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Problem Definition and Preliminaries
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Problem Formulation

Settings

• H: a d-dimensional Hilbert space that characterizes the state space

of a quantum system

• L(H): the space of linear operators over H

•
{

Bi
}d2
i=1

: an orthonormal basis of L(H) with Tr(B†iBj) = δij and

B†i = Bi

Quantum State ρ ∈ L(H) as a density operator can be expressed by

ρ =

d2∑
i=1

θiBi

where θi = Tr(ρBi).
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Problem Formulation

Definition. A positive operator-valued measurement (POVM) over H,

denoted by {Mm}Mm=1 with
∑M
m=1 M†mMm = I.

Then Em
4
= M†mMm can be expressed as

Em =

d2∑
i=1

βmiBi

for each 1 ≤ m ≤M , where βmi = Tr(EmBi).

When the quantum state ρ is being measured under the POVM

{Mm}Mm=1, the probability of observing outcome m is

pm = Tr(Emρ) = β>mθ,

where βm = [βm1, · · · , βmd2 ]> and θ = [θ1, · · · , θd2 ]>.
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Problem Formulation

Denoting
p = [p1, . . . , pM ]> ∈ RM

A = [β1, . . . ,βM ]> ∈ RM×d
2

we have the following fundamental quantum measurement description in

the form of a linear algebraic equation:

p = Aθ.

The tomography of an unknown quantum state ρ is equivalent to

identifying the vector θ, where A is known and p is estimated by ex-

perimental realizations of measuring ρ from the POVM {Mm}Mm=1.
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Tomography Procedure

1. Prepare n identical copies of an uncertain quantum state ρ;

2. Perform the POVM measurement {Mm}Mm=1 independently for the

n copies;

3. Record the number of times that the outcome m is observed,

denoted by #m, from the n experiments for each 1 ≤ m ≤M .

Then

p̂m =
#m

n

is a natural estimator of the probability pm, leading to

p̂m = β>mθ + em,

where em = p̂m − pm is the estimation error.
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Estimation error

Define i.i.d. Bernoulli random variables b
(m)
l for 1 ≤ l ≤ n, which takes

value 1 with probability pm and 0 with probability 1− pm. Then there

holds

em = p̂m − pm =

∑n
l=1 b

(m)
l

n
− pm =

n∑
l=1

b
(m)
l − pm

n
.

Note that (b
(m)
l − pm)/n takes value (1− pm)/n with probability pm and

−pm/n with probability 1− pm.
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Tomography Model

Linear regression problem:

y = Aθ + e

where y = [p̂1, · · · , p̂M ]> and e = [e1, · · · , eM ]>.

key differences

1. the number M of measurements is fixed

2. the variance of e decreases as the number n of copies

Natural prior knowledge on the problem

1. Heteroscedasticity

E(em) = 0, V(em) = E(em)2 = (pm − p2
m)/n

2. Tr(ρ) = 1

3. ρ is of low rank
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Standard Least Squares

The least squares (LS) solution is

θ̂LS = arg min
θ

(y −Aθ)>(y −Aθ)

= (A>A)−1A>y

The θ̂LS admit the following properties:

• θ̂LS is unbiased, namely, E
(
θ̂LS
)

= θ;

• MSE
(
θ̂LS
) 4

= E(θ̂LS − θ)(θ̂LS − θ)>

= (A>A)−1A>PA(A>A)−1

where P = diag
(
[p1 − p2

1, · · · , pM − p2
M ]
)
/n.
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Standard Least Squares

Remark:

• Standard LS neglects the fact that the em have different variances,

although they are all zero mean.

• The condition that A be full column rank means the POVM

{Mm}Mm=1 is informationally complete.
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Regularized Linear Regressions
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Weighted Linear Regression: Heteroscedasticity

The weighted least squares (WLS) estimate

θ̂WLS = arg min
θ

(y −Aθ)>W(y −Aθ)

= (A>WA)−1A>Wy

W = P−1 = n · diag
(
[1/(p1 − p2

1), · · · , 1/(pM − p2
M )]
)

Property of the WLS estimator

• θ̂WLS is unbiased, i.e., E
(
θ̂WLS

)
= θ;

• MSE
(
θ̂WLS

)
= (A>WA)−1.

Suppose rank(A) = d2 and let θ̂ be any linear unbiased estimate

for θ. Thus we have

MSE(θ̂) ≥MSE(θ̂WLS).
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Weighted Linear Regression

In practice, the matrix W is unknown and a feasible solution is to use the

estimate

θ̂AWLS = (A>ŴA)−1A>Ŵy,

where W is replaced by

Ŵ = n · diag
(
[1/(p̂1 − p̂2

1), · · · , 1/(p̂M − p̂2
M )]
)
.

There holds for large n that

θ̂AWLS − θ̂WLS = Op(1/
√
n)(A>WA)−1A>We.
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Constrained Weighted Regression: Unit Trace

The quantum state has an essential requirement

Tr(ρ) = 1.

Note that

ρ =

d2∑
i=1

θiBi.

This becomes

θ>Tr(B) = 1

where Tr(B)
4
= [Tr(B1), · · · ,Tr(Bd2)]>.

The constrained weighted least squares (CWLS) estimate

θ̂CWLS = arg min
θ> Tr(B)=1

(y −Aθ)>W(y −Aθ).
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Constrained Weighted Regression

Proposition 1. Suppose rank(A) = d2. The CWLS estimate

θ̂CWLS has the following closed-form solution

θ̂CWLS = θ̂WLS − C Tr(B)

Tr(B)>C Tr(B)

(
Tr(B)>θ̂WLS − 1

)
where C = (A>WA)−1 and its MSE matrix is

MSE
(
θ̂CWLS

) 4
= E(θ̂CWLS − θ)(θ̂CWLS − θ)>

= F

where

F
4
= C − C Tr(B) Tr(B)>C

Tr(B)>C Tr(B)
.
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Constrained Weighted Regression

θ̂CWLS is optimal in the sense that

MSE(θ̂) ≥MSE(θ̂CWLS).

where θ̂ is any unbiased estimate for θ that is affine y and satisfies

the constraint θ>Tr(B) = 1.
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Regularized Weighted Regression

Two motivations

• When the POVM {Mm}Mm=1 is under-determinate, the matrix A

might not have full column rank;

• ρ would be of low rank.

The nuclear norm of ρ is

‖ρ‖?
4
=

d∑
i=1

σi(ρ) =

d∑
i=1

√
λi(ρ†ρ) =

d∑
i=1

λi(ρ) = Tr(ρ) = 1

The nuclear norm of ρ†ρ is

‖ρ†ρ‖?
4
=

d∑
i=1

σi(ρ
†ρ) = Tr(ρ†ρ)

= Tr


 d2∑
i=1

θiBi

† d2∑
j=1

θjBj


 =

d2∑
i=1

|θi|2 = ‖θ‖2
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Regularized Weighted Regression

Consider the following problem

minimize
θ

(y −Aθ)>W(y −Aθ)

subject to θ> Tr(B) = 1, ‖θ‖2 ≤ c

which is equivalent to the constrained regularized weighted least squares

(CRWLS) estimate

minimize
θ

(y −Aθ)>W(y −Aθ) + γ‖θ‖2

subject to θ>Tr(B) = 1.

where γ ≥ 0 is a regularization parameter.
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Regularized Weighted Regression

The CRWLS estimate is given by

θ̂CRWLS = θ̂RWLS − C Tr(B)
Tr(B)>θ̂RWLS − 1

Tr(B)>C Tr(B)

where C = (A>WA+γI)−1 and θ̂RWLS is the regularized weighted

least squares (RWLS) estimate

θ̂RWLS 4= arg min
θ

(y−Aθ)>W(y−Aθ) + γ‖θ‖2

= CA>Wy.
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Regularized Weighted Regression

The MSE matrix of θ̂CRWLS is

MSE(θ̂CRWLS)
4
= E(θ̂CRWLS − θ)(θ̂CRWLS − θ)>

= F − γF (I− γθθ>)F

where F = C − C Tr(B) Tr(B)>C
Tr(B)>C Tr(B)

. There holds

MSE(θ̂CRWLS) <MSE(θ̂CWLS),

if 0 < γ < 2/
(
‖θ‖2 − 1

‖Tr(B)‖2
)
.

Remark

• θ̂CWLS has the smallest MSE among all the unbiased estimate of θ

affine with y

• θ̂CRWLS has a smaller MSE than θ̂CWLS even if θ̂CRWLS is also

affine with y.
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Tuning γ: Minimizing risk

Introduce the risk for the estimate θ̂CRWLS

R(θ̂CRWLS)
4
= E

(
Aθ −Aθ̂CRWLS

)>
W
(
Aθ −Aθ̂CRWLS

)
= γ2θ>FA>WAFθ + Tr

(
FA>WAFA>WA

)
which is a reference measure to characterize how well the estimate

θ̂CRWLS can achieve.

Tune γ by the risk

γ̂R(θ̂CRWLS)
4
= arg min

γ≥0
R(θ̂CRWLS)

is the optimal regularization parameter γ for any given data in the risk

sense.
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Tuning γ: An implementable method

Define the cost function

C(γ)
4
= (y −Aθ̂CRWLS)>W(y −Aθ̂CRWLS) + 2 Tr

(
AH

)
where

H = CA>W − C Tr(B)
Tr(B)>CA>W

Tr(B)>C Tr(B)

U(γ) is an unbiased estimate for the risk measure R(θ̂CRWLS), namely,

EC(γ) = R(θ̂CRWLS)

An implementable tuning estimator is

γ̂u(θ̂CRWLS) = arg min
γ≥0

C(γ)
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An Equivalent Regression Model
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An Equivalent Regression Model

Recall the linear model with an equality constraint regression model

y = Aθ + e, subject to θ>Tr(B) = 1

Construct an orthogonal matrix Q of size d2 × d2 as follows. The

first row of Q is

Tr(B)>/‖Tr(B)‖

and the remaining rows are chosen such that Q is orthogonal.

Thus, we have

y = AQ>︸ ︷︷ ︸
D

Qθ︸︷︷︸
β

= Dβ + e

D
4
= AQ> = [d,K], d = ATr(B)/‖Tr(B)‖

β
4
= Qθ = [β1,α

>]>, β1 = 1/‖Tr(B)‖.

24 / 43



An Equivalent Regression Model

The unconstrained linear model

z = y − 1

‖Tr(B)‖
d = Kα + e.

The RWLS estimate for the equivalent model is defined as

α̂RWLS = arg min
α

(z−Kα)>W(z−Kα)+γ‖α‖2

= Uz

where

U
4
= VK>W, V

4
= (K>WK + γI)−1.
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An Equivalent Regression Model

Intuitively, for an estimate α̂ of the unconstrained linear model, the

vector defined by

θ̂(α̂)
4
= Q>

[
1

‖Tr(B)‖
α̂

]
should be the corresponding estimate for constrained linear model and

independent of the choice of Q.

For any regularization parameter γ ≥ 0, there holds

θ̂(α̂RWLS) = θ̂CRWLS.

Moreover,

MSE
(
α̂RWLS(γ)

) 4
= E(α̂RWLS −α)(α̂RWLS −α)>

= γ2Vαα>V + VK>WKV.
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Asymptotically Optimal Regularization Gain

The risk for the estimate α̂RWLS can be similarly defined as

R(α̂RWLS)
4
= E

(
Kα−Kα̂RWLS

)>
W
(
Kα−Kα̂RWLS

)
and the resulting optimal regularization parameter is

γ̂R(α̂RWLS)
4
= arg min

γ≥0
R(α̂RWLS(γ)).

Let us construct an unbiased estimate for R(α̂RWLS)

Cu(γ)
4
= (z−Kα̂RWLS)>W(z−Kα̂RWLS) + 2 Tr

(
KU

)
ECu(γ) = R(α̂RWLS)
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Asymptotically Optimal Regularization Gain

Tune γ by

γ̂u(α̂RWLS)
4
= arg min

γ≥0
Cu(γ)

There hold

γ̂R(α̂RWLS) = γ̂R(θ̂CRWLS)

γ̂u(α̂RWLS) = γ̂u(θ̂CRWLS)
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Asymptotically Optimal Regularization Gain

Denote

Σ
4
= K>diag

(
[p1 − p2

1, · · · , pM − p2
M ]
)
K

Υ
4
= A>diag

(
[p1 − p2

1, · · · , pM − p2
M ]
)
A.

Suppose rank(A) = d2. The limits take place as the sample size

n −→∞ by

γ̂R(α̂RWLS) −→ γ? deterministically

γ̂u(α̂RWLS) −→ γ? almost surely
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Asymptotically Optimal Regularization Gain

• The limit

γ? =
Tr
(
Σ−1

)
α>Σ−1α

=
Tr
(
Υ−1

)
− Tr(B)>Υ−2 Tr(B)

Tr(B)>Υ−1 Tr(B)

θ>Υ−1θ − θ>Υ−1 Tr(B) Tr(B)>Υ−1θ
Tr(B)>Υ−1 Tr(B)

.

• There hold as n −→∞

n
(
γ̂R(α̂RWLS)− γ?

)
−→

3γ?
(
γ?α>Σ−2α− Tr

(
Σ−2

))
α>Σ−1α

deterministically and

√
n
(
γ̂u(α̂RWLS)− γ?

)
−→ N

(
0,

4(γ?)2α>Σ−3α(
α>Σ−1α

)2
)

in distribution.
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Numerical Examples
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Example 1

We consider the following quantum Werner state tomography for a

two-qubit system:

ρq = q|Ψ−〉〈Ψ−|+ 1− q
4

I

where |Ψ−〉 = (|01〉 − |10〉)/
√

2 and q ∈ [0, 1] is a parameter associated

with the state.

We take an orthonormal basis
{

Bi
}16

i=1
as

Bi =
1√
2
σj ⊗

1√
2
σk, i = 4j + k + 1

for j, k = 0, 1, 2, 3 from standard computational basis, where

σ0 = I2, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.
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Example 1

Let

|ϕ1〉 =
1√
6

[1, 1]>, |ϕ2〉 =
1√
6

[1,−1]>, |ϕ3〉 =
1√
6

[1, i]>,

|ϕ4〉 =
1√
6

[1,−i]>, |ϕ5〉 =
1√
3

[1, 0]>, |ϕ6〉 =
1√
3

[0, 1]>.

Then

Em = |ϕj〉〈ϕj | ⊗ |ϕk〉〈ϕk|, m = 6(j − 1) + k,

for j, k = 1, 2, . . . , 6 form our measurement basis
{

Mm

}36

m=1
with

Mm = |ϕj〉 ⊗ |ϕk〉.

The measurement set
{

Mm

}36

m=1
is overcomplete and the matrix

A = (β1, . . . , β36)> ∈ R36×16 has full column rank.
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Small Sample Size
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Figure 1: MSEs for estimating Werner states with n = 110 copies.
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Medium Sample Size
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Figure 2: MSEs for estimating Werner states with n = 1100 copies.
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Large Sample Size
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Figure 3: MSEs for estimating Werner states with n = 11000 copies.
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Example 1: Remarks

• The experimental estimates are approaching the theoretical ones as

the number of samples n grows large for all four estimates, LS,

WLS, CWLS, and CRWLS, which validates the theoretical results;

• For small sample size (n = 110), the WLS, CWLS, and CRWLS are

apparently producing worse experimental mean-square error

compared to LS;

• For relatively larger sample size (n = 11000), the WLS, CWLS, and

CRWLS all provide significant improvments compared to LS.
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Example 2

Consider exactly the same quantum state and tomography setup as in

Example 1. Let W = I in θ̂CRWLS so that we define

θ̂CRLS = θ̂CRWLS
∣∣
W=I

as the unweighted CRLS estimate. The regularization gain γ is selected

under the optimal value γ̂R in the risk sense and its unbiased estimate γ̂u
from, under which for any ρq we carry out the tomography procedure for

1000 rounds based on n = 110, 1100 copies, respectively.
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Small Sample Size
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Figure 4: CRLS vs. LS estimates for Werner states with n = 110 copies.
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Medium Sample Size
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Figure 5: CRLS vs. LS estimates for Werner states with n = 1100 copies.
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Example 2: Remarks

• With n = 110, the regularizer for θ̂CRLS significantly improves the

estimation accuracy compared to θ̂LS under both γ̂R and γ̂u.;

• While with n = 1100, for relatively large q, the advantage of θ̂CRLS

is no longer obvious compared to θ̂LS since in this case, the use of

the weight W becomes essential for the performance.
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Conclusions
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Conclusions

• We have studied a series of linear regression methods for quantum

state tomography based on regularization.

• With complete or over-complete measurement bases, the empirical

data was shown to be useful for the construction of a weighted LSE

from the measurement outcomes of an unknown quantum state.

• For general measurement bases, either complete or incomplete, we

prove that `2-regularization with proper regularization parameter

could yield even lower mean-square error under a penalty in bias.

• An explicit formula was established for the regularization parameter

under an equivalent regression model, which is asymptotic optimal

as the number of samples grows to infinity for both theoretical and

practical risk metrics.
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Thanks for your listening



Questions?
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