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Abstract—This paper investigates the boundary stabilization
of a flexible marine riser system that takes rotational inertia
into account. This system is described using a nonlinear partial
differential equation under the nonlinear controls. Specifically,
we focus on applying nonlinear boundary feedback control forces
and torques at the top end of the riser. Utilizing measurements
of boundary velocity and angular velocity, we devise nonlinear
feedback mechanisms aimed at mitigating vibrations within
the flexible marine riser system. Our approach encompasses a
broad range of nonlinear feedback scenarios. To establish the
well-posedness of the resulting closed-loop system, we employ
the nonlinear semigroup method. Furthermore, we leverage the
integral multiplier technique to demonstrate that the stability
characteristics of the closed-loop system are dictated by a dissi-
pative ordinary differential equation. As the nonlinear feedback
functions exhibit distinct growth patterns in proximity to the
origin, we identify three primary types of decay behaviors. These
are subsequently estimated through solutions of the ordinary dif-
ferential equation and validated through numerical simulations.

Index Terms—Nonlinear flexible marine riser, nonlinear
boundary control, well-posedness, stability.

I. INTRODUCTION

A. Background

Vibration control for flexible systems has garnered signifi-
cant attention over the decades owing to its diverse engineering
applications. Notably, flexible manipulators for grasping [34],
marine mooring lines for maintaining stationary positions [19],
and marine risers for oil transportation [15] are just a few
examples. Depending on the characteristics of the flexible
structures, these systems can primarily be classified as string
systems [41] or beam systems [8]. Marine riser systems,
in particular, are often modeled as beams [18] due to the
inherent flexibility of the riser material. In the harsh marine
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environment, flexible marine risers undergo vibration and tor-
sional deformation, compromising system efficiency and even
reducing material lifespan. To mitigate system vibration and
enhance overall performance, various control methods have
been devised from different viewpoints. These methods en-
compass, among others, reduced-order modeling [39], robust
adaptive control [20], and linear quadratic regulator (LQR)
control [40]. Among these, boundary control [14] stands out
due to its minimal sensor and actuator requirements and
practical ease of implementation, making it a widely adopted
approach for stabilizing flexible marine riser systems.

Indeed, the boundary stabilization of flexible marine riser
systems, particularly those based on the linear Euler-Bernoulli
beam model, has been extensively researched. For instance, in
some studies, tension is assumed to be constant [21]. However,
in real-world scenarios, most flexible marine riser systems
experience tension variations that depend on both time and s-
pace. These variations are primarily influenced by factors such
as shear deformation, velocity, and large amplitudes, which
often result in nonlinear models [14], [18], [22], [42]. Notably,
while modeling flexible marine risers, the impact of rotational
inertia is frequently overlooked in the aforementioned studies.
Nevertheless, considering the characteristics and deformations
of the flexible riser during the vibration process, it becomes
imperative to account for the influence of rotational inertia
[33], [36]. Currently, there are limited published studies fo-
cusing on boundary stabilization for nonlinear flexible marine
riser systems incorporating rotational inertia.

Motivated by this, in this paper, we develop a model for a
nonlinear flexible marine riser system with rotational inertia
based on Hamilton’s principle. This model is described by

ρΛΥtt(x, t)− ρIΥxxtt(x, t) + EIΥxxxx(x, t)

=
[
P(Υx(x, t))Υx(x, t)

]
x
, (1)

for all x ∈ (0, L) and t > 0, where Υ(x, t) represents the
position of the flexible marine riser in the XOY coordi-
nate frame at the position x and time t (see, e.g., Fig. 1),
(·)xt = ∂(·)

∂x∂t , ρIΥxxtt(x, t) represents the rotational inertia
[24]. Additionally, the nonlinear function P(·) is given by

P(Υx(x, t)) = EΛ +
P − EΛ√

1 + Υ2
x(x, t)

, (2)

which represents the nonlinear tension of the flexible marine
riser from the nonlinear geometric relation [27], [28], and
ρI, ρΛ, EI, EΛ and P represent respectively the vibration
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mass, mass moment of inertia of each unit length of the riser,
bending stiffness, tensile stiffness, and initial tension. From
a physics standpoint, the equation (1) describes the dynamic
behavior of a class of nonlinear flexible beams undergoing
large-amplitude motion. This general equation encompasses
several specialized beam equations as particular cases. Specif-
ically, when the tension changes caused by vibrations during
deformation are ignored, that is, when P(Υx(·, ·)) = 0, the
equation (1) simplifies to the Rayleigh beam equation, as
referenced in [37]. When the influence of rotational inertia
is not taken into account, that is, when ρI = 0, the equation
(1) can be simplified into a nonlinear flexible beam equation,
as noted in [8]. In the case of beam systems with finite but
small amplitudes, this implies that 1√

1+Υ2
x(·,·)

≈ 1− 1
2Υ2

x(·, ·)
as Υ2

x(·, ·)� 1, the nonlinear tension given by (2) can be
approximated as

P(Υx(x, t)) = P +
1

2
EΛΥ2

x(x, t). (3)

In this case, an approximate form of equation (1) can be
rewritten as follows:

ρΛΥtt(x, t)− ρIΥxxtt(x, t) + EIΥxxxx(x, t)

−PΥxx(x, t)− 3

2
EΛΥ2

x(x, t)Υxx(x, t) = 0, (4)

which has been studied in [33], [18], [14] and [15] in the
context where rotational inertia was neglected, highlights the
significance of the nonlinear tension term. However, to the
best of our knowledge, there are currently no published
results specifically addressing boundary stabilization for this
nonlinear flexible marine riser system described by equation
(1). The objective of this paper is to mitigate vibrations in the
flexible marine riser system described by equation (1) through
the application of two boundary control inputs:

ρIΥxtt(L, t) + (EΛ +
P − EΛ√

1 + Υ2
x(L, t)

)Υx(L, t)

− EIΥxxx(L, t) = U1(t),

EIΥxx(L, t) = U2(t),

Υ(0, t) = Υx(0, t) = 0,

Υ(x, 0) = Υ0(x),Υt(x, 0) = Υ1(x),

(5)

for all x ∈ (0, L) and t ≥ 0, where Υ0 represents the initial
displacement of the flexible marine riser, Υ1 denotes the initial
velocity, and U1(t) and U2(t) are the boundary control force
and torque, respectively, applied at the top boundary of the
marine riser, as depicted in Fig. 1. It’s worth mentioning that
linear boundary controls have often been used in the literature
to ensure stability for the various specialized types of beams
mentioned earlier. Nevertheless, when it comes to handling
saturation phenomena, dealing with large deformations, or
employing intelligent materials in practical engineering sce-
narios, nonlinear boundary control gains significance. This
is because the controller must accommodate the nonlinear
behavior exhibited by sensors and actuators.

This motivates us to consider the following nonlinear

Fig. 1. Schematic representation of a flexible marine riser under two
boundary controls.

boundary feedback controls:{
U1(t) = −F1(Υt(L, t)),

U2(t) = −F2(Υxt(L, t)),
(6)

where Υt(L, t) and Υxt(L, t) represent respectively the mea-
sured velocity and angular velocity at the top end of the
marine riser. The functions Fi(·), i = 1, 2 are monotonic non-
decreasing and continuous, satisfying

Fi(0) = 0 and Fi(τ)τ > 0, ∀τ 6= 0, (7a)

a ≤ Fi(τ)

τ
≤ b, ∀|τ | ≥ µ, (7b)

for given constants b ≥ a > 0 and µ > 0. In general terms, the
nonlinear boundary controls described by (6) serve a similar
function to that of linear negative feedback of velocity and
angular velocity, based on the passivity principle, to generate
a dissipation effect. This aligns with the observation that
negative velocity feedback aids in increasing damping in most
infinite-dimensional inertial systems, such as large flexible
structures and fluid-conveying pipeline systems.

B. System modeling

The nonlinear flexible marine riser system is depicted in Fig.
1, where the top end of the riser is attached to the vessel while
the bottom end remains fixed. P denotes the initial tension at
the top of the riser, and the control inputs U1(t) and U2(t) are
exerted at the top boundary of the riser. The kinetic energy K
of this flexible marine riser system can be expressed as

K(t) =
ρI

2

∫ L

0

Υ2
xt(x, t)dx+

ρΛ

2

∫ L

0

Υ2
t (x, t)dx, (8)

where ρI and ρΛ are defined in (1) and L represents the length
of the marine riser. The potential energy U can be expressed
by

U(t) = P

∫ L

0

E (x, t)dx+
EΛ

2

∫ L

0

[E (x, t)]2dx

+
EI

2

∫ L

0

Υ2
xx(x, t)dx, (9)
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where E (x, t) = (1 + Υ2
x(x, t))

1
2 − 1 signifies the geometric

strain relationship elaborated in [27], [28]; while EΛ and EI
are interpreted in (1). In (9), the first term arises from tension,
the second term represents strain potential energy, and the third
term reflects the bending moment. The work exerted by the
translational boundary actuator is given by

Wc1 = U1(t)Υ(L, t).

The work exerted by the torque is given by

Wc2 = U2(t)[Υx(L, t)].

The total work applied on the system is given by

Wc=Wc1+Wc2 =U1(t)Υ(L, t)+U2(t)Υx(L, t). (10)

Hamilton’s principle [36] in variational form states that∫ t1

t0

(δK − δU + δWc)dt = 0, (11)

where δ denotes the variational operator, and can then be ap-
plied to derive the system model (1) and boundary conditions
(5) of the flexible marine riser. The details is put as Appendix.

C. The work of this paper

As previously mentioned, the primary focus of this paper is
to establish boundary stabilization and decay rate estimation
for the nonlinear flexible marine riser systems described by
(1) and (5), under the nonlinear controls (6).

To achieve this objective, we encounter two significant
challenges. Firstly, we need to address the well-posedness of
the closed-loop system (1) subject to the nonlinear bound-
ary controls (6). This closed-loop system exhibits substantial
nonlinearity, arising both from the inherent nonlinearity of
the system and from the nonlinear controls themselves. As
a result, commonly used approaches such as the semigroup of
contractions [43], the Faedo-Galerkin method [16], the linear
C0-semigroup with Lipschitz perturbation method [17], and
the fixed point theorem [9] are not applicable in this context.

Secondly, the stability analysis of the nonlinear flexible
system considered in this paper poses significant difficulties.
Many commonly used methods for analyzing the stability of
nonlinear flexible systems, including the Lyapunov method
[33], the frequency domain method [29], the energy pertur-
bation method [8], the integral multiplier method [24], and
the approximately observable method [38], are not suitable
due to the combined effects of rotational inertia, system
nonlinearity, and nonlinear boundary controls. These factors
introduce major technical complexities that hinder the stability
analysis of the system.

Another challenge lies in determining the decay rate of the
solution and the energy. Since Lasiecka’s work [30] introduced
an estimation method for the decay rate of wave equations,
numerous related studies have been conducted. These include
investigations into wave equations [6], [32], nonlinear dissi-
pative hyperbolic systems [2], infinite-dimensional vibrating
damped systems [3], beam equations [1], [5], and the von
Karman system with internal damping [23].

A notable contribution was made in [32], where a method
for constructing explicit energy decay rates was presented. It’s
worth mentioning that optimal decay rates, partially considered
in [4], were fully addressed in [2] by selecting an optimal
weight function. However, applying these methods to multiple
nonlinear boundary control problems involving nonlinear par-
tial differential equations (PDEs) is challenging. This difficulty
arises from the complexity of finding appropriate multipliers.

D. Contributions of the paper

This paper makes several contributions. Firstly, we derive
a nonlinear system model for the flexible marine riser that
incorporates the rotational inertia term. This model provides
a more accurate representation of larger amplitude vibrations
compared to the models presented in [14], [18], [33], and [42].
To address the complexities arising from rotational inertia,
nonlinear tension, and nonlinear controls, we employ nonlinear
semigroup theory to establish the well-posedness of the closed-
loop system.

Secondly, the paper introduces two nonlinear boundary
feedback controls that satisfy conditions (7a) and (7b), en-
compassing a broad range of nonlinear feedback laws. Since
Fi(·), i = 1, 2 are not specifically defined near the origin and
are not required to be strictly monotonically increasing over
R, they cover conditions like the slope-sector condition [10],
[26], [35] and the slope-restricted condition [12], [25], among
others.

Thirdly, the inclusion of rotational inertia poses challenges
in finding an appropriate energy perturbation or integral multi-
plier for stability analysis of the closed-loop system. To over-
come this, we introduce a novel method where the existence
interval of the integral multiplier is determined through an
adjustment term. Drawing inspiration from [30], the solutions
and energy function of the closed-loop system are governed
by the solution of a dissipative ordinary differential equation
(ODE):

d

dt
S(t) + Ψ(S(t)) = 0, t > 0, (12)

where the function Ψ(·) relies on a newly introduced aver-
age concave function that is closely related to the nonlinear
feedbacks Fi. In brief, the asymptotic stability of the closed-
loop system can be inferred. Finally, if the behavior of Fi near
zero is known, the decay rate of the closed-loop system can be
approximated by solving ODE (12). When Fi are monotonic
non-decreasing functions (locally saturated) in the vicinity of
zero, a novel approach for estimating the decay rate has been
devised. By further categorizing the nonlinear feedbacks, we
can obtain three primary types of decay patterns, which are
supported by numerical simulations of three distinct sets of
examples.

E. Organizations

In the subsequent section, Section II, the well-posedness of
the closed-loop system is established through the application
of nonlinear semigroup theory. The asymptotic stability of this
system is then proven in Section III by solving a dissipative
ODE, and further estimating the decay behaviors of both the
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energy and the solution within the closed-loop system. To
illustrate these theoretical findings, Section IV presents a series
of numerical simulations. Finally, Section V concludes the
paper, summarizing the key results. For those interested in
the model’s derivation, it is detailed in the Appendix.

F. Notations

Throughout this paper, let 〈·, ·〉 denote the inner product
in L2(0, L) with the inner product induced norm ‖ · ‖.
Furthermore, we introduce two closed subspaces

V := {Υ ∈ H1(0, L)|Υ(0) = 0},
W := {Υ ∈ H2(0, L)|Υ(0) = Υx(0) = 0}.

It is straightforward to observe that W ⊂ V ⊂ L2(0, L) ⊂
V ′ ⊂ W ′, where W ′ and V ′ represent the dual spaces of W
and V , respectively. The norms on V and W are defined as
follows:

‖Υ‖2V :=

∫ L

0

[ρΛΥ2(x, t) + ρIΥ2
x(x, t)]dx, ∀Υ ∈ V, (13a)

‖Υ‖2W := EI
∫ L

0

Υ2
xx(x, t)dx, ∀Υ ∈W. (13b)

Define the state space as H3
e = H3(0, L)∩W and H = W×V

equipped with the norm ‖(f, g)>‖2H = ‖f‖2W + ‖g‖2V for any
(f, g)> ∈ H .

II. WELL-POSEDNESS OF CLOSED-LOOP SYSTEM

To apply the nonlinear semigroup theory, we firstly formu-
late the system in an abstract form. The closed-loop of our
system now reads as follows:

ρΛΥtt(x, t)− ρIΥxxtt(x, t) + EIΥxxxx(x, t)

=
[
(EΛ +

P − EΛ√
1 + Υ2

x(x, t)
)Υx(x, t)

]
x
, (14a)

ρIΥxtt(L, t) + (EΛ +
P − EΛ√

1 + Υ2
x(L, t)

)Υx(L, t)

− EIΥxxx(L, t) = −F1(Υt(L, t)), (14b)
EIΥxx(L, t) = −F2(Υxt(L, t)), (14c)
Υ(0, t) = Υx(0, t) = 0, (14d)
Υ(x, 0) = Υ0(x),Υt(x, 0) = Υ1(x), (14e)

for all x ∈ (0, L) and any t ≥ 0. From a physical perspective,
the initial tension is typically much smaller than the tensile
stiffness, that is to say, P ≤ EΛ, as discussed in [28], [41].
The energy function of the closed-loop system (14a)-(14e) is
defined by

E(t) : =
1

2

∫ L

0

[EIΥ2
xx(x, t) + ρΛΥ2

t (x, t) + ρIΥ2
xt(x, t)]dx

+
1

2

∫ L

0

∫ Υ2
x(x,t)

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx

(15)

Remark II.1. The nonlinear feedback functions are presumed
to be monotonic non-decreasing and continuous, an assump-
tion that has been utilized in [11], [32]. Furthermore, these

functions are, in reality, also monotonically increasing and
continuous, a property that has been exploited in various
works such as [2], [5], [30], [31].

For notational simplicity and clarity, we shall omit the ob-
vious variables x and t hereafter. Now, we aim to establish the
well-posedness of the closed-loop system (14a)-(14e) through
the application of the nonlinear semigroup theory, specifically
referencing [13, Theorem 7.2].

Multiplying both sides of equation (14a) by u ∈ W and
integrating by parts from 0 to L, we derive the variational
structure corresponding to the closed-loop system (14a)-(14e).
This variational structure is given by:

ρΛ

∫ L

0

Υttudx+ ρI

∫ L

0

Υxttuxdx+ EI
∫ L

0

Υxxuxxdx

+F1(Υt(L, t))u(L) + F2(Υxt(L, t))ux(L)

+

∫ L

0

(EΛ +
P − EΛ√

1 + Υ2
x

)Υxuxdx = 0, ∀u ∈W. (16)

Based on equation (16), we now introduce two linear operators
as follows: A : V → V ′ and B : W →W ′ by

〈Af, g〉V ′,V :=〈f, g〉V =

∫ L

0

[ρΛfg+ρIfxgx]dx,∀f, g∈V,

〈Bf, g〉W ′,W := 〈f, g〉W = EI
∫ L

0

fxxgxxdx,∀f, g ∈W,

and the nonlinear operators D : V → V ′ and D1, T : W →
W ′ given by

〈Df, g〉V ′,V := F1(f(L))g(L), ∀f, g ∈ V,
〈D1f, g〉W ′,W := F2(fx(L))gx(L), ∀f, g ∈W,

〈T f, g〉W ′,W :=

∫ L

0

fx(EΛ +
P − EΛ√

1 + f2
x

)gxdx,∀f, g ∈W.

Then, the equation (16) can be equivalently expressed as

〈AΥtt+BΥ+T Υ+DΥt+D1Υt, u〉W ′,W =0,∀u ∈W.

As a result,

AΥtt + BΥ + T Υ +DΥt +D1Υt = 0 in W ′, (17)

which corresponds to the weak solution of the closed-loop
system (14a)-(14e). It is straightforward to verify that A :
V → V ′ is an isomorphic mapping. Consequently, (17) can
be reformulated as(

Υ
Υt

)
t

+

(
0 −I

A−1B A−1D +A−1D1

)(
Υ
Υt

)
=

(
0 0

−A−1T 0

)(
Υ
Υt

)
.

(18)

Equation (18) can be further simplified to

Mt + AM = GM, (19)

where M := (Υ,Υt)
>, the nonlinear operator A : D(A) ⊂

H → H defined by

AM = A

(
f
g

)
=

(
−g

A−1(Bf +Dg +D1g)

)
, (20)
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for any (f, g)> ∈ D(A):

D(A) = {(f, g)> ∈W ×W |Bf +Dg +D1g ∈ V ′}, (21)

and the operator G : H → H is defined by

GM = G

(
f
g

)
=

(
0

−A−1T f

)
, (22)

for any (f, g)> ∈ H .
Proposition II.1 below provides an exact description of
D(A).

Proposition II.1. The set D(A) is composed of pairs
(f, g)> ∈ H3

e × W satisfying the boundary condition
EIfxx(L) = −F2(gx(L)).

Proof: From definition (20), it is evident that (f, g)> ∈
D(A) if and only if f, g ∈W such that

EI〈fxx, uxx〉+F1(g(L))u(L)+F2(gx(L))ux(L)= 〈̌a, u〉V ′,V (23)

for any u ∈W and some ǎ ∈ V ′, which can be simplified as

EI〈fxx, uxx〉+ F2(gx(L))ux(L) = 〈Π, u〉V ′,V , (24)

for any u ∈ W , where Π = −Dg + ǎ. If f ∈ H3(0, L).
Letting u ∈ H2

0 := {u ∈W : ux(L) = 0} in (24) gives

EI〈fxxx, ux〉 = −〈Π, u〉V ′,V . (25)

Carrying out integration by parts in (24) yields

EI〈fxxx, ux〉−(F2(gx(L))+EIfxx(L))ux(L)=−〈Π, u〉V ′,V ,

for any u ∈W , which, together with (25), yields EIfxx(L) =
−F2(gx(L)).

Next, it suffices to prove that f ∈ H3(0, L). Set f = λ1x
2+

λ2x
3 with λ1 = LF1(g(L))+F2(gx(L))

−2EI , and λ2 = F1(g(L))
6EI . It is

then straightforward to verify that

−EI〈fxx, uxx〉 = F1(g(L))u(L) + F2(gx(L))ux(L).

Therefore, the equation (23) is equivalent to B(f − f) = ǎ.
We now proceed to demonstrate that f̂ = f − f ∈ H3(0, L)
using interpolation. By the elliptic operator theory, the problem
Bf̂ = ǎ possesses a unique solution f̂ ∈ W if ǎ ∈ W ′.
This establishes a linear and continuous mapping ǎ → f̂ :
W ′ →W . Furthermore, if ǎ ∈ L2(0, L), the problem Bf̂ = ǎ
admits a unique solution f̂ ∈ H4(0, L). This defines a linear
and continuous mapping ǎ → f̂ : L2(0, L) → H4(0, L).
Employing interpolation, we deduce that if ǎ ∈ V ′, then
f̂ ∈ H3(0, L). Since f = f̂ + f , this implies that f ∈ H3

e .

A. Proof of well-posedness

Lemmas II.1 and II.2 play a crucial role in establishing
the well-posedness of the closed-loop system through the
application of the nonlinear semigroup theory.

Lemma II.1. The operator A is an maximal monotone oper-
ator in H .

Proof: For any M1 = (f, g)>,M2 = (f̃ , g̃)> ∈ D(A),
from (20), we have

〈AM1 − AM2,M1 −M2〉H
= 〈B(f − f̃), g − g̃〉W ′,W + 〈Dg −Dg̃, g − g̃〉V ′,V

+ 〈D1g −D1g̃, g − g̃〉W ′,W − 〈f − f̃ , g − g̃〉W
= [F1(g(L))− F1(g̃(L))](g(L)− g̃(L))

+ [F2(gx(L))− F2(g̃x(L))](gx(L)− g̃x(L)). (26)

Since Fi(·), i = 1, 2, are monotonic non-decreasing and
continuous functions over R, it follows that

[F2(gx(L))− F2(g̃x(L))](gx(L)− g̃x(L))

+[F1(g(L))− F1(g̃(L))](g(L)− g̃(L)) ≥ 0, (27)

which, together with (26), leads to

〈AM1 − AM2,M1 −M2〉H ≥ 0. (28)

Therefore, the operator A is monotone.
In what follows, we aim to prove that the operator I + A

is surjective, where I denotes the identity mapping on H .
This proof is equivalent to demonstrating that the mapping
I+A−1(B+D+D1) : W →W ′ is onto, with I representing
the identity mapping on W . Indeed, if I+A−1(B+D+D1) is
onto, then for any given (x1, x2)> ∈ H , there exists a g ∈W
such that (A+B+D+D1)g = Ax2−Bx1. Clearly, by letting
f = x1 + g, we obtain (f, g)> ∈ W ×W . Furthermore, we
have

A−1(Bf+Dg+D1g)=A−1(Bg+Bx1+Dg+D1g)=x2−g ∈ V,

which implies that (f, g)> ∈ D(A). In order to

(I + A)

(
f
g

)
=

(
x1

x2

)
,

it is necessary to demonstrate the surjectivity of A+B+D+
D1. To accomplish this, let us fix x2 ∈ V ′, and introduce the
variational function F(g) : W → R defined as

F(g) :=
1

2
‖g‖2V +

1

2
‖g‖2W+G(g)+Z(gx)−〈x2, g〉W ′,W , (29)

where g ∈W and the maps G : V → R and Z : W → R are
given by

G(g) =

∫ g(L)

0

F1(%)d%, Z(gx) =

∫ gx(L)

0

F2(ϑ)dϑ. (30)

Since Fi(·), i = 1, 2 are continuous and monotonic non-
decreasing functions, it follows that the function F is well-
defined and continuously differentiable, and

〈F ′(g), v〉W ′,W =〈(A+B+D+D1)g−x2, v〉W ′,W ,∀g, v ∈W.

By the condition (7a) and the definition (30), we can determine
that G(g) ≥ 0 and Z(gx) ≥ 0. Consequently, it follows from
(29) that

F(g) ≥ C
[1
2
‖g‖W − ‖x2‖W ′

]
‖g‖W , (31)

with some positive constant C. This implies that as ‖g‖W →
∞, F(g)→ +∞, i.e., F is coercive. Consequently, in light of
Theorem 1.1 from [44, p.4], it is evident that the infimum of
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F is attained at a specific point g ∈ W . Therefore, we have
F ′(g) = 0, which is equivalent to (A+ B +D +D1)g = x2

in W ′. This establishes the maximal monotonicity of A.

Lemma II.2. G is locally Lipschitz on H .

Proof: Set

h(τ) := EΛτ +
(P − EΛ)τ√

1 + τ2
, P ≤ EΛ,∀τ ∈ R.

It is straightforward to observe that

P ≤ dh(τ)

dτ
< EΛ, ∀τ ∈ R.

Furthermore, we can ascertain that h(·) is a monotonic in-
creasing function on R which fulfills the following condition:

∣∣h(τ1)− h(τ2)
∣∣ < EΛ|τ1 − τ2|, ∀τ1, τ2 ∈ R. (32)

Therefore, for any M1 = (f, g)>,M2 = (f̃ , g̃)> ∈ D(A), we
can infer from equations (22) and (32) that∣∣〈GM1 −GM2,M1 −M2〉H

∣∣
=

∣∣∣∣〈( 0

−A−1T f +A−1T f̃

)
,

(
f − f̃
g − g̃

)〉
H

∣∣∣∣
=

∣∣∣∣∫ L

0

[
fx(EΛ+

P−EΛ√
1+f2

x

)−f̃x(EΛ+
P−EΛ√

1+f̃2
x

)
]
(gx−g̃x)dx

∣∣∣∣
=

∣∣∣∣ ∫ L

0

[h(fx)− h(f̃x)](gx − g̃x)dx

∣∣∣∣
≤ EΛ

2

∫ L

0

[(fx − f̃x)2 + (gx − g̃x)2]dx

≤ EΛL

2

∫ L

0

(fxx−f̃xx)2dx+
EΛ

2

∫ L

0

[(gx−g̃x)2+(g−g̃)2]dx

≤ κ‖M1 −M2‖2H , (33)

where κ = max{ΛL
2I ,

EΛ
2ρI } and Poincaré inequality (‖yx‖2 ≤

L‖yxx‖2) was used.
Lemma II.3 following implies that the energy E(t) is

monotonic non-increasing.

Lemma II.3. Assume that Υ(·, ·) is a strong solution of the
closed-loop system (14a)-(14e). Then,

d

dt
E(t)=−F1(Υt(L, t))Υt(L, t)−F2(Υxt(L, t))Υxt(L, t), (34)

which means, based on the condition (7a), that E(t) is
monotonic non-increasing. In other words, E(t) ≤ E(0) for
all t ≥ 0.

Proof: From the definition (15), one obtains

dE(t)

dt
= ρΛ

∫ L

0

ΥtΥttdx+ ρI

∫ L

0

ΥxtΥxttdx (35)

+ EI
∫ L

0

ΥxxΥxxtdx+

∫ L

0

(EΛ+
P − EΛ√

1 + Υ2
x

)ΥxΥxtdx,

which, together with the integration by parts, gives

dE(t)

dt
=ρΛ

∫ L

0

ΥttΥtdx−EI
∫ L

0

ΥxxxΥxtdx−ρI
∫ L

0

ΥxxttΥtdx

+EIΥxx(L, t)Υxt(L, t)−
∫ L

0

[
(EΛ+

P−EΛ√
1+Υ2

x

)Υx

]
x
Υtdx

+
[
(EΛ+

P−EΛ√
1+Υ2

x(L, t)
)Υx(L, t)+ρIΥxtt(L, t)

]
Υt(L, t)

= −EIΥxxx(L, t)Υt(L, t) + ρIΥxtt(L, t)Υt(L, t)

+

∫ L

0

(ρΛΥtt − ρIΥxxtt + EIΥxxxx)Υtdt

+(EΛ +
P − EΛ√

1+Υ2
x(L, t)

)Υx(L, t)Υt(L, t)

−
∫ L

0

[
(EΛ +

P − EΛ√
1 + Υ2

x

)Υx

]
x
Υtdx

+EIΥxx(L, t)Υxt(L, t). (36)

The desired result is then obtained by applying (14a), (14b),
and (14c).

Using the nonlinear semigroup theory, one can define strong
solutions to the system (14a)-(14e) where the initial data
belongs to the domain of the generator. Additionally, weak
solutions can be regarded as limits of strong solutions for
almost everywhere in t, as referenced in [13].

Theorem II.1. Suppose the condition (7a) and the initial
data M0 := (Υ0,Υ1)> ∈ D(A). Then there exists a unique
strong solution M = (Υ,Υt)

> ∈ W1,∞(0,∞;D(A)) for the
evolution equation (19), i.e., the closed-loop system (14a)-
(14e) admits a unique strong solution Υ(·, ·) such that

Υ ∈ W2,∞(0,∞;W ) ∩W1,∞(0,∞;H3
e ). (37)

If the initial data M0 := (Υ0,Υ1)> ∈ H , then there exists
a unique weak solution M = (Υ,Υt)

> ∈ C(0,∞;H) for
the evolution equation (19), i.e., the closed-loop system (14a)-
(14e) admits a unique weak solution Υ(·, ·) such that

Υ ∈ C(0,∞;W ) ∩ C1(0,∞;V ), (38)

which depends continuously on the initial data (Υ0,Υ1)> in
H .

Proof: Thanks to Lemmas II.1 and II.2, it has been
established that A is maximal monotone and G is Lipschitz on
H . By invoking [13, Theorem 7.2], we can deduce that there
exists tm ≤ ∞ such that for all M0 = (Υ0,Υ1)> ∈ D(A),
there exists a unique strong solution M = (Υ,Υt)

> ∈
W1,∞(0, tm;D(A)) to the evolution equation (19). This result,
combined with Proposition II.1, leads to the conclusion that

(Υ,Υt)
> ∈ W1,∞(0,∞;H3

e ×W ).

Furthermore, if tm < ∞, then lim supt→t−m ‖M‖H = ∞.
This assertion follows from the fact that the energy function
E(t) is monotonic non-increasing, as stated in Lemma II.3.
Specifically, we have E(t) ≤ E(0) for all t ∈ (0, tm).
Combining this with (13a) and (13b), we obtain

‖M‖2H = ‖Υ‖2W + ‖Υt‖2V ≤ 2E(t) ≤ 2E(0). (39)
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This leads to a contradiction, specifically, the assumption that
tm < ∞ cannot hold. Therefore, we conclude that tm = ∞,
which implies that the strong solution is globally defined.

Let M1 = (f, g)>,M2 = (f̃ , g̃)> ∈ D(A) be two
strong solutions of (19) with initial value M1(0) and M2(0),
respectively. From (19), we have(

dM1

dt
− dM2

dt

)
+ A(M1 −M2) = G(M1)−G(M2). (40)

Taking the inner product of both sides of (40) with M1−M2

and integrating from 0 to t, we derive the following expression:

‖M1 − M2‖2H − ‖M1(0)−M2(0)‖2H

+

∫ t

0

〈A(M1 −M2),M1 −M2〉Hds

=

∫ t

0

〈G(M1)−G(M2),M1 −M2〉Hds. (41)

It follows from Lemma II.1 and (41) that

‖M1 −M2‖2H ≤
∫ t

0

〈GM1 −GM2,M1 −M2〉Hds

+‖M1(0)−M2(0)‖2H . (42)

Invoking Lemma II.2 and equation (42), we derive

‖M1−M2‖2H ≤ κ
∫ t

0

‖M1−M2‖2Hds+‖M1(0)−M2(0)‖2H ,

with the constant κ given in (33). From Gronwall’s inequality,
it follows that

‖M1−M2‖2H ≤ eκt‖M1(0)−M2(0)‖2H , ∀t ∈ [0, T ]. (43)

This means the strong solution depends continuously on the
initial value in H . Since D(A) is dense in H , (43) means
that for any M0 = (Υ0,Υ1)> ∈ H , there exists a unique
weak solution M = (Υ,Υt)

> ∈ C(0,∞;H) to the evolution
equation (19). This is equivalent in turn to the existence
of the weak solution of the closed-loop system (14a)-(14e).
Moreover, the weak solution also depends continuously on
the initial value in H .

III. STABILITY OF CLOSED-LOOP SYSTEM

A. Stability analysis

In this section, we aim to establish the stability of the
closed-loop system (14a)-(14e). We achieve this by adopting
an approach introduced in [30]. To proceed, we first introduce
several definitions and preliminary results that are crucial for
our analysis.

For i = 1, 2, let us assume the existence of maps Wi(τ)
that are monotonic strictly increasing and concave for τ ≥ 0
with the property Wi(0) = 0. These maps satisfy the given
conditions:

Wi(τFi(τ)) ≥ τ2 + [Fi(τ)]2, i = 1, 2, ∀|τ | ≤ µ, (44)

where µ is is the constant specified in (7b). Based on the
distinct decay behaviors of the nonlinear feedbacks Fi near
zero, it becomes evident that the function Wi can be readily
identified to fulfill (44). This assertion will be exemplified

through several cases presented in subsection III-B later on.
Now, let us define

Ŵi(τ) = Wi

( τ
T

)
, i = 1, 2, ∀τ ∈ R, (45)

where T is a constant determined later. Given a constant σ > 0
and denoting I as the identity mapping, it is straightforward to
observe that σI+ Ŵ1+Ŵ2

2 is invertible and strictly increasing.
Based on this, let us introduce a mapping defined as follows:

Φ(τ) =
(
σI +

Ŵ1 + Ŵ2

2

)−1

(σ̂τ), ∀τ ∈ R, (46)

for a constant σ̂ > 0, which is a strictly increasing, positive
and continuous function with Φ(0) = 0. Define

Ψ(τ) = τ − (I + Φ)−1(τ), ∀τ ∈ R. (47)

Then Ψ(τ) is also a positive, continuous and strictly increasing
function.

Lemma III.1. ( [7]) If Φ(t) > 0 for any t > 0 as defined in
(46), then limt→∞S(t) = 0, where S(·) represents the solution
of the corresponding ODE system:

d

dt
S(t) + Ψ(S(t)) = 0, t > 0,

S(0) = S0.
(48)

Lemma III.2. ( [30]) Let Φ be the mapping as defined in (46),
and consider a sequence {τn}n of positive numbers satisfying
the given conditions.

Φ(τn+1) + τn+1 ≤ τn, n ≥ 0. (49)

Then τn ≤ S(n), where S is the solution of the ODE system
(48).

To establish the stability result, we require several technical
lemmas. To this end, let us define the following quantity:

Cβ := min

{
3I + LΛ− 2βLΛ

2I + 2ΛL
, 1

}
, (50)

where β is an adjustment parameter satisfying 0 < β < I
LΛ .

It is easy to check that 1
2 < Cβ ≤ 1. Replace u in (16) with

xΥx − αΥ ( 1
2 < α < Cβ) to produce

ρΛ

∫ L

0

Υtt(xΥx−αΥ)dx︸ ︷︷ ︸
N1

+ ρI

∫ L

0

Υxtt(xΥx−αΥ)xdx︸ ︷︷ ︸
N2

+EI
∫ L

0

Υxx(xΥx−αΥ)xx︸ ︷︷ ︸
N3

+F1(Υt(L, t))(xΥx−αΥ)(L, t)︸ ︷︷ ︸
N5

+

∫ L

0

(EΛ +
P − EΛ√

1 + Υ2
x

)Υx(xΥx − αΥ)xdx︸ ︷︷ ︸
N4

+F2(Υxt(L, t))(xΥx − αΥ)x(L, t)︸ ︷︷ ︸
N6

= 0. (51)
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Lemma III.3. For N1, N2, and N3 defined in (51), the
following holds:

N1 = ρΛ

∫ L

0

[xΥtΥx − αΥΥt]tdx−
ρΛ

2
LΥ2

t (L, t)

+(
1

2
+ α)ρΛ

∫ L

0

Υ2
tdx, (52)

N3 = (
3

2
−α)EI

∫ L

0

Υ2
xxdx+

EI
2
LΥ2

xx(L, t), (53)

N2 = ρI

∫ L

0

[(1− α)ΥxtΥx + xΥxtΥxx]tdx

+(α− 1

2
)ρI

∫ L

0

Υ2
xtdx−

ρI

2
LΥ2

xt(L, t). (54)

Proof: By performing integration by parts, we derive the
following expression:∫ L

0

xΥttΥxdx =

∫ L

0

[xΥtΥx]tdx−
∫ L

0

xΥxtΥtdx

=

∫ L

0

[xΥtΥx]tdx−
1

2
LΥ2

t (L, t) +
1

2

∫ L

0

Υ2
tdx, (55)

and

−
∫ L

0

ΥttΥdx =−
∫ L

0

[ΥΥt]tdx+

∫ L

0

Υ2
tdx. (56)

By adding equations (55) and (56), we obtain the desired result
given in (52). Similar to the derivation of (55), we can deduce
that ∫ L

0

Υxtt(xΥx−αΥ)xdx

=

∫ L

0

[(1−α)ΥxtΥx+xΥxtΥxx]t−[xΥxtΥxxt+(1−α)Υ2
xt]dx

=

∫ L

0

[(1−α)ΥxtΥx+xΥxtΥxx]tdx+ (α− 1

2
)

∫ L

0

Υ2
xtdx

−1

2
LΥ2

xt(L, t), (57)

where the boundary condition (14d) was applied. According
to (57), (54) is obtained. Similarly to (57), one can derive that

EI
∫ L

0

Υxx(xΥx−αΥ)xx=EI
∫ L

0

Υxx[xΥxxx+(2−α)Υxx]dx, (58)

and

EI
∫ L

0

xΥxxΥxxxdx = −EI
2

∫ L

0

Υ2
xxdx+

EI
2
LΥ2

xx(L, t). (59)

By plugging (59) into (58), we can obtain (53).

Lemma III.4. For N4, N5, and N6 defined in (51), the
following holds:

N4 ≥ (
1

2
− α)

∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx

+
L

2

∫ Υ2
x(L,t)

0

(
EΛ +

P − EΛ√
1 + θ

)
dθ, (60)

N5 =
[
− ρIΥxtt(L, t)−

(
EΛ +

P − EΛ√
1 + Υ2(L, t)

)
Υx(L, t)

+EIΥxxx(L, t)
]
[LΥx(L, t)−αΥ(L, t)], (61)

N6 =−EILΥ2
xx(L, t)−EI(1−α)Υxx(L, t)Υx(L, t). (62)

Proof: Similarly to the derivation of (58), we can
demonstrate that∫ L

0

(EΛ +
P − EΛ√

1 + Υ2
x

)Υx(xΥx − αΥ)xdx

= (1− α)

∫ L

0

(EΛ +
P − EΛ√

1 + Υ2
x

)Υ2
xdx

+
1

2

∫ L

0

[
x

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθ

]
x

dx

−1

2

∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx. (63)

Let y(τ) := EΛ+
P − EΛ√

1 + τ
, ∀τ ≥ 0. Since y is monotonically

increasing for τ ≥ 0, y(τ) ≥ y(0) > 0 which leads to

τy(τ) = τ(EΛ +
P − EΛ√

1 + τ
) ≥

∫ τ

0

y(θ)dθ

≥
∫ τ

0

(
EΛ +

P − EΛ√
1 + θ

)
dθ ≥ 0,

(64)

for any τ ≥ 0. Substituting (64) into (63) yields (60).
Additionally, using (14b) and (14c), we can effortlessly derive
(61) and (62).

The stability is stated as Theorem III.1 following.

Theorem III.1. Assuming that conditions (7a), (7b), and (44)
are satisfied for the closed-loop system (14a)-(14e) with initial
data (Υ0,Υ1)> ∈ D(A), there exists a constant T > 0 such
that

E(t) ≤ S
(
t

T
− 1

)
, (65)

for all t > T with limt→∞ S(t) = 0, where S(·) is the solution
of ODE system (48) with S0 = E(0). Furthermore,

|Υ(x, t)|2 ≤ 2L

EI
S
(
t

T
− 1

)
, (66)

for all t > T and x ∈ [0, L].

Proof: By Lemmas III.3 and III.4, substituting (52)-(53)
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and (60)-(62) into (51) yields

β

∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx+(α− 1

2
)ρI

∫ L

0

Υ2
xtdx

+ (
1

2
− α− β)

∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx

+ (
1

2
+ α)ρΛ

∫ L

0

Υ2
tdx+ (

3

2
− α)EI

∫ L

0

Υ2
xxdx︸ ︷︷ ︸

Q1

≤−
∫ L

0

[
ρΛ(xΥx−αΥ)Υt+ρI[(1−α)Υx+xΥxx]Υxt

]
t
dx︸ ︷︷ ︸

Q2

+

[
Υx(L, t)(EΛ+

P−EΛ√
1+Υ2

x(L, t)
) + ρIΥxtt(L, t)

−EIΥxxx(L, t)
]
[LΥx(L, t)−αΥ(L, t)]︸ ︷︷ ︸

Q3

+

L
[ρΛ

2
Υ2
t (L, t) +

ρI

2
Υ2
xt(L, t) +

EI
2

Υ2
xx(L, t)

− 1

2

∫ Υ2
x(L,t)

0

(
EΛ +

P − EΛ√
1 + θ

)
dθ
]

︸ ︷︷ ︸
Q4

+ (1− α)EIΥx(L, t)Υxx(L, t)︸ ︷︷ ︸
Q5

, (67)

where the adjustment parameter β was introduced to specify
the parameter range of the integral multiplier provided by (50).
The corresponding term serves as an adjustment to construct
the energy function.

Next, we will prove Theorem III.1 through five steps.
Step 1: For Q1, the following holds:∫ T

S

Q1dt ≥ C1

∫ T

S

E(t)dt, (68)

where C1 = min
{

2α−1, 3−2α+ (1−2α−2β)LΛ
I , 2β

}
with the

α and β being mentioned in (50).
Based on the inequality P ≤ EΛ, we can derive EΛ +

P−EΛ√
1+θ
≤ EΛ, ∀θ ≥ 0. Furthermore, applying the e Poincaré

inequality yields∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx≤EΛL

∫ L

0

Υ2
xxdx. (69)

Plug (69) into Q1 to yield

Q1 ≥ (
1

2
+ α)ρΛ

∫ L

0

Υ2
tdx+ (α− 1

2
)ρI

∫ L

0

Υ2
xtdx

+[(
3

2
− α)EI+ (

1

2
− α− β)EΛL]

∫ L

0

Υ2
xxdx

+β

∫ L

0

∫ Υ2
x

0

(
EΛ +

P − EΛ√
1 + θ

)
dθdx

≥ C1E(t), (70)

where C1 is a constant defined in (68). It is straightforward
to verify that C1 is positive. By integrating both sides of (70)
from S to T , we obtain (68).

Step 2: For Q2, we obtain the following:∫ T

S

Q2dt ≤ 2C2E(S), (71)

where C2 = max
{
L2 + α, [ρΛ+(1−α)ρI]L+αρΛL2+ρI

EI
}

.
By Cauchy’s inequality, we can deduce that∫ L

0

[ρΛ(xΥx−αΥ)Υt+ρI[(1−α)Υx+xΥxx]Υxt]dx

≤ ρΛ

2

∫ L

0

(L2Υ2
t + Υ2

x)dx+
αρΛ

2

∫ L

0

(Υ2 + Υ2
t )dx

+
1−α

2
ρI

∫ L

0

(Υ2
xt+Υ2

x)dx+
ρI

2

∫ L

0

(L2Υ2
xt+Υ2

xx)dx

≤ L2+α

2
ρΛ

∫ L

0

Υ2
tdx+

1− α+ L2

2
ρI

∫ L

0

Υ2
xtdx

+
[ρΛ + (1− α)ρI]L+ αρΛL2 + ρI

2

∫ L

0

Υ2
xxdx

≤ C2E(t), (72)

where C2 is a constant defined in (71). For all t ≥ 0, the
dissipation of the energy function E(t) stated in Lemma II.3
implies that∫ T

S

Q2dt ≤
∣∣∣∣ ∫ L

0

ρΛ[xΥx(x, T )− αΥ(x, T )]Υt(x, T )

+ρI[(1−α)Υx(x, T )+xΥxx(x, T )]Υxt(x, T )dx

∣∣∣∣
+

∣∣∣∣ ∫ L

0

ρΛ[xΥx(x, S)− αΥ(x, S)]Υt(x, S)

+ρI[(1−α)Υx(x, S)+xΥxx(x, S)]Υxt(x, S)dx

∣∣∣∣
≤ C2(E(T )+E(S)) ≤ 2C2E(S). (73)

Step 3: For Q1, Q2 and Q3, we obtain∫ T

S

Q3 +Q4 +Q5dt

≤
∫ T

S

[ 1

4η
F 2

1 (Υt(x, t)) +
ρΛL

2
Υ2
t (L, t)

]
dt

+

∫ T

S

[L+ 2ε

2EI
F 2

2 (Υxt(L, t)) +
ρIL

2
Υ2
xt(L, t)

]
dt

+
[4η(L3 + α2L2)

EI
+

(1− α)2L

2ε

] ∫ T

S

E(t)dt. (74)

Next, applying Young’s inequality (ab ≤ a2

4η+ηb2,∀η > 0),
the Cauchy-Schwarz inequality, and Poincaré inequality, we
obtain:∣∣F1(Υt(L, t))LΥx(L, t)− αΥ(L, t)]

∣∣
≤ 1

4η
F 2

1 (Υt(L, t)) + η
∣∣LΥx(L, t)− αΥ(L, t)

∣∣2
=

1

4η
F 2

1 (Υt(L, t)) + η

∣∣∣∣L∫ L

0

Υxxdx− α
∫ L

0

Υxdx

∣∣∣∣2
≤ 1

4η
F 2

1 (Υt(L, t)) + 2η(L3 + α2L2)

∫ L

0

Υ2
xxdx, (75)
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where η > 0 is the Young’s parameter. Using the boundary
value condition (14d), we can determine that

Q3 =
[
Υx(L, t)(EΛ +

P − EΛ√
1 + Υ2

x(L, t)
)− EIΥxxx(L, t)

+ρIΥxtt(L, t)
]
[LΥx(L, t)− αΥ(L, t)]

= −F1(Υt(L, t))[LΥx(L, t)− αΥ(L, t)]. (76)

Substituting (75) into (76) results in the following estimation:

Q3 ≤
1

4η
F 2

1 (Υt(L, t)) + 2η(L3 + α2L2)

∫ L

0

Υ2
xxdx. (77)

For Q4, from (64),

Q4 =
ρΛL

2
Υ2
t (L, t) +

ρIL

2
Υ2
xt(L, t) +

EIL
2

Υ2
xx(L, t)

−L
∫ Υ2

x(L,t)

0

(
EΛ +

P − EΛ√
1 + θ

)
dθ (78)

≤ ρΛL

2
Υ2
t (L, t) +

ρIL

2
Υ2
xt(L, t) +

EIL
2

Υ2
xx(L, t).

Likewise (75), we can derive that

Q5 = (1− α)EIΥx(L, t)Υxx(L, t)

≤ (1− α)2EI
4ε

∣∣Υx(L, t)
∣∣2 + εEI

∣∣Υxx(L, t)
∣∣2

=
(1− α)2EI

4ε

∣∣∣∣ ∫ L

0

Υxxdx

∣∣∣∣2 + εEIΥ2
xx(L, t)

≤ (1− α)2EIL
4ε

∫ L

0

Υ2
xxdx+ εEIΥ2

xx(L, t), (79)

where ε > 0 is the Young’s parameter. By adding up (77),
(78), and (79), and applying the boundary conditions (14d)
and (14b), we integrate both sides from S to T to arrive at
(74).

Step 4: There is the following:

E(T ) ≤ C1

∫ T

0

[Υ2
t (L, t) + F 2

1 (Υt(L, t))]dt

+C2

∫ T

0

[Υ2
xt(L, t) + F 2

2 (Υxt(L, t))]dt, (80)

where C1 = 2C2+2Ĉ1

C1T−4C2
and C2 = 2C2+2Ĉ2

C1T−4C2
.

Integrating both sides of (67) from S to T and substituting
(68), (73), and (74) into the result yields:

C1

∫ T

S

E(t)dt

≤ 2C2E(S)+
[4η(L3+α2L2)

EI
+

(1− α)2L

2ε

] ∫ T

S

E(t)dt

+Ĉ1

∫ T

S

F 2
1 (Υt(L, t)) + Υ2

t (L, t)dt

+Ĉ2

∫ T

S

F 2
2 (Υxt(L, t)) + Υ2

xt(L, t)dt, (81)

where C1 and C2 are the constants given by (70) and
(72), respectively, Ĉ1 = max

{
1
4η ,

ρΛL
2

}
and Ĉ2 =

max
{
L+2ε
2EI ,

ρIL
2

}
. Since the Young’s parameter η and ε are

arbitrary, we can choose η = C1EI
16(L3+α2L2) and ε = 2(1−α)2L

C1
.

Substituting the selected parameters into equation (81) gives∫ T

S

E(t)dt≤ 2Ĉ1

C1

∫ T

S

[F 2
1 (Υt(L, t)) + Υ2

t (L, t)]dt (82)

+
2Ĉ2

C1

∫ T

S

[F 2
2 (Υxt(L, t)) + Υ2

xt(L, t)]dt+
4C2

C1
E(S).

Letting S = 0 and T > 0 in (82), we immediately obtain that∫ T

S

E(t)dt≤2Ĉ1

C1

∫ T

0

[F 2
1 (Υt(L, t)) + Υ2

t (L, t)]dt (83)

+
2Ĉ2

C1

∫ T

0

[F 2
2 (Υxt(L, t)) + Υ2

xt(L, t)]dt+
4C2

C1
E(0).

Thanks to

E(T ) = E(S)−
∫ T

S

F1(Υt(L, t))Υt(L, t)dt

−
∫ T

S

F2(Υxt(L, t))Υxt(L, t)dt, (84)

which is derived by integrating both sides of (34) from S to
T . Consequently, one arrives at:

E(0) ≤ E(T ) +
1

2

∫ T

0

[F 2
1 (Υt(L, t)) + Υ2

t (L, t)]dt

+
1

2

∫ T

0

[F 2
2 (Υxt(L, t)) + Υ2

xt(L, t)]dt. (85)

Substituting (85) into (83) gives∫ T

0

E(t)dt ≤ 4C2

C1
E(T )

+
2(C2 + Ĉ1)

C1

∫ T

0

[F 2
1 (Υt(L, t))+Υ2

t (L, t)]dt

+
2(C2 + Ĉ2)

C1

∫ T

0

[F 2
2 (Υxt(L, t))+Υ2

xt(L, t)]dt. (86)

The monotonic non-increasing nature of the energy func-
tion E(t) indicates that

∫ T
0
E(t)dt ≥ TE(T ). Therefore,

for T > 4C2

C1
, and by referring to equation (86), we have

successfully derived equation (80).
Step 5: There holds

Φ(E(T )) + E(T ) ≤ E(0), (87)

where Φ is defined by (46).
Denote ϕ := {t ∈ [0, T ]; |Υt(L, t)| ≤ µ} and φ := {t ∈

[0, T ]; |Υxt(L, t)| ≤ µ} with the constant µ provided in (7b).
By (7b), it is straightforward to obtain∫

[0,T ]\ϕ
[Υ2
t (L, t) + F 2

1 (Υt(L, t))]dt

≤ Ĉ3

∫
[0,T ]\ϕ

Υt(L, t)F1(Υt(L, t))dt, (88)

with Ĉ3 = 1+b2

a . Analogously, it can be observed that∫
[0,T ]\φ

[Υ2
xt(L, t) + F 2

2 (Υxt(L, t))]dt

≤ Ĉ3

∫
[0,T ]\φ

Υxt(L, t)F2(Υxt(L, t))dt. (89)
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On the other hand, the equation (44) yields∫
ϕ

[Υ2
t (L, t) + F 2

1 (Υt(L, t))]dt

≤
∫
ϕ

W1(Υt(L, t)F1(Υt(L, t)))dt, (90)

and ∫
φ

[Υ2
xt(L, t) + F 2

2 (Υxt(L, t))]dt

≤
∫
φ

W2(Υxt(L, t)F2(Υxt(L, t)))dt. (91)

Applying Jensen’s inequality, we derive∫
ϕ

W1(Υt(L, t)F1(Υt(L, t)))dt (92)

≤ TW1

(∫ T

0

Υt(L, t)F1(Υt(L, t))

T
dt

)
≤ TŴ1(∆),

and ∫
φ

W2(Υxt(L, t)F2(Υxt(L, t)))dt (93)

≤ TW2

(∫ T

0

Υxt(L, t)F2(Υxt(L, t))

T
dt

)
≤ TŴ2(Θ),

where ∆ :=
∫ T

0
Υt(L, t)F1(Υt(L, t))dt and Θ :=∫ T

0
Υxt(L, t)F2(Υxt(L, t))dt. By substituting (88), (89), (92),

and (93) into (80), we obtain

E(T ) ≤ C1TŴ1(∆)+C2TŴ2(Θ)+ C1Ĉ3∆+C2Ĉ3Θ. (94)

Given that the functions Ŵi(τ), i = 1, 2 are concave and
strictly increasing for τ ≥ 0, it can be inferred from (94)
that

E(T ) ≤ 2C1TŴ1

(1

2
∆ +

1

2
Θ
)

+ 2C2TŴ2

(1

2
∆ +

1

2
Θ
)

+C1Ĉ3∆ + C2Ĉ3Θ (95)

≤ K1

(Ŵ1 + Ŵ2

2

)(1

2
∆+

1

2
Θ
)

+K2

(1

2
∆+

1

2
Θ
)
,

where K1 = 4 max{C1T,C2T}, K2 = 2 max{C1Ĉ3,C2Ĉ3}
and the map Ŵ1+Ŵ2

2 is defined in (46). By setting

σ̂ =
2

K1
, σ =

2K2

K1
, (96)

in (46), the estimate (95) is transformed into (87).
Since the estimate above remains valid in successive inter-

vals [nT, (n+ 1)T ], we can deduce from (87) that

Φ(E(n+1)T )+E((n+1)T ) ≤ E(nT ), n = 0, 1, 2, ···. (97)

Applying Lemma III.2 to the sequence τn = E(nT ) yields

E(nT ) ≤ S(n), n = 0, 1, 2, · · ·. (98)

For any t > 0, we can express t as t = nT + θ, where n is
an integer and 0 ≤ θ < T . Consequently,

E(t) ≤ E(nT ) ≤ S(n) ≤ S
(
t− θ
T

)
≤ S

(
t

T
− 1

)
. (99)

Using the boundary condition (14d), the Cauchy-Schwarz
inequality, and the Poincaré inequality, we derive:

|Υ(x, t)|2 =

(∫ x

0

Υx(τ, t)dτ

)2

≤
(∫ L

0

|Υx(x, t)|dx
)2

≤
∫ L

0

|Υx(x, t)|2dx ≤ L
∫ L

0

|Υxx(x, t)|2dx ≤2L

EI
E(t),

for all t > T and x ∈ [0, L]. The result can then be obtained
by substituting (99) into the last inequality.

B. Decay rate of closed-loop system

In this section, we provide an estimated formula for the
decay behavior by approximating (48), implying employ an
idea from [30]. To obtain the solution of (48), which represents
the estimated formula for decay behaviors, the crucial step
is to construct concave functions Wi(·) as defined by (44).
References [7] and [31] introduced a method for constructing
the function W−1(·) in the context of wave equations. The
construction of these functions depends on the specific growth
patterns of the strictly monotonic increasing functions Fi(·)
near zero. Due to (44), our analysis can be restricted to positive
values of τ .

We construct W−1
i (τ) for i = 1, 2 as follows: If Fi(τ)

decays to zero faster than a linear function on 0 < τ < µ

such as τ3e−
1
τ2 , we let W−1

i (τ) := τ
1
2Fi(τ

1
2 ) for i = 1, 2.

This ensures that Wi(τFi(τ)) = τ2 satisfies (44). If Fi(τ)

decays slower than a linear function on 0 < τ < µ, like τ
1
p

with p > 1, we let W−1
i (τ) := τ

1
2F−1

i (τ
1
2 ) for i = 1, 2.

In this case, Wi(τFi(τ)) = [Fi(τ)]2 meets the condition (44).
By adhering to these constructions, we can acquire the desired
estimated formula that characterizes the decay behavior of
both the solution and the energy.

In what follows, we will outline a method for estimating
the decay rate, which is based on monotonic non-decreasing
continuous functions that exhibit specific behaviors near zero
such as

Fi(τ) =

{
Gi(τ), 0 < τ ≤ ε0,

Gi(ε0), ε0 < τ < µ,
(100)

where Gi(τ) are strictly monotonically increasing on 0 < τ ≤
µ = 1. The two types of growth forms of Fi(·) near zero
are depicted in Figure 2. Using (100) as an example, let us
introduce the construction method of W−1

i (τ). When Fi(τ)
decays faster than a linear function over 0 < τ ≤ ε0, similar
to case I shown in Figure 2, we let W−1

i (τ) := τ2Fi(τ
1
2 )

for i = 1, 2 to satisfy convexity. It can be deduced from
τ2 = Wi(τ

4Fi(τ)) ≤ Wi(τFi(τ)) that τ2 ≤ Wi(τFi(τ))
for 0 < τ < µ. In this case, this construction method leads
to (44). When Fi(τ) decays slower than a linear function
over 0 < τ < µ, similar to case II shown in Figure 2,
we define W−1

i (τ) := τ
1
2G−1

i (τ2) for i = 1, 2 to ensure
convexity. It is evident that G2

i (τ) ≤ Wi(τGi(τ)) can be
derived from τ2 = Wi(τG−1

i (τ4)) ≤ Wi(τG−1
i (τ)) for

0 < τ ≤ ε0. Furthermore, it follows that G2
i (ε0) ≤

Wi(ε0Gi(ε0)) ≤Wi(τGi(ε0)) for ε0 < τ < µ Consequently,
F 2
i (τ) ≤Wi(τFi(τ)) holds on 0 < τ < µ, satisfying (44).
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Fig. 2. Schematic representations of non-decreasing continuous functions
near zero point.

Based on the argument presented in [7], obtaining the
outcome of the algorithm is straightforward:

Ψ(τ) = σ̂−1
(
C0I +

Ŵ1 + Ŵ2

2

)−1

(τ), (101)

with some constant C0 > 0. Therefore, it can be deduced from
(101) that

Ψ(τ)∼
(
C0I+

W1+W2

2

)−1

(τ)≥C1
(
W1+W2

2

)−1

(τ),(102)

near the origin for some positive constant C1. It is straightfor-
ward to observe that

C1
(
W1 + W2

2

)−1

(τ) ∼ C
(
W−1

1 + W−1
2

2

)
(τ)

close to the origin, for some positive constant C that is closely
related to the initial value, as approximately depicted in Figure
3. It can be deduced from (102) that

Ψ(τ) ≥ C
(
W−1

1 + W−1
2

2

)
(τ),

near the origin. Therefore, the asymptotic behavior of the
solution and energy is governed by the following ODE:


d

dt
S(t) + C

[W−1
1 (S(t)) + W−1

2 (S(t))

2

]
= 0, t > 0,

S(0) = S0,

(103)

as claimed above. Thus, it follows from Theorem III.1 that
|Υ(x, t)|2 ≤ 2L

EIE(t) ≤ 2LCE(0)
EI S(t), for all t > 0 and

x ∈ [0, L], where S(t) is the solution of the ODE (103)
and S0 = E(0). It is worth noting that

(
W−1

1 +W−1
2

2

)
(·)

Fig. 3. Schematic representation of the construction of convex functions.

offers a significantly better approximation to the function Ψ(·)

compared to (W1 + W2)
−1

(·). This superior approximation
allows for the derivation of a more accurate decay rate
estimation formula, as given in (103). Now we give some
examples for different types of decay forms by solving the
ODE (103) when different types of growth forms of nonlinear
feedback functions near zero are available.

C. F1 and F2 exhibit the same type of change behavior near
zero.

For this case, we present three illustrative examples.

Example III.1. Consider F1(τ) = m1τ
p (or F1(τ) = m1τ

1
p )

and F2(τ) = n1τ
p (or F2(τ) = n1τ

1
p ) near zero, where

m1, n1 > 0, p > 1 are the constants. Set

W−1
1 (τ) = m1τ

p+1
2 , W−1

2 (τ) = n1τ
p+1
2 ,

which are convex for τ > 0. From (103), solve the following
ODE

d

dt
S(t) +

m1

2
S(t)

p+1
2 +

n1

2
S(t)

p+1
2 = 0, t > 0,

S(0) = S0,
(104)

to obtain

S(t) =

[
S

1−p
2

0 − (1− p)(m1 + n1)

4
t

] 2
1−p

.

Using S0 = E(0) and Theorem III.1, we can derive the
following conclusion:

E(t) ≤ CE(0)

[
E(0)

1−p
2 +

(p− 1)(m1 + n1)

4
t

] 2
1−p

,

for all t > 0 and x ∈ [0, L]. In particular, when p = 1, by
(104) we have

|Υ(x, t)|2 ≤ 2LE(t)

EI
≤

2LCE(0)

EI
e−

m1+n1
2 t,

This is consistent with the findings in [24] when considering
two linear feedbacks, for all t > 0 and x ∈ [0, L].

Example III.2. In this example, F1(τ) = m2τ
2p+1e−

1
τ2p

and F2(τ) = n2τ
2p+1e−

1
τ2p near zero with positive constants

m1, n2 and p. Let

W−1
1 (τ) = m2τ

p+1e−
1
τp , W−1

2 (τ) = n2τ
p+1e−

1
τp , (105)

be convex functions for τ > 0. Substitute (105) into (103) and
solve this ODE

d

dt
S(t) +

m2 + n2

2
S(t)p+1e−

1
S(t)p = 0, t > 0,

S(0) = E(0),

to give

E(t) ≤ CE(0)

[
ln[e

1
E(0)p +

(m2+n2)p

2
t]
]− 1

p ,

for all t > 0. This demonstrates that the solution and energy
decay in a polynomial-logarithmic fashion.
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Example III.3. In this example, Fi(τ) = kiF(τ), i = 1, 2,
where F(τ) is an odd function near zero and ki > 0 are the
constants, defined by

F(τ) =

{
τp, 0 ≤ τ ≤ ε0,

εp0, ε0 < τ < 1,
(106)

with p > 1 being constant. Set

W−1
i (τ) =

{
kiτ

p+4
2 , 0 < τ ≤ ε2

0,

kiε
p
0τ

2, ε2
0 < τ < 1,

(107)

which are convex functions. By substituting (107) into (103)
and solving the ordinary differential equation (ODE) piece-
wise, we obtain:

S(t) =


[
E(0)−

p+2
2 +

(p+2)(k1+k2)

4
t
]− 2

p+2, 0 <t≤Cε0 ,[
C̃ε0 +

k1+k2

2
εp0t
]−1

, t > Cε0 ,

where Cε0 is a constant related to ε0 and C̃ε0 =
[
E(0)−

p+2
2 +

(p+2)(k1+k2)
4 Cε0

] 2
p+2 − k1+k2

2 εp0Cε0 . This implies that

E(t) ≤ CE(0)

[
E(0)−

p+2
2 +

(p+ 2)(k1+k2)

4
t
]− 2

p+2 ,

for all t > 0.

D. F1 and F2 exhibit different types of change behavior near
zero.

In this case, we provide two illustrative examples.

Example III.4. Let F1(τ) = m4τ
p and F2(τ) = n4τ near

zero with constants m4, n4 > 0 and p > 1. Take

W−1
1 (τ) = m4τ

p+1
2 , W−1

2 (τ) = n4τ,

to be convex for τ > 0. Solving the ODE
d

dt
S(t) +

m4

2
S(t)

p+1
2 +

n4

2
S(t) = 0, t > 0,

S(0) = E(0),

gives

E(t) ≤ CE(0)

[[
E(0)

1−p
2 +

m4

n4

]
e−

(1−p)n4
4 t−m4

n4

] 2
1−p

,

for all t > 0.

Example III.5. Suppose that F1(τ) = m5τ
2p+1e−

1
τ2p and

F2(τ) = n5τ
2p+1 near zero, where m5, n5, p are positive

constants. The convex functions can be taken as

W−1
1 (τ) = m5τ

p+1e−
1
τp , W−1

2 (τ) = n5τ
p+1, ∀τ > 0.

By solving
d

dt
S(t) +

m5

2
S(t)p+1e−

1
S(t)p +

n5

2
S(t)p+1 = 0, t > 0,

S(0) = E(0),

one obtains, for all t > 0, that

E(t) ≤ CE(0)

[
ln[(e

1
E(0)p +

m5

n5
)e

n5p
2 t − m5

n5
]
]− 1

p

.

From the above examples, it is evident that the exponential
decay is the most rapid, while the logarithmic-polynomial
decay corresponding to Example III.2 is the slowest. The other
forms of decay fall within this range.

IV. NUMERICAL SIMULATIONS

In this section, we present simulation examples for the
closed-loop system (14a)-(14e) to demonstrate the effective-
ness of the proposed control (6). The simulations are con-
ducted using the finite element method, with the quadratic
Lagrangian basis of the finite element isometric grid employed.
While the specific discrete equation of the closed-loop system
is similar to the one presented in [10], it is omitted here for
brevity. To illustrate the numerical results, the parameters of
the closed-loop system (14a)-(14e) are listed in the following
table.

Parameter Definition Value Unit
L Length 100 m
d0 Outer diameter 0.4 m
ρ Mass density 8200 kg/m3

E Young’s modulus 2× 108 kg/m2

P Initial tension 6× 104 N
I Second moment 1.256× 10−3 m4

Λ Cross section area 1.256× 10−3 m2

The initial displacement and velocity of the flexible riser
used in the simulation are randomly set as Υ0(x) = 1.5 sin 4x
and Υ1(x) = 3 cos 3x to represent the waveform of an
elastic vibration system. For the simulations, various nonlinear
feedback functions that meet the criteria (7a) and (7b) with =1
are implemented. These feedback functions are illustrated in
Fig. 4.

G1(τ) =


τ − 1, τ ≤ −1,

2τ, − 1 < τ < 1,

sin(τ − 1) +3τ − 1, τ ≥ 1,

(108)

G2(τ) =


3τ + sin(τ + 1) + 1, τ ≤ −1,

2τ3, − 1 < τ < 1,

τ2 + τ, 1 ≤ τ < 3,

3τ + 3, τ ≥ 3,

(109)

G3(τ) =


2τ − 1

e
+ 2, τ ≤ −1,

τ3e−
1
τ2 , − 1 < τ ≤ 1,

5τ+
1

e
+ ln[(τ− 1)2+ 1]− 5, τ > 1,

(110)

G4(τ) =


2τ − 2

e
+ 2, τ ≤ −1,

2τ5e−
1
τ4 , − 1 < τ < 1,

2

e
+ 6τ + cos(τ − 1)− 7, τ ≥ 1.

(111)

The transverse displacements Υ(·, ·) and the norm ‖Υ(·, t)‖
of the closed-loop system (14a)-(14e), along with the cor-
responding control inputs F1(·) and F2(·) for three control
schemes, are presented in Figs. 5-7. As observed from these
figures, the decay behaviors of the nonlinear flexible marine
riser system align with the theoretical results derived in Section
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Fig. 4. The boundary feedback laws in simulation.

III. Specifically, the exponential decay (depicted in Fig. 5)
exhibits the fastest rate, whereas the logarithmic-polynomial
decay (shown in Fig. 7) is the slowest. The other forms of
decay (illustrated in Fig. 6) fall within this range. In Fig. 6,
a disturbance of the random square wave signal was imple-
mented in our MATLAB simulation through the integration
of a Random Number Module, which shows that the control
scheme possesses a certain level of robustness. For a more
detailed discussion on the practical implementation of this
control system, we refer to [15].

V. CONCLUSIONS

This paper focuses on the stabilization of a nonlinear flex-
ible marine riser system utilizing double nonlinear boundary
controls. Starting from the Hamilton’s principle, a nonlinear
PDE model for the flexible marine riser system, incorporat-
ing rotational inertia, is derived. The nonlinear semigroup
approach is employed to establish the well-posedness of
the resulting closed-loop system, ensuring that the solution
depends continuously on the initial data.

To determine an appropriate integral multiplier, an adjust-
ment term is introduced, allowing for the identification of the
existence range of the integral multiplier parameter. Under a
broader set of feedback controls, the asymptotic stability of the
closed-loop system is achieved by solving a dissipative ODE.
Furthermore, the decay behaviors of both the solutions and the
energy function for the closed-loop system are estimated.

Future work will aim to extend this method to tackle even
more nonlinear controls in PDEs, particularly those encoun-
tered in the nonlinear flexible marine riser system with thermal
effects. Such extensions will enhance our understanding and
capabilities in controlling complex nonlinear systems, with
potential applications in various engineering fields. In addition,
the same stability properties cannot be achieved when dealing
with weak solutions due to their lack of regularity. This issue
is purely mathematical and requires further investigation.

APPENDIX

In this section, we will derive the system model. By refer-
ring to equations (8) and (9), we can deduce the variational
form of the kinetic energy K and the potential energy U as
follows:

δK(t) = ρI

∫ L

0

Υxt(δΥ)xtdx+ ρΛ

∫ L

0

Υt(δΥ)tdx, (112)

and

δU(t) = (P − EΛ)

∫ L

0

Υx(δΥ)x√
1 + Υ2

x

dx+ EΛ

∫ L

0

Υx(δΥ)xdx

+EI
∫ L

0

Υxx(δΥ)xxdx. (113)

Please note that the bottom boundary at x = 0 is fixed, and
the slope of the riser at this boundary is zero. The variation
variable δΥ satisfies the conditions δΥ(x, t0) = δΥ(x, t1) = 0
and δΥ(0, t) = δΥx(0, t) = 0. By applying integration by
parts, we can derive from equation (112) that:∫ t1

t0

δK(t)dt = −ρI
∫ t1

t0

Υxtt(L, t)δΥ(L, t)dt (114)

+

∫ t1

t0

∫ L

0

[ρIΥxxtt − ρΛΥtt]δΥdxdt.

Analogously, we can calculate from equation (113) that:∫ t1

t0

δU(t)dt = (P − EΛ)

∫ t1

t0

Υx(L, t)√
1 + Υ2

x(L, t)
δΥ(L, t)dt

+

∫ t1

t0

[EΛΥx(L, t)−EIΥxxx(L, t)]δΥ(L, t)dt

+

∫ t1

t0

∫ L

0

[−EΛΥxx+EIΥxxxx]δΥdxdt

− (P − EΛ)

∫ t1

t0

∫ L

0

[ Υx√
1 + Υ2

x

]
x
δΥdxdt

+ EI
∫ t1

t0

Υxx(L, t)[δΥ(L, t)]xdt. (115)

By substituting equations (10), (114), and (115) into Hamil-
ton’s principle (11), we can demonstrate that

0 =

∫ t1

t0

[
U1(t)− [EΛ +

P − EΛ√
1−Υ2(L, t)

]Υx(L, t)

−ρIΥxtt(L, t) + EIΥxxx

]
δΥ(L, t)dt

+

∫ t1

t0

[U2(t)− EIΥxx(L, t)][δΥ(L, t)]xdt

−
∫ t1

t0

∫ L

0

[
ρΛΥtt − ρIΥxxtt + EIΥxxxx

−[(EΛ +
P − EΛ√

1 + Υ2
x

)Υx]x
]
δΥdxdt.

Given the arbitrariness of the variable δΥ, we can derive the
governing equation (1) and the boundary conditions (5).
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