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Abstract—This paper considers variable selection and
identification of dynamic additive nonlinear systems via
kernel-based nonparametric approaches, where the number
of variables and additive functions may be large. Variable
selection aims to find which additive functions contribute
and which do not. The proposed variable selection consists
of two successive steps. At the first step, one estimates
each additive function by kernel-based nonparametric iden-
tification approaches without suffering from the curse of
dimensionality. At the second step, a nonnegative garrote
estimator is applied to identify which additive functions are
nonzero by utilizing the obtained nonparametric estimates
of each function. Under weak conditions, the nonparametric
estimates of each additive function can achieve the same
asymptotic properties as for 1D nonparametric identifica-
tion based on kernel functions. It is also established that the
nonnegative garrote estimator turns a consistent estimate
for each additive function into a consistent variable selec-
tion with probability one as the number of samples tends
to infinity. Two simulation examples are presented to verify
the effectiveness of the variable selection and identification
approaches proposed in the paper.

Index Terms—Additive nonlinear systems, asymptotic
normality, backfitting estimator, high-dimensional systems,
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I. INTRODUCTION

L INEAR system identification aims at searching for a linear
system by means of fitting a set of input-output data gen-

erated from a practical system in some optimal sense. Its theory
is considerably matured and a number of identification methods
have been developed in the literature [1], [2]. Their effective
ness however depends on whether the behavior of practical sys-
tems is linear or not. These methods will achieve good results if
the practical system is indeed linear or is well approximated by a
linear system. When systems are strongly nonlinear, these meth-
ods will lead to a large modeling error. Accordingly, develop-
ment of identification methods for a nonlinear system becomes
very necessary.

Nonlinear system identification can be roughly divided into
two categories, parametric approaches and nonparametric ap-
proaches, according to the available a priori information. If the
structure of an unknown system is available a priori, then the
nonlinear system can be expressed by some nonlinear functions
together with some unknown parameters. In this case, the system
is actually characterized by these parameters and the resulting
identification problem is a nonlinear optimization problem. This
kind of methods are referred to as parametric approaches. If lit-
tle a priori information on the structure of nonlinear systems is
accessible, then identification approaches under such a setting
are called nonparametric approaches. Nonparametric nonlinear
identification is much harder.

Owing to lack of a priori structure information of the system
under consideration, any nonparametric approach has to rely
on a general structure. For example, the following nonlinear
autoregressive systems with exogenous inputs (NARX)

yk = f(yk−1 , . . . , yk−s , uk−1 , . . . , uk−t) + εk ,

k = 1, . . . , n (1)

is widely used in the literature, where yk , uk and εk are the out-
put, the input, and the observation noise at time k, respectively,
and the integers s and t are the orders of AR-part and X-part of
the system, respectively. It is clear that the dynamic behavior of
the NARX system is completely characterized by the unknown
d = (s+ t)-dimensional nonlinear function f( · ). The system
(1) includes many common nonlinear systems as special cases,
for example, Hammerstein systems [3]–[6] and Wiener systems
[7]–[10]. A nonparametric approach for estimating nonlinear
systems is usually implemented in a point-wise way without
a priori structure information. For any given point x of inter-
est, the value f(x) is estimated by a weighted average of the
observation points in a neighborhood of x. According to the
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TABLE I
SAMPLE SIZE n VERSUS DIMENSION d

d 1 2 3 4 5
n 100 1273 1.91E + 04 3.24E + 05 6.08E + 06

d 6 7 8 9 10
n 1.24E + 08 2.71E + 09 6.31E + 10 1.55E + 12 4.02E + 13

weight functions chosen, nonparametric approaches include di-
rect weight optimization [11], spline smoothing [12], kernel es-
timators [13], [14], local polynomial estimators [15] and others.
For instance, for the NARX system (1), a recursive multivariate
kernel estimator was introduced in [16] based on multivariate
kernel functions and stochastic approximation, and the corre-
sponding recursive estimate was shown to converge to the true
values with probability one. At the same time, the minimum
mean squared error (MMSE) estimator for the NARX system
(1) was studied in [17], where it was shown that local linear es-
timators (LLEs) are a linear asymptotic MMSE estimator for a
wide class of nonlinear systems. Later, a recursive LLE (RLLE)
for the NARX system (1) was proposed in [18], and the strong
consistency and the asymptotical mean squared error properties
were established.

Unfortunately, for a NARX system (1), any nonparametric
approach mentioned above is only feasible for low-dimensional
nonlinear systems. When the dimension d = s+ t of f( · ) (the
number of variables) is large, identification becomes more and
more harder due to the curse of dimensionality. To clearly illus-
trate this point, let us cite an example given in [19]. Consider
a d-dimensional regression function f( · ). For simplicity, let
d variables be distributed uniformly in [−1, 1]. Suppose that
we are interested in some point x0 ∈ [−1, 1]d . To reliably es-
timate f(x0), there must be enough observations near x0 due
to the influence of noise and uncertainty. For ease of presen-
tation, suppose that the neighborhood of x0 is a ball of radius
0.1 centered at x0 . Thus, the probability that a sample is in the
neighborhood of x0 is πd 0.1d

2d Γ(d/2+1) , where Γ( · ) is the Gamma
function. Suppose that 10 points in the neighborhood are ade-
quate. Then on average to have 10 or more points in the neigh-
borhood, the sample length n has to satisfy n πd 0.1d

2d Γ(d/2+1) ≥ 10

or n ≥ 10·20d ·Γ(d/2+1)
πd

.
To feel the relationship between the required sample length

n and the dimension d of the function, Table I presents the
required number of samples in terms of the dimension d. It is
seen that the required sample length n increases exponentially
with d. This phenomenon is called the curse of dimensionality,
which is a core problem for all local average approaches (not
restricted to identification). The reason why this happens is the
sparsity of a high-dimensional space.

According to the above analysis, any local averaged based
nonparametric approach is infeasible due to the curse of dimen-
sionality when the number of variables is large. To overcome
this difficulty, additive nonlinear models have been proposed in
the literature [20] in which each variable separately contributes
to the output by a 1D function. An additive nonlinear system
is an extension of linear systems and replaces each linear term
by a 1D unknown nonparametric nonlinear function. Recall that
in linear identification, one generally does not believe that the
model is linear. Rather, a linear model is a good first-order ap-
proximation and so it can uncover important properties. Additive
nonlinear models are obviously more general approximations.

Since its inception, additive nonlinear models have been exten-
sively studied in terms of fitting data to the system [20], [21]
and becoming the mostly applied nonlinear models in the litera-
ture. For example, in medical applications, additive models are
used for studying factors effecting patterns of insulin-dependent
diabetes mellitus in children [22], for investigating dependence
of the level of serum C-peptide on various heart attacks to estab-
lish the intensity of ischaemic heart disease risk factors in high-
incidence regions [20] and for evaluating treatment efficacy in
clinical trials [23]. In environmental research, additive models
are adopted to predict the atmospheric ozone concentration [24]
and to study the rainfalls [25]. Additive models are also utilized
in many other areas, e.g., for economics and consumer behavior
in microeconomics [26]. Though extensively used, identifica-
tion of such additive systems has not received much attention
in the field of system identification. While many works on the
additive (static) models have emerged in the regression anal-
ysis area [20], there has been little result on identification of
dynamic additive nonlinear systems. The main difficulties lie in
interconnection of all the additive functions and unavailability
of the structural information of the additive functions. To the
best of our knowledge, the literature in the system identifica-
tion field only includes identification of additive systems with
very restrictive structures [21], [27], [28]. It is unclear whether
the identification method in [21], [27], [28] can be extended
to higher-order additive nonlinear systems up to now. Further,
variable selection for an additive nonlinear system is virtually
untouched in the literature. This is an important topic. Due to
lack of a priori information, the structure of the model has to
be assumed to be rich enough to contain the true but unknown
nonlinear system. In other words, the model may include many
variables or functions that do not contribute. A consequence is
that the resultant model is sensitive in terms of prediction and
analysis. The goal of variable selection is to identify those vari-
ables that do not contribute, and once identified, those variables
will be removed from the model.

This paper aims at variable selection and identification of
high-dimensional dynamic additive nonlinear systems based on
nonparametric kernel function approaches. One of the goals is
to correctly find all the variables that contribute without suf-
fering from the curse of dimensionality. The existing literatures
[29], [30] on variable selection of additive nonlinear models are
mainly based on a spline approximation to the additive func-
tions, in which each function is represented by a linear com-
bination of spline basis functions. Thus, variable selection for
additive nonlinear models becomes a linear problem but an ap-
proximated one [31]. To the best of our knowledge, there has
not been any result reported on variable selection for additive
nonlinear models if functions are unknown and nonparametric.
Variable selection proposed in this paper is composed of two
successive steps: 1) performing nonparametric identification of
dynamic additive nonlinear systems based on kernel functions;
2) applying nonnegative garrote estimators [32], [33] to find
the nonzero functions by the nonparametric estimates of the
additive functions obtained at Step 1). The nonparametric iden-
tification at Step 1) is conducted in an iterative way and does not
suffer from the curse of dimensionality since only 1D and 2D
kernel estimations are involved. Further, the estimate for each
additive function can reach the optimal rate of convergence as
if other functions are exactly known. That is to say, each ad-
ditive function can be estimated with the same accuracy as a
1D function. The nonnegative garrote estimator can turn a con-
sistent initial nonparametric estimation into an estimate that is
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consistent not only in terms of estimation but also in terms of
variable selection.

The rest of the paper is organized as follows. Static additive
nonlinear models, additive nonlinear autoregressive system with
exogenous input (ANARX), and nonparametric identification
for 1D nonlinear function based on kernel functions are succes-
sively introduced in Section II. In Section III, variable selection
algorithms for a static additive nonlinear model are proposed
based on smooth backfitting kernel estimators and nonnegative
garrote estimators, respectively. Section IV extends variable se-
lection for the static additive nonlinear model in Section III to
the ANARX, and the detailed identification algorithms are also
given. Furthermore, the corresponding convergence properties
on kernel-based nonparametric identification and variable se-
lection for the ANARX are established. Section V presents two
simulation examples to show the performance of the variable
selection methods proposed in this paper for the static addi-
tive nonlinear models and the ANARX, respectively. Section VI
provides some concluding remarks. Finally, the main theoretical
proofs are collected in the Appendix.

Notation: P ( · ) represents the probability of a set and E
denotes the expectation. Let {Mn} be a sequence of real num-
bers or random variables. Mn = o(1) means that Mn → 0 as
n→ ∞ if {Mn} is a deterministic sequence, and indicates
Mn → 0 with probability one as n→ ∞ if {Mn} is a random
process. Similarly, Mn = O(1) means that {Mn} is bounded
by a finite positive number if {Mn} is a deterministic sequence,
and represents that {Mn} is bounded uniformly over n with
probability one by a finite positive number if {Mn} is a ran-
dom process. Meanwhile, let {Mn} be a sequence of random
variables. Then, Mn = oP (1) means that {Mn} converges in
probability to zero, i.e., ∀ε > 0, P (|Mn | > ε) → 0 as n→ ∞,
while Mn = OP (1) represents that {Mn} is bounded in proba-
bility (or stochastically bounded), i.e., ∀ε > 0 ∃L > 0 such that
P (|Mn | > L) < ε, ∀n. All integrals are taken over the support
of the relevant variables, so the lower and upper limits of the
definite integral are omitted throughout the paper.

II. PROBLEM FORMULATION

Our goal is to study variable selection and nonparametric
identification of additive nonlinear models. First, we consider a
static additive nonlinear model described by

yk = f0 +
d∑

j=1

fj (xkj ) + εk , k = 1, . . . , n (2)

where {yk , xk , k = 1, . . . , n} with xk = [xk1 , . . . , xkd ] are n
input-output samples from a random vector {Y,X} with X =
[X1 , . . . ,Xd ], d the number (dimension) of variables, f0 an un-
known constant term, fj ( · )’s unknown 1D additive functions,
and εk an observation noise. For identifiability, assume that f0 =
EY and Efj (Xj ) = 0 for j = 1, . . . , d if the process {yk , xk}
is stationary. Denote by fj = [fj (x1j ), fj (x2j ), . . . , fj (xnj )]T
the column vectors composed of the values of the addi-
tive functions fj ( · ), j = 1, . . . , d at the observation points
{x1j , . . . , xnj}. Thus, the model (2) is expressible as

Y = f01n +
d∑

j=1

fj + ε, (3)

where Y = [y1 , . . . , yn ]T , ε = [ε1 , . . . , εn ]T , and 1n repre-
sents an n-dimensional column vector with all elements being

1. This model is widely referenced in the statistical literature
and used in practice.

The second model under consideration is an additive non-
linear autoregressive system with exogenous input (ANARX),
which is more popular to the system identification community
and described as follows:

yk = f0 + f1(yk−1) + · · · + fs(yk−s) + fs+1(uk−1)

+ · · · + fs+t(uk−t) + εk , k = 1, . . . , n, (4)

where uk is the input, yk is the output observation corrupted by
the noise εk , and s and t are the delayed orders of the autore-
gressive part and the exogenous part, respectively. Similar to the
setting in the model (2), f0 is an unknown constant term, and
fj ( · ), j = 1, . . . , s+ t are some unknown univariate nonlinear
functions. Let the regressor vector φk = [yk , . . . , yk−s+1 , uk ,
. . . , uk−t+1]T and the function f(φk ) = f0 + f1(yk ) + · · · +
fs(yk−s+1) + fs+1(uk ) + · · · + fs+t(uk−t+1). The system (4)
can be rewritten in a compact form as yk+1 = f(φk ) + εk+1 .
The well-known Hammerstein systems extensively studied
in the literature [3]–[6] are a special case of the model (4).
Similarly, for identifiability, assume that f0 = Eyk ,Efj (yk ) =
0, j = 1, . . . , s, Efs+ l(uk ) = 0, l = 1, . . . , t if the process
{φk} is stationary. Further, let Y = [y1 , y2 , . . . , yn ]T , fj =
[fj (y1−j ), fj (y2−j ), . . . , fj (yn−j )]T , j = 1, . . . , s, fs+ l =
[fs+ l(u1−l), fs+ l(u2−l), . . . , fs+ l(un−l)]T , l = 1, . . . , t and
ε = [ε1 , . . . , εn ]T . The ANARX model (4) can be rewritten in
the form of the model (3) as

Y = f01n +
d∑

j=1

fj + ε, d
�
= s+ t. (5)

As a result, the static additive model (3) can be viewed as a
special case of the ANARX model (4). In particular, by defining

xkj =
{
yk−j , j = 1, . . . , s, k = 1, 2, . . . , n
uk−j+s , j = s+ 1, . . . , d, k = 1, 2, . . . , n

the model (2) becomes a special case of (4).
Though notation-wise, the above two models look similar,

we comment that there are some fundamental differences. In
fact, theoretical analysis of variable selection and identification
are much harder for the ANARX model (4) than that of the
static model (2). The main difficulty lies in the dynamics of the
ANARX system so that the strict stationarity and strong mixing
conditions required are easily satisfied for the static model but
not necessarily so for the ANARX model unless some additional
assumptions are imposed.

Since this paper intends to give the nonparametric estima-
tion of each additive function based on kernel functions, here
we first briefly introduce the two commonly used kernel-based
nonparametric estimators: the kernel estimator and the local
linear estimator, for a 1D case yk = f(xk ) + εk , xk ∈ R. High-
dimensional cases can be defined similarly.

The nonparametric approach for estimating nonlinear func-
tions is usually implemented in a point-wise way and the idea
is that only local observation points are useful for estimating a
nonlinear function at some points due to lack of a priori structure
information. For any given point x of interest, the value f(x) is
estimated by a weighted average of the observation points in a
neighborhood of x. For kernel-based nonparametric estimators,
the weighted average is implemented by a kernel function which
gives the points near x bigger weights and the points far from
x smaller weights. Kernel functions usually have a shape of a
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probability density function. It follows that nonparametric esti-
mates at a point can use only a part of all the observation points
due to locally weighted average, but all the observations are
used for estimating the whole function. A common assumption
on a kernel function K( · ) is given as follows.

Assumption 1: The kernel K( · ) is nonnegative, bound,
has compact support, and satisfies

∫
K(x)dx = 1 and

∫
x2

K(x)dx <∞. Also, K( · ) is symmetric about zero, and is
Lipschitz continuous, i.e., there exists a positive real numberC1
such that |K(s) −K(t)| ≤ C1 |s− t|.

The well-known kernel functions including Epanechnikov,
uniform, triangle, biweight, etc. [34] satisfy Assumption 1.

The (Nadaraya-Watson) kernel estimator
The (Nadaraya-Watson) kernel estimator, proposed in [13], [14],
for estimating a univariate nonlinear function at some point
x ∈ R of interest, is given by

f̂(x) =
n∑

k=1

Kh(xk − x)yk
/ n∑

k=1

Kh(xk − x)

where Kh( · ) = K(·/h)/h, K( · ) is a kernel function, and
h is the bandwidth of Kh( · ). In many cases (for example,
calculating the prediction error 1

n

∑n
k=1(yk − f̂(xk ))2), we

are more interested in the values of f( · ) at the observations
{x1 , . . . , xn}. Then f̂(xk ) = skY, where sk = [Kh(x1 − xk ),
. . . ,Kh(xn − xk )]/

∑n
i=1 Kh(xi − xk ) and Y = [y1 , y2 , . . . ,

yn ]T . Denote f̂ = [f̂(x1), . . . , f̂(xn )]T . We have f̂ = SY ,
where S = [sT1 , . . . , s

T
n ]T . Note that f̂ is a linear transforma-

tion of the output vector Y and S depends only on the kernel
functions K( · ) and the observation points {x1 , . . . , xn}. So S
is called a linear smoother matrix corresponding to the kernel
estimator.

The local linear estimator
Suppose that we are interested in the value of f( · ) at x. By
the Taylor expansion, f(xk ) ≈ f(x) + f ′(x)(xk − x) for the
observations xk in a neighborhood of x. As a result, the predic-
tion error criterion

∑n
k=1(yk − f(xk ))2 can be approximated

by
∑n

k=1(yk − f(x) − f ′(x)(xk − x))2 . Noting that the Taylor
expansion only holds in a small neighborhood of x, we add the
kernel function to control the size of the neighborhood and hence
the criterion function becomes

∑n
k=1(yk − f(x) − f ′(x)(xk −

x))2Kh(xk − x). Therefore, f( · ) and its derivative f ′( · ) at x
can be estimated by minimizing

n∑

k=1

(
yk − a− b(xk − x)

)2
Kh(xk − x) (6)

over two parameters (a, b) if x ∈ R. The solution of (6) is called
the local linear (LL) estimator. Given that the objective function
(6) is a quadratic function over (a, b), the LL estimator has an
explicit form

[f̂(x), f̂ ′(x)]T = (XTWX)−1XTWY, (7)

where

XT =
[

1 · · · 1
x1 − x · · · xn − x

]
,

W = diag [Kh(x1 − x), . . . ,Kh(xn − x)].

It is observed that the LL estimator f̂(x) of f(x) is also a linear
combination of the output vector Y , and hence f̂ = [f̂(x1),

. . . , f̂(xn )]T also has the form of f̂ = SY , where each row of S
corresponds to the weights of the LL estimator and S is referred
to as a linear smoother matrix corresponding to the LL estimator.
By some straightforward calculations, it is seen that the kernel
estimator is the minimizer of

∑n
k=1(yk − a)2Kh(xk − x) over

a and hence the kernel estimator is also called the local constant
estimator sometimes.

III. VARIABLE SELECTION AND IDENTIFICATION OF A STATIC

ADDITIVE NONLINEAR MODEL

In this section, we first consider the variable selection of the
static additive nonlinear model (2).

A. Variable Selection and Set Convergence Analysis

Recall that variable selection is to find which 1D function
fj ( · ) contributes and which one does not. This problem is very
important when the dimension d is very large. Denote the index
set of nonzero functions and its complement respectively by

I = {j : fj ( · ) �≡ 0}, Ic = {j : fj ( · ) ≡ 0} = {1, . . . , d} \ I
where fj ( · ) �≡ 0 represents that fj ( · ) is not identical to zero,
namely, the measure that fj ( · ) is unequal to zero is greater than
0. Variable selection proposed herein contains two steps. First,
a consistent estimate f̂j of fj is sought, which will be discussed
later. Then, the nonnegative garrote estimator is adopted here to
identify the set I by

min
c

1
2

∥∥∥Y −
d∑

j=1

cj f̂j

∥∥∥
2

+ λn

d∑

j=1

cj (8)

over c = [c1 , . . . , cd ]T with the constraints cj ≥ 0, j =
1, . . . , d, where f̂j is a consistent estimate of fj for
j = 1, . . . , d, namely, ‖f̂j − fj‖/n = o(n−β ), β > 0, j =
1, . . . , d, and λn > 0 is a tuning parameter. Denote the mini-
mizer of (8) by ĉ = [ĉ1 , . . . , ĉd ]T , which implies that the func-
tion fj ( · ) ≡ 0 if ĉj = 0; otherwise fj ( · ) �≡ 0. Thus, the non-
negative garrote estimate of the jth additive nonlinear function
is given by

f̂NG
j = ĉj f̂j , j = 1, 2, . . . , d. (9)

The theorem to be given below shows that the nonnegative gar-
rote estimator will produce consistent variable selections given
that the f̂j ’s are consistent estimates and the tuning parameter
λn is appropriately chosen. The nonnegative garrote estima-
tor was first proposed in [32], [33] for linear models and later
extended to additive nonlinear models [30]. However, in [30]
the nonlinear additive functions were approximated by splines
which essentially reduces a nonlinear problem to a linear prob-
lem, but an approximated one. In the current paper, fj ( · )’s are
nonparametric and no attempt is made to approximate them by
linear combinations of basis functions.

Assumption 2: ‖(fTI fI/n)−1‖ <∞, where fI is the matrix
composed of the column vectors fj with j ∈ I and ‖fj‖/

√
n <

∞ for j ∈ I.
Actually, the condition ‖(fTI fI/n)−1‖ <∞ in Assumption 2

is a natural extension of the persistent excitation condition of
linear models to the additive nonlinear models. To see this, let
fj (xkj ) = βjxkj with βj �= 0 for j ∈ I. Thus the conditions
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‖(fTI fI/n)−1‖ <∞ becomes

1
n
‖βT XT Xβ‖ > 0 (10)

where X is the design matrix with its columns composed
of the observation points [x1j , x2j , . . . , xnj ]T for j ∈ I and
β = diag[β1 , β2 , . . . , βn ]. Since βj �= 0 for j ∈ I, β is non-
singular. Thus the formula (10) results in 1

n ‖XT X‖ > 0. It is
well-known that this is the persistent excitation condition of
linear models. If the condition ‖fj‖/

√
n <∞ is contradicted

for some j ∈ I, then 1
n

∑n
k=1 fj (xkj )

2 −→ ∞. This means that
the sequence {fj (x1j ), fj (x2j ), . . .} diverges. In this case, the
output sequence {y1 , y2 , . . . , } also diverges and hence in this
case the identifiability is lost. Meanwhile, when the observation
points {x1j , x2j , . . . , xnj} come from a continuous distribution
with compact support, which is an assumption used in the next
subsection for identifying the additive functions, we can see that

‖fj‖√
n

=

(
1
n

n∑

k=1

fj (xkj )2

)1/2

−→
(∫

f 2(x)pj (x)dx
)1/2

and the condition ‖fj‖/
√
n <∞ for j ∈ I holds for any func-

tion such that the integral on the right-hand side is finite and this
is easily satisfied.

Theorem 1: Consider the model (3). Suppose that Assump-
tion 2 holds and ‖f̂j − fj‖2/n = OP (δ2

n ), j = 1, . . . , d, where
δn → 0. If the tuning parameter λn satisfies λn/n→ 0 and
δn = o(λn/n), then we have as n→ ∞:

1) P (ĉj = 0) → 1 for any j ∈ Ic ,
2) P (ĉj > 0) → 1 for any j ∈ I and supj∈I ‖fj −
f̂NG
j ‖2/n = OP (λ2

n/n
2).

Proof: See the Appendix. �
It is seen from Theorem 1 that the nonnegative garrote esti-

mate (9) of the nonzero additive functions converges at a differ-
ent and slower rate than its initial consistent estimation.

B. Consistent Estimates fj ( · )’s of Static Additive
Nonlinear Models

From the previous subsection, if consistent estimates of fj ’s
can be obtained, then the variable selection problem is resolved.
In this subsection, we focus on various ways to find consistent
estimates f̂j ’s for the static model (2).

Some notation used in Section II for univariate regression
function will be expanded to corresponding d-dimensional vec-
tor expressions. For example, the bandwidth h = [h1 , . . . , hd ]T ,
p( · ) is the joint density of X and pj ( · ) is the marginal density
of Xj for j = 1, . . . , d. For convenience, we also use the nota-
tion v−j = [v1 , . . . , vj−1 , vj+1 , . . . , vd ]T ∈ Rd−1 for any vector
v = [v1 , v2 , . . . , vd ]T ∈ Rd .

The simplest case is that the inputs xki’s and xlj ’s are sta-
tistically independent for k �= l or i �= j. Then both the kernel
estimator and the LL estimator introduced above can be directly
applied to identify the additive nonlinear function fj ( · ) at the
observation points {x1j , . . . , xnj}. The estimate f̂j of fj is
given by f̂j = SjY, j = 1, . . . , d, where Sj is either the kernel
or LL linear smoother matrix corresponding to fitting the data
{yk , xkj , k = 1, . . . , n} as a univariate nonparametric identi-
fication. For identifiability, it is required that Efj (Xj ) = 0.

Hence, we obtain the simple smoother estimator

f̂j = SjY − E(SjY ), j = 1, . . . , d. (11)

The convergence of (11) can be derived. The problem is that a
simple smoother estimator like (11) does not work when xki’s
are correlated.

To overcome the problem of simple smoother estimators,
we propose a smooth backfitting algorithm. Two versions are
presented in this subsection, based on the idea of the kernel
estimator and the LL estimator, respectively.

Let F l
j be the σ-algebra generated by the random variables

{yk , xk1 , . . . , xkd , 0 ≤ j ≤ k ≤ l}. The process {yk , xk1 , . . . ,
xkd , k ≥ 0} is called strongly mixing [35] if

sup
l,A∈F l

0 ,B∈F∞
l+ k

|P (AB) − P (A)P (B)| Δ= α(k) → 0as k → ∞.

Let us first give the required conditions.
Assumption 3:

i) The d-dimensional variables X=[X1 , . . . ,Xd ] has com-
pact support I = I1 × · · · × Id for bounded interval
Ij , j = 1, . . . , d. The joint density p(v) of X and the den-
sities pl(x0 , y0) of (xk , xk+ l), l = 1, . . . , are uniformly
bounded. Furthermore, p(v) > 0 on the support I.

ii) For some θ > 2, E|yk |θ <∞. Let σ2 = Var(εk ).
iii) The second-order derivatives f ′′j ( · ) of the additive func-

tions fj ( · ), j = 1, . . . , d, exist and are Lipschitz contin-
uous. The first partial derivatives of p(v) exist and are
continuous.

iv) The conditional densities pX |Y (x|y) of X given Y
and pxk ,xk + l |yk ,yk + l

(x0 , xl |y0 , yl) of (xk , xk+ l) given
(yk , yk+ l),l = 1, . . . , exist and are bounded from above.

v) The process {yk , xk1 , . . . , xkd} is strongly mixing with∑∞
k=1 k

bα(k)1−2/ξ <∞ for some 2 < ξ ≤ θ and b >
1 − 2/ξ.

vi) The mixing coefficients satisfy
∑∞

k=1 ϕ(k, j, l) <∞
and

∑∞
k=1 φ(k, j, l) <∞ for j = 1, . . . , d, l = 1, 2,

where ϕ(k, j, l) = (kL1(k))/r1(k))(kT 2
k /h

l
j log k)1/4

α(r1(k)) with r1(k) = (khlj /Tk log k)1/2 and L1(k) =
(kT 2

k /h
l+2
j logk)l/2 with Tk=(k log k(loglog(k))1+δ)1/θ

for some 0 < δ < 1, while φ(k, j, l) = (kL2(k)/r2(k))
×(k/hlj log k)1/4α(r2(k)) with r2(k)=(khlj /log k)1/2

and L2(k) = (k/hl+2
j log k)l/2 .

The assumptions v) and vi) that the mixing coefficients need
to satisfy seem a little complicated, but the mixing coefficients
decaying exponentially to zero (i.e., α(k) = O(ρk ) for some
0 < ρ < 1) satisfy the assumptions v) and vi), which include
many common random processes.

Smooth backfitting algorithms are a projection, which di-
rectly projects the samples {yk , k = 1, . . . , n} onto the space of
additive functions with a multivariate kernel density weight. In
fact, it will be seen from a brief proof of the algorithms given
in the Appendix that the backfitting algorithms are a method of
alternating projections with a linear iterative form and the norm
of the resulting linear projection operator is smaller than unity.
This interpretation will enable us to understand the convergence
of the backfitting algorithms. For simplicity of notation in the
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following derivations, let us denote

p̂j (vj ) =
1
n

n∑

k=1

Khj (vj − xkj ), (12)

p̂jj (vj ) =
1
n

n∑

k=1

Khj (vj − xkj )(vj − xkj ),

p̂jjj (vj ) =
1
n

n∑

k=1

Khj (vj − xkj )(vj − xkj )2 ,

p̂j l(vj , vl) =
1
n

n∑

k=1

Khj (vj − xkj )Khl (vl − xkl), (13)

p̂lj l(vj , vl) =
1
n

n∑

k=1

Khj (vj − xkj )Khl (vl − xkl)(vl − xkl),

p̂j lj l(vj , vl) =
1
n

n∑

k=1

Khj (vj − xkj )Khl (vl − xkl)

× (vj − xkj )(vl − xkl).

We now discuss smooth backfitting kernel estimators. Let v =
[v1 , . . . , vd ] ∈ I, where I is the support of the input variables. The
smooth backfitting kernel estimator is defined as the minimizer
of the criterion function

1
2n

∫ n∑

k=1

⎛

⎝yk − f̄0 −
d∑

j=1

f̄j (vj )

⎞

⎠
2

d∏

r=1

Khr (vr − xkr )dv

(14)

where the minimization runs over all additive functions f̄(v) =
f̄0 +

∑d
j=1 f̄j (vj ) with constraints

∫
f̄j (vj )p̂j (vj )dvj = 0. Us-

ing the Lagrange multipliers, the constrained functional opti-
mization (14) is transformed into the unconstrained functional
optimization

1
2n

∫ n∑

k=1

⎛

⎝yk − f̄0 −
d∑

j=1

f̄j (vj )

⎞

⎠
2

d∏

r=1

Khr (vr − xkr )dv

+
d∑

j=1

λj

∫
f̄j (vj )p̂j (vj )dvj . (15)

Let {f̃0 , f̃1(v1), . . . , f̃d(vd)} be the minimizer of (15). Ac-
cording to the method of variation, we find that {f̃0 , f̃j (vj ),
j = 1, . . . , d} satisfy the system of equations

f̃0 =
1
n

n∑

k=1

yk −
d∑

j=1

∫
f̃j (vj )p̂j (vj )dvj , (16)

∫
1
n

n∑

k=1

⎛

⎝yk − f̃0 −
d∑

j=1

f̃j (vj )

⎞

⎠
d∏

r=1

Khr (vr − xkr )dv−j

− λj p̂j (vj ) = 0. (17)

Note the constraint
∫
f̃j (vj )p̂j (vj )dvj = 0. We have f̃0 =

1
n

∑n
k=1 yk . At the same time, (17) is simplified as

f̂j (vj )p̂j (vj ) − f̃0 p̂j (vj ) − f̃j (vj )p̂j (vj )

−
∑

l �=j
f̃l(vl)p̂j l(vj , vl)dvl − λj p̂j (vj ) = 0

where f̂j (vj ) is the univariate kernel estimator of the jth func-
tion fj ( · )

f̂j (vj )
Δ=

1
n

∑n
k=1 Khj (vj − xkj )yk

p̂j (vj )
. (18)

By moving the terms, one obtains

f̃j (vj ) = f̂j (vj ) −
∑

l �=j

∫
f̃l(vl)

p̂j l(vj , vl)
p̂j (vj )

dvl − f̃0 − λj

and by using the constraints
∫
f̃j (vj )p̂j (vj )dvi = 0, one derives

that the Lagrange multipliers satisfy λj = 0. As a result, the
system of equations is simplified as (j = 1, . . . , d)

f̃j (vj ) = f̂j (vj ) −
∑

l �=j

∫
f̃l(vl)

p̂j l(vj , vl)
p̂j (vj )

dvl − Y (19)

where the sample mean Y = 1
n

∑n
k=1 yk of Y is a

√
n-

consistent estimation of EY, which is faster than the conver-
gence rate OP (1/n2/5) of nonparametric identification. In the
following, the backfitting algorithm for solving (19) is provided.
One starts with an arbitrary initial guess f̃ (0)

j (vj ) for f̃j (vj ),
for example, one can choose the univariate kernel estimators:
f̃

(0)
j (vj ) = f̂j (vj ). The jth function at the kth step is updated

as follows:

f̃
(k)
j (vj ) = f̂j (vj ) −

∑

l<j

∫
f̃

(k)
l (vl)

p̂j l(vj , vl)
p̂j (vj )

dvl

−
∑

l>j

∫
f̃

(k−1)
l (vl)

p̂j l(vj , vl)
p̂j (vj )

dvl − Y (20)

and the algorithm iterates over k until a predetermined con-
vergence criterion is satisfied. The integrals are computed by
numerical integrals.

The backfitting algorithm (20) can be implemented on a grid
in the support of X. The merit of doing this is that the size of the
grid can be fixed and will not increase with the sample size n,
particularly when n is large. This means that the computational
complexity of the backfitting algorithm (20) is not relevant to
the sample size n. Denote the preset grid of the jth variable by
v0
j = [v0

1j , . . . , v
0
mj ]

T , wherem is the number of the grid points.
The Smooth backfitting kernel estimator (SBKE)

Step 1: Use the observation points {yk , xkj}j=1,...,d
k=1,...,n and

the kernel function K( · ) to calculate the values of
1D density estimates p̂j of pj ( · ) and kernel esti-
mates f̂j of fj ( · ) at the points {v0

ij}j=1,...,d
i=1,...,m and 2D

density estimates p̂j l , j �= l of pjl( · ) at the points
{(v0

ij , v
0
rl)}j,l=1,...,d

i,r=1,...,m by the formulas (12), (18),
and (13).

Step 2: Initiate the estimates: set f̃ (0)
j = f̂j , j = 1, . . . , d.

Step 3: Iterate for k: from j = 1 to d, successively calcu-
late the estimates f (k)

j ( · ) of fj ( · ) at the points
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{v0
ij}j=1,...,d

i=1,...,m via (20), where the integrals are ap-
proximated by the numerical methods in terms of
the values on the resulting grids.

Step 4: Stop if a preset ignorance criterion is satisfied; oth-
erwise, continue to iterate as at Step 3.

Step 5: If one needs to calculate the estimated values of
fj ( · ) at the original observation points, then the
interpolation technique can be used to achieve this
with the help of the values on the grids produced at
Step 4.

Theorem 2: Suppose that Assumptions 1 and 3 hold and the
bandwidths hj −→ 0, nhj −→ ∞ as n −→ ∞. Then, with proba-
bility tending to 1, the solution to (19) exists and is unique.
Furthermore, there exist constants 0 < γ < 1 and ξ̄ > 0 such
that, with probability approaching to 1, the following inequality
holds for all j = 1, . . . , d:
∫ (

f̃
(k)
j (vj ) − f̃j (vj )

)2
pj (vj )dvj

≤ ξ̄γ2k

⎛

⎝1 +
d∑

j=1

∫ (
f̃

(0)
j (vj )

)2
pj (vj )dvj

⎞

⎠

where the functions f̃ (0)
1 (v1), . . . , f̃

(0)
d (vd) are the initial values

of the backfitting algorithm (20).
Suppose further that n1/5hj −−−−→

n−→∞ ψj for some constants

ψj > 0. Then, the following convergence holds in distribution
for any v ∈ I:

n2/5

⎡

⎢⎢⎢⎢⎢⎣

f̃1(v1) − f1(v1)

f̃2(v2) − f2(v2)
...

f̃d(vd) − fd(vd)

⎤

⎥⎥⎥⎥⎥⎦
−−−−→
n−→∞

N

⎡

⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎢⎣

ψ2
1β1(v1)

ψ2
2β2(v2)

...

ψ2
dβd(vd)

⎤

⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎣

w1(v1) 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 wd(vd)

⎤

⎥⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎦

where βj (vj ), j = 1, . . . , d on R with constraints
∫
βj (vj )pj

(vj )dvj = 0 is the solution to

(β0 , β1( · ), . . . , βd( · ))

= arg min
β0 ,...,βd

∫
(β(v) − β0 − β1(v1) − · · · − βd(vd))

2 p(v)dv

with a constant β0 and β(v) =
∑d

j=1(f
′
j (vj )

∂
∂vj

log p(v) +
1
2 f

′′
j (vj ))

∫
t2K(t)dt, and where wj (vj ) = σ 2

∫
K 2 (t)dt

ψj pj (vj ) , j =
1, . . . , d. Furthermore, for any v ∈ I,

n2/5
(
f̃(v) − f(v)

)
→ N

⎛

⎝
d∑

j=1

ψ2
j βj (vj ),

d∑

j=1

wj (vj )

⎞

⎠ ,

where f̃(v) = Y +
∑d

j=1 f̃j (vj ) and f(v) = f0 +
∑d

j=1 fj
(vj ).

Proof: See the Appendix. �
We now discuss the smooth backfitting local linear estimator,

which is obtained by projecting {yk , k = 1, . . . , n} onto the
space of additive functions similarly to the ideas of the LL
estimator for 1D functions. This means that it is the minimizer
of the criterion

1
2n

∫ n∑

k=1

⎛

⎝yk − f̄0 −
d∑

j=1

f̄j (vj ) −
d∑

j=1

θ̄j (vj )(vj − xkj )

⎞

⎠
2

×
d∏

r=1

Khr (vr − xkr )dv, (21)

where the minimization runs over all additive functions f̄(v) =
f̄0 +

∑d
j=1 f̄j (vj ) with the constraints

∫
f̄j (vj )p̂j (vj )dvj+∫

θ̄j (vj )p̂
j
j (vj )dvj = 0, j = 1, . . . , d. Here, the −θ̄j ( · ) s can

be regarded as the first-order derivative of fj ( · ) s. This is sim-
ilar to the idea that is used in the LL estimator for univariate
nonparametric identification. Using the Lagrange multipliers,
the constrained functional optimization (21) is transformed into
the unconstrained functional optimization

1
2n

∫ n∑

k=1

⎛

⎝yk − f̄0 −
d∑

j=1

f̄j (vj ) −
d∑

j=1

θ̄j (vj )(vj − xkj )

⎞

⎠
2

×
d∏

r=1

Khr (vr − xkr )dv +
d∑

j=1

λj

(∫
f̄j (vj )p̂j (vj )dvj

+
∫
θ̄j (vj )p̂

j
j (vj )dvj

)
. (22)

Let {f̃0 , f̃j (vj ), θ̃j (vj ), j = 1, . . . , d} be the minimizer of
(22). According to the method of variation, we find that {f̃0 ,

f̃j (vj ), θ̃j (vj ), j = 1, . . . , d} satisfy the system of equations

f̃0 =
1
n

n∑

k=1

yk −
d∑

j=1

∫
f̃j (vj )p̂j (vj )dvj

−
d∑

j=1

∫
θ̃j (vj )p̂

j
j (vj )dvj ,

∫
1
n

n∑

k=1

⎛

⎝yk − f̃0 −
d∑

j=1

f̃j (vj ) −
d∑

j=1

θ̃j (vj )(vj − xkj )

⎞

⎠

×
d∏

r=1

Khr (vr − xkr )dv−j − λj p̂j (vj ) = 0, (23)

∫
1
n

n∑

k=1

⎛

⎝yk − f̃0 −
d∑

j=1

f̃j (vj ) −
d∑

j=1

θ̃j (vj )(vj − xkj )

⎞

⎠

×
d∏

r=1

Khr (vr − xkr )dv−j (vj − xkj ) − λj p̂
j
j (vj ) = 0. (24)

Using the constraints
∫
f̃j (vj )p̂j (vj )dvj +

∫
θ̃j (vj )p̂

j
j (vj )dvj

= 0, j = 1, . . . , d, results in f̃0 = 1
n

∑n
k=1 yk

Δ= Y . Equation
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(23) is simplified as

1
n

n∑

k=1

Khj (vj − xkj )yk − f̃0 p̂j (vj ) − f̃j (vj )p̂j (vj )

−
∑

l �=j

∫
f̃l(vl)p̂j l(vj , vl)dvl − θ̃j (vj )p̂

j
j (vj )

−
∑

l �=j

∫
θ̃l(vl)p̂lj l(vj , vl)dvl − λj p̂j (vj ) = 0.

Moving the terms arrives at

A(vj )
Δ= p̂j (vj )f̃j (vj ) + p̂jj (vj )θ̃j (vj )

=
1
n

n∑

k=1

Khj (vj − xkj )yk −
∑

l �=j

∫
f̃l(vl)p̂j l(vj , vl)dvl

−
∑

l �=j

∫
θ̃l(vl)p̂lj l(vj , vl)dvl − p̂j (vj )(f̃0 + λj ).

Applying the constraint
∫
f̃j (vj )p̂j (vj )dvj +

∫
θ̃j (vj )p̂

j
j (vj )

dvj = 0 obtains the Lagrange multipliers λj = 0. This entails

A(vj )
Δ= p̂j (vj )f̃j (vj ) + p̂jj (vj )θ̃j (vj )

=
1
n

n∑

k=1

Khj (vj − xkj )yk −
∑

l �=j

∫
f̃l(vl)p̂j l(vj , vl)dvl

−
∑

l �=j

∫
θ̃l(vl)p̂lj l(vj , vl)dvl − p̂j (vj )Y . (25)

Similarly, (24) is also simplified as

B(vj )
Δ= p̂jj (vj )f̃j (vj ) + p̂jjj (vj )θ̃j (vj )

=
1
n

n∑

k=1

Khj (vj − xkj )(vj − xkj )yk

−
∑

l �=j

∫
f̃l(vl)p̂

j
j l(vj , vl)dvl

−
∑

l �=j

∫
θ̃l(vl)p̂

j l
j l(vj , vl)dvl − p̂jj (vj )Y . (26)

Set C(vj )
Δ= p̂j (vj )p̂

jj
j (vj ) − (p̂jj (vj ))

2 . Thus, we obtain

f̃j (vj ) =
(
p̂jjj (vj )A(vj ) − p̂jj (vj )B(vj )

)
/C(vj ), (27)

θ̃j (vj ) =
(− p̂jj (vj )A(vj ) + p̂j (vj )B(vj )

)
/C(vj ). (28)

Similar to the smooth backfitting kernel estimator, the system
of equations (25)–(28) is iteratively solved by the backfitting

algorithm described as follows:

A(k)(vj ) =
1
n

n∑

k=1

Khj (vj − xkj )yk

−
∑

l<j

∫
f̃

(k)
l (vl)p̂j l(vj , vl)dvl−

∑

l<j

∫
θ̃

(k)
l (vl)p̂lj l(vj , vl)dvl

−
∑

l>j

∫
f̃

(k−1)
l (vl)p̂j l(vj , vl)dvl

−
∑

l>j

∫
θ̃

(k−1)
l (vl)p̂lj l(vj , vl)dvl − p̂j (vj )Y , (29)

B(k)(vj ) =
1
n

n∑

k=1

Khj (vj − xkj )(vj − xkj )yk

−
∑

l<j

∫
f̃

(k)
l (vl)p̂

j
j l(vj , vl)dvl−

∑

l<j

∫
θ̃

(k)
l (vl)p̂

j l
j l(vj , vl)dvl

−
∑

l>j

∫
f̃

(k−1)
l (vl)p̂

j
j l(vj , vl)dvl

−
∑

l>j

∫
θ̃

(k−1)
l (vl)p̂

j l
j l(vj , vl)dvl − p̂jj (vj )Y , (30)

f̃
(k)
j (vj )=

(
p̂jjj (vj )A(k)(vj ) − p̂jj (vj )B

(k)(vj )
)
/C(vj ), (31)

θ̃
(k)
j (vj )=

(− p̂jj (vj )A
(k)(vj )+ p̂j (vj )B(k)(vj )

)
/C(vj ) (32)

where the initial values f̃
(0)
j (vj ), θ̃

(0)
j (vj ) can be chosen

to be the 1D LL estimator of {yk , k = 1, . . . , n} onto
{xkj , k = 1, . . . , n}.

Like the iterative algorithm for the smooth backfitting ker-
nel estimator, the smooth backfitting LL estimator is also
implemented on a fixed grid to reduce the computational
complexity. Denote the preset grid of the jth variable by
v0
j = [v0

1j , . . . , v
0
mj ]

T , wherem is the number of the grid points.
The Smooth backfitting local linear estimator (SBLL)

Step 1: Use the observation points {yk , xkj}j=1,...,d
k=1,...,n and

the kernel function K( · ) to calculate the values of
1D density estimates p̂j , p̂

j
j , p̂

jj
j and LL estimates

f̂j , θ̂j of fj ( · ), θj ( · ) at the points {v0
ij}j=1,...,d

i=1,...,m

and 2D density estimates p̂j l , p̂lj l , p̂
j
j l , p̂

j l
j l , j �= l at

the points {(v0
ij , v

0
rl)}j,l=1,...,d

i,r=1,...,m .

Step 2: Initiate the estimates: set f̃ (0)
j = f̂j , θ̃

(0)
j = θ̂j , j =

1, . . . , d.
Step 3: Iterate for k: from j = 1 to d, successively cal-

culate the estimates of fj ( · ), θj ( · ) at the points
{v0

ij}j=1,...,d
i=1,...,m according to (29)–(32), where the in-

tegrals are approximated by the numerical methods
via the values on the resulting grids.

Step 4: Stop if a preset ignorance criterion is satisfied; oth-
erwise, continue to iterate as at Step 3.

Step 5: If one needs to obtain the estimated values of fj ( · )
s and their derivatives θj ( · ) s at the original obser-
vation points, then the interpolation technique can
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be used to achieve this with the help of the values
on the grids produced at Step 4.

Theorem 3: Suppose that Assumptions 1 and 3 hold and the
bandwidthshj −→ 0, nhj −→ ∞ asn −→ ∞. Then, with probabil-
ity tending to 1, the solution to (25)–(28) exists and is unique.
Furthermore, there exist constants 0 < γ < 1 and ξ̄ > 0 such
that, with probability approaching to 1, the following inequali-
ties hold for any j = 1, . . . , d:

∫ (
f̃

(k)
j (v) − f̃j (v)

)2
pj (vj )dvj ≤ ξ̄γ2kΓ,

∫
(θ̃(k)
j (v) − θ̃j (v))2pj (v)dvj ≤ ξ̄γ2kΓ

where Γ = 1 +
∑d

j=1

∫
((f̃ (0)

j (vj ))2 + (θ̃(0)
j (vj ))2)pj (vj )dvj

and the functions f̃ (0)
j (vj ), θ̃

(0)
j (vj ), j = 1, . . . , d are the initial

values of the smooth backfitting LL estimator (29)–(32).
Suppose further that n1/5hj → ψj for some constants ψj >

0. Then, the smooth backfitting LL estimator converges in dis-
tribution for any v ∈ I

n2/5

⎡

⎢⎢⎢⎢⎢⎣

f̃1(v1) − f1(v1) + ν1

f̃2(v2) − f2(v2) + ν2

...

f̃d(vd) − fd(vd) + νd

⎤

⎥⎥⎥⎥⎥⎦
−−−−→
n−→∞

N

⎡

⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎢⎣

ψ2
1α1(v1)

ψ2
2α2(v2)
. . .

ψ2
dαd(vd)

⎤

⎥⎥⎥⎦ ,

⎡

⎢⎢⎢⎢⎢⎣

w1(v1) 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 wd(vd)

⎤

⎥⎥⎥⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎦

where

νj =
∫
fj (vj )Khj (vj − t)pj (t)dtdvj ,

αj (vj ) =
∫
t2K(t)dt

2

(
f ′′j (vj ) −

∫
f ′′j (vj )pj (vj )dvj

)
,

wj (vj ) =
σ2

∫
K(t)2dt

ψjpj (vj )
.

Furthermore, for any v ∈ I

n2/5(f̃(v) − f(v)
) → N

⎛

⎝
d∑

j=1

ψ2
j αj (vj ),

d∑

j=1

wj (vj )

⎞

⎠

where f̃(v)=Y +
∑d

j=1 f̃j (vj ) and f(v)=f0 +
∑d

j=1 fj (vj ).
Proof: The proof follows from the same steps as what pre-

sented in [36]. �

IV. VARIABLE SELECTION AND IDENTIFICATION FOR THE

ANARX SYSTEM

In this section, we extend the results on variable selection
and nonparametric identification of the static additive nonlinear
model (2) to the ANARX system (4). Recall φk = [yk , . . . ,
yk−s+1 , uk , . . . , uk−t+1]T and the function f(φk )=f0 + f1(yk )
+ · · · + fs(yk−s+1) + fs+1(uk ) + · · · + fs+t(uk−t+1). The

system (4) can be rewritten in a compact form as
yk+1 = f(φk ) + εk+1 and further it has the vector form

Y = f01n +
d∑

j=1

fj + ε. (33)

DefineG(φk ) =
[
f(φk ), yk , . . . , yk−s+2 , 0, uk , . . . , uk−t+2

]T
,

ηk = [εk , 0, . . . , 0, uk , 0, . . . , 0]T . Thus, we get

φk+1 = G(φk ) + ηk+1 . (34)

The range of φk+1 taking values in Rs+t is denoted by H.
Note that {ηk+1} is a sequence of independent and identically
distributed (i.i.d.) random vectors and independent of {φj , j ≤
k} under Assumption 4iii) given below. For any A ∈ Bs+t ,
where Bs+t is the Borel σ-algebra on H, one derives that

P (φk+1 ∈ A | φk , . . . , φ0) = P (φk+1 ∈ A | φk )
= P (φ1 ∈ A | φ0).

This means that {φk} is a time-homogeneous Markov chains
and its k-step transition probability is defined by

Pk (φ,A) = P (φk ∈ A | φ0 = φ), ∀ A ∈ Bs+t , φ ∈ H.
A major difficulty is that Assumption 3 is easily satisfied for

the static model (2) but not obviously for the ANARX system (4)
because of its dynamics, mainly on the strong mixing condition
of {φk}. Providing the conditions on the system structure fj ( · ),
the input uk , and the noise εk so as to guarantee the strongly
mixing is very useful to practical applications. Therefore, the
conditions on the system structure fj ( · ), the input uk , and the
noise εk such that Assumption 3 holds are given in the following
assumption, which are commonly used for identifying nonlinear
systems based on kernel functions in the literature [18], [27].

Assumption 4:
i) The dynamic difference equation yk = f0 + f1(yk−1) +

· · · + fs(yk−s) has an exponentially stable equilibrium
point, i.e., ‖yk‖ ≤M1ρ

k‖y0‖ for some M1 <∞, 0 <
ρ < 1, and any k ≥ 0. Also, the system (4) is locally
controllable at the equilibrium point.

ii) The second-order derivatives of the functions fj ( · ), j =
1, . . . , d exist and are Lipschitz continuous.

iii) Both the input {uk} and the noise {εk} are a sequence
of i.i.d. random variables with compact support. Also,
both of them have a density function on their resulting
supports. Let σ2 = Var(εk ).

Theorem 4: Consider the ANARX system (4) under As-
sumptions 1 and 4. We have

1) The Markov chain {φk} is geometrically ergodic, i.e.,
there exist a constant 0 < ρ < 1 and a unique invariant
measure PIV such that ‖Pk (φ, ·) − PIV‖var ≤ ḡ(φ)ρk ,
where ‖ · ‖var denotes the total variation norm and ḡ(φ)
is integrable with respect to PIV . As a result, the process
{φk} is strictly stationary and strongly mixing with a
geometric convergence rate, i.e., the mixing coefficients
of {φk} satisfy α(k) = O(ρk ).

2) Consider the SBKE given by (20). Then, the convergence
results of Theorem 2 hold for the ANARX system (4).

3) Consider the SBLL given by (29)–(32). Then, the
convergence results of Theorem 3 hold for the ANARX
system (4).
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4) Further with an additional Assumption 2, apply variable
selection using the nonnegative garrote estimator (8) for
the ANARX system (4). Then the results of Theorem 1
hold for the ANARX system if the SBKE or the SBLL is
used as the initial consistent estimate in the nonnegative
garrote estimator. That is to say, the nonnegative garrote
estimator will correctly find the set of the nonzero func-
tions with probability one as n→ ∞ for the ANARX
system (4).

Proof: The first part follows from [37, Theorem A 1.6, page
458] via some corresponding modifications. The main steps of
the idea consist of: (a) To show that the chain {φk} defined by
(34) isμ-irreducible, aperiodic, and that any μ-non null compact
set is small, where μ is the Lebesgue measure on (H,Bd). (b)
To show that the chain {φk} is geometrically ergodic by using
the drift criterion for geometric ergodicity. This implies that
Assumption 3 v)-vi) are satisfied. The proofs for the rest parts
of the theorem are parallel to the proofs of Theorems 2 and 3,
thus omitted. This completes the proof. �

To allow a little abuse of notation, we still use the acronyms
SBKE and SBLL to denote the whole variable selection proce-
dure including the smooth backfitting estimator and the nonneg-
ative garrote estimator. The variable selection algorithm for the
ANARX system (4) can now be stated step by step as follows.
Let us take the SBKE as an example. The implementation of the
SBLL is similar.

Step 1: The smooth backfitting kernel estimator (SBKE)
1) Collect the data {yk , uk , k = 1, . . . , n}, and generate

the design matrix X with its (i, j)-element xkj (k =
1, . . . , n, j = 1, . . . , d) defined as

xkj =

{
yk−j , j = 1, . . . , s,

uk−j+s , j = s+ 1, . . . , d.

2) Preset d 1D grids by the range of each column of X ,
where the jth grid is denoted by v0

j = [v0
1j , . . . , v

0
mj ]

T

and m is the number of 1D grid points.
3) Use the data {yk , xkj}j=1,...,d

k=1,...,n and the selected kernel
function K( · ) to calculate the values of 1D density
estimates p̂j of pj ( · ) and kernel estimates f̂j of fj ( · )
at the points {v0

ij}j=1,...,d
i=1,...,m and 2D density estimates

p̂j l , j �= l of pjl( · ) at the points {(v0
ij , v

0
rl)}j,l=1,...,d

i,r=1,...,m
by the formulas (12), (18), and (13).

4) Initiate the estimates: set f̃ (0)
j = f̂j , j = 1, . . . , d.

5) Iterate for k: from j = 1 to d, successively calculate the
estimates f (k)

j ( · ) of fj ( · ) at the points {v0
ij}j=1,...,d

i=1,...,m
via (20), where the integrals can be calculated by the
function trapz in Matlab.

6) Stop if a preset ignorance criterion is satisfied; other-
wise, continue to iterate as at 5), where the ignorance
criterion given in [38] is used for the simulation in
Section V. That is, if for all j = 1, . . . , d,

∑m
i=1

(
f̃ (k+1)(v0

ij ) − f̃ (k)(v0
ij )

2
)2

∑m
i=1 f̃

(k)(v0
ij )2 + 0.0001

< 0.0001,

then stop.

7) Use the interpolation technique to calculate the esti-
mated values of fj ( · ) at the original observation points
by the values on the grids produced at 6).

Step 2: The nonnegative garrote estimator
1) Solve the optimization problem

min
c

1
2

∥∥∥Y −
d∑

j=1

cj f̂j

∥∥∥
2

s.t.
d∑

j=1

cj ≤ κn (35)

for a given tuning parameter κn and the consistent
estimate f̂j , j = 1, . . . , d obtained at Step 1 to get the
solution ĉ = [ĉ1 , . . . , ĉd ]T . The choice of κn will be
given below.

2) The functions with the indices such that ĉj > 0 are
taken as the nonzero functions, otherwise as the zero
functions.

Note that the optimization problem (35) at Step 2 1), which
is equivalent to the original problem (8) in the paper, is a con-
strained linear least squares problem. Thus, this optimization
problem can be effectively solved by the numerical algorithm,
for example, the function lsqlin in Matlab. So the choice of
λn is transformed to that of κn , which controls the size of the
selected coefficients. In the following, a data-driven choice for
κn is provided. To be consistent and compare with the method
in [30], here the L-curve criterion is used to implement the au-
tomatic selection of κn . The L-curve criterion is based on the
so-calledL-curve, which is a parametric plot of (ζ(κn ), ω(κn )),
where ζ(κn ) and ω(κn ) measure, respectively, the size of the
regularized solution and the corresponding residual [39]. TheL-
curve has a distinct L-shaped corner located exactly where the
solution ĉ changes from being dominated by the regularization
error to being dominated by the noise.

These explanations mean that the “optimal” tuning parameter
corresponds to the “corner” (maximum curvature) of the L-
curve. In the following, an algorithm for finding the “corner” is
given.

Step 1: Generate a gird κ = {κln}Ql=1 in an ascending order
in the interval [1, d] for κn .

Step 2: Calculate ζ(κ) =
∑d

j=1 ĉj , ω(κ) = 1
n ‖Y − Ŷ ‖2

2

on the grid κ, where Ŷ =
∑d

j=1 ĉj f̂j is the pre-
diction for Y and ĉ is the solution of (35).

Step 3: Calculate

Al = arctan
(ω(κln ) − ω(κl−1

n )
ζ(κln ) − ζ(κl−1

n )

)
, l = 2, . . . , Q.

Step 4: Calculate Dl = Al −Al−1 , l = 3, . . . , Q.
Step 5: The “optimal” tuning parameter κ̂n is defined by

κ̂n = κl̂n , where l̂ = arg max
l=3,...,Q

Dl − 1.

For each point except two endpoints on the plot (ζ(κ), ω(κ)),
one can obtain two associated angles by connecting the adjacent
two points and extending to the horizontal axis. The difference
between the two angles at a point can be regarded as a measure
of the resulting curvature of the L-curve, and hence the point
with the maximum difference can be thought of as the point of
the maximum curvature of the L-curve.
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TABLE II
TOTAL APPEARANCE FREQUENCY OF VARIABLE SELECTIONS FOR

EXAMPLE 1

Independent variables (q = 0)

Method f1 f2 f3 f4 f5 f6 f7 f8 f9 f1 0

n = 100
SBKE 100 0 0 100 0 99 0 0 100 0
SBLL 100 0 0 100 0 100 0 0 100 0
NGPS 100 0 0 100 0 98 0 0 100 0

n = 200
SBKE 100 0 0 100 0 100 0 0 100 0
SBLL 100 0 0 100 0 100 0 0 100 0
NGPS 100 0 0 100 0 100 0 0 100 0

Dependent variables with correlation 0.5 (q = 1)

Method f1 f2 f3 f4 f5 f6 f7 f8 f9 f1 0

n = 100
SBKE 98 0 0 100 0 98 0 0 100 0
SBLL 99 0 0 100 0 99 0 0 100 0
NGPS 97 1 0 100 1 99 0 0 100 0

n = 200
SBKE 100 0 0 100 0 100 0 0 100 0
SBLL 100 0 0 100 0 100 0 0 100 0
NGPS 99 0 0 100 0 100 0 0 100 0

V. SIMULATION EXAMPLES

For comparison, the proposed SBKE and SBLL variable se-
lection approaches and the variable selection method based on
P-splines in [30], denoted by NGPS, are all applied to the fol-
lowing examples.

Example 1: Consider an additive nonlinear model

yk =
10∑

j=1

fj (xkj ) + εk , k = 1, . . . , n,

where f1(x) = 3x, f4(x) = 4x2 , f6(x) = 1.5 sin(2πx)/(2 −
sin(2πx)), f9(x) = 2 cos(2πx), and fj (x) = 0 for other six ad-
ditive functions. So the number of nonzero functions is four. The
variables xkj are generated by xkj = Wk j +qUk

1+q , j = 1, . . . , 10,
where Wkj and Uk are independently generated from the uni-
form [0, 1] and the number q plays a role in controlling the
correlation among variables since the correlation coefficients
of xki and xkj are equal to Corr(xki, xkj ) = q2/(1 + q2) for
any 1 ≤ i �= j ≤ 10. The variables are mutually independent if
q = 0, while the case for q = 1 leads to the variables with cor-
relation 0.5. The observation noise {εk} is a sequence of i.i.d.
zero-mean Gaussian random variables with variance 1, and the
resulting signal-to-noise ratios (SNR) are 6.61 dB for the inde-
pendent case and 4.13 dB for the dependence case. The sample
sizes are taken as n = 100 and n = 200 data points, respec-
tively. The sample size n = 100 or 200 is very small for esti-
mating a 10-dimensional nonparametric nonlinear model. The
results presented below are based on 100 Monte-Carlo tests.

Table II shows the total appearance frequency of variable
selection by using the SBKE, SBLL, and NGPS, while the
corresponding statistical analysis is summarized in Table III.
They are the average of the number of the selected variables
(NS), the average of the number of the correctly selected vari-
ables (NCS), the average of the number of incorrectly selected
variables (NIS), the percentage of tests where all the correct
variables are contained in the selected variables (PIN), the per-
centage of tests where the selected variables are exactly the
correct variables (PCS), the average of goodness-of-fits (GoF),

TABLE III
STATISTICAL ANALYSIS OF VARIABLE SELECTIONS FOR EXAMPLE 1

Independent variables (q = 0)

Method NS NCS NIS PIN PCS GoF True GoF

n = 100
SBKE 3.99 3.99 0 99% 99% 0.65 0.58

(0.10) (0.10) (0) (0.03) (0.03)
SBLL 4 4 0 100% 100% 0.67 0.58

(0) (0) (0) (0.03) (0.03)
NGPS 3.98 3.98 0 98% 98% 0.63 0.58

(0.14) (0.14) (0) (0.03) (0.03)

n = 200
SBKE 4 4 0 100% 100% 0.61 0.57

(0) (0) (0) (0.02) (0.02)
SBLL 4 4 0 100% 100% 0.62 0.57

(0) (0) (0) (0.02) (0.02)
NGPS 4 4 0 100% 100% 0.83 0.57

(0) (0) (0) (0.02) (0.02)

Dependent variables with correlation 0.5 (q = 1)

Method NS NCS NIS PIN PCS GoF True GoF

n = 100
SBKE 3.96 3.96 0 96% 96% 0.55 0.47

(0.20) (0.20) (0) (0.04) (0.04)
SBLL 3.98 3.98 0 98% 98% 0.57 0.47

(0.14) (0.14) (0) (0.04) (0.04)
NGPS 3.98 3.96 0.02 96% 94% 0.53 0.47

(0.25) (0.20) (0.14) (0.04) (0.04)

n = 200
SBKE 4 4 0 100% 100% 0.51 0.47

(0) (0) (0) (0.01) (0.03)
SBLL 4 4 0 100% 100% 0.52 0.47

(0) (0) (0) (0.01) (0.03)
NGPS 3.99 3.99 0 99% 99% 0.50 0.47

(0.10) (0.10) (0) (0.01) (0.03)

and the average of true GoF, respectively. The GoF is defined by

GoF = 1 −
√∑n

k=1(yk − ŷk )2/
∑n

k=1(yk − Y )2 , where n is

the sample size, Y = 1
n

∑n
k=1 yk , ŷk =

∑
j∈Î f̂j (xkj ), Î is the

set of nonzero functions identified via the nonnegative garrote
estimator, and f̂j is the estimate of fj obtained by rerunning
the nonparametric identification methods given in Section III for
only the selected variables after finishing the variable selection
process by the nonnegative garrote estimator. Similarly, the aver-

age of true GoF defined by 1 −
√∑n

k=1 ε
2
k/

∑n
k=1(yk − Y )2 .

The values in the parentheses are the resulting standard errors.
The simulation results indicate that in the independent case

the percentages of the SBKE, SBLL, and NGPS finding the cor-
rect variables are 99%, 100%, and 98% for the sample sizes 100,
respectively, and all the approaches identify the correct variables
100% when n = 200. In the dependent case, the SBKE, SBLL,
and NGPS that find the correct variables are 96%, 98%, and
94% for n = 100, respectively. When n = 200, the resulting
percentages increase to 100%, 100%, and 99%, respectively.
This example shows that the SBKE and SBLL outperform the
NGPS for a small sample size.

Example 2: Consider an ANARX system

yk =
5∑

j=1

fj (yk−j ) +
5∑

l=1

f5+ l(uk−l) + εk , (36)

where f2(x) = −1.5 sin(0.8x), f3(x) = −4 exp(−0.1x2) +
2.5, f7(x) = 2x3 − 1, f9(x) = 3 sin(2πx)/(2 − sin(2πx)),
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Fig. 1. Nonparametric estimation of f2 ( · ) for Example 2.

Fig. 2. Nonparametric estimation of f9 ( · ) for Example 2.

while the other additive nonlinear functions are zero. The input
uk is a sequence of i.i.d. uniform random variables over [0, 1],
and the noise {εk} is a sequence of i.i.d. uniform random vari-
ables over [−1.73, 1.73]. Under this setting, the resulting SNR
is 6.83 dB. The sample size is n = 500, which is a relatively
small sample size for estimating a 10-dimensional nonlinear
dynamic system. The results presented below are based on 100
Monte-Carlo tests.

To illustrate the performance of the nonparametric approaches
SBKE, SBLL, and NGPS, the identification results for the two
nonzero functions f2(·) and f9(·) based on a realization of (36)
are plotted in Figs. 1 and 2. Note that the estimates in Figs. 1
and 2 have been subtracted with their resulting means to make
them have zero means. Since nonparametric approaches have
a boundary effect due to less data at the boundary, which is a
common problem and cannot be easily avoided, we plot the
positions of the 2%, 5%, 10%, 90%, 95%, and 98% quan-
tiles of the domain of each function by the black dashed line
in Figs. 1 and 2 to illustrate this. The number of the ob-
servation points corresponding to these quantiles are 10, 25,
and 50, respectively. These amounts of samples are not suffi-
cient to obtain a reliable estimate for a 1D function accord-
ing to the relationship in Table I. Indeed, it is seen that the

TABLE IV
TOTAL APPEARANCE FREQUENCY OF VARIABLE SELECTIONS FOR

EXAMPLE 2

Method f1 f2 f3 f4 f5 f6 f7 f8 f9 f1 0

SBKE 0 100 100 0 0 0 99 0 100 0
SBLL 0 100 100 0 0 0 99 0 100 0
NGPS 0 100 100 0 0 0 91 0 100 0

TABLE V
STATISTICAL ANALYSIS OF VARIABLES SELECTIONS FOR EXAMPLE 2

Method NS NCS NIS PIN PCS GoF True GoF

SBKE 3.99 3.99 0 99% 99% 0.61 0.59
(0.10) (0.10) (0) (0.02) (0.02)

SBLL 3.99 3.99 0 99% 99% 0.61 0.59
(0.10) (0.10) (0) (0.02) (0.02)

NGPS 3.91 3.91 0 91% 91% 0.55 0.59
(0.29) (0.29) (0) (0.02) (0.02)

SBKE, SBLL, and NGPS estimates at the boundary deviate
from the true values. On the other hand, these estimates per-
form well and have no obvious differences in the main re-
gion of the domain, for example, from the 10% quantile to
90% quantile, where some small fluctuations are because these
estimates are based on one random realization of (36) and the
sample size is small. Note that the identification results for the
other two nonzero functions f3(·) and f7(·) are also similar, but
are not shown here due to limited space.

Table IV displays the total appearance frequency of variable
selection by using the SBKE, SBLL, and NGPS, and the cor-
responding statistical analysis is outlined in Table V with its
entries defined as the same as in Table III. The simulation re-
sults reveal that the SBKE, SBLL, and NGPS identify the correct
variables with the percentage 99%, 99%, and 91%, respectively.
This shows that the boundary effect of nonparametric estimates
at Step 1 will not greatly influence the subsequent variable se-
lection procedure, which is the final goal of the paper, since the
estimates for the other zero functions are very close to zero.

In summary, the two-step variable selection methods (the
SBKE and SBLL) proposed in the paper perform well in a small
sample size and better than the NGPS.

VI. CONCLUSION

In this paper we have investigated the variable selection prob-
lem for high-dimensional dynamic additive nonlinear systems.
This is the first time that such problem is tackled by nonpara-
metric kernel approaches since the existing methods are mainly
based on spline approximations. Our proposed methods are
implemented by two subsequent steps: nonparametric identi-
fication of all the additive functions, followed by nonnegative
garrote estimation. In the stage of nonparametric identification
based on kernel functions, the algorithms including SBKE and
SBLL have been provided and both of them do not suffer from
the curse of dimensionality since only 1D and 2D kernel es-
timations are involved. Further, they achieve the convergence
and asymptotic normality of nonparametric identification under
weak conditions, and especially, the SBLL can ensure that the
estimate for each additive function acquires the same asymp-
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totic properties as if other functions are exactly known. We have
proved that the nonnegative garrote estimator can convert a con-
sistent nonparametric estimate for the additive functions into a
consistent estimate for the set of the nonzero functions. There-
fore, the variable selection methods provided in this paper can
find the correct nonzero functions with probability one under
weak conditions as the sample size approaches infinity.

APPENDIX

MAIN THEORETICAL PROOFS

Proof of Theorem 1: According to the convex optimization
theory with constraints [40], the solution ĉj , j = 1, . . . , d to the
constrained optimization (8) satisfies the Karush-Kuhn-Tucker
(KKT) conditions

− f̂ T (Y − f̂ ĉ) + λn1d + u = 0, (37)

uj ĉj = 0 for all j = 1, . . . , d, (38)

− ĉj ≤ 0 for all j = 1, . . . , d, (39)

uj ≥ 0 for all j = 1, . . . , d, (40)

where f̂ = [f̂1 , . . . , f̂d ], ĉ = [ĉ1 , . . . , ĉd ]T , and u = [u1 , . . . ,
ud ]T . Divide the index set {1, . . . , d} into the following sub-
sets in terms of the sets ĉ and I:

Φ01 = {j : ĉj = 0, fj ( · ) �= 0},
Φ00 = {j : ĉj = 0, fj ( · ) = 0},
Φ11 = {j : ĉj > 0, fj ( · ) �= 0},
Φ10 = {j : ĉj > 0, fj ( · ) = 0}.

It is clear that Φ00 ∪ Φ10 = Ic and Φ01 ∪ Φ11 = I. For con-
venience, we denote Î = Φ11 ∪ Φ10 = {j : ĉj > 0} and Îc =
Φ01 ∪ Φ00 = {1, . . . , d} \ Î = {j : ĉj = 0}.

First, we prove that P (|Φ10 | > 0) → 0 as n→ ∞, where
|Φ10 | denotes the cardinality of the set Φ10 . The formula (37)
can be rewritten as

λn

[
1|Î|
1|Îc |

]
+

[
uÎ
uÎc

]
+

⎡

⎣
f̂ TÎ f̂Î f̂ TÎ f̂Îc

f̂ TÎc f̂Î f̂ TÎc f̂Îc

⎤

⎦
[
ĉÎ
ĉÎc

]
=

⎡

⎣
f̂ TÎ Y

f̂TÎc Y

⎤

⎦ .

By (38)–(40), it is clear that ĉj > 0, uj = 0 for j ∈ Î and ĉj = 0
for j ∈ Îc . It follows that

λn

[
1|Î|
1|Îc |

]
+

[
0

uÎc

]
+

⎡

⎣
f̂ TÎ f̂Î f̂ TÎ f̂Îc

f̂ TÎc f̂Î f̂ TÎc f̂Îc

⎤

⎦
[
ĉÎ
0

]
=

[
f̂ TÎ Y

f̂TÎc Y

]
.

Taking the first |Î| rows leads to λn1|Î| + f̂ TÎ f̂Î ĉÎ = f̂ TÎ Y . This
indicates that

ĉÎ =

[
ĉΦ1 1

ĉΦ1 0

]
=

[
f̂ TΦ1 1

f̂Φ1 1 /n f̂TΦ1 1
f̂Φ1 0 /n

f̂TΦ1 0
f̂Φ1 1 /n f̂TΦ1 0

f̂Φ1 0 /n

]−1

×
[
f̂ TΦ1 1

Y/n− λn1m 1 1 /n

f̂TΦ1 0
Y/n− λn1m 1 0 /n

]
.

Denote

F = f̂ TÎ f̂Î/n, Fij = f̂ TΦ1 i
f̂Φ1 j /n for i, j = 0, 1,

F̃ = F00 − F01F
−1
11 F10

= f̂ TΦ1 0
(I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)f̂Φ1 0 /n.

By noting that (I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)T (I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

) = (I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

), we have that F̃
is a positive semi-definite matrix. Thus

F−1 =

[ ∗ ∗
−F̃−1F01F

−1
11 F̃−1

]

by the inverse formula of a partitioned matrix (see [1, p. 359]).
This means that

ĉΦ1 0 = F̃−1(f̂ TΦ1 0
Y/n− λn1m 1 0 /n− F01F

−1
11 f̂

T
Φ1 1

Y/n

+ λnF01F
−1
11 1m 1 1 /n

)
= F̃−1ξ, (41)

where

ξ = f̂ TΦ1 0
Y/n− λn1m 1 0 /n− F01F

−1
11 f̂

T
Φ1 1

Y/n

+ λnF01F
−1
11 1m 1 1 /n

= f̂ TΦ1 0

(
I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)
Y/n− λn1m 1 0 /n

+ λnF01F
−1
11 1m 1 1 /n.

Since f̂j is a consistent estimate for fj , i.e., ‖f̂j − fj‖2/n =
OP (δ2

n ), j = 1, . . . , d, we have

1√
n
‖f̂Φ i j

− fΦ i j
‖ = OP (δn ) for i, j = 0, 1.

Therefore, under Assumption 2, we obtain
∥∥∥

1√
n
f̂Φ1 1 −

1√
n
fΦ1 1

∥∥∥ = OP (δn ),

∥∥∥
1
n
f̂TΦ1 1

f̂Φ1 1 −
1
n
fTΦ1 1

fΦ1 1

∥∥∥

≤ 1
n
‖f̂ TΦ1 1

f̂Φ1 1 − f̂ TΦ1 1
fΦ1 1

∥∥∥∥+
1
n

∥∥∥∥ f̂
T
Φ1 1

fΦ1 1 − fTΦ1 1
fΦ1 1 ‖

≤ 1√
n

∥∥∥f̂Φ1 1

∥∥∥
1√
n

∥∥∥f̂Φ1 1 − fΦ1 1

∥∥∥

+
1√
n

∥∥∥f̂Φ1 1 − fΦ1 1

∥∥∥
1√
n
‖fΦ1 1 ‖

=
(

1√
n
‖fΦ1 1 ‖ +OP (δn )

)
OP (δn ) +OP (δn )

= OP (δn ). (42)

This entails

1√
n
f̂Φ1 1 =

1√
n
fΦ1 1 +OP (δn ),

1
n
f̂TΦ1 1

f̂Φ1 1 =
1
n
fTΦ1 1

fΦ1 1 +OP (δn ).



MU et al.: VARIABLE SELECTION AND IDENTIfiCATION OF HIGH-DIMENSIONAL NONPARAMETRIC ADDITIVE NONLINEAR SYSTEMS 2267

Noting that ‖(fTI fI/n)−1‖ <∞, we get
(

1
n
f̂TΦ1 1

f̂Φ1 1

)−1

=
(

1
n
fTΦ1 1

fΦ1 1 +OP (δn )
)−1

=
(

1
n
fTΦ1 1

fΦ1 1

(
I +OP (δn )

))−1

=
(

1
n
fTΦ1 1

fΦ1 1

)−1

(I +OP (δn ))−1

=
(

1
n
fTΦ1 1

fΦ1 1

)−1

(I +OP (δn )) .

It follows that

‖F01F
−1
11 ‖ ≤ 1√

n
‖f̂Φ1 0 ‖

1√
n
‖f̂Φ1 1 ‖

∥∥∥
(

1
n
f̂TΦ1 1

f̂Φ1 1

)−1 ∥∥∥

= OP

(
1√
n
‖f̂Φ1 0 ‖

)
= OP (δn ).

Therefore, ξ = f̂ TΦ1 0
(I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)Y/n−
λn (1 +OP (δn ))1m 1 0 /n. As mentioned above, we have

(I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)T (I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)

= I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

.

This means that its eigenvalues are either 1 or 0, and hence we
have ‖I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

‖ ≤ 1. It follows that ‖(I −
f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1f̂ TΦ1 1

)Y ‖≤‖I − f̂Φ1 1 (f̂
T
Φ1 1

f̂Φ1 1)
−1f̂ TΦ1 1

‖‖Y ‖
= OP (

√
n), which derives that

‖f̂ TΦ1 0
(I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)Y ‖
≤ ‖f̂Φ1 0 ‖‖I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)Y ‖
= OP (

√
nδn )OP (

√
n) = OP (nδn ).

This leads to ξ = OP (δn ) − (1 +OP (δn ))λn/n1m 1 0 =
−λn/n1m 1 0 < 0 due to λn/n→ 0 and δn = o(λn/n). Since
ĉj > 0 for any j ∈ Φ10 , we have ξT ĉΦ1 0 < 0. However, this
violates (41), which implies that ξT ĉΦ1 0 = ξT F̃−1ξ ≥ 0. Thus,
we have P (|Φ10 | > 0) → 0 as n→ ∞. This means that Φ10 is
a null set and hence Ic = Φ00 ∪ Φ10 = Φ00 in the asymptotic
sense.

Next, we show that P (|Φ01 | > 0) → 0 as n→ ∞. Other-
wise, assume that |Φ01 | > 0. Similar to the derivation above,
the formula (37) can also be rewritten as

λn

[
1|I|
1|Ic |

]
+

[
uI
uIc

]
+

⎡

⎣
f̂ TI f̂I f̂ TI f̂Ic

f̂ TIc f̂I f̂ TIc f̂Ic

⎤

⎦
[
ĉI
ĉIc

]
=

[
f̂ TI Y

f̂TIc Y

]
.

Note that ĉΦ1 1 > 0. We have uΦ1 1 = 0 by the KKT conditions
(38)–(40). Taking the first |I| rows leads to

λn

[
1|Φ1 1 |
1|Φ0 1 |

]
+

[
0

uΦ0 1

]
+

[
f̂ TΦ1 1

f̂Φ1 1 f̂ TΦ1 1
f̂Φ0 1

f̂ TΦ0 1
f̂Φ1 1 f̂ TΦ0 1

f̂Φ0 1

]

×
[
ĉΦ1 1

ĉΦ0 1

]
=

[
f̂ TΦ1 1

Y

f̂TΦ0 1
Y

]
. (43)

Thus, we have

[
ĉΦ1 1

ĉΦ0 1

]
=

[
f̂ TΦ1 1

f̂Φ1 1 /n f̂TΦ1 1
f̂Φ0 1 /n

f̂TΦ0 1
f̂Φ1 1 /n f̂TΦ0 1

f̂Φ0 1 /n

]−1

×
[

f̂ TΦ1 1
Y/n− λn1m 1 1 /n

f̂TΦ0 1
Y/n− λn1m 0 1 /n− uΦ0 1 /n

]
.

To allow an abuse of notation, denote

F = f̂ TI f̂I/n, Fij = f̂ TΦ i 1
f̂Φ j 1 /n for i, j = 0, 1,

F̃ = F00 − F01F
−1
11 F10

= f̂ TΦ0 1
(I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)f̂Φ0 1 /n.

Note that F tends to the invertible matrix fTI fI/n as n→ ∞.
It is seen from

F−1 =

[ ∗ ∗
−F̃−1F01F

−1
11 F̃−1

]

that F̃ is also invertible when n is sufficiently large. Similar to
the derivation in the procedure of proving P (|Φ10 | > 0) → 0 as
n→ ∞, it follows that ĉΦ0 1 = F̃−1ξ, where

ξ = f̂ TΦ0 1
Y/n− λn1m 0 1 /n− uΦ0 1 /n− F01F

−1
11 f̂

T
Φ1 1

Y/n

+ λnF01F
−1
11 1m 1 1 /n

= f̂ TΦ0 1
(I − f̂Φ1 1 (f̂

T
Φ1 1

f̂Φ1 1 )
−1 f̂ TΦ1 1

)Y/n− λn1m 0 1 /n

+ λnF01F
−1
11 1m 1 1 /n− uΦ0 1 /n

= OP (δn ) − (1 +OP (δn ))λn/n1m 1 0 − uΦ0 1 /n

= − λn/n1m 1 0 − uΦ0 1 /n < 0,

since uΦ0 1 ≥ 0 by the KKT conditions. However, by the facts
that ĉΦ0 1 = 0 and F̃ is invertible, we obtain a violation ξ = 0.
Therefore, we have shown that P (|Φ01 | > 0) → 0 as n→ ∞,
i.e., Φ01 is also an empty set. Consequently, I = Φ11 , Ic = Φ00
in the asymptotic sense.

Taking the first |Φ11 | rows in (43) leads to λn1m 1 1 + f̂ TΦ1 1

f̂Φ1 1 ĉΦ1 1 = f̂ TΦ1 1
Y since ĉΦ0 1 = 0. It follows that ĉΦ1 1 = (f̂ TΦ1 1

f̂Φ1 1 /n)−1(f̂ TΦ1 1
Y/n− λn1m 1 1 /n). With the same derivation

as that used in (42), we have

1
n
f̂TI f̂I =

1
n
fTI fI +OP (δn ),

1
n
f̂TI Y =

1
n
fTI Y +OP (δn ) =

1
n
fTI (fI1|I| + ε) +OP (δn )

=
1
n
fTI fI1|I| +OP (δn ),
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where the last equation uses the fact 1
n f

T
I ε = OP ( 1√

n
). Then it

follows that

ĉΦ1 1 = (fTI fI/n)−1(fTI Y/n− λn1|I|/n)(1 +OP (δn ))

= (1|I| − (fTI fI/n)−11|I|λn/n)(1 +OP (δn ))

= 1|I|(1 −O(λn/n))(1 +OP (δn ))

= 1|I|(1 +OP (λn/n)).

Therefore, f̂NG
j = f̂j (1 +OP (λn/n)) for all j such that

fj ( · ) �= 0 and P (ĉj = 0) → 1 for all j such that fj ( · ) = 0.
We obtain that

1
n
‖f̂NG

j − f̂j‖2 =
1
n
‖f̂jOP (λn/n)‖2

=
1
n
‖f̂j‖2OP (λ2

n/n
2) =

1
n
‖f̂j − fj + fj‖2OP (λ2

n/n
2)

≤
(

2
n
‖f̂j − fj‖2 +

2
n
‖fj‖2

)
OP (λ2

n/n
2)

=
(
OP (δ2

n ) +
2
n
‖fj‖2

)
OP (λ2

n/n
2) = OP (λ2

n/n
2).

Using the triangle inequality, we arrive at

1
n
‖f̂NG

j − fj‖2 ≤ 1
n
‖f̂NG

j − f̂j‖2 +
1
n
‖f̂j − fj‖2

= OP (λ2
n/n

2) +OP (δ2
n ) = OP (λ2

n/n
2).

This completes the proof. �
Sketch Proof of Theorem 2: The proof follows from the

same steps as what presented in [36]. The main idea is as follows.
Let Ψj , j = 1, . . . , d, be some operators acting on the addi-
tive functional space {f(v) =

∑d
j=1 fj (vj )} such that Ψj f(v)

= f(v) − E(f(X)|Xj = vj ), where it has been assumed that
EY = 0, i.e., f0 = 0 for simplicity of presentation. Clearly,

Ψj f(v) =
∑

l �=j

(
fl(vl) −

∫
fl(vl)p(vl |vj )dvl

)
, (44)

where p(vl |vj ) are the conditional densities of Xl given Xj .
Further, let Ψ̂j be the resulting estimates for Ψj , where p(vl |vj )
are replaced by their estimates p̂(vl |vj ) = p̂j l(vj , vl)/p̂j (vj ).
That is

Ψ̂j f(v) =
∑

l �=j

(
fl(vl) −

∫
fl(vl)

p̂j l(vj , vl)
p̂j (vj )

dvl

)
. (45)

By applying (45), the equation (19) can be rewritten as f̃(v) =
Ψ̂j f̃(v) + f̂j (vj ), where f̃(v) =

∑d
j=1 f̃j (vj ). Iterative

application of this equation for the indices from d, . . . , 1
produces f̃(v) = T̂ f̃(v) + τ̂(v), where T̂ = Ψ̂d · · · Ψ̂1 and

τ̂(v) = Ψ̂d · · · Ψ̂2 f̂1(v1)+· · ·+Ψ̂d f̂d−1(vd−1)+f̂d(vd). (46)

This means that f̃(v) =
∑∞

k=0 T̂
k τ̂(v). So the uniqueness of

the solution of the system of equations (19) depends on whether
the norm of the operator T̂ is less than unity or not. Note from
(45) that the operator T̂ only depends on the estimated densities
p̂j l(vj , vl)/p̂j (vj ). Using the convergence of p̂j l(vj , vl)/p̂j (vj )

and the property of alternating projections [41], [42] yields that
‖T̂‖ < γ for some constant 0 < γ < 1 with probability tending
to 1.

On the other hand, from the definition of the algorithm (20)
one has f̃ (k)(v) = T̂ f̃ (k−1)(v) + τ̂(v) and iterative application
of the above formula derives

f̃ (k)(v) =
k−1∑

l=0

T̂ l τ̂(v) + T̂ k f̃ (0)(v)

where f (0)(v) is the initial iterative value. This means that the
backfitting algorithm (20) exponentially converges to the true
values since ‖T̂‖ < γ < 1 with probability tending to 1.

Note from (44) that for j �= l,

Ψj fl(vl) = fl(vl) −
∫
fl(vl)

p̂j l(vj , vl)
p̂j (vj )

dvl (47)

and the second term is a function that only depends on vj . The
convergence of each additive function f̃j (vj ) of f̃(v) is based on
the following observations. The formula (47) implies that only
the first term Ψ̂d · · · Ψ̂2 f̂1(v1) of τ̂(v) defined in (46) depends
on v1 while the other terms are independent of v1 . Further,
Ψ̂d , . . . , Ψ̂2 are also independent of v1 . This means that τ̂(v)
has a form of f̂1(v1) + τ̂−1(v2 , . . . , vd), where τ̂−1(v2 , . . . , vd)
is a function that does not depend on v1 . This fact can obtain
the convergence of f̃1(v1) and, using the similar method, can
give the convergence of the other additive functions f̃j (vj ), j =
2, . . . , d. �
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