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Although boundary control of linear partial differential equations has become an important research
area, there is still no readily available simulation tool to help researchers analyze and design. In
this article, a simulation method for some typical boundary control problems, combining symbolic
math and a numerical method, is presented with application examples. In the intermediate steps of
the simulation, an important by-product, transfer function of the controlled system, can be obtained,
which makes the design of more advanced boundary controllers possible and much easier.
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1. Introduction

Boundary control of linear partial differential equations
(PDEs) has become an important research area in recent
years [1-6] due to the increasing demand on the high pre-
cision control of many mechanical systems, such as space-
craft with flexible attachments or robots with flexible links,
which are governed by PDEs rather than ordinary differ-
ential equations (ODEs). Contrary to the progress made in
theoretical analysis, simulation examples in publications
are very few, even though simulation plays such an impor-
tant role in verifying theoretical analysis and design, iden-
tifying potential problems, reducing investment, and se-
lecting the optimal solution. The reason for this, we would
like to suggest, is that the difficulty of simulating boundary
control problems is far beyond the capability of most com-
monly available mathematical tools such as Matlab, Maple,
and even FEMLAB (see www.femlab.com). For example,
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the Matlab PDE Toolbox is only able to solve second-
order PDEs with Dirichlet and/or generalized Neumann
boundary conditions [7], while the PDEs of most boundary
control problems are either of higher order or/and the
boundary conditions are much more complicated than what
the Matlab PDE Toolbox could handle.

In this article, we present an easy to implement, yet pow-
erful, boundary control simulation method, which com-
bines the analytical method, the numerical method, and
modern symbolic algebra. The simulation examples show
that this method applies to a wide range of boundary con-
trol problems.The method is also much easier to implement
than finite element method (FEM) or the finite difference
method (FDM) [8]. No extra software is needed, except
Matlab and the Matlab Symbolic Math Toolbox.

This article is organized as follows. Section 2 introduces
the principle and the implementation procedure via an ex-
ample. Section 3 shows some interesting applications of
this simulation method. Finally, section 4 concludes the
article.
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2. Problem Formulation, Principle, and
Implementation

In this section, the following example will be used to show
how a typical boundary control problem is formulated. The
same example will be used to demonstrate the basic prin-
ciple and implementation details of the simulation method
presented in this article.

Consider a string whose behavior is governed by the
wave equation. Denote the displacement of the string by
u(x, t) at x ∈ [0, 1] and t ≥ 0. The string is fixed at one
end and stabilized by a boundary controller at the other
end. The system is represented by

utt (x, t) − uxx(x, t) = 0, (1)

u(0, t) = 0, (2)

ux(1, t) = f (t), (3)

where the subscript (e.g., the t as in ut ) denotes a partial dif-
ferential with respect to the corresponding variable. f (t) is
the combination of boundary control force and the distur-
bance n(t) applied at the free end of the string. The control
objective is to stabilize u(x, t), given the initial conditions.

Suppose we have designed the following dynamic
boundary controller:

f̂ (s) =
(

d + ks

s2 + ω2

)
ût (1, s) + n̂(s), (4)

where f̂ (s) is the Laplace transform of the combination of
boundary control force and disturbance force, n̂(s) is the
Laplace transform of the disturbance force n(t), ût (1, s) is
the Laplace transform of the velocity of the free end, d and
k are the control gains, and ω is the frequency of the noise.

We want to show that the dynamic boundary controller
(k > 0) is better than the static boundary controller (k = 0)
to reject the effect of the noise n(t). This problem was
raised in Morgül [4], one of the very few studies with sim-
ulation examples. FDM was used in Morgül to simulate
the system.

It is well known that such linear PDEs can be solved
by means of the Laplace transform [9]. The following is a
summary of this method. We assume that the solution of a
PDE is a function u(x, t) of the two independent variables
x and t .

1. Transform u(x, t) with respect to t by means of the
Laplace transform, so we obtain an ODE for the
transformed variable U(x, s):

f (U(x, s),
dU(x, s)

dx
, . . . ,

dnU(x, s)

dxn
, x, s) = 0.

(5)

2. Solve the ODE (5) forU(x, s) as a function ofx, with
the transform variable s still appearing as a parame-
ter in the solution, and use the boundary conditions
of the original problem to determine the precise form
of U(x, s).

3. Take the inverse Laplace transform of U(x, s) with
respect to s to find the solution u(x, t).

Several problems make the above method hard to use in
practice to solve a PDE boundary control problem. First, if
(5) is of high order, the general solution is too complicated
to obtain. Second, due to the high order of the ODE and the
complicated boundary conditions, the arbitrary constants
in the general solution of the ODE are hard to determine.
Third, even if we can determine the undefined constants,
usually the inverse Laplace transform cannot be performed
by looking up a table of transform pairs.

We solve the above problems using the Matlab Sym-
bolic Math Toolbox [10] and the numerical inverse Laplace
transform [11, 12]. The detailed implementation proce-
dures are demonstrated in the following example.

The initial conditions are chosen as

u(x, 0) = −0.5 sin(0.5πx), (6)

ut(x, 0) = 0. (7)

The disturbance n(t) is chosen as

n(t) = cos(10t). (8)

We will simulate the following two cases to show that
the dynamic controller (k > 0) is better than the static
controller (k = 0) to reject the noise:

• Case 1: d = 1, k = 10, ω = 10.
• Case 2: d = 1, k = 0, ω = 10.

The simulation of case 1 will be taken as an example to
show the simulation steps. First, take the Laplace transform
of (1), (2), and (3) with respect to t , which gives

d2U(x, s)

dx2
− (s2U(x, s) − su(x, 0) − ut(x, 0)) = 0,

(9)

U(0, s) = 0, (10)

dU(1, s)

dx
=

(
d + ks

s2 + ω2

)
(sU(1, s) − u(1, 0))

+ s

s2 + ω2
, (11)

where U(x, s) is the Laplace transform of u(x, t).
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Substituting the initial conditions (6) and (7) into (9)
and (11), we have

d2U(x, s)

dx2
− s2U(x, s) + s(−0.5 sin(0.5πx)) = 0,

(12)

dU(1, s)

dx
=

(
d + ks

s2 + ω2

)
(sU(1, s) + 0.5) + s

s2 + ω2
.

(13)

Solving equations (12), (10), and (13) manually is
daunting. However, we can take advantage of the al-
ready highly developed computer symbolic math, the Mat-
lab Symbolic Math Toolbox, in our case. First, we will
use dsolve(), which symbolically solves the ODE(s)
and the boundary and/or initial condition(s). Although
dsolve() is able to determine the arbitrary constants in
the solution using the boundary and/or initial condition(s),
we find that its ability is rather weak. So, we supply only
(12) to dsolve() rather than supply (12), (10), and (13)
together and get the following solution with two arbitrary
constants, C1 and C2, in it. For some formulas too long to
be printed within a line, the original Matlab format will be
used.

U(x, s) = C2e−sx + C1esx − 2
s sin (1/2 π x)

4 s2 + π2
. (14)

Next, we differentiateU(x, s)with respect tox to get the
first-order derivative of U(x, s) using the Matlab Symbolic
Math Toolbox function diff(), which gives

dU(x, s)

dx
= −C2s

esx
+ C1sesx − s cos (1/2 π x) π

4 s2 + π2
.

(15)

Substituting U(x, s) (14) and its first-order derivative
(15) into the boundary conditions (10) and (11), we have
two boundary conditions, (16) and (17), with two undeter-
mined constants, C1 and C2.

C1+ C2 = 0, (16)

C1ses − C2s

es
+

(
1 + 10s

s2 + 100

)

(
s

(
e−sC2+ esC1− 2s

4 s2 + π2

)
+ 1

2

)

+ s

s2 + 100
= 0. (17)

Next, we solve the two algebraic equations (16) and (17)
symbolically using the Matlab Symbolic Math Toolbox
function solve(), which gives

C1 = −1/4 (18)

es
(
12 sπ2 + 100 π2 + 8 s3 + s2π2

)
s (4 s2 + π2)

(−5 s + s2 (es)
2 + 100 (es)

2 + 5 s (es)
2
) ,

C2 = 1/4 (19)

es
(
12 sπ2 + 100 π2 + 8 s3 + s2π2

)
s (4 s2 + π2)

(−5 s + s2 (es)
2 + 100 (es)

2 + 5 s (es)
2
) .

Now, we have actually obtained the explicit expression of
U(x, s), shown in (20).

U(x,s) = 1/4*exp(-s*x)*exp(s)*(12*s*piˆ2+100*
piˆ2+8*sˆ3+sˆ2*piˆ2)/s/(4*sˆ2+piˆ2)/(-5*s+sˆ2
*exp(s)ˆ2+100*exp(s)ˆ2+5*s*exp(s)ˆ2)-1/4*exp
(s*x)*exp(s)*(12*s*piˆ2+100*piˆ2+8*sˆ3+sˆ2*
piˆ2)/s/(4*sˆ2+piˆ2)/(-5*s+sˆ2*exp(s)ˆ2+100
*exp(s)ˆ2+5*s*exp(s)ˆ2)-2*s*sin(1/2*pi*x)/
(4*sˆ2+2778046668940015/281474976710656). (20)

Although obtaining the explicit expression of U(x, s) is
just an intermediate step of this simulation method, it has
been shown in another paper [13] that this is critical to
designing more advanced boundary controllers because if
we use a symbolic boundary controller F(s) instead of
equation (4) and divide U(x, s) by F(s) afterward, we
obtain U(x, s)/F (s), the transfer function of this control
system. The role that transfer function plays in control sys-
tem design cannot be overestimated. Using the complete
numerical methods, such as FEM or FDM, it is impossible
to obtain the transfer function. This is another advantage
of this simulation method.

To obtain u(x, t), we need to take the inverse Laplace
transform of U(x, s). We should not use the Matlab Sym-
bolic Math Toolbox function ilaplace(), which takes
the inverse Laplace transform symbolically, since for such
a complicated expression of U(x, s), the explicit expres-
sion of u(x, t) is usually unavailable. However, we can
make use of the numeric inverse Laplace transform. There
are many numerical techniques available for the inverse
Laplace transform [11]. Among the existing numeric in-
verse Laplace transform methods, we choose the method
introduced in Branc̆ik [12] for its accuracy and fastness.
The method uses fast Fourier transform (FFT) first and
then speeds up the convergence of infinite complex Fourier
series by the ε-algorithm. Interested readers can refer to
Branc̆ik [14, 15] for detailed theory and Branc̆ik [12] for
implementation and readily available Matlab code.

At this point, we have actually finished the time domain
simulation. In what follows, we present some simulation
results for both case 1 and case 2.

The plots of tip displacement in cases 1 and 2 are shown
in Figures 1 and 2, respectively. It shows clearly that the
dynamic controller is better than the static controller in
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Figure 1. Tip displacement for case 1
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Figure 2. Tip displacement for case 2

rejecting the noise. The two plots are identical to the sim-
ulation results reported in Morgül [4].

It is also very easy to show the displacement of the
whole string, which is shown in Figures 3 and 4 for cases
1 and 2, respectively.

3. Two Application Examples

In this section, we use two application example to show
that this simulation method is able to simulate difficult
problems.

3.1 Boundary Control of a Fractional Wave Equation
Via a fractional Order Boundary Controller

Fractional diffusion and wave equations are obtained from
the classical diffusion and wave equations by replacing the

Figure 3. Displacement of the whole string for case 1

Figure 4. Displacement of the whole string for case 2

first- and second-order time derivative term by a fractional
derivative of an order satisfying 0 < α ≤ 1 and 1 < α ≤ 2,
respectively. Since many of the universal phenomena can
be modeled accurately using the fractional diffusion and
wave equations [16], there has been a growing interest in
investigating the solutions and properties of these evolution
equations [17-20]. In this section, we simulate the stabi-
lization of a cable governed by the fractional wave equa-
tion using a fractional order boundary controller. Interested
readers can refer to Liang et al. [21] for more information.

Consider a cable made with special smart materials gov-
erned by the fractional wave equation, fixed at one end and
stabilized by a boundary controller at the other end. The

638 SIMULATION Volume 80, Number 11
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system can be represented by

∂αu

∂tα
= ∂2u

∂x2
, 1 < α ≤ 2, x ∈ [0, 1], t ≥ 0 (21)

u(0, t) = 0, (22)

ux(1, t) = f (t), (23)

u(x, 0) = u0(x), (24)

ut(x, 0) = v0(x), (25)

where u(x, t) is the displacement of the cable at x and
t , f (t) is the boundary control force at the free end of
the cable, and u0(x) and v0(x) are the initial conditions of
displacement and velocity, respectively.

We adopt the Caputo definition for the fractional deriva-
tive of order α of function f (t) [22, 23]:

dαf (t)

dtα
= 1

Γ(α − n)

t∫
0

f (n)(τ)dτ

(t − τ)α+1−n
,

(n − 1 < α ≤ n). (26)

Based on the definition of (26), the Laplace transform
of the fractional derivative is

L
{

dαf (t)

dtα

}
= sαF(s) −

n−1∑
k=0

f k(0+)sα−1−k. (27)

The initial conditions are assumed to be

u0(x) = − sin(0.5πx), v0(x) = 0. (28)

We will simulate the system response with a boundary
controller in the following format:

f (t) = −k
dµu(1, t)

dtµ
, 0 < µ ≤ 1 (29)

where k is the controller gain, and µ is the order of the
fractional derivative of the displacement at the free end of
the cable.

When µ = 1, the controller (29) is called an integer
order controller. When 0 < µ < 1, the controller (29) is
called a fractional order controller. Boundary control of
fractional wave equations via a fractional order boundary
controller is a new research area. Results of both analytical
and simulation studies are still very limited.

Following the same procedures described in section 2,
the explicit expression of U(x, s) is obtained with the sym-
bolic expression listed in the appendix.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8
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−0.4

−0.2

0

0.2

0.4

t

u(
1,
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µ=0.5
µ=0.7
µ=0.9

Figure 5. Displacement of the free end, α = 1.5

Figure 6. Displacement of the whole cable, µ = 0.7

For α = 1.5, k = 0.1, and µ = 0.5, 0.7, 0.9, the
displacement of the free end is shown in Figure 5. The
displacement of the whole cable for α = 1.5, k = 0.1, and
µ = 0.7 is shown in Figure 6.

We can see that all simulated controllers stabilize the
system.

3.2 Boundary Control of the Beam Equation with
Time Delay Using the Smith Predictor

Consider a flexible beam clamped at one end and free at
the other end. We denote the displacement of the beam by
u(x, t) at x ∈ [0, 1] and t ≥ 0. The beam is controlled by
a boundary control force at the free end. The equations are
given as follows:
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Figure 7. Displacement of the free end

utt + uxxxx = 0, (30)

u(0, t) = 0, (31)

ux(0, t) = 0, (32)

uxx(1, t) = 0, (33)

uxxx(1, t) = f (t), (34)

where f (t) is the boundary control force applied at the free
end of the beam.

The initial conditions are chosen as

u(x, 0) = x3 − 3x2, (35)

ut(x, 0) = 0, (36)

where (35) is a typical displacement profile when the beam
is subject to a static force f = −1 at the free end [24].

It is well known that the following controller stabilizes
the displacement of the beam [25]:

f (t) = kut(1, t), (37)

where k > 0 is the constant gain.
The simulation results of the controller (37) are shown

in Figures 7 and 8 for displacement of the free end and the
whole beam, respectively.

However, in Datko, Lagnese, and Polis [26] and Datko
[27], it was shown that boundary control of the wave equa-
tion and the beam equation becomes unstable when an

Figure 8. Displacement of the whole beam

C(s)
+

+

d

P0(s)e
−θs+

-

yr

Figure 9. A feedback control system with a time delay

arbitrary small time delay is introduced into the feedback
loop, that is,

f (t) = kut(1, t − θ), (38)

where θ is the time delay. The diagram of this feedback
control system is shown in Figure 9, where d denotes the
disturbance, P0(s) is the transfer function of the system
to be controlled, and C(s) is the transfer function of the
controller.

We will simulate this phenomenon to see how it hap-
pens. To understand the reason for the instability, it helps
to plot both the tip velocity and the tip displacement. It is
easy to calculate the velocity profile at any point. After the
expression of U(x, s) is obtained, sU(x, s) is the Laplace
transform of the velocity at any point x.

The simulation results are shown in Figures 10 and 11.
We can see that the controller works at the beginning, driv-
ing the tip end to the zero position. However, the frequency
of the vibration is increasing over time.When the frequency
is high enough, the time delay causes the control force to be
in phase rather than out of phase with the tip velocity, thus
making the system unstable. Although this phenomenon
was discovered more than 10 years ago, no simulation had

640 SIMULATION Volume 80, Number 11



HYBRID SYMBOLIC-NUMERICAL SIMULATION METHOD

0 5 10 15 20 25
−60

−40

−20

0

20

40

60

t

v

tip velocity

0 5 10 15 20 25
−3

−2

−1

0

1

2

t

u

tip displacement

Figure 10. Tip velocity and displacement, θ = 0.05

Figure 11. Displacement of the whole beam, θ = 0.05

ever been carried out before, and no solution has been pro-
posed so far. We will design a boundary controller based on
the transfer function obtained in the intermediate steps of
the simulation and simulate the response of this controller.
Interested readers can refer to Liang, Chen, and Guo [13]
for more details.

The Smith predictor is probably the most famous
method for the control of systems with time delays [28].
The classical configuration of a system containing a
Smith predictor is depicted in Figure 12, where P(s) =
P0(s)e

−θs . P̂0(s) and P̂ (s) are nominal models of P0(s)
and P(s), respectively. The block C(s), combined with
the block P̂0(s) − P̂ (s), is called the Smith predictor.

C(s) P (s)
+

+

d

P̂0(s) − P̂ (s)

+ +

- -

yr

Figure 12. The Smith predictor

One of the key factors in applying a Smith predictor is
the knowledge of P̂0(s), the transfer function of the plant to
be controlled. Although this is a difficult task for a fourth-
order PDE, using our simulation method, P0(s) can be ob-
tained very easily as follows:

P0(s) = (39)

(1 − i)
4
√−s2

(
1 + ie2 i

4
√

−s2 − ie−2
4
√

−s2 − e(−2+2 i)
4
√

−s2
)

s
(
e2 i

4
√

−s2 + e(−2+2 i)
4
√

−s2 +1+e−2
4
√

−s2 + 4 e(−1+i)
4
√

−s2
) .

With (39) embedded in the transfer function of the con-
troller, the transfer function of the whole system becomes
prohibitively complicated for manual derivation and can
only be obtained with the help of computers. The final
U(x, s) is a 30, 680-character long formula expressed in
Matlab notation. The simulation results are shown in Fig-
ures 13 and 14. We can see that the system becomes stable
now, although the beam vibrates with nondecreasing mag-
nitude, which can be removed almost completely by using
modified Smith predictors [13].

4. Concluding Remarks

A hybrid symbolic and numerical method based on the
Matlab Symbolic Math Toolbox has been developed in this
article to simulate typical boundary control problems. For
illustration and validation, three different boundary control
problems are simulated using the proposed method. The
proposed simulation method can be applied to a wide range
of boundary control problems. Furthermore, the transfer
function can be calculated in the intermediate steps of the
simulation, which can be used to design some more ad-
vanced boundary controllers. We hope that this method is
helpful for researchers to study the boundary control prob-
lems with easy simulation explorations in the future.

5. Appendix

Since the expression of U(x, s) in section 3.1 is too long
to be printed within a line, it is copied here in its original
Matlab format. The purpose of this appendix is to make
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Figure 13. Tip velocity and displacement with the Smith
predictor added

Figure 14. Displacement of the whole beam with the Smith
predictor added

the results reported in this article more easily reproducible
by others. The U(x, s) in section 3.2 is a 30, 680-character
long formula, which cannot even be printed within a page,
so it is omitted.

U(x,s) = -(1125899906842624*sˆ(3/2*alfa)*sin
(1/2*pi*x)*exp(2*sˆ(1/2*alfa))+1125899906842624
*sˆ(3/2*alfa)*sin(1/2*pi*x)+1 125899906842624*
sˆ(mu+alfa)*sin(1/2*pi*x)*k*exp(2*sˆ(1/2*alf a))
-1125899906842624*sˆ(mu+alfa)*sin(1/2*pi*x)*k+
27780466689 40015*exp(sˆ(1/2*alfa)*x+sˆ(1/2*

alfa))*k*sˆmu-27780466689400 15*exp(-sˆ(1/2*
alfa)*x+sˆ(1/2*alfa))*k*sˆmu)/s/(-k*sˆmu+k*sˆmu
*exp(2*sˆ(1/2*alfa))+sˆ(1/2*alfa)+sˆ(1/2*alfa)*
exp(2*sˆ(1/2*alfa)))/(1125899906842624*sˆalfa+
2778046668940015).
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