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Decision-Based System Identification and
Adaptive Resource Allocation

Jin Guo, Biqiang Mu, Le Yi Wang, Fellow, IEEE, George Yin, Fellow, IEEE, and Lijian Xu, Member, IEEE

Abstract—System identification extracts information
from a system’s operational data to derive a representative
model for the system so that a decision can be made with
desired accuracy and reliability. When resources are limited,
especially for networked systems sharing data and commu-
nication power and bandwidth, identification must consider
complexity as a critical limitation. Focusing on optimal re-
source allocation under a given reliability requirement, this
paper studies identification complexity and its relations to
decision making. Dynamic resource assignments are inves-
tigated. Algorithms are developed and their convergence
properties are established, including strong convergence,
almost sure convergence rate, and asymptotic normality.
By a suitable design of resource updating step sizes, the al-
gorithms are shown to achieve the CR lower bound asymp-
totically, and hence are asymptotically efficient. Illustrative
examples demonstrate significant advantages of our real-
time and individualized resource allocation methodologies
over population-based worst-case strategies.

Index Terms—Complexity, decision, resource allocation,
system identification.

I. INTRODUCTION

SYSTEM identification supports decisions by extracting in-
formation from a system’s operational data to derive a
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representative model for the system. Studies of system iden-
tification have been concentrated on model structure selection,
model parametrization, estimation algorithms, experimental de-
sign, consistency and convergence of parameter estimates, rate
of convergence, etc. [1]–[4]. In these aspects, system identifica-
tion is a well developed field.

When resources are limited, especially for networked systems
sharing data and communication power and bandwidth, com-
plexity may become a critical limitation. This paper studies iden-
tification complexity and its relations to decision making. The
term “decision” is used in a broad sense, including controller de-
sign, fault detection, status monitoring, communication network
management, medical outcome prediction, to name just a few.

As an integrated part of a decision process, goals of iden-
tification, especially estimation accuracy, are dependent on its
targeted decisions. More concretely, it is observed that identifi-
cation accuracy requirements change dramatically over different
operating ranges. For the ranges in which parameter accuracy
is not highly required, one may select to use a model of lower
complexity, to use less observation data, to reduce data acqui-
sition rates, and to request less computational resources. For
example, a robust controller can tolerate parameter variations.
The more robust the controller is, the less accurate the identi-
fication needs to be. When system parameters drift outside the
robust region of the controller, the controller must be adapted.
Depending on how far the parameters are from the robustness
boundary of the controller, identification accuracy requirement
varies, and the resources should be assigned accordingly. In this
case identification accuracy depends directly on the capability
of robust control (a decision process) and the operating points
of the system. In decision-based identification, identified mod-
els only need to be sufficiently accurate for making decisions.
In such applications, it is not necessary to identify systems to
a uniform precision, or to establish parameter convergence, or
even to be identifiable over the entire parameter space.

In this paper, the designated “resources” will be represented
by the data amount in a pre-determined time interval, which is
problem specific. Typical examples of such resources include:
(1) allocated bandwidths in communication networks; (2) data
acquisition speed in process control problems; (3) frequencies
of information exchange between management and its subordi-
nates; (4) rates of workload re-assignment in parallel computing;
among others.

To illustrate, consider an example of TDMA (time division
multiple access) protocols in Fig. 1, in which m users are sharing
a communication channel [5]. All users update their estimates of
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Fig. 1. Communication resource sharing by multiple users.

their own parameters once every T seconds. Since users’ param-
eters can potentially change with time, data in a time window are
not re-used in subsequent windows. Resource allocation aims to
assign time slots according to certain strategies. In this case, the
assigned time slots to each user determine its data throughput
and is a measure of identification complexity.

The idea of “complexity versus required accuracy” has been
discussed conceptually and diversely in many applications.
Complexity issues in modeling and identification have been
pursued by many researchers. The concepts of ε-net and ε-
dimension in the Kolmogorov sense [6] were first employed
by Zames [7], [8] in studies of model complexity and sys-
tem identification. For certain classes of continuous-time and
discrete-time systems, the n-widths and ε-dimensions in the l1

kernel norm and the H∞ norm were obtained in [7], [9], [10].
The notion of identification n-width was introduced in [11] to
characterize intrinsic complexities in worst-case identification
problems. Complexity issues in system identification were stud-
ied in [12], [13]. n-widths of many other classes of functions
and operators were summarized in the books by Pinkus [14]
and Vitushkin [15]. A general framework of information based
complexity was comprehensively developed in [16]. Complex-
ity issues in estimation and feedback control problems have
recently attracted great attention. These include estimation with
communication uncertainties [17], [18], stabilization with lim-
ited data rates [19]–[21], and networked control systems [22].
This paper explores new issues of resource management in this
direction.

In our earlier work [23], complexity relationships between
system identification and control robustness were explored in
an information-based complexity setting. The work reported in
this paper explores more concretely and more generally this
concept. A closely related problem of resource saving in system
identification is quantization. Comprehensive studies of system
identification under limited measurement information can be
found in [24]–[28] and the references therein.

This paper focuses on dynamic resource assignments for a
group of systems, in which we seek “optimal” resource allo-
cation so that the decision reliability in terms of probability of
correct decisions is uniform for the entire group. To achieve
this goal, the resource assignment is dynamic and individual-
ized within the group. Adaptive optimal resource assignment
algorithms are devised and their convergence performance es-
tablished. The problems are technically challenging due to
a mixture of continuous variable and discrete variables and

interaction between the data size and estimation accuracy, lead-
ing to a stochastic approximation algorithm with mixed random
noises.

For clarity and simplicity, the paper is structured to present
the technical details in the scalar case first. It is shown that the
algorithms are strongly convergent. The asymptotic normality is
also established. By a suitable design of resource updating step
sizes, the algorithms are shown to achieve asymptotically the CR
(Cramer-Rao) lower bound, and hence are asymptotically effi-
cient. The results are then extended to multivariate systems. By
selecting proper input signals and decision reliability require-
ment we can make full use of the techniques and results in the
scalar case and obtain the corresponding results. Although this
paper presents the technical results on the basic “gain” systems,
there is an important link to more general FIR and ARMAX
systems. By using suitable periodic inputs, identification of FIR
and ARMAX models can be reduced equivalently to a collection
of the basic problems of identifying “gain” systems discussed
in this paper, by using the similar approaches as in our previous
work; see for example [28].

The rest of the paper is organized into the following sections.
Section II formulates the decision-based identification problem
as a set identification problem with a reliability requirement.
Technical developments start with scalar identification prob-
lems in Section III. Adaptive resource allocation algorithms
are introduced. The algorithms are shown to converge to the
optimal resource allocation by employing the ODE approach
in stochastic approximation methodologies. Convergence
rates, asymptotic normality, and asymptotic efficiency of the
algorithms are established. The algorithms are then generalized
to higher-dimensional cases in Section IV. Convergence and
convergence rates are established. Finally, findings of the paper
are summarized in Section V, together with some open issues.

II. PROBLEM FORMULATION

We start with a description of decision-based identification
and related resource assignment problems. Consider a discrete-
time, linear, time-invariant, single-input-single-output system
y = Gθu + d where u is the input, y is the output, and d repre-
sents the observation noise. θ is to be identified. In this paper,
we consider the following discrete-time finite impulse response
(FIR) system:

yk = a0uk + · · · + an−1uk−n+1 + dk = φ′
kθ + dk , (1)

where θ = [a0 , . . . , an−1 ]′ is the unknown parameter vector,
φ′

k = [uk , . . . , uk−n+1] is the regressor, and dk is the observa-
tion noise. An important special case is the gain system (n = 1)

yk = θuk + dk . (2)

The primary scenario of this paper is: A group of systems are
to be identified with some shared resource. Its members may
change their parameter values. As a result, only the “most re-
cent” data, defined as a time window of a given length T , can
be used in estimation, and past data will not be re-used. Sup-
pose that the maximum permissable number of observations in a
pre-designated time interval of length T , is Nmax . Dynamic re-
source allocation aims to determine how much resource should
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be assigned to a member for its identification. Let θk denote an
estimate of θ by using Nk observations during the kth updating
interval [kT, (k + 1)T ). In this paper, the observation length
Nk represents the resource consumption. Dependence of the
observation length on k indicates a dynamic resource assign-
ment problem in which the data size in each updating interval
is dynamically assigned.

In traditional system identification, the question is “what is
the value of θ∗?” and convergence of the estimates to the true
parameter θ∗, when N → ∞, is the ultimate goal. In contrast, in
decision-based identification the question becomes “is θ∗ ∈ S?”
since the set S is associated with a control or decision, and we
want to answer this question within an acceptable probabilistic
reliability.

Due to limited resources, to ensure decision accuracy we
designate a suitable subset M ⊂ S for reliability assessment.
Implicitly, it is assumed that the decision robustness can cover
the uncertainty set S. For example, in a robust control problem
for systems with gain uncertainty, if one robust controller F1
can cover gain uncertainty from [1, 2) and the second robust
controller F2 can cover [1.5, 3), then M = [1, 1.5) and S =
[1, 2). Consequently, controller selection is wrong only when
the true parameter is in M but its estimate leaves S, resulting
in using the wrong controller F2 . It is noted that if the true
parameter is actually in [1.5, 2), both controllers are valid and
there will be no reliability issue here. We also observe that in
this case, there is a similar set identification problem and its
reliability: When the true parameter is in M = [2, 3) but its
estimate leaves S = [1.5, 3) to be in [1, 1.5), resulting in using
the wrong controller F1 . Since these two problems are identical,
we focus on algorithms and their convergence properties for one.

In a stochastic setting, decision accuracy requirements are
stated as

if θ∗ ∈ M, Pr{θk ∈ S} ≥ 1 − α,

where Pr{·} denotes probability and 0 < α < 1 is the decision
error bound. In this framework, identification aims to determine
if θ∗ ∈ M . In other words, this is a set identification problem.

In its connection to a decision, a pre-designed decision (a
controller, a diagnosis, etc.) will be made if θk ∈ S. Implicitly,
when θk ̸∈ S, some other decisions (a different robust controller,
another diagnosis, etc.) will be made, which will be another
decision set or sets. So, the above decision reliability problem
is generic.

We remark that unlike traditional system identification, here
we seek minimum resource consumption for each individual
system within a population, under the condition that the re-
quired decision reliability is uniformly met for all members in
the population. If θ∗ is known, then the optimal N ∗ can be ob-
tained by the standard statistical analysis. On the other hand,
since the true θ∗ is unknown, the standard practice in statistical
hypothesis testing (which is also a set identification problem)
is to use the worst-case strategy for the population to deter-
mine the sample size. As a result, the optimality of resource
allocation for each individual within the population is lost. The
main question is: Can we devise an online resource alloca-
tion algorithm that achieves convergence to N ∗? When N ∗ is

obtained, the parameter estimation in the subsequent intervals
will be sufficiently accurate to support the decision and consume
the minimum resource.

III. BASIC ADAPTATION SCHEMES FOR RESOURCE
ASSIGNMENT: SCALAR CASES

The generic identification algorithm structure, leaving out
the actual estimation scheme, is the following iterative resource
updating structure:

Generic Identification and Resource Assignment Struc-
ture:

1) At the kth updating step, assign the resource Nk+1(θk )
based on the current estimate θk .

2) The parameter estimate is updated to θk+1 by us-
ing Nk+1 observations during the (k + 1)th interval
[(k + 1)T, (k + 2)T ).

In algorithm development, we seek “optimal” or “minimum”
resource assignments in the following sense. Let the estimate
θN and the true value θ∗ be related by

θN = θ∗ + eN

where eN is the estimation error whose distribution function
depends on the data size N . For a given decision error bound
0 < α < 1, the minimum resource assignment N ∗ is defined as:
Under the condition that θ∗ ∈ M

N ∗(θ∗) = min{N : such that PreN {θN ∈ S} ≥ 1 − α}. (3)

Remark 1: For implementation, it is understood that the in-
teger roundoff of N ∗, namely, ⌈N ∗⌉ where ⌈z⌉ denotes the
smallest integer greater than or equals to z ∈ R, will be used.
With this understanding, for convenience of rigorous analysis,
we will use (3) in all subsequent development.

For clarity and simplicity, we start with the basic scenario of
scalar cases and simple decision sets to convey the key issues
and main ideas of the algorithms. Generalization will follow in
the subsequent sections. We first describe the main ideas without
technical details.

Typical monitoring or diagnosis problems for a given θ con-
cern the problem: Is θ ≤ C? The threshold C can be the sys-
tolic or diastolic blood pressures in hypertension monitoring;
the SOC (State of Charge) upper bound to avoid battery over-
charge and thermal runaway; the load limit on a transmission
line; among many others. Mathematically, this is a set identifi-
cation problem: Evaluate if θ ∈ (−∞, C] or θ ∈ [C,∞). Since
θ ≥ C if and only if 2C − θ ≤ C, without loss of generality,
we consider only the problem θ ∈ (−∞, C].1

If θ is estimated by θ̂ with an estimation error e whose prob-
ability density function is symmetric such as Gaussian random
variables, it is clear that no matter how many data points are

1 The classical hypothesis testing contains two disjoint sets M1 and M2 , rep-
resenting “normal” vs. “fault”, or “legal” vs. “illegal”, etc. In our setting, this
can be simply represented by M1 = (−∞, C ∗) and M2 = (C,∞). The sub-
sequent development of our algorithms can be applied as two parallel resource
assignment problems. In classical hypothesis testing, one pre-determines the
sample size for the entire possible population (a priori information), and then
runs the test to reach a posterior conclusion. The sample size is not adapted or
individualized.
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taken and how small is the variance of the estimation error, the
worst-case scenario for decision reliability is

max
θ≤C

Pr{θ̂ > C} = 0.5,

implying an intractable problem for decision reliability analysis.
For this reason, we designate a value C∗ < C such that when
the maximum data size Nmax is used, the decision reliability
is met. Then, we have M = (−∞, C∗) and S = (−∞, C]. The
main goal of real-time adaptive resource allocation is to ensure
that when the true parameter is below C∗, only the minimum
data size N ∗ < Nmax is consumed without compromising the
required decision reliability.

In an off-line setting, this may be viewed as a hypothesis
testing problem with H0 : θ ∈ (−∞, C∗) and H1 : θ ∈ [C,∞).
The decision reliability can be defined as the Type I error. Ac-
cordingly, the selection of N ∗ falls in the field of sample size
determination. It should be noted that θ∗ or C − θ∗ need to be
known for the computation of the acceptance region, rejection
region and the sample size in the classical statistical hypothesis
testing [29], [30]. The iterative procedure in this paper will deal
with the case that θ∗ and C − θ∗ are unknown.

A. Set Identification and Optimal Resource Assignment

Consider the basic estimation scheme for a scalar θ∗. For
the gain system (2), if uk ≡ 1, then the system becomes yk =
θ + dk , which is a case of estimating a scalar. In common vital
sign monitoring problems, a patient’s heart rate can be measured
by processing EKG signals. In battery management systems,
voltage or current measurements with noise corruption are also
such estimation problems. In a given time interval of length T ,
noise-corrupted measurements of θ∗ are obtained

yj = θ∗ + dj , j = 1, . . . , N,

where dj is i.i.d., Gaussian distributed, mean zero and variance
σ2 . It is well known that the minimum-variance (or maximum
likelihood) estimate of θ∗ is given by

θ̂ =
1
N

N∑

j=1

yj = θ∗ + e,

where e is Gaussian, mean zero and variance σ2/N . To monitor
θ∗ persistently for its potential drifting outside M , in the kth
interval [kT, (k + 1)T ), k = 0, 1, . . ., the data of length Nk

within that interval are used for parameter estimation, leading
to the estimate

θk = θ∗ + ek .

Suppose that the maximum data length for this user is Nmax .
C∗ and C must have the sufficient gap so that by using the max-
imum resource Nmax , the decision reliability can be met. This
is calculated as follows. The density function of the standard
Gaussian distribution N (0, 1) is denoted by f(·). Define the
Gaussian tail function as

Q(x) =
∫ ∞

x
f(y)dy.

Since α is usually close to 0, we set 0 < α < 1/2 in the follow-
ing derivations. Let x0 satisfy Q(x0) = α. Under the maximum
resource assignment, e ∼ N (0,σ2/Nmax). The maximum θ∗

that can ensure the decision error α can be calculated as

C∗=max
{

θ∗ < C : Q

(
C − θ∗

σ/
√

Nmax

)
≤ α

}
= C − x0σ√

Nmax
.

(4)
Consequently, the identification decision set is M = (−∞, C∗).
Here the open set is used for conciseness in the subsequent
derivations.

Theorem 1: For a given θ∗ ∈ M = (−∞, C∗) and the deci-
sion error α, the minimum resource N ∗ is

N ∗ =
x2

0σ
2

(C − θ∗)2 . (5)

Proof: Since θ∗ ∈ M , we have θ∗ < C∗. From Q(x0) = α,
by (3) the minimum positive real number to satisfy the bound α
is obtained by

N ∗ = min
{

x > 0 : Q

(
C − θ∗

σ/
√

x

)
≤ α

}
=

x2
0σ

2

(C − θ∗)2 ,

which implies the theorem. !
In view of Theorem 1, it can be seen that N ∗ will go to infinity

as C − θ∗ goes to zero. To ensure N ∗ ≤ Nmax , there must exist
a gap between C and θ∗. This again explains the reason for two
sets S and M . In addition, N ∗ depends on the particular value of
θ∗ and N ∗ ≡ 1 for θ∗ ∈ (−∞, C − x0σ]. This case will not be
discussed and only the non-trivial case of C > θ∗ > C − x0σ
is covered in the following development.

B. Algorithms and Convergence

In reality, θ∗ is unknown. The main question is: Can N ∗

(from (5)) be asymptotically estimated from observation data?
We introduce an adaptive resource assignment algorithm to find
N ∗ in real time. At the kth iteration, θk is obtained based on Nk

observations in the time interval [(k − 1)T, kT ). The estimate
satisfies

θk = θ∗ + ek (6)

with ek ∼ N (0,σ2/Nk ). For convenience of algorithm devel-
opment, we use µk = Nk/Nmax instead of Nk in adaptation.
This allows us to develop algorithms for a continuous variable
in (0, 1), rather than integers. The actual resource assignment
will be Nk = ⌈µkNmax⌉. When, Nmax is sufficiently large, we
ignore the quantization error.

Noticing that 1 ≤ Nk ≤ Nmax , one can have µk ∈ (−δ +
1

Nm a x
, 1 + δ) := (µ, µ), where δ can be any one in (0, 1

Nm a x
).

The resource updating algorithm is

µk+1 = Πµ,µ

(
µk + τk

(
θk − C +

x0σ√
µkNmax

))
, (7)

where Π(µ,µ) is the projection to a fixed point µ0 ∈ (µ, µ),
i.e., Π(µ,µ)(x) = x if x ∈ (µ, µ), and Π(µ,µ)(x) = µ0 if x /∈
(µ, µ) and τk is the updating stepsize to be specified later. For
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convergence analysis, by denoting

h(µ) = θ∗ − C +
x0σ√
µNmax

, (8)

the algorithm (7) can be rewritten as

µk+1 = Π(µ,µ)

(
µk + τk (h(µk ) + ek )

)
. (9)

Thus, the algorithm (7) is a stochastic approximation algorithm
[4]. Consider the the ordinary differential equation (ODE)

µ̇ = h(µ). (10)

Let µ∗ be the stationary point of (10), which is unique and given
by

µ∗ =
x2

0σ
2

(C − θ∗)2Nmax
=

N ∗

Nmax
. (11)

Theorem 2: Suppose that the stepsize τk satisfies τk > 0,
τk → 0 as k → ∞, and

∑L
k=1 τk → ∞ as L → ∞. If θ∗ ∈ M ,

then µk from (7) converges strongly

µk → µ∗ = N ∗/Nmax , w.p.1, k → ∞.

Furthermore, if N ∗ is not an integer, then Nk converges strongly
to N ∗, i.e.,

Nk → ⌈N ∗⌉, w.p.1, k → ∞.

Proof: We note that if µk ∈ (µ, µ), (7) can be expressed as

µk+1 = µk + τk

(
θk − C +

x0σ√
µkNmax

)
.

We define tk =
∑k−1

j=0 τj , m(t) = max{k : tk ≤ t}, and the
piecewise constant interpolation µ0(t) = µk for t ∈ [tk , tk+1).
The time-shifted sequence µk (t) = µ0(t + tk ) can be shown
to be equicontinuous in the extended sense w.p.1. (see [4, p.
102]). This implies that we can extract a convergent subse-
quence µkℓ (·). Then the Arzela-Ascoli theorem concludes that
µkℓ (·) converges w.p.1 to a function µ(·) that is the unique
solution of (10).

Under the hypothesis, the convergence of µk is determined
by its limit ODE (10). In addition

∂h(µ)
∂µ

∣∣∣∣∣
µ∗

= −1
2

x0σ

(µ∗)3/2
√

Nmax
< 0. (12)

This implies that the stationary point θ∗ of (10) is locally asymp-
totically stable. By [4], we have µk → µ∗ w.p.1 as k → ∞. !

Remark 2: N ∗ is obtained by solving an optimization prob-
lem of (3), and its explicit expression is given by Theorem 1.
But Nk (= ⌈µkNmax⌉) is derived from the algorithm (7), which
is constructed directly by using the information and available
measurements, rather than minimizing a cost function or solving
an estimation criterion.

This paper adopts a common assumption in system iden-
tification that noises are normal distributed. Our results can
be potentially extended to cover non-Gaussian noises by the
Central Limit Theorem with additional explicit error bounds
(Berry-Esseen Theorem). In that case, instead of the precise
convergence rates and estimation errors, we can obtain lower

and upper bounds on the optimal resource N ∗ as a function of
the decision error bound α.

If the noises are not i.i.d., namely colored noises, since the
resource updating algorithms are of stochastic approximation
types, their convergence is valid for a much larger class of
random processes with appropriate moment conditions, such as
martingale difference and φ-mixing sequences.

In addition, the condition that N ∗ is not an integer can hold
almost everywhere since

L
(
{(x0 ,σ, C, θ∗) ∈ R4 : N ∗ is an integer}

)
= 0,

where L(·) means the Lebesgue measure on R4 .

C. Convergence Rate

This subsection provides the convergence rate of the re-
source allocation algorithm. For that, denote µ̃k = µk − µ∗,
k = 1, 2, . . ., and

β =
1
2

x0σ

(µ∗)3/2
√

Nmax
. (13)

Lemma 1: Suppose that {ak , k ≥ 1} is a sequence of real
numbers such that for k ≥ k0

ak+1 =
(

1 − λ1

k

)
ak +

λ2

k
vk , (14)

where {vk ,Gk} is a martingale difference sequence (MDS) with
supk≥1 E[|vk+1 |γ |Gk ] < ∞, w.p.1. γ > 2, λ1 > 0 and λ2 > 0
are two constants. Then, in the almost sure sense we have

ak =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

O

(
1

kλ1

)
, λ1 < 1

2 ;

O

(√
log k(log log k)ϵ

√
k

)
, ∀ϵ >

1
2
, λ1 = 1

2 ;

O

(
(log k)ϵ

√
k

)
,∀ϵ >

1
2
, λ1 > 1

2 .

The rate of strong convergence is given in the following the-
orem.

Theorem 3: Under the conditions of Theorem 2, if τk = τ/k
and τ > (1/2β), then the algorithm (7) has the convergence rate

µ̃k = O

(
(log k)ϵ

√
k

)
, w.p.1,∀ϵ >

1
2
.

Proof: From Theorem 2, µk → µ∗ w.p.1 as k → ∞. By
(9), there exists k0 such that µk+1 = µk + τk (h(µk ) + ek ) for
all k ≥ k0 . From (8) and (12), h(µk ) = −βµ̃k + o(µ̃k ), where
o(µ̃k )/µ̃k → 0, as µ̃k → 0. As a result, we have

µ̃k+1 = µ̃k +
τ

k
(−βµ̃k + o(µ̃k ) + ek )

=
(

1 − τβ

k
(1 + o(µ̃k )/µ̃k )

)
µ̃k +

τ

k
ek , k ≥ k0 . (15)

In the time interval [(k − 1)T, kT ), we denote the observation
as yk

i with yk
i = θ∗ + dk

i , i = 1, 2, . . . , Nk . By (7), it can be seen
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that Nk+1 = ⌈µk+1Nmax⌉ ∈ Fk and

E[ek+1 |Fk ] = E

⎡

⎣ 1
Nk+1

Nk + 1∑

i=1

dk+1
i

∣∣∣∣∣Fk

⎤

⎦

=
1

Nk+1

Nk + 1∑

i=1

E[dk+1
i |Fk ] = 0

where Fk = σ
(
dj

i , i ≤ Nmax , j ≤ k
)

. Thus, {ek ,Fk} is an
MDS. From Lemma 5 in Appendix, we have

E[|ek+1 |3 |Fk ] ≤ E

(
Nm a x∑

i=1

|dk+1
i |

)3

≤ N 2
max

Nm a x∑

i=1

E|dk+1
i |3 =

4N 3
maxσ

3
√

2π
,

which implies that supk≥1 E[|ek+1 |3 |Fk ] ≤ 4N 3
maxσ

3/
√

2π <
∞. Hence, by Lemma 1 the theorem follows. !

D. Asymptotic Normality

We now establish asymptotic normality of the estimates µk . A
lemma is presented first, whose proof is contained in Appendix.

Lemma 2: Consider the sequence {ak , k ≥ k0} in Lemma 1.
If λ1 > 1/2, the distribution of vk+1 conditioned on Gk is
N (0,φ2

k ), and there exist two constants Φ > 0 and φ > 0 such
that supk≥1 φ2

k ≤ Φ < ∞ and limk→∞ φ2
k = φ2 < ∞, w.p.1,

then we have
√

kak
d→N

(
0,

λ2
2φ

2

2λ1 − 1

)
, as k → ∞ (16)

and

kEa2
k → λ2

2φ
2

2λ1 − 1
, as k → ∞. (17)

where d→ denotes convergence in distribution.
Theorem 4: Under the conditions of Theorem 3, if Nk →

N ∗ w.p.1 as k → ∞, then the following centered and scaled
sequence of µk from the algorithm (7) is asymptotically
normal, i.e.

√
k (µk − µ∗) d→N

(
0,

τ 2σ2

(2τβ − 1)N ∗

)
, as k → ∞.

Proof: The distribution of ek+1 conditioned on Fk

is N (0,σ2/Nk+1), from which it can be seen that
supk≥1(σ2/Nk+1) ≤ σ2 and σ2/Nk+1 → σ2/N ∗ w.p.1 as k →
∞. In Lemma 2, let vk = ek , λ1 = τβ and λ2 = τ . By (15) and
(16), one obtains the desired result. !

Corollary 1: Under the conditions of Theorem 4, if τ = 1/β,
then the limit distribution of

√
k (µk − µ∗) has the minimum

variance σ2/(N ∗β2).
Proof: Note that

τ 2σ2

(2τβ − 1)N ∗ =
σ2

N ∗
1

β2 − ( 1
τ − β)2 . (18)

The corollary follows. !

E. Asymptotic Efficiency

Lemma 3: In every time interval [(k − 1)T, kT ), let Nk ≡
N ∗ and yk

1 , . . . , yk
N ∗ denote the observations, k = 1, 2, . . ..

Then, the Cramér-Rao lower bound for estimating µ∗ based
on {y1 , . . . , yk} is

σ2
C R (k) =

1
k
· 4Nmax(µ∗)3

x2
0N

∗ ,

where yi = {yi
1 , . . . , y

i
N ∗}, i = 1, . . . , k.

Proof: By (11), the likelihood function of yi conditioned on
µ∗ is given by

f
(
yi

1 , . . . , y
i
N ∗ ;µ∗)

=
(

1√
2πσ

)N ∗

exp

⎧
⎨

⎩− 1
2σ2

N ∗∑

j=1

(yi
j − θ∗)2

⎫
⎬

⎭

=
(

1√
2πσ

)N ∗

exp

⎧
⎨

⎩−
1

2σ2

N ∗∑

j=1

(
yi

j − C +
x0σ√

µ∗Nmax

)2
⎫
⎬

⎭ ,

where yi
j denotes the random variable as well as the value it

takes, j = 1, . . . , N ∗, i = 1, . . . , k. Consequently, we have

ℓi := log f
(
yi

1 , . . . , y
i
N ∗ ;µ∗)

= N ∗ log
1√
2πσ

− 1
2σ2

N ∗∑

j=1

(
yi

j − C +
x0σ√

µ∗Nmax

)2

and

∂ℓi

∂µ∗ =
x0(µ∗)−3/2

2σ
√

Nmax

N ∗∑

j=1

(
yi

j − C +
x0σ√

µ∗Nmax

)

=
x0(µ∗)−3/2

2σ
√

Nmax

N ∗∑

i=1

(
yi

j − θ∗
)

and

E
(

∂ℓi

∂µ∗

)2

=
x2

0N
∗

4Nmax(µ∗)3 ,

which gives the lemma since y1 , . . . , yk are mutually indepen-
dent. !

Theorem 5: Under the condition of Theorem 4, if τ = 1/β,
then algorithm (7) is asymptotically efficient in the sense that
limk→∞ k

(
E(µk − µ∗)2 − σ2

C R (k)
)

= 0.
Proof: By (17) and (18), we know that kE(µk − µ∗)2 →

σ2/(N ∗β2), which together with Lemma 3 and (13) gives the
theorem. !

Remark 3: Theorem 5 is just a theoretical result since β is
unknown. In practical applications, a possible way may be to use
an approximate asymptotically efficient algorithm, which can be
obtained by replacing τk = 1/(kβ) with its estimate 1/(kβk )
in the algorithm (7), where βk = 1

2
x0 σ

(µk )3 / 2
√

Nm a x
.

F. Bounded Interval

This subsection discusses the case that the identification set
is a bounded interval. System identification aims to determine
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if the true parameter is in a set [C1 , C2 ] with a decision error
bound α. Suppose that the maximum data length is Nmax . To
satisfy the required decision confidence level, we designate a
subset M ⊂ [C1 , C2 ] such that by using the maximum resource
Nmax , the design confidence can be met. This is calculated as
follows.

In order to calculate conveniently, we use the symmetric con-
fidence level Q(·) defined by

Q(x) =
∫ ∞

x
f(y)dy +

∫ −x

−∞
f(y)dy = 2

∫ ∞

x
f(y)dy.

This provides a systematic characterization of optimal resource
assignment for different M . For a given decision error bound
0 < α < 1, let s0 satisfy Q(s0) = α. Under the maximum re-
source assignment, the estimation error ek ∼ N (0,σ2/Nmax).
The maximum and minimum θ∗ that can ensure the decision
error α can be calculated as

C∗
1 = max

{
θ∗ : Q

(
θ∗ − C1

σ/
√

Nmax

)
≤ α

}
= C1 +

s0σ√
Nmax

;

C∗
2 = max

{
θ∗ : Q

(
C2 − θ∗

σ/
√

Nmax

)
≤ α

}
= C2 −

s0σ√
Nmax

.

(19)

Consequently, the identification decision set is M = (C∗
1 , C

∗
2 ).

Theorem 6: For a given θ∗ ∈ M and the given decision error
α, the minimum resource N ∗

N ∗ = max
{

s2
0σ

2

(θ∗ − C1)2 ,
s2

0σ
2

(C2 − θ∗)2

}
. (20)

Proof: For a given θ∗ ∈ M , the minimum resource to sat-
isfy the bound α is obtained by considering its distance to the
boundary points

N 1 = min
{

N : Q
(

θ∗ − C1

σ/
√

N

)
≤ α

}
=

s2
0σ

2

(θ − C1)2 ;

N 2 = min
{

N : Q
(

C2 − θ∗

σ/
√

N

)
≤ α

}
=

s2
0σ

2

(C2 − θ∗)2 .

Then, N ∗ = max{N 1 , N 2}. !
By the theorem above and (19), we have N ∗ <

max
{

s2
0 σ 2

(C ∗
1 −C1 )2 , s2

0 σ 2

(C2 −C ∗
2 )2

}
= Nmax and

N ∗ > max
{

s2
0σ

2

(C∗
2 − C1)2 ,

s2
0σ

2

(C2 − C∗
1 )2

}

=
s2

0σ
2

(C2 − C1 − s0 σ√
Nm a x

)2 := µ.

The resource updating algorithm is

µ(1)
k+1 = Π(

µ,1
)

⎛

⎝µ(1)
k + τk

⎛

⎝C1 − θk +
s0σ√

µ(1)
k Nmax

⎞

⎠

⎞

⎠

(21)

µ(2)
k+1 = Π(

µ,1
)

⎛

⎝µ(2)
k + τk

⎛

⎝θk − C2 +
s0σ√

µ(2)
k Nmax

⎞

⎠

⎞

⎠

(22)

µk+1 = max
{

µ(1)
k+1 , µ

(2)
k+1

}
. (23)

The actual resource assignment is ⌈µkNmax⌉ in the kth interval.
Theorem 7: Suppose that the step size τk satisfies τk > 0,

τk → 0 as k → ∞, and
∑L

k=1 τk → ∞ as L → ∞. If θ∗ ∈ M ,
then µk from (21)–(23) follows

µk → µ∗ = N ∗/Nmax , w.p.1 as k → ∞.

Proof: By use of the method in Theorem 2, we have

µ(i)
k → µ∗

(i) :=
s2

0σ
2

(θ∗ − Ci)2Nmax
w.p.1 as k → ∞, i = 1, 2,

(24)
which together with (20) implies

µk → max
{

s2
0σ

2

(θ∗ − C1)2Nmax
,

s2
0σ

2

(C2 − θ∗)2Nmax

}
=

N ∗

Nmax
.

Thus, the assertion is proved. !
Theorem 8: Under the conditions of Theorem 7, if τk = τ/k

and τ > 1/(2β), then the algorithm (21)–(23) has the conver-
gence rate

µk − µ∗ = O
(log k)ϵ

√
k

w.p.1, ∀ϵ >
1
2
,

where β = mini=1,2{ 1
2

s0 σ
(µ∗

i )3 / 2
√

Nm a x
} and µ∗

(i) is the one in (24)
for i = 1, 2.

Proof: According to Theorem 3, it is known that if τ >
(1/βi), we have

µ(i)
k − µ∗

(i) = O

(
(log k)ϵ

√
k

)
w.p.1, ∀ϵ >

1
2
, i = 1, 2,

which gives the theorem. !

G. Examples

Example 1: System identification aims to determine if the
true parameter θ∗ is in the set (−∞, C] with a decision
error bound α = 1% and C = 9. The measurement noise
dj ∼ N (0,σ2) with σ = 2, j = 1, 2, . . . It can be verified that
x0 = 2.3263. The maximum data size is Nmax = 100 and we
can get C∗ = 8.5347 by (4).

If θ∗ = 8.5, then N ∗(8.5) = 86.5867 by (5), and the esti-
mation error eN ∗(8.5) ∼ N (0, 0.21492) can ensure the deci-
sion error bound 1%. If θ∗ = 8, then N ∗(8) = 21.6467 and
eN ∗(8) ∼ N (0, 0.42992) can ensure the decision error bound
1%. Their comparison is shown by Fig. 2, which gives the den-
sity functions of the estimate.
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Fig. 2. A comparison of the minimum resource for two different real
parameters. (a) θ∗ = 8.5, (b) θ∗ = 8.

If the real unknown parameter θ∗ = 8, then we have µ∗ =
N ∗(8)/Nmax = 0.216467, β = 2.3098 by (13). Algorithm (7)
is simulated with δ = 10−3 , τk = 1/k and the initial value µ0 =
0.2. Fig. 3 demonstrates the convergence of Nmaxµk and Nk

by their trajectories. Furthermore, it is known that µk − µ∗ =
O
(
(log k)ϵ/

√
k
)

, w.p.1., ∀ϵ > 1
2 by Theorem 3 and τ = 1 >

1/β = 0.4329, which is shown in Fig. 4 with ϵ = 1.
To illustrate the asymptotic property of E(µk − µ∗)2 , we

employ the average of 100 trajectories of Nmax(µk − µ∗)2 by
Monte Carlo simulation, which is shown by Fig. 5, where τ takes
three difference values 0.4329 = 1/β, 0.3, and 2, respectively.
By F (0.4329) < F (0.3) < F (2) with F (τ) = τ 2 σ 2

(2τ β−1)N ∗ , we
know that the height of the curve corresponds to the size of
F (τ), which illustrates Theorem 4. Especially, we can also see
that the curve with τ = 1/β converges to the line y = 3.41 =
Nmaxkσ2

C R (k) by Lemma 3, which accords with the result of
Theorem 5.

Fig. 3. Convergence of the resource updating algorithm. (a) Conver-
gence of Nm ax µk , (b) Convergence of Nk .

Fig. 4. Convergence rate of the resource updating algorithm.
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Fig. 5. Asymptotic efficiency of the resource updating algorithm.

Since β is unknown, an asymptotically efficient algorithm
cannot be used in practical applications. But an approximate
one may be available. It can be obtained by using 1/(kβk )
to substitute for τk = 1/(kβ) = 0.4329/k in the algorithm (7),
where βk = 1

2
x0 σ

(µk )3 / 2
√

Nm a x
. Its convergence and asymptotic ef-

ficiency are illustrated by Fig. 6.
Example 2: We consider a batched resource allocation prob-

lem of 150 subjects. Suppose that θ∗ (when it is in the de-
cision set) takes 150 possible values 1, 2, . . . , 150 and is uni-
formly distributed. For each given θ∗, system identification aims
to determine if it is in the set (−∞, C] with a decision er-
ror bound α = 1%, where C = 151. The measurement noise
dj ∼ N

(
0,σ2) with σ = 5, j = 1, 2, . . .

When an off-line, population-based, and worst-case strategy
is used, the total required resource is

150 ×
⌈

x2
0σ

2

(C − 150)2

⌉
= 20400.

However, when our individualized and dynamic resource allo-
cation strategy is employed, the total resource in the average
sense is

150 × EN ∗ = 150 ×
⌈

1
150

150∑

i=1

x2
0σ

2

(C − i)2

⌉
= 300,

representing a drastic reduction on resource consumption.

IV. MULTIVARIATE SYSTEMS

In this section, we extend the results of scalar cases to systems
with multiple variables. The noise-corrupted measurements of
θ∗ = (θ∗1 , . . . , θ∗n )′ ∈ Rn are obtained

yj = θ∗ + dj , j = 1, 2, . . .

where {dj} is a sequence of i.i.d. random vectors with Gaus-
sian distribution, mean zero, and nonsingular covariance matrix
Σ. Given the data size Nk in the kth interval, the parameter

Fig. 6. Performance of the approximate asymptotically efficient
algorithm. (a) Convergence, (b) Asymptotic efficiency.

estimate is

θk = (θk,1 , . . . , θk,n )′ =
1

Nk

Nk∑

j=1

yk
j = θ∗ + ek

where ek is the estimation error and ek ∼ N (0,Σ/Nk ).
To motivate this problem in a system setting, consider

the FIR system (1). Suppose that the input probing sig-
nal is selected to be n-periodic with its one-period val-
ues u0 = p1 , u1 = p2 , . . . , un−1 = pn . For l = 1, 2, . . ., de-
fine Y 0

l = (yln−1 , . . . , y(l+1)n−2)′, θ = (a0 , . . . , an−1)′, D0
l =

(dln−1 , . . . , d(l+1)n−2)′. It follows that Y 0
l = Φθ + D0

l , where
Φ is the circulant matrix generated by {pn , . . . , p1}. If Φ is full
rank, then we have

Yl = θ + Dl, l = 1, 2, . . . ,

with Yl = Φ−1Y 0
l and Dl = Φ−1D0

l . If Φ is a tall matrix and
column full rank, then we can let Yl =

(
ΦT Φ

)−1 ΦT Y 0
l and
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Dl =
(
ΦT Φ

)−1 ΦT D0
l , which also gives Yl = θ + Dl . This

makes the input information to be involved in the covariance
matrix of Dl , which indicates that the optimal input design
problem can be investigated based on an asymptotically effi-
cient resource updating algorithm.

A. Optimal Resource Allocation

In a decision-based identification, the goal is to determine if θ∗

is in a set (−∞, C) = {x ∈ Rn : x < C} with the decision er-
ror bound α = (α1 , . . . ,αn )′ ∈ Rn , where C = (c1 , . . . , cn )′ ∈
Rn is a given vector and 0 < α = (α1 , . . . ,αn )′ < 1/2 =
(1, 1, . . . 1)′/2 = (1/2, 1/2, . . . , 1/2)′ ∈ Rn . And, the decision
reliability requirement is that when θ∗ < C∗,

Pr (θk,i ≤ ci) ≥ 1 − αi , i = 1, 2, . . . , n, (25)

where C∗ < C will be given by (26). Here and henceforth,
one writes y = (y1 , . . . , yn )′ ≤ z = (z1 , . . . , zn )′ if and only
if yi ≤ zi, i = 1, . . . , n. So does ‘<’. Also, denote 1√

y =
( 1√

y1
, . . . , 1√

yn
)′.

Under the maximum resource assignment, ek ∼
N (0,Σ/Nmax) and θk,i ∼ N (θ∗i ,σ2

i,i/Nmax), where σ2
i,i

is the ith diagonal element of Σ, i = 1, 2, . . . , n. Similar to
the scalar case, the maximum C∗ that can ensure the decision
reliability 1 − α can be achieved by

C∗ = C − 1√
Nmax

⎛

⎜⎝
x1σ1,1

...
xnσn,n

⎞

⎟⎠ (26)

where xi is given by Q(xi) = αi , i = 1, . . . , n. Then, the iden-
tification decision set is M = (−∞, C∗).

Theorem 9: For θ∗ ∈ M and the decision reliability require-
ment (25), the minimum resource N ∗ for the given decision
error α is ⌈∥N ∗

v ∥⌉, where

N ∗
v =

(
x2

1σ
2
1,1

(c1 − θ∗1)2 , . . . ,
x2

nσ2
n,n

(cn − θ∗n )2

)′

∈ Rn , (27)

and ∥ · ∥ means the l∞ norm of a vector.
Proof: According to the decision requirement (25), it is

known that

N ∗
v = max

1≤i≤n
min

N ≤Nm a x

{
N : Q

(
ci − θ∗i

σi,i/
√

N

)
≤ αi

}

which yields the theorem. !

B. Algorithms and Convergence

For the same reason in Section III, only the case of θ∗ >
(c1 − x1σ1,1 , . . . , cn − xnσn,n )′ is considered in this section.
Hence, it follows that 11 ≤ N ∗

v ≤ Nmax11, which implies that

N ∗
v /Nmax ∈

(
(

1
Nmax

− δv )11, (1 + δv )11
)

:= (!, !),

where δv can be any one in (0, 1
Nm a x

).

The resource updating algorithm is

µk+1 = Π(!,!
)
(

µk + τkΓ(θk − C + νk )
)

(28)

νk =
diag(x1σ1,1 , . . . , xnσn,n )√

Nmax

1
√

µk
, (29)

where Γ is a given matrix to be used for adjusting the asymp-
totic property, and Π(!,!)(·) defined on Rn is the pro-

jection to a fixed point (µ0,1 , . . . , µ0,n )′ ∈ (!, !), given by
Π(!,!)((y1 , . . . , yn )′) = (z1 , . . . , zn )′ with zi = yi if yi ∈
(µ

i
, µi) and zi = µ0,i if yi /∈ (µ

i
, µi), i = 1, . . . , n. In the

kth interval, the actual resource assignment will be Nk =
⌈∥µk∥Nmax⌉.

Theorem 10: Suppose that Γ is an identity matrix, and
the step size τk satisfies τk > 0, τk → 0 as k → ∞, and∑L

k=1 τk → ∞ as L → ∞. If θ∗ ∈ M , then µk from (28)–(29)
follows:

µk → µ∗ = (µ∗
1 , . . . , µ

∗
n )′ = N ∗

v /Nmax , w.p.1 as k → ∞,

where N ∗
v is the vector given by (27).

Proof: Similar to the proof of Theorem 2, the corresponding
ODE equation of (28)–(29) is

µ̇ = θ∗ − C +
diag(x1σ1,1 , . . . , xnσn,n )√

Nmax

1
√

µ
. (30)

By letting the right side of the above equal to zero and verifying
the negative definiteness of

∂

∂µ

(
diag(x1σ1,1 , . . . , xnσn,n )√

Nmax

1
√

µ

) ∣∣∣∣∣
µ∗

= −1
2
diag

(
x1σ1,1

(µ∗
1)3/2

√
Nmax

, . . . ,
x1σn,n

(µ∗
n )3/2

√
Nmax

)
,

the theorem is proved. !
Theorem 11: Under the conditions of Theorem 10, if τk =

τ/k and τ > (1/2β), then the algorithm (28)–(29) has the con-
vergence rate

∥µk − µ∗∥ = O

(
(log k)ϵ

√
k

)
w.p.1, ∀ϵ >

1
2

where τ > 0 is a constant and β = min1≤i≤n βi with βi =
1
2

xiσi,i

(µ∗
i )3/2

√
Nmax

.

Proof: With µk = (µk,1 , . . . , µk,n )′, (28)–(29) can be
rewritten as the component form

µk+1,i = Π(µ
i
,µi )

(
µk,i + τk

(
θk,i − ci +

xiσi,i√
µk,iNmax

))

for i = 1, . . . , n. Noticing that θk,i = θ∗i + ek,i with ek,i ∼
N (0,σ2

i,i/Nk ), by Theorem 3 it can be seen that if τ > (1/2βi),
we have

µk,i − µ∗
i = O

(
(log k)ϵ

√
k

)
w.p.1, ∀ϵ >

1
2
, i = 1, . . . , n.

Hence, the theorem is true. !
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Theorem 12: If θ∗ ∈ M, τk = 1/k, Γ = diag(τ1 , . . . , τn )
with τi > (1/2βi) for 1 ≤ i ≤ n, and Nk → N ∗ w.p.1 as
k → ∞, then the centered and scaled sequence of the estimation
error from algorithm (28)–(29) is asymptotically normal, i.e.

√
k(µk − µ∗) d→N (0, Σ ◦ S/N ∗) as k → ∞,

where S =
(

τ i τ j

τ i β i +τ j βj −1

)

n×n
and ◦means the Hadamard prod-

uct of matrices (component-wise multiplication).
Proof: Under the condition of the theorem, we know that

Theorem 10 is true. Thus, there exists k0 such that (28)–(29)
can be rewritten as

µ̃k+1 =
(

I −
(

1
k

B + o(µ̃k )/µ̃k

))
µ̃k +

Γ
k

ek , k ≥ k0 ,

where B := diag (τ1β1 , . . . , τnβn ). Noticing Eeke′k → Σ/N ∗

and similar to Theorem 4, one can prove the theorem by [35,
Lemma 3.3.1]. !

C. Asymptotic Efficiency

Lemma 4: In every time interval [(k − 1)T, kT ), let Nk ≡
N ∗ and yk

1 , . . . , yk
N ∗ denote the observations, k = 1, 2, . . . Then,

the Cramér-Rao lower bound for estimating µ∗ based on
{y1 , . . . , yk} is

ΣC R (k) =
1
k

S∗ΣS∗

N ∗ ,

where S∗ = diag
(

1
β1

, . . . , 1
βn

)
with βi being the ones in

Theorem 11, and yi = {yi
1 , . . . , y

i
N ∗}, i = 1, . . . , k.

Proof: For i = 1, . . . , k, the likelihood function of yi condi-
tioned on µ∗ is given by

f (yi ;µ∗) =

(
1√

(2π)n det(Σ)

)N ∗

× exp

⎧
⎨

⎩−1
2

N ∗∑

j=1

(yi
j − θ∗)′Σ−1(yi

j − θ∗)

⎫
⎬

⎭ ,

where θ∗ = θ∗(µ∗) = C − diag(x1 σ1 ,...,xn σn )√
Nm a x

1√
µ∗ by (30). It fol-

lows that:

ℓ := log f (yi ;µ∗)

= N ∗ log
1√

(2π)n det(Σ)
− 1

2

N ∗∑

j=1

(yi
j − θ∗)′Σ−1(yi

j − θ∗),

and ∂ℓ
∂µ∗ =

∑N ∗

j=1(y
i
j − θ∗)′Σ−1 ∂θ∗

∂µ∗ . Furthermore, we have

E
(

∂ℓ

∂µ∗

)′( ∂ℓ

∂µ∗

)

=
N ∗∑

j=1

E
(

∂θ∗

∂µ∗Σ−1(yi
j − θ∗)(yi

j − θ∗)′Σ−1 ∂θ∗

∂µ∗

)

= N ∗ ∂θ∗

∂µ∗Σ−1 ∂θ∗

∂µ∗

which together with ∂θ∗

∂µ∗ = diag (β1 , . . . ,βn ) and the indepen-
dence of y1 , . . . , yn implies the lemma. !

Theorem 13: Under the conditions of Theorem 12, if Γ =
S∗, then the algorithm (28)–(29) is asymptotically efficient in
the sense that

lim
k→∞

k (E(µk − µ∗)(µk − µ∗)′ − ΣC R (k)) = 0.

Proof: If Γ = S∗ which indicates τi = 1/βi for i =
1, . . . , n, then we have S = ( 1

β i

1
βj

)n×n . It follows that Σ ◦
S/N ∗ = S∗ΣS∗/N ∗. By Lemma 4 and Theorem 12, we ob-
tain the assertion of the theorem. !

V. CONCLUSION

In this age of information explosion, system identification
consumes precious resources and carries a price. This new trend
demands a revisit of the traditional identification paradigm,
which has been focused on accuracy and convergence. Recent
advances in system identification under sampling and quanti-
zation constraints have laid a necessary foundation for devel-
opment of a complexity-based identification paradigm. How-
ever, the state-of-the-art in system identification remains in their
infancy in dealing with this new reality of complexity-based
methodologies.

By considering complexity as a fundamental constraint and a
design variable, this paper introduces the concept of decision-
based identification in which the goal of identification is to
achieve required reliability with minimum resource consump-
tion. As a new direction, there are many potential open issues
along this line of research such as different types of systems,
noise characterizations, decision sets, and uncertainties.

This paper presents technical results on gain systems. By us-
ing full rank periodic inputs, identification of FIR and ARMAX
models can be reduced equivalently to a set of identification
problems for gain systems, see our previous work [28] on this
approach. Extensions to general systems under general inputs
are open problems and worth investigation.

APPENDIX

Lemma 5 ([31, pp. 132]): If bi ≥ 0, then the following equa-
tion hold,

(
n∑

i=1

bi

)r

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nr−1
n∑

i=1

br
i , r ≥ 1,

n∑

i=1

br
i , 0 ≤ r ≤ 1.

Lemma 6 ([32]): If the positive real number sequences
{τ 1

i , i ≥ 1} and {τ 2
i , i ≥ 1} satisfy

∑∞
i=1 τ 1

i = ∞,
∑∞

i=1 τ 2
i =

∞, and τ 1
i ≃ τ 2

i , then
∑k

i=1 τ 1
i ≃

∑k
i=1 τ 2

i as k → ∞, where
“τ 1

i ≃ τ 2
i ” means that “limi→∞ τ 1

i /τ 2
i = 1”.

Lemma 7 ([33]): For the MDS {vk ,Gk} given by Lemma 1
and an adapted process {wk ,Gk}, we have

k∑

i=1

wivi+1 = O (Wk (log Wk )ϵ) , w.p.1., ∀ϵ >
1
2
.

with Wk =
(∑k

i=1 w2
i

)1/2
.
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Lemma 8 ([34]): Consider an MDS {ξi ,Gi , i ≥ 1} and a
double subscript real number sequence {rki : 1 ≤ i ≤ k}. If
Eξ2

i < ∞, E[ξ2
i |Gi−1 ] = ρ2

i w.p.1 for i ≥ 1,

lim
b→∞

sup
i≥1

E[ξ2
i I|ξ i |>b |Gi−1 ] = 0 w.p.1, (A.1)

lim
k→∞

k∑

i=1

r2
kiρ

2
i = 1, (A.2)

sup
k≥1

k∑

i=1

r2
ki < ∞ and lim

k→∞
max
1≤i≤k

|rki | = 0, (A.3)

then
∑k

i=1 rkiξi
d→N (0, 1).

Proof of Lemma 1: By (14), it can be verified that

ak+1 =
k∏

i=k0

(
1 − λ1

i

)
ak0 +

k∑

i=k0

k∏

j=i+1

(
1 − λ1

j

)
λ2

i
vi

:= I1k + I2k .

Noticing that
∏k

j=i

(
1 − λ1

j

)
= O

((
i
k

)λ1
)

, we have

I1k = O
(
k−λ1

)
, (A.4)

and

I2k = O

(
k−λ1

k∑

i=k0

iλ1 −1vi

)
. (A.5)

According to Lemma 7, one can get

k∑

i=k0

iλ1 −1vi

=

⎧
⎪⎨

⎪⎩

O(1), λ1 < 1/2;
O
(√

log k(log log k)ϵ
)
, w.p.1., ∀ϵ > 1

2 , λ1 = 1/2;
O
(
kλ1 − 1

2 (log k)ϵ
)

, w.p.1., ∀ϵ > 1
2 , λ1 > 1/2.

This, together with (A.4) and (A.5), proves the lemma. !
Proof of Lemma 2: In view of (14), we have

√
k + 1ak+1

=
(

1 − λ1

k

)√
k + 1

k

√
kak +

λ2
√

k + 1
k

vk

=
k∏

i=k0

(
1 − λ1

i

)√
i + 1

i

√
k0ak0

+λ2

k∑

i=k0

k∏

j=i+1

(
1 − λ1

j

)√
j + 1

j

√
i + 1
i

vi

:= S1k +
λ2φ√

2λ1 − 1
S2k , (A.6)

i.e., S2k =
∑k

i=k0
rkivi with rki =

√
2λ1 −1

φ

∏k
j=i+1

(
1 − λ1

j

)√
j+1

j

√
i+1
i .

Using
∑k

j=1
1
j = log k + γ + O(1/k) with γ being the Euler

constant, one can get

k∏

j=i

(
1 − λ1

j

)√
j + 1

j

= exp

⎧
⎨

⎩

k∑

j=i

[
log
(

1 − λ1

j

)
+

1
2

log
(

1 +
1
j

)]⎫⎬

⎭

= exp

⎧
⎨

⎩

(
1
2
− λ1

) k∑

j=i

1
j

+ O

⎛

⎝
k∑

j=i

1
j2

⎞

⎠

⎫
⎬

⎭

= exp
{(

1
2
− λ1

)
(log k − log i) + O

(
1
k

)
+ O

(
1
i

)}

= exp{O(1/k) + O(1/i)}
(

k

i

) 1
2 −λ1

.

Then, it follows that

S1k = O
(
k

1
2 −λ1

)
(A.7)

and

rki =
√

2λ1 − 1
φ

k
1
2 −λ1 exp{O(1/k) + O(1/i)} (i + 1)λ1

i
.

(A.8)
By λ1 > 1/2 and (A.7), we have S1k → 0 as k → ∞. Thus, to
prove (16) it is sufficient to show S2k → N (0, 1), which will
be established by Lemma 8 with the following steps.

Since the conditional distribution of vk is N (0,φ2
k ) and

supk≥1 φ2
k ≤ Φ < ∞, it can be verified that

lim
b→∞

sup
i≥1

E[v2
i I|vi |>b |Gi−1 ] = 0, w.p.1.

According to Lemma 6 and (A.8), we have

k∑

i=k0

r2
kiφ

2
i

=
2λ1 − 1

φ2 k1−2λ1

×
k∑

i=k0

(
exp{O(1/k) + O(1/i)} (i + 1)λ1

i

)2

φ2
i

≃ (2λ1 − 1)k1−2λ1

k∑

i=k0

i2λ1 −2

≃ (2λ1 − 1)k1−2λ1 · 1
2λ1 − 1

(
k2λ1 −1 − k2λ1 −1

0
)

= 1 −
(

k0

k

)2λ1 −1

,

which implies

lim
k→∞

k∑

i=k0

r2
kiφ

2
i = 1, w.p.1. (A.9)
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Likewise, it is also known that

sup
k≥k0

k∑

i=k0

r2
ki < ∞. (A.10)

Furthermore, noticing (A.8) and

max
k0 ≤i≤k

{
(i + 1)λ1

i

}
=

⎧
⎪⎨

⎪⎩

(k + 1)λ1

k
, λ1 > 1;

(k0 + 1)λ1

k0
, 1/2 < λ1 ≤ 1,

we have limk→∞ maxk0 ≤i≤k rki = 0. Hence, (A.1)–(A.3) are
true for {vi} and {rki}. By Lemma 8, we have S2k → N (0, 1)
as k → ∞, and (16) is proved.

To prove (17), by (A.6) we have

E
(√

k + 1ak+1

)2

= ES2
1k +

λ2
2φ

2

2λ1 − 1
ES2

2k +
2λ2φ√
2λ1 − 1

ES1kS2k .

From supk≥1 φ2
k ≤ Φ < ∞ and (A.10), we know that

{
∑k

i=k0
r2
kiφ

2
i , k ≥ k0} is uniformly integrable. So, ES2

2k =
E
∑k

i=k0
r2
kiφ

2
i → 1 by (A.9). Moreover, it is known that

ES2
1k → 0 and ES1kS2k → 0 by (A.7) and ES1kS2k ≤√
ES2

1k

√
ES2

2k . Hence, (17) is also true. !

REFERENCES

[1] L. Ljung, System Identification: Theory for the User. Prentice-Hall, En-
glewood Cliffs, NJ, 1987.

[2] H. F. Chen and L. Guo, Identification and Stochastic Adaptive Control.
Boston, MA: Birkhauser, 1991.

[3] L. Ljung, A. Vicino, IEEE Trans. Autom. Control: Special Issue Identifi-
cation, Oct. 2005.

[4] H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algo-
rithms and Applications. 2nd Ed. Springer-Verlag, New York, 2003.

[5] D. D. Falconer, F. Adachi, and B. Gudmundson, “Time division multiple
access methods for wireless personal communications,” IEEE Commun.
Mag., vol. 33, no. 1, pp. 50–57, 1995.

[6] A. N. Kolmogorov, “On some asymptotic characteristics of completely
bounded spaces,” Dokl. Akad. Nauk SSSR, vol. 108, no. 3, pp. 385–389,
1956.

[7] G. Zames, “On the metric complexity of causal linear systems: ε-entropy
and ε-dimension for continuous time,” IEEE Trans. Autom. Control,
vol. AC-24, pp. 222–230, 1979.

[8] G. Zames, “Information-based theory of identification and adaptation,”
Plenary Speech, 1996 CDC Conference, Kobe, Japan, Dec., 1996.

[9] L. Y. Wang and L. Lin, “On metric complexity of discrete-time systems,”
Syst. Control Lett., vol. 19, pp. 287–291, 1992.

[10] L. Y. Wang, “Uncertainty, information and complexity in identification
and control,” Int. J. Robust Nonlin. Control, vol. 10, pp. 857–874, 2000.

[11] G. Zames, L. Lin and L. Y. Wang, “Fast identification n-widths and uncer-
tainty principles for LTI and slowly varying systems,” IEEE Trans. Autom.
Control, vol. AC-39, pp. 1827–1838, 1994.

[12] M. A. Dahleh, T. Theodosopoulos, and J. N. Tsitsiklis, “The sample com-
plexity of worst-case identification of FIR linear systems,” Syst. Control
Lett., vol. 20, no. 3, 1993.

[13] K. Poolla and A. Tikku, “On the time complexity of worst-case system
identification,” IEEE Trans. Autom. Control, vol. AC-39, pp. 944–950,
1994.

[14] A. Pinkus, N-widths in Approximation Theory. Springer-Verlag, Berlin,
Germany, 1985.

[15] A. G. Vitushkin, Theory of the Transmission and Processing of Informa-
tion. Pergamon Press, Oxford, U.K., 1961.

[16] J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski, Information-Based
Complexity. New York: Academic Press, 1988.

[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and
S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[18] D. E. Quevedo, A. Ahlén, A. S. Leong, and S. Dey, “On Kalman filter-
ing over fading wireless channels with controlled transmission powers,”
Automatica, vol. 48, pp. 1306–1316, 2012.

[19] K. You and L. Xie, “Minimum data rate for mean square stabilizability
of linear systems with Markovian packet losses,” IEEE Trans. Autom.
Control, vol. 56, no. 4, pp. 772–785, 2011.

[20] L. Qiu, G. Gu, and W. Chen, “Stabilization of networked multi-input
systems with channel resource allocation,” IEEE Trans. Autom. Control,
vol. 58, no. 3, pp. 554–568, 2013.

[21] W.-H. Chen and W. X. Zheng, “An improved stabilization method for
sampled-data control systems with control packet loss,” IEEE Trans. Au-
tom. Control, vol. 57, no. 9, pp. 2378–2384, 2012.

[22] T. Li, M. Fu, L. Xie, and J. F. Zhang, “Distributed consensus with limited
communication data rate,” IEEE Trans. Autom. Control. vol. 56, no. 2,
pp. 279–292, 2011.

[23] L. Y. Wang and L. Lin, “Information-based complexity of uncertainty
sets in feedback control,” IEEE Trans. Autom. Control, vol. 46, no. 4,
pp. 519–533, 2001.

[24] L. Y. Wang, J. F. Zhang, and G. Yin, “System identification using binary
sensors,” IEEE Trans. Autom. Control, vol. 48, pp. 1892–1907, 2003.
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