
IFAC-PapersOnLine 49-8 (2016) 278–283

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.07.454

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Active Disturbance Rejection Control: from
ODEs to PDEs ⋆

Bao-Zhu Guo ∗

∗ Academy of Mathematics and Systems Science, Academia Sinica,
Beijing 100190, P.R. China, and School of Computer Science and
Applied Mathematics, University of the Witwatersrand, Wits 2050,

Johannesburg, South Africa (e-mail: bzguo@iss.ac.cn).
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1. INTRODUCTION

Disturbance rejection is a different paradigm in control
theory since the inception of the modern control theory
in the later years of 1950’s, seeded in Tsien (1954) where
it is stated that the control operation “must not be in-
fluenced by internal and external disturbances” (Tsien,
1954, p.228). The tradeoff between mathematical rigor by
model-based control theory and practicability by model-
free engineering applications has been a constantly disput-
ed issue in control community. On the one hand, we have
mountains of papers, books, monographes published every
year, and on the other hand, the control engineers are
nowhere to find, given the difficulty of building (accurate)
dynamic model for the system to be controlled, a simple,
model free, easy tuning, better performance control tech-
nology more than proportional-integral-derivative (PID)
control (Silva et al. (2002), see also Bialkowski et al.
(2015)). This awkward coexistence of huge modern control
theories on the one hand and a primitive control technolo-
gy that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control
scientist at the Chinese Academy of Sciences to propose
active disturbance rejection control (ADRC), as an alter-
native of PID. This is because PID has the advantage of
model free nature whereas most parts of modern control
theory are based on mathematical models. By model-based
control theory, it is hard to cross the boundaries such as
time variance, nonlinearity, and uncertainty created main-
ly by the limitations of mathematics. However, there are
some basic limitations for PID in practice to accommodate
the liability in the digital processors according to Han
(2009).

To address this problem, Han would seek solution from
the seed idea of disturbance rejection imbedded in Tsien

⋆ This work was carried out with the support of the National Natural
Science Foundation of China and the National Research Foundation
of South Africa.

(1954). Consider stabilization for the following second
order Newton system:

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t), d(t), t) + u(t),

y(t) = x1(t),

(1.1)

where u(t) is the control input, y(t) is the measured
output, d(t) is the external disturbance, and f(·) is an
unknown function which contains unmodelled dynamics
of the system or most possibly, the internal and external
disturbance discussed in Tsien (1954).

The total disturbance can certainly be nonlinear, time
variant and many other forms. Han considered it just
as a signal of time, which is reflected in the measured
output and hence can possibly be estimated. Let a(t) =
f(x1(t), x2(t), d(t), t). Then system (1.1) becomes

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

y(t) = x1(t).

(1.2)

A flash of insight arises (Han (1989)): system (1.2) is exact-
ly observable because it is trivially seen that (y(t), u(t)) ≡
0, t ∈ [0, T ] ⇒ a(t) = 0, t ∈ [0, T ]; (x1(0), x2(0)) = 0 (see,
e.g., (Cheng et al., 2015, p.5, Definition 1.2)). This means
that y(t) contains all information of a(t)! Why not use y(t)
to estimate a(t)?, was perhaps the question in Han’s mind.
If we can, for instance, y(t) ⇒ â(t) ≈ a(t), then we can
cancel a(t) by designing u(t) = −â(t) + u0(t) and system
(1.2) amounts to, approximately of course,

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = u0(t),

y(t) = x1(t).

(1.3)

The nature of the problem is therefore changed now.
System (1.3) is just a linear time invariant system for
which we have many ways to deal with it. This is likewise
feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called
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ẋ2(t) = u0(t),

y(t) = x1(t).

(1.3)

The nature of the problem is therefore changed now.
System (1.3) is just a linear time invariant system for
which we have many ways to deal with it. This is likewise
feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called

2nd IFAC Workshop on Control of Systems Governed
by Partial Differential Equations
June 13-15, 2016. Bertinoro, Italy

Copyright © 2016 International Federation of
Automatic Control

280 280

Active Disturbance Rejection Control: from
ODEs to PDEs ⋆

Bao-Zhu Guo ∗

∗ Academy of Mathematics and Systems Science, Academia Sinica,
Beijing 100190, P.R. China, and School of Computer Science and
Applied Mathematics, University of the Witwatersrand, Wits 2050,

Johannesburg, South Africa (e-mail: bzguo@iss.ac.cn).

Abstract: This paper introduces a new emerging control technology, known as active distur-
bance rejection control to this day. We start its main idea and two main parts, namely, extended
state observer and extended state observer based feedback for lumped parameter systems, and
then discuss its application to both state and output feedback stabilization for distributed
parameter systems.

Keywords: Active disturbance rejection control, feedback stabilization, PDEs

1. INTRODUCTION

Disturbance rejection is a different paradigm in control
theory since the inception of the modern control theory
in the later years of 1950’s, seeded in Tsien (1954) where
it is stated that the control operation “must not be in-
fluenced by internal and external disturbances” (Tsien,
1954, p.228). The tradeoff between mathematical rigor by
model-based control theory and practicability by model-
free engineering applications has been a constantly disput-
ed issue in control community. On the one hand, we have
mountains of papers, books, monographes published every
year, and on the other hand, the control engineers are
nowhere to find, given the difficulty of building (accurate)
dynamic model for the system to be controlled, a simple,
model free, easy tuning, better performance control tech-
nology more than proportional-integral-derivative (PID)
control (Silva et al. (2002), see also Bialkowski et al.
(2015)). This awkward coexistence of huge modern control
theories on the one hand and a primitive control technolo-
gy that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control
scientist at the Chinese Academy of Sciences to propose
active disturbance rejection control (ADRC), as an alter-
native of PID. This is because PID has the advantage of
model free nature whereas most parts of modern control
theory are based on mathematical models. By model-based
control theory, it is hard to cross the boundaries such as
time variance, nonlinearity, and uncertainty created main-
ly by the limitations of mathematics. However, there are
some basic limitations for PID in practice to accommodate
the liability in the digital processors according to Han
(2009).

To address this problem, Han would seek solution from
the seed idea of disturbance rejection imbedded in Tsien
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(1954). Consider stabilization for the following second
order Newton system:

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = f(x1(t), x2(t), d(t), t) + u(t),

y(t) = x1(t),

(1.1)

where u(t) is the control input, y(t) is the measured
output, d(t) is the external disturbance, and f(·) is an
unknown function which contains unmodelled dynamics
of the system or most possibly, the internal and external
disturbance discussed in Tsien (1954).

The total disturbance can certainly be nonlinear, time
variant and many other forms. Han considered it just
as a signal of time, which is reflected in the measured
output and hence can possibly be estimated. Let a(t) =
f(x1(t), x2(t), d(t), t). Then system (1.1) becomes

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

y(t) = x1(t).

(1.2)

A flash of insight arises (Han (1989)): system (1.2) is exact-
ly observable because it is trivially seen that (y(t), u(t)) ≡
0, t ∈ [0, T ] ⇒ a(t) = 0, t ∈ [0, T ]; (x1(0), x2(0)) = 0 (see,
e.g., (Cheng et al., 2015, p.5, Definition 1.2)). This means
that y(t) contains all information of a(t)! Why not use y(t)
to estimate a(t)?, was perhaps the question in Han’s mind.
If we can, for instance, y(t) ⇒ â(t) ≈ a(t), then we can
cancel a(t) by designing u(t) = −â(t) + u0(t) and system
(1.2) amounts to, approximately of course,

⎧
⎪⎨

⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = u0(t),

y(t) = x1(t).

(1.3)

The nature of the problem is therefore changed now.
System (1.3) is just a linear time invariant system for
which we have many ways to deal with it. This is likewise
feedforward control yet to use output to “transform” the
system first. In a different point of view, this part is called

2nd IFAC Workshop on Control of Systems Governed
by Partial Differential Equations
June 13-15, 2016. Bertinoro, Italy

Copyright © 2016 International Federation of
Automatic Control

280 280

Active Disturbance Rejection Control: from
ODEs to PDEs ⋆

Bao-Zhu Guo ∗

∗ Academy of Mathematics and Systems Science, Academia Sinica,
Beijing 100190, P.R. China, and School of Computer Science and
Applied Mathematics, University of the Witwatersrand, Wits 2050,

Johannesburg, South Africa (e-mail: bzguo@iss.ac.cn).

Abstract: This paper introduces a new emerging control technology, known as active distur-
bance rejection control to this day. We start its main idea and two main parts, namely, extended
state observer and extended state observer based feedback for lumped parameter systems, and
then discuss its application to both state and output feedback stabilization for distributed
parameter systems.

Keywords: Active disturbance rejection control, feedback stabilization, PDEs

1. INTRODUCTION

Disturbance rejection is a different paradigm in control
theory since the inception of the modern control theory
in the later years of 1950’s, seeded in Tsien (1954) where
it is stated that the control operation “must not be in-
fluenced by internal and external disturbances” (Tsien,
1954, p.228). The tradeoff between mathematical rigor by
model-based control theory and practicability by model-
free engineering applications has been a constantly disput-
ed issue in control community. On the one hand, we have
mountains of papers, books, monographes published every
year, and on the other hand, the control engineers are
nowhere to find, given the difficulty of building (accurate)
dynamic model for the system to be controlled, a simple,
model free, easy tuning, better performance control tech-
nology more than proportional-integral-derivative (PID)
control (Silva et al. (2002), see also Bialkowski et al.
(2015)). This awkward coexistence of huge modern control
theories on the one hand and a primitive control technolo-
gy that has been dominating engineering applications for
one century on the other pushed Jingqing Han, a control
scientist at the Chinese Academy of Sciences to propose
active disturbance rejection control (ADRC), as an alter-
native of PID. This is because PID has the advantage of
model free nature whereas most parts of modern control
theory are based on mathematical models. By model-based
control theory, it is hard to cross the boundaries such as
time variance, nonlinearity, and uncertainty created main-
ly by the limitations of mathematics. However, there are
some basic limitations for PID in practice to accommodate
the liability in the digital processors according to Han
(2009).

To address this problem, Han would seek solution from
the seed idea of disturbance rejection imbedded in Tsien

⋆ This work was carried out with the support of the National Natural
Science Foundation of China and the National Research Foundation
of South Africa.

(1954). Consider stabilization for the following second
order Newton system:

⎧
⎪⎨

⎪⎩
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ẋ1(t) = x2(t),
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the “rejector” of disturbance (Gao (2015)). It seems that
a further smarter way would be hardly to find anymore
because the control u(t) = −â(t)+u0(t) adopts a strategy
of estimation/cancellation, much alike our experience in
dealing with uncertainty in daily life. One can imagine
and it actually is, one of the most energy saving control
strategies as confirmed in Zheng and Gao (2012).

This paradigm-shift is revolutionary for which Han wrote
in Han (1989) that “to improve accuracy, it is sometimes
necessary to estimate a(t) but it is not necessary to know
the nonlinear relationship between a(t) and the states
variables”. The idea breaks down the garden gates from
time varying dynamics (e.g., f(x1, x2, d, t) = g1(t)x1 +
g2(t)x2), nonlinearity (e.g., f(x1, x2, d, t) = x2

1 + x3
2), and

“internal and external disturbance” (e.g., f(x1, x2, d, t) =
x2
1+x2

2+∆f(x1, x2)+d). The problem now becomes: how
can we realize y(t) ⇒ â(t) ≈ a(t)?

Han told us in Han (1995) that it is not only possible
but also realizable systematically. This is made possible
by what is called extended state observer (ESO). Firstly,
Han considered a(t) to be an extended state variable and
changed system (1.2) to⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t) + u(t),

ȧ(t) = a′(t),

y(t) = x1(t).

(1.4)

A linear observer for system (1.4), or equivalently linear
ESO for system (1.2) can be designed as⎧

⎪⎪⎨

⎪⎪⎩

˙̂x1(t) = x̂2(t) + a1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t) + u(t) + a2(x̂1(t)− y(t)),

˙̂x3(t) = a3(x̂1(t)− y(t)),

(1.5)

where we can choose high gains

ai =
αi

εi
, i = 1, 2, 3, (1.6)

so that
x̂1(t) → x1(t), x̂2(t) → x2(t),
x̂3(t) → a(t) as t → ∞, ε → 0.

(1.7)

The constants αi in (1.6) are required to make

E =

�
α1 1 0
α2 0 1
α3 0 0

�
(1.8)

be Hurwitz (Zheng et al. (2007); Guo and Zhao (2011))
and a′(t) is required to be bounded. It is seen that we
have obtained estimation x̂3(t) ≈ a(t) from y(t)!

Definition 1.1. The ESO (1.5) is said to be convergent, if
for any given δ > 0, there exist Tδ > 0, εδ such that

|x̃i(t)| = |x̂i(t)− xi(t)| ≤ δ,

|ã(t)| = |x̂3(t)− a(t)| ≤ δ, ∀ t > Tδ, ε > εδ, i = 1, 2.

Finally, to stabilize system (1.2), we simply cancel the
disturbance by using the ESO-based feedback:

u(t) = −x̂3(t) + β1x̂1(t) + β2x̂2(t), (1.9)

where the first term is used to cancel (compensate) the dis-
turbance and the last terms are stabilizing state feedback
chosen by separation principle, i.e.

F =

�
0 1
β1 β2

�
(1.10)

is Hurwitz. The closed-loop of (1.2) under the feedback
(1.9) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = a(t)− x̂3(t) + β1x̂1(t) + β2x̂2(t),

˙̂x1(t) = x̂2(t) + a1(x̂1(t)− y(t)),

˙̂x2(t) = x̂3(t)− â(t) + β1x̂1(t) + β2x̂2(t)

+a2(x̂1(t)− y(t)),

˙̂x3(t) = a3(x̂1(t)− y(t)),

(1.11)

which is equivalent, by setting x̃1(t) = x̂1(t) − x1(t),
x̃2(t) = x̂2(t)− x2(t) and ã(t) = x̂3(t)− a(t), to
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x2(t),

ẋ2(t) = β1x1(t) + β2x2(t) + β1x̃1(t) + β2x̃2(t)− ã(t),

˙̃x1(t) = x̃2(t) + a1x̃1(t),

˙̃x2(t) = ã(t) + a2x̃1(t),

˙̃a(t) = a3x̃1(t)− a′(t).
(1.12)

Since (x̃i(t), ã(t)) → 0 i = 1, 2 as ε → 0 and t → ∞,
proved in convergence of ESO, we have immediately that

xi(t) → 0, i = 1, 2, as t → ∞, ε → 0,

or equivalently

xi(t) → 0, x̂i(t) → 0, i = 1, 2,

x̂3(t)− a(t) → 0 as t → ∞, ε → 0.
(1.13)

This is the well known separation principle in linear
system theory. So, the whole idea not only works and but
also works in an extremely wise way of estimating and
cancelling the disturbance in real time.

Remark 1.1. System (1.1) is equivalent to second order
system:

ẍ(t) = f(x(t), ẋ(t), d(t), t) + u(t).
So the total disturbance and control are matched natural-
ly. If they are not matched, for instance, system like⎧

⎪⎨

⎪⎩

ẋ1(t) = x2(t) + d(t),

ẋ2(t) = u(t),

y(t) = x1(t),

(1.14)

we can still apply ADRC to deal with stabilization. Actu-
ally, let

x̄2(t) = x2(t).
Then (1.14) becomes

⎧
⎪⎨

⎪⎩

ẋ1(t) = x̄2(t),

˙̄x2(t) = ḋ(t) + u(t),

y(t) = x1(t),

(1.15)

For stabilization, we can achieve

x1(t) → 0, x̄2(t) = x2(t) + d(t) → 0 as t → ∞.

Certainly, as any other methods, some limitations likely
exist in an otherwise perfect setting of ESO in the sense:

• The high gain is resorted in ESO to suppress the
effect of the derivative a′(t) of the total disturbance
in (1.12);

• the derivative a′(t) of disturbance as shown in (1.12)
is supposed to be bounded as well as from (1.4) where
a(t) is regarded as an extended state variable.

IFAC CPDE 2016
June 13-15, 2016. Bertinoro, Italy

281

https://www.researchgate.net/publication/224303513_On_stability_analysis_of_active_disturbance_rejection_control_for_nonlinear_time-varying_plants_with_unknow_dynamics?el=1_x_8&enrichId=rgreq-e1242052b6ac3ff0535d7a1d0eb25033-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAyNTE4MDtBUzo0MTI2MzE2ODU5NzYwNjRAMTQ3NTM5MDQ2ODkwNQ==
https://www.researchgate.net/publication/220519158_On_the_convergence_of_extended_state_observer_for_nonlinear_systems_with_uncertainty?el=1_x_8&enrichId=rgreq-e1242052b6ac3ff0535d7a1d0eb25033-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAyNTE4MDtBUzo0MTI2MzE2ODU5NzYwNjRAMTQ3NTM5MDQ2ODkwNQ==


280	 Bao-Zhu Guo / IFAC-PapersOnLine 49-8 (2016) 278–283

The second condition can be relaxed to allow some finite
order derivative of a(t) to be bounded by increasing the
order of ESO.

The first problem is possibly resolved by designing a
different type of ESO because in the final analysis when
we scrutinize the whole process, ESO (1.5) is nothing
more than one of such devices, developed by Han himself
only aiming at estimating disturbance from observable
measured output which is the ultimate goal of ADRC. It
is not, and should not be, a unique way for this purpose.
To understand this point, we may think of internal model
principle, a similar idea as economic as ADRC on the
basis of estimation/cancellation strategy yet no high gain
is utilized.

If we let the matter drop here, the ADRC seems not
very new idea in control theory. But when we go further
to have a comparison, we find from (1.1) that ADRC
regards both internal and external disturbance a(t) =
f(x1(t), x2(t), d(t), t) together as a signal of time which
can be estimated by the output. This spans significantly
the concept of the disturbance where in adaptive control
they are some internal unknown parameters and in internal
model principle they are some external disturbance pro-
duced from a dynamical exosystem. The ADRC’s major
component ESO provides a systematical feasible way to
estimate total disturbance from measured output. It opens
another gate so that we can get rid of mathematical brunt
like a(t) = f(x1(t), x2(t), d(t), t) to be state dependent or
state free, time invariant or time variant, linear or non-
linear and whatever. This is an almost model free control
method, carrying PID control forward.

Before we end this opening story, we indicate that the
possible improvement of ADRC lies in ESO as what we
see in adaptive control and internal model principle where
the inherent estimation/cancellation is kept yet no high
gain is used.

In the remaining part of this paper, we apply ADRC to
stabilization for PDEs. Section 2 is on stabilization for
uncertain PDEs via state feedback. The output feedback
stabilization is introduced in Section 3.

2. STATE FEEDBACK STABILIZATION FOR
UNCERTAIN PDES

The material of this section comes from Guo and Liu
(2014) where it applies ADRC to anti-stable Schrödinger
equation:

⎧
⎪⎨

⎪⎩

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = −jqu(0, t), q > 0, t � 0,

ux(1, t) = U(t) + d(t), t � 0,

(2.1)

where u(t) is the complex-valued state, j is the imaginary
unit, U(t) is the control input. The unknown disturbance
d(t) is supposed to be uniformly bounded measurable, that
is, |d(t)| � M0 for some M0 > 0 and all t � 0. The system
represents an anti-stable distributed parameter system:
all eigenvalues of the free system (with no control and
disturbance) are located on the right-half complex plane.

We suppose as usual that |ḋ(t)| is also uniformly bounded.
Introduce a transformation:

w(x, t) = u(x, t) + j(c0 + q)

� x

0

ejq(x−y)u(y, t)dy, c0 > 0.

(2.2)
Its inverse transformation is found to be

u(x, t) = w(x, t)− j(c0+ q)

� x

0

e−jc0(x−y)w(y, t)dy. (2.3)

The transformation (2.2) transforms system (2.1) into the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t � 0,

wx(1, t) = U(t) + d(t) + j(c0 + q)w(1, t)

+c0(c0 + q)

� 1

0

e−jc0(1−x)w(x, t)dx, t � 0.

(2.4)

It is seen that the anti-stable factor −jqu(0, t) in (2.1)
becomes the dissipative term jc0w(0, t) in (2.4) under the
transformation (2.2), both at the end x = 0. In what
follows, we consider the stabilization of system (2.4) until
the final step to go back the system (2.1) under the inverse
transformation (2.3). Introduce a new controller U0(t) so
that

U(t) = U0(t)− j(c0 + q)w(1, t)

−c0(c0 + q)

� 1

0

e−jc0(1−x)w(x, t)dx.
(2.5)

Then (2.4) becomes
⎧
⎪⎨

⎪⎩

wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t � 0,

wx(1, t) = U0(t) + d(t).

(2.6)

We write (2.6) into the operator form. Define the operator
A as follows:�

Af(x) = −jf ′′(x),
D(A) = {f ∈ H2(0, 1)

�� f ′(0) = jc0f(0), f
′(1) = 0}.

(2.7)
Then we can write (2.6) in H as

d

dt
w(·, t) = Aw(·, t) + B(U0(t) + d(t)), B = −jδ(x− 1).

(2.8)

The following Lemma 2.1 is straightforward.

Lemma 2.1. Let A be defined by (2.7). Then each eigen-
value of A is algebraically simple, and there exists a
sequence of eigenfunctions of A, which form a Riesz ba-
sis for H. Therefore, A generates an exponential stable
C0-semigroup on H. In addition, B is admissible to the
semigroup eAt (Weiss (1989)).

Let ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1(t) =

� 1

0

(2x3 − 3x2)w(x, t)dx,

y2(t) =

� 1

0

(12x− 6)w(x, t)dx.

(2.9)

Since B is admissible to the C0-semigroup eAt, the solution
of (2.6) is understood in the sense of

d

dt
⟨w(·, t), f⟩ = ⟨w(·, t),A∗f⟩

−jf(1)(U0(t) + d(t)), ∀ f ∈ D(A∗).

(2.10)
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The second condition can be relaxed to allow some finite
order derivative of a(t) to be bounded by increasing the
order of ESO.

The first problem is possibly resolved by designing a
different type of ESO because in the final analysis when
we scrutinize the whole process, ESO (1.5) is nothing
more than one of such devices, developed by Han himself
only aiming at estimating disturbance from observable
measured output which is the ultimate goal of ADRC. It
is not, and should not be, a unique way for this purpose.
To understand this point, we may think of internal model
principle, a similar idea as economic as ADRC on the
basis of estimation/cancellation strategy yet no high gain
is utilized.

If we let the matter drop here, the ADRC seems not
very new idea in control theory. But when we go further
to have a comparison, we find from (1.1) that ADRC
regards both internal and external disturbance a(t) =
f(x1(t), x2(t), d(t), t) together as a signal of time which
can be estimated by the output. This spans significantly
the concept of the disturbance where in adaptive control
they are some internal unknown parameters and in internal
model principle they are some external disturbance pro-
duced from a dynamical exosystem. The ADRC’s major
component ESO provides a systematical feasible way to
estimate total disturbance from measured output. It opens
another gate so that we can get rid of mathematical brunt
like a(t) = f(x1(t), x2(t), d(t), t) to be state dependent or
state free, time invariant or time variant, linear or non-
linear and whatever. This is an almost model free control
method, carrying PID control forward.

Before we end this opening story, we indicate that the
possible improvement of ADRC lies in ESO as what we
see in adaptive control and internal model principle where
the inherent estimation/cancellation is kept yet no high
gain is used.

In the remaining part of this paper, we apply ADRC to
stabilization for PDEs. Section 2 is on stabilization for
uncertain PDEs via state feedback. The output feedback
stabilization is introduced in Section 3.

2. STATE FEEDBACK STABILIZATION FOR
UNCERTAIN PDES

The material of this section comes from Guo and Liu
(2014) where it applies ADRC to anti-stable Schrödinger
equation:

⎧
⎪⎨

⎪⎩

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = −jqu(0, t), q > 0, t � 0,

ux(1, t) = U(t) + d(t), t � 0,

(2.1)

where u(t) is the complex-valued state, j is the imaginary
unit, U(t) is the control input. The unknown disturbance
d(t) is supposed to be uniformly bounded measurable, that
is, |d(t)| � M0 for some M0 > 0 and all t � 0. The system
represents an anti-stable distributed parameter system:
all eigenvalues of the free system (with no control and
disturbance) are located on the right-half complex plane.

We suppose as usual that |ḋ(t)| is also uniformly bounded.
Introduce a transformation:

w(x, t) = u(x, t) + j(c0 + q)

� x

0

ejq(x−y)u(y, t)dy, c0 > 0.

(2.2)
Its inverse transformation is found to be

u(x, t) = w(x, t)− j(c0+ q)

� x

0

e−jc0(x−y)w(y, t)dy. (2.3)

The transformation (2.2) transforms system (2.1) into the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t � 0,

wx(1, t) = U(t) + d(t) + j(c0 + q)w(1, t)

+c0(c0 + q)

� 1

0

e−jc0(1−x)w(x, t)dx, t � 0.

(2.4)

It is seen that the anti-stable factor −jqu(0, t) in (2.1)
becomes the dissipative term jc0w(0, t) in (2.4) under the
transformation (2.2), both at the end x = 0. In what
follows, we consider the stabilization of system (2.4) until
the final step to go back the system (2.1) under the inverse
transformation (2.3). Introduce a new controller U0(t) so
that

U(t) = U0(t)− j(c0 + q)w(1, t)

−c0(c0 + q)

� 1

0

e−jc0(1−x)w(x, t)dx.
(2.5)

Then (2.4) becomes
⎧
⎪⎨

⎪⎩

wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t � 0,

wx(1, t) = U0(t) + d(t).

(2.6)

We write (2.6) into the operator form. Define the operator
A as follows:�

Af(x) = −jf ′′(x),
D(A) = {f ∈ H2(0, 1)

�� f ′(0) = jc0f(0), f
′(1) = 0}.

(2.7)
Then we can write (2.6) in H as

d

dt
w(·, t) = Aw(·, t) + B(U0(t) + d(t)), B = −jδ(x− 1).

(2.8)

The following Lemma 2.1 is straightforward.

Lemma 2.1. Let A be defined by (2.7). Then each eigen-
value of A is algebraically simple, and there exists a
sequence of eigenfunctions of A, which form a Riesz ba-
sis for H. Therefore, A generates an exponential stable
C0-semigroup on H. In addition, B is admissible to the
semigroup eAt (Weiss (1989)).

Let ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1(t) =

� 1

0

(2x3 − 3x2)w(x, t)dx,

y2(t) =

� 1

0

(12x− 6)w(x, t)dx.

(2.9)

Since B is admissible to the C0-semigroup eAt, the solution
of (2.6) is understood in the sense of

d

dt
⟨w(·, t), f⟩ = ⟨w(·, t),A∗f⟩

−jf(1)(U0(t) + d(t)), ∀ f ∈ D(A∗).

(2.10)
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Let f(x) = 2x3 − 3x2 ∈ D(A∗) in (2.10) to get

ẏ1(t) = jU0(t) + jd(t)− jy2(t). (2.11)

That is to say, for any initial value w(·, 0) ∈ H, the (weak)
solution of (2.6) must satisfy (2.11).

Remark 2.1. From (2.10), y1(t) and y2(t) can be chosen

as y1(t) =
� 1

0
f(x)w(x, t)dx, y2(t) =

� 1

0
(A∗f)(x)w(x, t)dx

where f ∈ D(A∗), f(1) ̸= 0. Our choice is only a special
case by this general principle.

Design the high gain estimators for y1(t) and d(t) as
follows:⎧

⎪⎨

⎪⎩

˙̂y(t) = j(U0(t) + d̂(t))− jy2(t)−
1

ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)),

(2.12)

where ε > 0 is the design small parameter and d̂(t) is
regarded as an approximation of d(t).

The state feedback controller to (2.6) is designed as
follows:

U0(t) = −d̂(t). (2.13)

It is clearly seen from (2.13) that this controller is just
used to cancel (compensate) the disturbance d because
A generates an exponential stable C0-semigroup. This
estimation/cancelation strategy (2.13) is just from ADRC.
Under the feedback (2.13), the closed-loop system of (2.6)
becomes⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt(x, t) = −jwxx(x, t), x ∈ (0, 1), t > 0,

wx(0, t) = jc0w(0, t), t � 0,

wx(1, t) = −d̂(t) + d(t), t � 0.

˙̂y(t) = −jy2(t)−
1

ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)).

(2.14)

Returning back to system (2.1) by the inverse transfor-
mation (2.3), feedback control (2.5) and (2.13), and new
variable (2.9), we have the main result of this section.

Theorem 2.1. Suppose that |d(t)| � M0 and ḋ(t) is also
uniformly bounded measurable. Then for any initial value
u(·, 0) ∈ H, the closed-loop system of (2.1) following:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut(x, t) = −juxx(x, t), x ∈ (0, 1), t > 0,

ux(0, t) = −jqu(0, t), t � 0,

ux(1, t) = −d̂(t)− j(c0 + q)u(1, t)

+q(c0 + q)

� 1

0

ejq(1−x)u(x, t)dx+ d(t), t � 0,

(2.15)

admits a unique solution (u, ut)
⊤ ∈ C(0,∞;H), and the

solution of system (2.15) tends to any arbitrary given
vicinity of zero as t → ∞, ε → 0, where the feedback
control is:

U(t) = −d̂(t)− j(c0 + q)u(1, t)

+q(c0 + q)

� 1

0

ejq(1−x)u(x, t)dx, t � 0
(2.16)

and d̂(t) satisfies

⎧
⎪⎨

⎪⎩

˙̂y(t) = −jy2(t)−
1

ε
(ŷ(t)− y1(t)),

˙̂
d(t) =

j

ε2
(ŷ(t)− y1(t)),

(2.17)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(t) =

� 1

0

(2x3 − 3x2)
�
u(x, t)

+j(c0 + q)

� x

0

ejq(x−y)u(y, t)dy
�
dx,

y2(t) =

� 1

0

(12x− 6)
�
u(x, t)

+j(c0 + q)

� x

0

ejq(x−y)u(y, t)dy
�
dx.

(2.18)

3. OUTPUT FEEDBACK STABILIZATION FOR
UNCERTAIN PDES

The material of this section comes from Feng and Guo
(2016) where it considers output feedback stabilization for
the following anti-stable one-dimensional wave equation
with general disturbance:⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) = wxx(x, t), 0 < x < 1, t > 0,

wx(0, t) = −qwt(0, t), t ≥ 0,

wx(1, t) = d(t) + u(t), t ≥ 0,

w(x, 0) = w0(x), wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

y(t) = {w(0, t), wt(0, t), w(1, t)}, t ≥ 0,

(3.1)

where y(t) is the output (measurement), u(t) the in-
put (control), (w0(x), w1(x)) the initial value, and d ∈
L∞(0,∞) or d ∈ L2(0,∞) which represents an unknown
external disturbance.

3.1 Stabilization without disturbance

To stabilize the system with external disturbance, we must
first know how to stabilize system without disturbance. In
this subsection, we look at system (3.1) without distur-
bance, which is re-written as

⎧
⎪⎨

⎪⎩

wtt(x, t) = wxx(x, t),

wx(0, t) = −qwt(0, t), wx(1, t) = u(t),

yo(t) = {w(0, t), wt(0, t)}.
(3.2)

Here it is noted that the output yo(t) is fewer than the
original output y(t). For stabilization, yo(t) is almost
minimal: the signal w(0, t) only cannot make system (3.2)
exactly observable while wt(0, t) only cannot identify the
zero eigenfunction. In this case, we can stabilize system
(3.2) by introducing the following transformation:

w̃(x, t) = w(x, t) +W (x, t), (3.3)

where W (x, t) is governed by
⎧
⎪⎨

⎪⎩

Wt(x, t) +Wx(x, t) = 0,

W (0, t) = −c2w(0, t),

W (x, 0) = W0(x),

(3.4)

with c2 being a positive turning parameter and W0(x) the
arbitrary initial value. Combining (3.2) and (3.4), w̃(x, t)
satisfies
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̃tt(x, t) = w̃xx(x, t),

w̃x(0, t) =
c2 − q

1− c2
w̃t(0, t),

w̃x(1, t) = u(t) +Wx(1, t).

(3.5)

It is seen that there is a “passive damper” at the left end
x = 0, provided we choose c2−q

1−c2
> 0. The right end x = 1

can be changed by the control:

u(t) = −Wx(1, t)− c3w̃(1, t)

= Wt(1, t)− c3w(1, t)− c3W (1, t),
(3.6)

where c3 is a positive turning parameter. With control
(3.6), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̃tt(x, t) = w̃xx(x, t),

w̃x(0, t) =
c2 − q

1− c2
w̃t(0, t),

w̃x(1, t) = −c3w̃(1, t).

(3.7)

The presence of c3 > 0 in (3.6) or (3.7) takes away zero
eigenvalue from the corresponding control free system.
Under (3.6), we have the following closed-loop of system
(3.2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) = wxx(x, t),

wx(0, t) = −qwt(0, t),

wx(1, t) = Wt(1, t)− c3w(1, t)− c3W (1, t),

Wt(x, t) +Wx(x, t) = 0,

W (0, t) = −c2w(0, t).

(3.8)

Theorem 3.1. Suppose that c2−q
1−c2

> 0. Then, for any initial

value (w(·, 0), wt(·, 0),W (·, 0)) ∈ H × H1(0, 1), system
(3.8) admits a unique solution (w,wt,W ) ∈ C(0,∞;H ×
H1(0, 1)) which satisfies, for any t ≥ 0,

∥(w(·, t), wt(·, t),W (·, t))∥H×H1(0,1) ≤ Le−ωt (3.9)

for some positive constants L and ω.

3.2 Disturbance estimator

In this subsection, we come back to design a disturbance
estimator for system (3.1). To this purpose, we first pro-
pose the following auxiliary system to bring the distur-
bance into an exponentially stable system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŵtt(x, t) = ŵxx(x, t),

ŵx(0, t) = −qwt(0, t)− c0[w(0, t)− ŵ(0, t)]

−c1[wt(0, t)− ŵt(0, t)],

ŵx(1, t) = u(t),

(3.10)

where c0 and c1 are two positive turning parameters. It is
seen that system (3.10) is completely determined by the
input u(t) and the partial output of the original system
(3.1). Let

ε(x, t) = w(x, t)− ŵ(x, t). (3.11)

By (3.1) and (3.10), the error ε(x, t) is governed by
�

εtt(x, t) = εxx(x, t),

εx(0, t) = c0ε(0, t) + c1εt(0, t), εx(1, t) = d(t),
(3.12)

which brings disturbance into a stable system. An infinite-
dimensional disturbance estimator can be designed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂tt(x, t) = d̂xx(x, t),

d̂x(0, t) = c0d̂(0, t) + c1d̂t(0, t),

d̂(1, t) = w(1, t)− ŵ(1, t),

ŵtt(x, t) = ŵxx(x, t),

ŵx(0, t) = −qwt(0, t)− c0[w(0, t)− ŵ(0, t)]

−c1[wt(0, t)− ŵt(0, t)],

ŵx(1, t) = u(t),

(3.13)

where d̂x(1, t) can be considered as an approximation of
d(t). This time, system (3.13) is completely determined by
the input u(t) and the output y(t) of the original system
(3.1).

Theorem 3.2. Suppose that d ∈ L∞(0,∞) or d ∈
L2(0,∞). Then, for any initial value (w0, w1, d̂(·, 0),
d̂t(·, 0), ŵ(·, 0), ŵt(·, 0)) ∈ H3 with the compatible condi-

tion w0(1) − ŵ(1, 0) = d̂(1, 0), there exists a unique solu-

tion (d̂, d̂t, ŵ, ŵt) ∈ C(0,∞;H2) to disturbance estimator
(3.13) such that

d̂x(1, ·)− d(·) ∈ L2(0,∞). (3.14)

If we assume further that (d̂(·, 0)−w0(·)+ŵ(·, 0), d̂t(·, 0)−
w1(·) + ŵt(·, 0)) ∈ D(A ), then there exist two positive
constants L2 and ω2 such that

|d̂x(1, t)− d(t)| ≤ L2e
−ω2t, ∀ t ≥ 0, (3.15)

where the operator A : D(A )(⊂ H0) → H0 is defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A (f, g) = (g, f ′′), ∀ (f, g) ∈ D(A ),

D(A ) =
�
(f, g) ∈ H2(0, 1)×H1(0, 1)

| f ′(0) = c0f(0) + c1g(0), f(1) = g(1) = 0
�
.

(3.16)

3.3 Disturbance estimator based output feedback

In view of the target system (3.8), we design naturally an
output feedback of control plant (3.1) by compensating the
disturbance:

u(t) = −d̂x(1, t)+Wt(1, t)− c3w(1, t)− c3W (1, t), (3.17)

where d̂x(1, t) is given by the disturbance estimator (3.13)
and W (x, t) is given by (3.4). Compared with (3.6), it is
seen that the first term of (3.17) on the right is used to
cancel (compensate) the disturbance, and the remaining
terms are just the stabilizing output feedback (3.6). This
is keeping with the spirit of ADRC. Under (3.17), we have
the following closed-loop of system (3.1):
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̃tt(x, t) = w̃xx(x, t),

w̃x(0, t) =
c2 − q

1− c2
w̃t(0, t),

w̃x(1, t) = u(t) +Wx(1, t).

(3.5)

It is seen that there is a “passive damper” at the left end
x = 0, provided we choose c2−q

1−c2
> 0. The right end x = 1

can be changed by the control:

u(t) = −Wx(1, t)− c3w̃(1, t)

= Wt(1, t)− c3w(1, t)− c3W (1, t),
(3.6)

where c3 is a positive turning parameter. With control
(3.6), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w̃tt(x, t) = w̃xx(x, t),

w̃x(0, t) =
c2 − q

1− c2
w̃t(0, t),

w̃x(1, t) = −c3w̃(1, t).

(3.7)

The presence of c3 > 0 in (3.6) or (3.7) takes away zero
eigenvalue from the corresponding control free system.
Under (3.6), we have the following closed-loop of system
(3.2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) = wxx(x, t),

wx(0, t) = −qwt(0, t),

wx(1, t) = Wt(1, t)− c3w(1, t)− c3W (1, t),

Wt(x, t) +Wx(x, t) = 0,

W (0, t) = −c2w(0, t).

(3.8)

Theorem 3.1. Suppose that c2−q
1−c2

> 0. Then, for any initial

value (w(·, 0), wt(·, 0),W (·, 0)) ∈ H × H1(0, 1), system
(3.8) admits a unique solution (w,wt,W ) ∈ C(0,∞;H ×
H1(0, 1)) which satisfies, for any t ≥ 0,

∥(w(·, t), wt(·, t),W (·, t))∥H×H1(0,1) ≤ Le−ωt (3.9)

for some positive constants L and ω.

3.2 Disturbance estimator

In this subsection, we come back to design a disturbance
estimator for system (3.1). To this purpose, we first pro-
pose the following auxiliary system to bring the distur-
bance into an exponentially stable system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ŵtt(x, t) = ŵxx(x, t),

ŵx(0, t) = −qwt(0, t)− c0[w(0, t)− ŵ(0, t)]

−c1[wt(0, t)− ŵt(0, t)],

ŵx(1, t) = u(t),

(3.10)

where c0 and c1 are two positive turning parameters. It is
seen that system (3.10) is completely determined by the
input u(t) and the partial output of the original system
(3.1). Let

ε(x, t) = w(x, t)− ŵ(x, t). (3.11)

By (3.1) and (3.10), the error ε(x, t) is governed by
�

εtt(x, t) = εxx(x, t),

εx(0, t) = c0ε(0, t) + c1εt(0, t), εx(1, t) = d(t),
(3.12)

which brings disturbance into a stable system. An infinite-
dimensional disturbance estimator can be designed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂tt(x, t) = d̂xx(x, t),

d̂x(0, t) = c0d̂(0, t) + c1d̂t(0, t),

d̂(1, t) = w(1, t)− ŵ(1, t),

ŵtt(x, t) = ŵxx(x, t),

ŵx(0, t) = −qwt(0, t)− c0[w(0, t)− ŵ(0, t)]

−c1[wt(0, t)− ŵt(0, t)],

ŵx(1, t) = u(t),

(3.13)

where d̂x(1, t) can be considered as an approximation of
d(t). This time, system (3.13) is completely determined by
the input u(t) and the output y(t) of the original system
(3.1).

Theorem 3.2. Suppose that d ∈ L∞(0,∞) or d ∈
L2(0,∞). Then, for any initial value (w0, w1, d̂(·, 0),
d̂t(·, 0), ŵ(·, 0), ŵt(·, 0)) ∈ H3 with the compatible condi-

tion w0(1) − ŵ(1, 0) = d̂(1, 0), there exists a unique solu-

tion (d̂, d̂t, ŵ, ŵt) ∈ C(0,∞;H2) to disturbance estimator
(3.13) such that

d̂x(1, ·)− d(·) ∈ L2(0,∞). (3.14)

If we assume further that (d̂(·, 0)−w0(·)+ŵ(·, 0), d̂t(·, 0)−
w1(·) + ŵt(·, 0)) ∈ D(A ), then there exist two positive
constants L2 and ω2 such that

|d̂x(1, t)− d(t)| ≤ L2e
−ω2t, ∀ t ≥ 0, (3.15)

where the operator A : D(A )(⊂ H0) → H0 is defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A (f, g) = (g, f ′′), ∀ (f, g) ∈ D(A ),

D(A ) =
�
(f, g) ∈ H2(0, 1)×H1(0, 1)

| f ′(0) = c0f(0) + c1g(0), f(1) = g(1) = 0
�
.

(3.16)

3.3 Disturbance estimator based output feedback

In view of the target system (3.8), we design naturally an
output feedback of control plant (3.1) by compensating the
disturbance:

u(t) = −d̂x(1, t)+Wt(1, t)− c3w(1, t)− c3W (1, t), (3.17)

where d̂x(1, t) is given by the disturbance estimator (3.13)
and W (x, t) is given by (3.4). Compared with (3.6), it is
seen that the first term of (3.17) on the right is used to
cancel (compensate) the disturbance, and the remaining
terms are just the stabilizing output feedback (3.6). This
is keeping with the spirit of ADRC. Under (3.17), we have
the following closed-loop of system (3.1):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) = wxx(x, t),

wx(0, t) = −qwt(0, t),

wx(1, t) = d(t)− d̂x(1, t) +Wt(1, t)− c3w(1, t)

−c3W (1, t),

d̂tt(x, t) = d̂xx(x, t),

d̂x(0, t) = c0d̂(0, t) + c1d̂t(0, t),

d̂(1, t) = w(1, t)− ŵ(1, t),

ŵtt(x, t) = ŵxx(x, t),

ŵx(0, t) = −qwt(0, t)− c0[w(0, t)− ŵ(0, t)]

−c1[wt(0, t)− ŵt(0, t)],

ŵx(1, t) = −d̂x(1, t) +Wt(1, t)− c3w(1, t)

−c3W (1, t),

Wt(x, t) +Wx(x, t) = 0,

W (0, t) = −c2w(0, t).

(3.18)

Theorem 3.3. Suppose that d ∈ L∞(0,∞) or d ∈
L2(0,∞). Then, for any initial value (w0, w1, d̂(·, 0),
d̂t(·, 0), ŵ(·, 0), ŵt(·, 0),W0) ∈ H3×H1(0, 1) with the com-

patible condition w0(1) − ŵ(1, 0) = d̂(1, 0), Then, system

(3.18) admits a unique solution (w,wt, d̂, d̂t, ŵ, ŵt,W ) ∈
C(0,∞;H3 ×H1(0, 1)) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

� ∞

0

|d̂x(1, t)− d(t)|2dt

+ sup
t∈[0,∞)

∥(d̂(·, t), d̂t(·, t), ŵ(·, t), ŵt(·, t))∥H2 < ∞,

lim
t→∞

∥(w(·, t), wt(·, t),W (·, t))∥H×H1(0,1) = 0.

(3.19)

If we assume further that (d̂(·, 0)−w0(·)+ŵ(·, 0), d̂t(·, 0)−
w1(·) + ŵt(·, 0)) ∈ D(A ), then

|d̂x(1, t)− d(t)| ≤ L3e
−ω3t, t ≥ 0 (3.20)

for some constants L3 and ω3.

Notes: Section 1 comes from Guo and Zhou (2016);
Section 2 comes from Guo and Liu (2014), and Section
3 comes from Feng and Guo (2016). For other ADRC
application to PDEs, we refer to Guo and Jin (2015, 2013);
Guo and Zhou (2015, 2016)
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