ψ ) ∈ H 0 × H 1 , we solve 

A ( f, g, φ, ψ) = (g, − f (4) , ψ, −φ(4) ) = ( ̂  f , ̂  g , ˆ φ, ˆ ψ ) (4.46)

to obtain g = 

ˆ f , ψ = 

ˆ φ, and { − f (4) (x ) = 

ˆ g (x ) , 
f ′′′ (0) = f ′′ (0) = f (1) = 0 , 

f ′′ (1) = φ′′ (1) − c 2 ̂  f ′ (1) − c 3 f 
′ (1) , 

(4.47)

and ⎧ ⎨ 

⎩ 

−φ(4) (x ) = 

ˆ ψ (x ) , 
φ(1) = φ′ (1) = φ′′ (0) = 0 , 

φ′′′ (0) = −c 1 ̂  φ(0) . 

(4.48)

We solve (4.47) and (4.47) to obtain ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

f (x ) = (1 − x ) f ′ (1) −
∫ 1 

x 

∫ 1 

τ

∫ β

0 

∫ α

0 

ˆ g (s ) d sd αd βd τ, 

φ(x ) = c 1 ̂  φ(0) 

(
x 

2 

− x 3 

6 

− 1 

3 

)
−

∫ 1 

x 

∫ 1 

τ

∫ β

0 

∫ α

0 

ˆ ψ (s ) d sd αd βd τ

φ′′ (1) = −c 1 ̂  φ(0) −
∫ 1 

0 

∫ α

0 

ˆ ψ (s ) d sd α, 

f ′ (1) = 

1 

c 3 

[
φ′′ (1) − c 2 ̂  f ′ (1) + 

∫ 1 

0 

∫ α

0 

ˆ g (s ) d sd α

]
. 

(4.49)

Therefore, A 

−1 is compact on H 0 × H 1 . Therefore σ (A ) consists of

isolated eigenvalues only. 

By Guo and Yu (2001) , the operator A 1 , defined by (4.12) , gen-

erates an exponentially stable C 0 -semigroup on H 1 ; and there is a

sequence of generalized eigenfunctions { �n ( x )} of A 1 which forms

a Riesz basis for H 1 , with all associated eigenvalues of sufficiently

large module being algebraically simple. Moreover, it is a trivial ex-

ercise to show that the same stability and spectral results are true

for operator A 0 defined by (4.5) . Hence, the spectral growth con-

dition is true for A i : 

ω(A i ) = s (A i ) < 0 , i = 0 , 1 , (4.50)

where ω(A i ) is the growth rate of semigroup e A i t and s (A i ) is the

spectral bound of A i , i = 0 , 1 . Let the generalized eigenfunctions of

A 1 and A 0 be { �n ( x )} and { �n ( x )}, respectively. Define a sequence

{ (�n (x ) , 0) } ∪ { (0 , �m 

(x )) } . (4.51)

Then, it is a sequence of generalized eigenfunctions of A , and

forms a Riesz basis for H 1 × H 0 . Therefore A generates a C 0 -

semigroup on X and the spectrum-determined growth condition

is true for A : 

ω(A ) = s (A ) . (4.52)
ince the “(w, ˜ d ) -part” of system (4.42) is a cascade of the “w -

ystem” and “ ˜ d -system”, and the former is independent of the lat-

er. We claim that 

(A ) = σ (A 0 ) ∪ σ (A 1 ) . (4.53)

ndeed, for any λ ∈ σ (A ) , suppose that A ( f, g, φ, ψ) =
( f, g, φ, ψ) with 0 � = ( f, g, φ, ψ) ∈ D (A ) . Combining (4.12) and

4.45) , we find that (φ, ψ) ∈ D (A 1 ) and A 1 (φ, ψ) = λ(φ, ψ) . So

hen ( φ, ψ) � = 0, we have λ ∈ σ (A 1 ) . When (φ, ψ) = 0 , then ( f,

 ) � = 0 and it follows from (4.45) and (4.5) that ( f, g) ∈ D (A 0 ) and

hus 

 ( f, g, 0 , 0) = (g, − f (4) , 0 , 0) = (A 0 ( f, g) , 0 , 0) = λ( f, g, 0 , 0) . 

(4.54)

his leads to A 0 ( f, g) = λ( f, g) or λ ∈ σ (A 0 ) . This shows that

(A ) ⊂ σ (A 0 ) ∪ σ (A 1 ) . The inclusion σ (A 0 ) ∪ σ (A 1 ) ⊂ σ (A ) is

rivial. Therefore, (4.53) holds true. 

Finally, we combine (4.52) and (4.53) to obtain 

(A ) = s (A ) = max { s (A 0 ) , s (A 1 ) } < 0 . (4.55)

herefore, e A t is exponentially stable on H 0 × H 1 . Moreover, the

olution of “(w, ˜ d ) -part” is well defined and satisfies 

 (w (·, t) , w t (·, t) , ˜ d (·, t) , ˜ d t (·, t)) ‖ H 0 ×H 1 
≤ L 1 e 

−ω 1 t , t ≥ 0 , 

(4.56)

here L 1 and ω 1 are positive constants. From the Sobolev trace-

mbedding theorem, it follows that 

 | w x (1 , t) | + | w (1 , t) | ] → 0 as t → ∞ , (4.57)

hich, together the continuity of f ( ·), leads to that 

sup 

∈ [0 , ∞ ) 

| f (w (1 , t) , w x (1 , t)) + d(t) | < + ∞ . (4.58)

Since the solution of “(w, ˜ d ) -part” is well defined, the “ˆ z -part”

ow becomes an exponentially stable linear system with an inho-

ogeneous term f (w (·, t) , w x (·, t)) + d(t) that completely comes

rom the “(w, ˜ d ) -part”. In this way, we deal with a nonlinear sys-

em via a linear approach. Since the “ˆ z -part” is actually a linear

ystem corrupted by an inhomogeneous term, it follows that ( Feng

 Guo, 2017 ) 

sup 

∈ [0 , ∞ ) 

‖ ( ̂ z (·, t) , ̂  z t (·, t)) ‖ H 0 
< + ∞ , (4.59)

hich, together with (4.56) and (4.41) , readily leads to (4.38) . 

Finally, when f (0) = 0 and d ( t ) ≡ 0, by (4.57) and the continu-

ty of f ( ·), we have 

 f (w (1 , t) , w x (1 , t)) | → 0 as t → ∞ , (4.60)

nd thus 

 ( ̂ z (·, t) , ̂  z t (·, t)) ‖ H 0 
→ 0 as t → ∞ . (4.61)

inally, (4.40) can be obtained by (4.56), (4.61) , and (4.41) . �

. Multi-dimensional wave equations 

The proposed approach for observer design in previous section

s systematic and can be used to deal with many other PDEs such

s anti-stable wave equations ( Feng & Guo, 2016b ), heat equations

 Feng & Guo, 2016a ), and even the multi-dimensional PDEs. In this

ection, we consider a multi-dimensional wave equation only. 

Let � ⊂ R 

n (n ≥ 2) be an open bounded domain with a smooth

 

2 -boundary � = �0 ∪ �1 , where the boundary relative open sub-

ets � � = ∅ and � � = ∅ . Let ν be the outward unit normal vector
0 1 
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f the boundary �. We consider the following multi-dimensional

ave equation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w tt (x, t) − �w (x, t) = 0 in � × (0 , ∞ ) , 

w (x, t) = 0 on �0 × [0 , ∞ ) , 

∂w (x, t) 

∂ν
= f (w (x, t)) on �1 × [0 , ∞ ) , 

+ d(x, t) + u (x, t) 

y o (x, t) = ( y 1 (x, t) , y 2 (x, t) ) t ≥ 0 , 

= 

(
w (x, t) | �1 

, 
∂w (x, t) 

∂ν

∣∣∣
�0 

)
, 

(5.1) 

here u ( x, t ) is the control (input) and y o ( x, t ) is the measurement

output). The f (w (x, t)) + d(x, t) is regarded as the “total distur-

ance” which consists of the boundary unknown uncertainty f ( w ( x,

 )) and external unknown disturbance d ( x, t ). The main difficulty

or stabilization of system (5.1) is the total disturbance. The prob-

em wound be trivial after we cancel the disturbance by its esti-

ate. Hence, we only give the observer design. Introduce 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v tt (x, t) − �v (x, t) = 0 in � × (0 , ∞ ) , 

∂v (x, t) 

∂ν
= 

∂w (x, t) 

∂ν
on �0 × [0 , ∞ ) , 

− c 1 v (x, t) − c 2 v t (x, t) 

∂v (x, t) 

∂ν
= u (x, t) on �1 × [0 , ∞ ) , 

ˆ d tt (x, t) − � ˆ d (x, t) = 0 in � × (0 , ∞ ) , 

∂ ˆ d (x, t) 

∂ν
= −c 1 ˆ d (x, t) − c 2 ˆ d t (x, t) on �0 × [0 , ∞ ) , 

ˆ d (x, t) = w (x, t) − v (x, t) on �1 × [0 , ∞ ) , 

(5.2) 

here c 1 , c 2 > are tuning parameters, ˆ d (x, t) is used to estimate

he total disturbance, and v ( x, t ) is an auxiliary variable. System

5.2) only depends on the input and output of system (5.1) . Let 

˜ 
 (x, t) = w (x, t) − v (x, t) . (5.3)

hen 

˜ v (x, t) is governed by 
 

 

 

 

 

 

 

 

 

˜ v tt (x, t) − �˜ v (x, t) = 0 in � × (0 , ∞ ) , 

∂ ̃  v (x, t) 

∂ν
= −c 1 ̃  v (x, t) − c 2 ̃  v t (x, t) on �0 × [0 , ∞ ) , 

∂ ̃  v (x, t) 

∂ν
= f (w (x, t)) + d(x, t) on �1 × [0 , ∞ ) , 

(5.4) 

hich is a type of stable system with the total disturbance

f (w (x, t)) + d(x, t) as its inhomogeneous term. We see that “v -

ystem” separates total disturbance from original system (5.1) and

ontrol into a stable system. The “ ˆ d -system” is actually an observer

or system (5.4) . If we let 

˜ 
 (x, t) = 

˜ v (x, t) − ˆ d (x, t) = w (x, t) − v (x, t) − ˆ d (x, t) , (5.5)

hen 

˜ d (x, t) is governed by 

 

 

 

 

 

˜ d tt (x, t) − � ˜ d (x, t) = 0 in � × (0 , ∞ ) , 

∂ ˜ d (x, t) 

∂ν
= −c 1 ˜ d (x, t) − c 2 ˜ d t (x, t) on �0 × [0 , ∞ ) , 

˜ d (x, t) = 0 on �1 × [0 , ∞ ) , 

(5.6) 

hich is a type of stable system and can be served as a target

ystem for the design of observer. More specially, we have 

 ( ̃  d t (·, t) , ˜ d (·, t) ‖ H 1 
�1 

(�) ×L 2 (�) → 0 as t → ∞ , (5.7)
here 

 

1 
�1 

(�) = { f ∈ H 

1 (�) | f (x ) = 0 , x ∈ �1 } . (5.8)

imilarly with (4.14) and (4.23) , we have 

∂ ˜ d (·, t) 
∂ν

∈ L 2 (0 , ∞; L 2 (�1 )) (5.9)

nd 

∂ ˜ d (x, t) 

∂ν
= f (w (x, t)) + d(x, t) − ∂ ˆ d (x, t) 

∂ν
. (5.10)

herefore, ∂ ̂  d (x,t) 
∂ν

can be considered as an estimate of the total 

isturbance f (w (·, t)) + d(t) . Moreover, it follows from (5.5) and

5.7) 

 (w (·, t) − [ v (·, t) + 

ˆ d (·, t)] , w t (·, t) 
− [ v t (·, t) + 

ˆ d t (·, t)]) ‖ H 1 
�1 

(�) ×L 2 (�) 

= ‖ ( ̃  d (·, t) , ˜ d t (·, t)) ‖ H 1 
�1 

(�) ×L 2 (�) → 0 as t → ∞ , (5.11) 

hich implies that (v (·, t) + 

ˆ d (·, t) , v t (·, t) + 

ˆ d t (·, t)) is an estimate

f the state ( w ( ·, t ), w t ( ·, t )). 

. Concluding remarks 

We have reviewed the development of active disturbance rejec-

ion control (ADRC) from its early beginning till this day. The key

tep toward ADRC is the extended state observer (ESO) which es-

imates not only the system state but also the total disturbance

hus allows the use of the strategy of estimation and cancelation.

e first explained how this strategy can be adopted in the ADRC

ia an ODE example. as in adaptive control and control based in-

ernal model principle. The ADRC is capable of dealing with many

ncertain systems with various disturbance, thus greatly expand

he application area of the strategy in control practice. Some re-

ent progresses toward the theoretical foundation of the ADRC for

onlinear lumped parameter systems are reviewed. Furthermore,

e considered the ADRC design for PDEs, especially the design of

he ESO. This observer design is a new topic for PDEs and turns

ut to be more complicated. We showcased the output feedback

esign process through a 1-d uncertain beam equation, and pro-

osed two types of new ESO given in (4.25) and (4.35) . Unlike in

he case for lumped parameter systems, the new designs do not

se high gain and do not suppose the boundedness of derivative

of any order) of the disturbance. In addition, different from most

f unknown input observer designs, the new designs do not use

on-smooth method. As a result, the actual nonlinear closed-loop

ystem can be treated via linear method after cancelation. Addi-

ional application to multi-dimensional PDEs is briefly illustrated. 

As mentioned at the end Section 2 , the ADRC is also applicable

o PDEs with corrupted measured output in Feng and Guo (2016b) .

ther applications can be found in Feng and Guo (2014) , Guo and

uo (2013) and Guo, Chen, and Feng (2017) . 
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