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Abstract—In this work, recursive identification algo-
rithms are developed for Hammerstein systems under the
conditions considerably weaker than those in the existing
literature. For example, orders of linear subsystems may be
unknown and no specific conditions are imposed on their
moving average part. The recursive algorithms for estimat-
ing both linear and nonlinear parts are based on stochas-
tic approximation and kernel functions. Almost sure con-
vergence and strong convergence rates are derived for all
estimates. In addition, the asymptotic normality of the esti-
mates for the nonlinear part is also established. The nonlin-
earity considered in the paper is more general than those
discussed in the previous papers. A numerical example ver-
ifies the theoretical analysis with simulation results.

Index Terms—Asymptotic normality, Hammerstein sys-
tem, kernel function, nonparametric approach, recursive es-
timation, stochastic approximation, strong consistency.

I. INTRODUCTION

HAMMERSTEIN systems consisting of a static nonlin-
ear function followed by a linear dynamic subsystem can

effectively model many practical systems, such as distillation
columns in chemical engineering [1], power amplifiers in elec-
tronic circuits [2] and solid oxide fuel cells [3], among others.
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Because of their effectiveness on modeling practical systems
and their simple structures, identification of Hammerstein sys-
tems has received considerable attention from researchers and
practitioners.

To identify the nonlinear function in a Hammerstein system,
both parametric [2], [4], [5] and nonparametric [6]–[10] ap-
proaches have been proposed. In the parametric approach, the
nonlinear part is approximated by a linear combination of ba-
sis functions such as polynomials [11], cubic spline functions
[12], piecewise linear functions [13], neural networks [14], sup-
port vector machines [15], kernel machines [16], [17]. In this
case, the nonlinear part depends only on a finite number of
unknown parameters; and as a result the entire Hammerstein
system is completely determined by the unknown parameters
of both the nonlinear and linear parts. Therefore, parameterized
Hammerstein systems are transformed into bilinear systems.
The iterative algorithm proposed in [18] is a commonly used
parametric method for estimating all unknown parameters of a
Hammerstein system, and its convergence properties have been
investigated subsequently. While the algorithm demonstrates
fast convergence in some cases, it was shown to diverge and
become unbounded in an example given in [11]. By normal-
izing model parameters, convergence of an iterative algorithm
was established in [19] for Hammerstein systems with a finite
impulse response (FIR) linear part if initial estimates were care-
fully chosen. This result was later extended to Hammerstein
systems with infinite impulse responses (IIR) on their linear
parts in [20] under the condition that the nonlinear functions are
odd and the inputs are stochastic with symmetric probability dis-
tributions. By adding a regularization procedure, convergence
of a modified algorithm was obtained in [5], removing certain
restrictive conditions imposed in [20]. In addition to the itera-
tive algorithms mentioned above, the kernel machine and space
projection method [16] and the fixed point iteration for identify-
ing bilinear models [17] are two kinds of algorithms proposed
recently, where a kernel machine was employed to approximate
the nonlinear part, which transforms a nonlinear relationship to
a linear relationship in a higher dimensional space. It was shown
that the resulting iteration in [17] was a contraction mapping on
a metric space. Furthermore, two kinds of ambiguities in the
identification of block-oriented systems were analyzed in [16].

When the nonlinear structure of a Hammerstein system is
a priori known, such as its basis functions and corresponding
orders, the parametric approach becomes a preferred choice.
However, if such knowledge is not available or incorrect basis
functions are used to represent the system, then the paramet-
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Fig. 1. Hammerstein system.

ric approach fails to generate a reliable model for modeling,
prediction, and optimization. In such circumstances, the non-
parametric approach is a favored alternative, since it requires
no structural information about the nonlinearity of the system.
The nonparametric approach is to estimate values of a nonlinear
function at any points of interest by applying kernel functions.

It is well understood that for real-time implementation of
identification algorithms, recursive estimation carries much
lower computational complexity and uses much smaller mem-
ory space for data storage [21]–[24]. Consequently, substantial
effort has been put on developing recursive algorithms for iden-
tifying Hammerstein systems. Recursive kernel estimates were
used to estimate the nonlinear part of nonparametric Hammer-
stein systems in [6], [7], in which the assumption that the values
of the nonlinear part at two points were available and different
in advance is needed for completely recovering the nonlinear
part. The L1 performance index was introduced to establish the
convergence and convergence rates of the estimates in [6], and
the point-wise almost sure convergence was derived in [7].

A recursive algorithm for estimating a constant multiple of
the impulse response sequence of the linear part and the val-
ues of a linear transform of the nonlinear part was proposed in
[8]. Mean square convergence and rate of convergence for the
estimates were established. The results in [8] left unaddressed
some aspects on the estimates (including three undetermined
constants, asymptotic normality of the nonparametric kernel
estimate, among others). Recursive algorithms for estimating
Hammerstein systems with FIR linear parts and general non-
linear functions were presented in [9], and point-wise almost
sure convergence of the recursive algorithms was proved. Later,
these recursive algorithms were extended to Hammerstein sys-
tems with ARX (autoregressive with exogenous) linear parts in
[10], and point-wise almost sure convergence of the algorithms
was established.

The Hammerstein systems considered in this paper are de-
picted in Fig. 1 and represented by

yk + a1yk−1 + · · · + apyk−p = b1f(uk−d)

+ b2f(uk−1−d) + · · · + bq f(uk−(q−1)−d) + ξk , (1)

where uk , yk , and ξk are the system input, the system output,
and the system internal noise, respectively; (p, q) are the orders
of the autoregressive (AR) part and exogenous (X) part of the
linear subsystem; d is the time-delay of the system. b1 (b1 �= 0)
is the leading coefficient. Without loss of generality, we assume

b1 = 1, since it is always possible to treat f̂(·) Δ= b1f(·) as the
nonlinear part of the system. For simplicity of presentation, we
assume d = 1. Generalization to arbitrarily known time-delay
is straightforward. It follows that the Hammerstein system to be
identified can be expressed as

yk + a1yk−1 + · · · + apyk−p = f(uk−1)

+ b2f(uk−2) + · · · + bq f(uk−q ) + ξk , (2)

which can be written in the compact form as

a(z)yk = b(z)f(uk ) + ξk , (3)

where a(z) = 1 + a1z + · · · + apz
p and b(z) = z + b2z

2 +
· · · + bq z

q with z being the backward shift operator: zyk =
yk−1 . The output yk is observed with additive noise εk as

zk = yk + εk . (4)

The goal of this paper is to recursively estimate the orders
(p, q), the parameters {a1 , . . . , ap , b2 , . . . , bq} of the linear sub-
system, and the values of f(·) at any points of interest based
on the designed inputs and observed outputs {uk , zk}. The pa-
per introduces recursive algorithms and establishes their almost
sure convergence, rate of convergence, and asymptotic normal-
ity. The main contributions of the paper are as follows: 1) The
assumption

∑q
j=1 bj �= 0 required in [8]–[10] for recursively

estimating Hammerstein systems is removed (see Remark 3 be-
low). The minimum phase condition on the linear subsystem
required in [25] is no longer assumed. Furthermore, the esti-
mate for an important constant for completely recovering the
nonlinear part is analyzed in detail (see Section II-B). 2) Instead
of assuming known orders (p, q) of the linear subsystem as in
[5], [9], [10], [17], the orders are estimated in this paper. The
existing order estimation methods of linear systems based on the
information criteria (e.g., Akaike information criterion (AIC),
Bayesian information criterion (BIC), and others) are mainly
applicable to batch identification, while the method proposed
in this paper is built upon the rank properties of the matrices
composed of impulse responses and singular value decomposi-
tion; and as such it is suitable for real-time identification. 3) In
contrast to mean square convergence on the constant multiple
of the impulse response of the linear part as in [8], convergence
with probability one is derived here. Compared to the almost
sure convergence results for parameters of the linear part and
the values of the nonlinearity in [7], [9], [10], almost-sure con-
vergence rate is obtained in this paper. 4) The estimate for a
linear transform of the nonlinear part was proved to converge in
mean square at rate O(k−(4/5−ν )) for sufficiently small ν > 0
in [8] and the convergence rate of the estimate for the nonlinear
part in [6] characterized by the L1 performance index depends
on the moment of the output. Here the possibly fastest rate
for nonparametric kernel estimators is obtained directly for the
estimate of the nonlinear part in the almost sure sense and is
independent of the moment of the output. Furthermore, asymp-
totical normality is established. 5) The requirement in [6], [7]
that the values of the nonlinear part at two points were available
and different in advance for determining two constants is not
needed for completely recovering the nonlinear part in this pa-
per. 6) Three constants included in the proposed estimates were
left undetermined in [8]. This problem is resolved by analyzing
the identifiability of the system in this paper. 7) It is shown that
a certain class of Hammerstein systems that cannot be treated
by the methods in [6]–[10] can be identified in the current paper
(see Remark 1).

The rest of the paper is arranged as follows. Sections II
presents the recursive algorithm for estimating the parameters
of the linear part and the values of the nonlinear part at any
points of interest. Strong consistency, convergence rate, and
asymptotic normality of the recursive estimates are investigated
in Section III. A numerical example is illustrated in Section IV,
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and a brief conclusion is given in Section V. Some auxiliary
results are placed in the Appendix.

II. RECURSIVE IDENTIFICATION ALGORITHMS

We first list the assumptions for estimating the parameters of
the linear part.

Assumption 1: The designed input {uk} is a sequence of
independent and identically distributed (i.i.d.) random variables
with zero mean, and is independent of both the internal noise
{ξk} and the observation noise {εk}. Also, {uk} is bounded, i.e.,
there exist real numbers u and ū (u < ū) such that u ≤ uk ≤ ū,
and its density function exists and is denoted by v(·). The lower
bound u and the upper bound ū and the density v(·) may be
unknown.

Assumption 2: a(z) and b(z) are coprime, and a(z) is stable,
i.e., a(z) �= 0,∀|z| ≤ 1.

Assumption 3: An upper bound n∗ for p+ q is available.
Assumption 4: {ξk} and {εk} are sequences of i.i.d. random

variables with zero mean and are mutually independent. More-
over, both ξk and εk have probability density, E|ξk |Δ <∞ and
E|εk |Δ <∞ for some Δ > 2.

Assumption 5: The function f(·) is measurable and has the
left and right limits f(x−) and f(x+) at any point x ∈ (u, ū).
In addition, at least one of the constants τ � Ef(uk )uk and
ρ � Ef(uk )(u2

k − Eu2
k ) is nonzero.

It is worth noting that in Assumption 4, the condition Eε2
k <∞ usually used for proving convergence has been strengthened

to E|εk |Δ <∞ with Δ > 2 for establishing asymptotic nor-
mality.

A. Recursive Algorithm for Estimating Linear Subsystem

Recursive identification of the linear subsystem is mainly
based on the convolution relationship between its parameters
and impulse response.

By stability of a(z) from Assumption 2, we have

h(z) � b(z)
a(z)

=
∞∑

i=1

hiz
i, (5)

where {hi, i ≥ 1} are impulse responses and h1 = 1 since the
coefficient of the power z of b(z) equals 1 in (2). For any positive
integers s ≥ 1, t ≥ 1, define the Toeplitz matrix

L(s, t) �

⎛

⎜
⎜
⎝

ht ht−1 · · · ht−s+1
ht+1 ht · · · ht−s+2

...
...

. . .
...

ht+s−1 ht+s−2 · · · ht

⎞

⎟
⎟
⎠ , (6)

where hi � 0 for i ≤ 0. By [26, Theorem 4.2] it is known that
the true orders of the linear subsystem are (p, q) if and only if
rankL(p, q) = rankL(p+ 1, q + 1) = p. This criterion is the
basis of estimating the orders (p, q).

We now give the way of recovering the parameters by using
impulse responses when the orders (p, q) are known. From (5)
it follows that

z + b2z
2 · · · + bq z

q = (1 + a1z + · · · + apz
p)

× (z + h2z
2 + · · · + hiz

i + · · · ).

Identifying coefficients for the same orders of z on both sides
implies

bi =
p∑

j=0

ajhi−j , ∀ 1 ≤ i ≤ q, (7)

hi = −
p∑

j=1

ajhi−j , ∀ i ≥ q + 1, (8)

where a0 = 1 and hi = 0 for i ≤ 0. From (8) for the indices
q + 1 ≤ i ≤ q + p we obtain the following linear equation:

L(p, q)[a1 a2 · · · ap ]T = −[hq+1 hq+2 · · · hq+p ]T .
Under Assumption 2, L(p, q) is nonsingular by [26, Proposition
2.1], and hence the parameters of the AR-part are derived:

[a1 a2 · · · ap ]T = −L(p, q)−1 [hq+1 hq+2 · · · hq+p ]T . (9)

The parameters of the X-part are obtained by (7) when the
parameters of the AR-part are known. As a result, the p+ q
parameters of the system can be uniquely determined via the
p+ q values {h1 , . . . , hp+q}.

In what follows, we begin to present the recursive algorithm
for estimating the linear subsystem in terms of the input-output
data {uk , zk}. The Lemma to follow is the basis for identifying
the impulse responses sequence of the linear subsystem. Define

ξ̄k
Δ= a−1(z)ξk and assume that the linear subsystem is with

zero initial condition. It follows from (3) that

yk =
k∑

i=1

hif(uk−i) + a−1(z)ξk =
k∑

i=1

hif(uk−i) + ξ̄k . (10)

Lemma 1: Under Assumptions 1, 2, 4, and 5, we have

Ezkuk−i = τhi, ∀i ≥ 1, (11)

Ezk (u2
k−i −Eu2

k−i) = ρhi, ∀i ≥ 1. (12)

Proof: Since {ξk}, {εk} and {uk} are mutually independent,
we have

Ezkuk−i = E

⎛

⎝
k∑

j=1

hjf(uk−j ) + ξ̄k

⎞

⎠uk−i

=
k∑

j=1

hjEf(uk−j )uk−i = hiEf(uk )uk = τhi.

Similarly, one obtains

Ezk (u2
k−i − Eu2

k−i) = Eyk (u2
k−i − Eu2

k−i)

= E

⎛

⎝
k∑

j=1

hjf(uk−j ) + ξ̄k

⎞

⎠ (u2
k−i − Eu2

k−i)

=
k∑

j=1

hjE
(
f(uk−j )(u2

k−i − Eu2
k−i)

)

= hiEf(uk )(u2
k − Eu2

k ) = ρhi.

This finishes the proof. �
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Remark 1: In [6]–[10], estimating the impulse responses se-
quence of the linear subsystem is based on (11). This naturally
requires τ �= 0. However, τ may be zero for some cases, for ex-
ample, in the case where the input is symmetric and f(·) is even.
In such cases, the algorithm given in [6]–[10] does not work,
but it is still possible to construct the estimation algorithm based
on (12) when ρ �= 0.

The idea of estimating the coefficients of the linear sub-
system is as follows. We first estimate the impulse responses
{hi, 1 ≤ i ≤ n∗}, then estimate the orders (p, q) by the es-
timated impulse responses, and finally give the estimates for
{a1 , . . . , ap , b2 , . . . , bq} using the estimated impulse responses
and orders.

The estimation of {hi, 1 ≤ i ≤ n∗} is motivated by (11) and
(12). Note that the righthand sides of (11) and (12) are equal to
τ and ρ, respectively, when i = 1 since h1 = 1. Thus, one may
take the sample average of {zkuk−i} (or {zk (u2

k−i − Eu2
k−i)})

to serve as an estimate for τhi (or ρhi) and hence {hi, 1 ≤
i ≤ n∗} by (11) if τ �= 0 (or by (12) if ρ �= 0). Moreover, the
estimate 1

n

∑n
k=1 zkuk−1 for τ can be rewritten in the recursive

form as

θ
(1,τ )
k = θ

(1,τ )
k−1 − γk (θ

(1,τ )
k−1 − zkuk−1),

where γk = 1/k is the step size, θ(1,τ )
k represents the estimate

for τ at time k, and the initial value θ(1,τ )
0 = 0. In the below,

all initial values of the following recursive algorithms are set
to zero. However, by Assumption 5, it is only known that at
least one of τ and ρ is nonzero, so one has no knowledge about
which one is nonzero. A feasible method is to apply a switching
mechanism by comparing the absolute values of the estimates
for τ and ρ at each step.

Denote the estimates for τhi and ρhi, 1 ≤ i ≤ n∗ at time k
by θ

(i,τ )
k and θ

(i,ρ)
k , respectively. The recursive estimates are

given by

θ
(i,τ )
k = θ

(i,τ )
k−1 − γk (θ

(i,τ )
k−1 − zkuk−i), (13)

θ
(i,ρ)
k = θ

(i,ρ)
k−1 − γk (θ

(i,ρ)
k−1 − zk (u2

k−i − θ
(u)
k−i)), (14)

where θ(u)
k = θ

(u)
k−1 − γk (θ

(u)
k−1 − u2

k ) is a recursive estimate for

Eu2
k . By comparing absolute values of the estimates θ(1,τ )

k and

θ
(1,ρ)
k for τ and ρ, the impulse responses {hi, 1 ≤ i ≤ n∗} at

time k are estimated as follows:

hi,k
Δ=

⎧
⎪⎨

⎪⎩

θ
( i , τ )
k

θ
( 1 , τ )
k

, if |θ(1,τ )
k | ≥ |θ(1,ρ)

k |,
θ

( i , ρ )
k

θ
( 1 , ρ )
k

, if |θ(1,τ )
k | < |θ(1,ρ)

k |.
(15)

We are in a position to estimate the orders (p, q) using
the estimated impulse responses {hi,k , 1 ≤ i ≤ n∗}. Since the
true orders of the linear subsystem (2) are (p, q) if and only
if rankL(p, q) = rankL(p+ 1, q + 1) = p by [26, Theorem
4.2], the key point is to estimate the rank of the Toeplitz matri-
cesL(s, t) by the availableLk (s, t), s ≥ 1, t ≥ 1 obtained from
L(s, t) with hi replaced by its estimate hi,k , ∀1 ≤ i ≤ n∗. Here
the rank of the matrices L(s, t), s ≥ 1, t ≥ 1 is estimated by ap-
plying the singular value decomposition (SVD) method given
in Appendix C to Lk (s, t), s ≥ 1, t ≥ 1. The detailed estima-
tion algorithm is placed in Appendix C. Denote the estimated
rank of the Toeplitz matrices Lk (s, t), s ≥ 1, t ≥ 1 by rk (s, t).

Thus, the estimate for (p, q) is selected such that the rank con-
dition rk (s, t) = rk (s+ 1, t+ 1) = s is satisfied in the range
s ≥ 1, t ≥ 1, s+ t ≤ n∗. Denote by (pk , qk ) the estimated or-
ders at step k.

At last, the estimates for the parameters of the linear subsys-
tem are defined as follows:

[a1,k a2,k · · · apk ,k ]T � −L−1
k (pk , qk )

× [hqk +1,k hqk +2,k · · · hqk +pk ,k ]
T , (16)

bi,k �
pk∑

j=1

aj,khi−j,k , i = 1, . . . , qk , (17)

where

Lk (pk , qk ) �
⎛

⎜
⎜
⎝

hqk ,k hqk −1,k · · · hqk −pk +1,k
hqk +1,k hqk ,k · · · hqk −pk +2,k

...
...

. . .
...

hqk +pk −1,k hqk +pk −2,k · · · hqk ,k

⎞

⎟
⎟
⎠ (18)

serves as the kth estimate for L(p, q) with hi,k = 0 for i ≤ 0.
Remark 2: It is seen that the recursive estimators of both

the orders and the parameters of the linear subsystem are im-
plemented with the help of the recursively estimated impulse
responses sequence. Therefore, to some extent the proposed
algorithm for estimating the orders and the parameters of the
linear subsystem is semi-recursive.

B. Recursive Algorithm for Estimating f(·) Using Kernel
Functions

In this subsection, the values of f(·) at any points of interest
in the domain {u < x < ū} are recursively estimated by using
the kernel functions. We first introduce the kernel functionK(·)
and the averaging kernel

Kdk (x) =
1
dk
K
(uk − x

dk

)
, (19)

where K(·) and the bandwidth sequence {dk} are assumed to
satisfy the following condition:

Assumption 6:
i) K(·) is bounded, symmetric, and positive such that∫

R K(t)dt = 1, lim|t|−→∞ |t|K(t) = 0,
∫

R t
2K(t)dt <

∞;
ii) dk monotonically tends to 0 and kdk −→ ∞, and 1

k∑k
i=1(

di
dk

)l −→ βl > 0 for l = −1, 2.
The well-known kernel functions including Gaussian,

Epanechnikov, uniform, triangle, biweight, etc. (see [29]) sat-
isfy Assumption 6i). If the sequence of the bandwidth dk =
O(1/kc), 0 < c < 1/2, then Assumption 6ii) holds.

It is worth noting that unlike [8]–[10], in the estimation
algorithm of the nonlinearity below, neither the condition∑q

i=1 bi �= 0 nor the parameter estimator of the linear subsys-
tem is involved in the kernel functions.

The idea of using kernel functions to estimate the non-
linear part is based on the following observation. Under
Assumptions 1, 5, and 6, Kdk (x) has the following limit
properties: EKdk (x) −−−→

k→∞
v(x) and EKdk (x)f(uk ) −−−→

k→∞
v(x)f̃(x) (see Lemma 3 below), where v(x) is the density func-
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tion of uk and f̃(x) =
(
f(x−) + f(x+)

)
/2,which equals f(x)

if f(·) is continuous at the point x. Under Assumptions 1, 2, 4,
5, and 6, it follows that

EKdk (x)zk+1 =
k∑

j=1

hjEKdk (x)f(uk+1−j )

= EKdk (x)f(uk ) +

⎛

⎝
k∑

j=2

hj

⎞

⎠EKdk (x)Ef(uk )

−−−−→
k−→∞

v(x)

⎛

⎝f̃(x) +

⎛

⎝
∞∑

j=2

hj

⎞

⎠Ef(uk )

⎞

⎠ Δ= g(x).

(20)

By EKdk (x) −−−→
k→∞

v(x) and (20), it is possible to estimate the

nonlinearity f(·) by using the ergodicity of {uk , zk}.
To derive the rate and asymptotic normality of the recursive

estimate for the nonlinear part, some smooth conditions on the
density function v(·) and the nonlinear part f(·) are needed
since the derivation usually involves the Taylor expansion up to
second order. In fact, this is a standard condition for investigating
the asymptotic normality. Since this paper considers the point-
wise almost sure convergence property of the estimate, the rate
and asymptotic normality of the estimate still hold at the twice
differentiable points in the domain even if the nonlinear part
is not twice differentiable for all the points in the domain, for
example, the dead-zone function, the saturation function, the
quantizer function and so on.

Assumption 7: Both the density function v(·) and the non-
linear function f(·) are twice differentiable and 0 < v(x) <∞
in the interval (u, ū).

The recursive nonparametric identification of f(·) is accom-
plished by distinguishing two cases as follows.

Case 1: Ef(uk ) = 0.
In this case, we have f̃(x) = g(x)/v(x) by (20). Further-

more, the case of
∑q

i=1 bi = 0 falls into Case 1 (Ef(uk ) = 0).

To see this, by setting f̄(x) Δ= f(x) − Ef(uk ), the system
{a(z)yk = b(z)f̄(uk ) + ξk} and the original system a(z)yk =
b(z)f(uk ) + ξk produce the same output yk if the input uk and
the initial conditions are the same for both systems. This is
because

yk + a1yk−1 + · · · + apyk−p

= f̄(uk ) + b2 f̄(uk−1) + · · · + bq f̄(uk−q ) + ξk

= f(uk ) + b2f(uk−1) + · · · + bq f(uk−q )

−
(

q∑

i=1

bi

)

Ef(uk ) + ξk

= f(uk ) + b2f(uk−1) + · · · + bq f(uk−q ) + ξk . (21)

Case 2: Ef(uk ) �= 0.
In this case, we have g(x)/v(x) = f̃(x) + (

∑∞
j=2

hj )Ef(uk ) and implicitly
∑q

i=1 bi �= 0. Therefore, to ob-
tain the estimate for f̃(x), one has to estimate the constant

(∑∞
j=2 hj

)
Ef(uk ) by using the input-output data. Note that

⎛

⎝
∞∑

j=2

hj

⎞

⎠Ef(uk ) =

⎛

⎝
∞∑

j=1

hj

⎞

⎠Ef(uk )

∑∞
j=2 hj∑∞
j=1 hj

= μ(z )

(

1 −
∑p

j=0 aj∑q
j=1 bj

)

, (22)

where

μ(z ) � lim
k→∞

Ezk =

⎛

⎝
∞∑

j=1

hj

⎞

⎠Ef(uk ) (23)

since {zk} is asymptotically stationary due to the stability of
a(z), and the identities

∑∞
j=2 hj∑∞
j=1 hj

= 1 − 1
∑∞

j=1 hj
= 1 −

∑p
j=0 aj∑q
j=1 bj

and
∞∑

j=1

hj =

∑q
j=1 bj∑p
j=0 aj

(24)

obtained by setting z = 1 in (5) are used. Thus, in this case, one
gets

f̃(x) =
g(x)
v(x)

− μ(z )

(

1 −
∑p

j=0 aj∑q
j=1 bj

)

. (25)

To judge whether or not Ef(uk ) equals zero, we show that
Ef(uk ) = 0 if and only if μ(z ) = 0. The necessity is directly
seen from (23). Let us show the sufficiency, i.e.,μ(z ) = 0 implies
Ef(uk ) = 0. From (23) it follows that μ(z ) = 0 implies either
Ef(uk ) = 0 or

∑∞
j=1 hj = 0. In the latter case,

∑∞
j=1 hj =

0 leads to
∑q

i=1 bi = 0 by (24) and hence one also derives
Ef(uk ) = 0. Thus, the recursive algorithm for estimating the
nonlinear part f(·) is presented as follows:

1) Estimate the sample mean μ(z ) of zk :

μ
(z )
k = μ

(z )
k−1 − γk (μ

(z )
k−1 − zk ), (26)

where μ(z )
k is the estimate for μ(z ) at time k.

2) Define the decision number:

Qk
Δ=

|μ(z )
k | + 1

log k
1

log k

= |μ(z )
k | log k + 1. (27)

3) Estimate v(x) and g(x):

vk (x) = vk−1(x) − γk (vk−1(x) −Kdk (x)), (28)

gk (x) = gk−1(x) − γk (gk−1(x) −Kdk (x)zk+1). (29)

4) Estimate f(x):

fk (x)
Δ=

⎧
⎨

⎩

gk (x)
vk (x) −μ(z )

k

(
1 −

∑ p k
j = 0 aj , k∑ q k
j = 1 bj , k

)
, ifQk ≥ η,

gk (x)
vk (x) , ifQk < η,

(30)

where η > 1 is used to judge whether μ(z ) is zero or not
by checking Qk > η or not at step k.
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Remark 3: It is seen from (20) that to estimate f(·), one has
to estimate

(∑∞
j=2 hj

)
Ef(uk ). Thus, from (22) it is natural to

require
∑q

i=1 bi �= 0 as done in [9], [10]. However, we have just
shown that for Hammerstein systems the condition

∑q
i=1 bi = 0

implies Ef(uk ) = 0, and hence
(∑∞

j=2 hj
)
Ef(uk ) = 0. So,

in the case
∑q

i=1 bi = 0 the Hammerstein systems can still be
identified. In comparison with the recursive algorithm for esti-
mating f(·) in [10], the recursive procedure (28)–(29) does not
use the estimates {ai,k , 1 ≤ i ≤ p} for the coefficients of the
linear subsystem.

III. CONVERGENCE ANALYSIS

In this section, we prove convergence properties of the re-
cursive algorithms (13), (14), (26), (28), and (29), which are
all stochastic approximation algorithms. For illustration con-
venience, the convergence results for stochastic approximation
algorithms are summarized in the Appendix.

A. Convergence Analysis of the Recursive Algorithms
for Estimating the Linear Subsystem

It is noted that the noise condition is satisfied when the
weighted sum of the corresponding noises converges. So, we
start with convergence analysis for some series.

Lemma 2: Under Assumptions 1–5, for any 0 ≤ δ < 1/2,
the following series converge almost surely: ∀ 1 ≤ i ≤ n∗,

∞∑

k=1

γ1−δ
k (zkuk−i − Ezkuk−i) <∞, (31)

∞∑

k=1

γ1−δ
k

(
zk (u2

k−i − Eu2
k−i) − Ezk (u2

k−i − Eu2
k−i)

)
<∞.

(32)

Proof: Under Assumptions 1–5, from (10) we derive

zkuk−i − Ezkuk−i = hi [f(uk−i)uk−i − Ef(uk−i)uk−i ]

+
k∑

j=1,j �=i
hj f(uk−j )uk−i + ξ̄kuk−i + εkuk−i . (33)

Thus, we have

∞∑

k=1

γ1−δ
k [zkuk−i − Ezkuk−i ]

= hi

∞∑

k=1

γ1−δ
k [f(uk−i)uk−i − Ef(uk−i)uk−i ]

+
∞∑

k=1

γ1−δ
k

⎡

⎣
k∑

j=1,j �=i
hj f(uk−j )uk−i

⎤

⎦

+
∞∑

k=1

γ1−δ
k

[
ξ̄kuk−i

]
+

∞∑

k=1

γ1−δ
k [εkuk−i ] . (34)

Define ψ
(1)
k � γ1−δ

k [f(uk−i)uk−i − Ef(uk−i)uk−i ] for a

fixed i. It is clear that {ψ(1)
k } is a sequence of mutually inde-

pendent random variables with zero mean. By the boundedness

of both {uk} and {f(uk )} we have
∞∑

k=1

E
[
ψ

(1)
k

]2
=

∞∑

k=1

E
[
γ1−δ
k (f(uk−i)uk−i−Ef(uk−i)uk−i)

]2

≤
∞∑

k=1

γ
2(1−δ)
k E [f(uk−i)uk−i ]

2 <∞,

which implies that the first term on the righthand side of (34)
converges a.s. by the Khintchine-Kolmogorov convergence the-
orem [30, Theorem 1 in Section 5.1].

For the second term on the right-hand side of (34), we have

∞∑

k=1

γ1−δ
k

⎡

⎣
k∑

j=1,j �=i
hj f(uk−j )uk−i

⎤

⎦

=
∞∑

k=1

γ1−δ
k

⎡

⎣
i−1∑

j=1

hjf(uk−j )uk−i

⎤

⎦

+
∞∑

k=1

γ1−δ
k

⎡

⎣
k∑

j=i+1

hjf(uk−j )uk−i

⎤

⎦

=
i−1∑

j=1

hj

i−j∑

l=0

∞∑

k=1

1
((i− j + 1)k + l)1−δ

× [f(u(i−j+1)k+ l−j )u(i−j+1)k+ l−i
]

+
∞∑

k=1

γ1−δ
k

⎡

⎣
k∑

j=i+1

hjf(uk−j )uk−i

⎤

⎦ . (35)

Define ψ
(2)
k � 1

((i−j+1)k+ l)1−δ
[
f(u(i−j+1)k+ l−j )u(i−j+1)k+ l−i

]

for fixed i. Thus, {ψ(2)
k } is a sequence of independent ran-

dom variables with zero mean. The boundedness of {uk} and
{f(uk )} leads to
∞∑

k=1

E
[
ψ

(2)
k

]2
=

∞∑

k=1

1
((i− j + 1)k + l)2(1−δ)

× E
[
f(u(i−j+1)k+ l−j )u(i−j+1)k+ l−i

]2
<∞,

which implies that the first term on the right-hand side of (35)
converges a.s. again by the Khintchine-Kolmogorov conver-
gence theorem [30].

Define ψ
(3)
k �

∑k
j=i+1 hjf(uk−j )uk−i and Fk � {uj−i ,

i ≤ j ≤ k} for a fixed i. Thus, we have E
[
ψ

(3)
k

∣
∣Fk−1

]
= 0,

i.e., {ψ(3)
k ,Fk} is a martingale difference sequence (m.d.s.)

and

sup
k
E

⎛

⎝
∣
∣

k∑

j=i+1

hjf(uk−j)uk−i
∣
∣Δ
∣
∣
∣Fk−1

⎞

⎠≤ O

⎛

⎝
k∑

j=i+1

|hj |
⎞

⎠

Δ

<∞

for some Δ > 2 due to the boundedness of uk and f(uk ). From
Theorem A2 in the Appendix it follows that

k∑

l=1

γ1−δ
l

⎡

⎣
l∑

j=i+1

hjf(ul−j )ul−i

⎤

⎦=O
(
Wk

(
logWk

)
 )
<∞,
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where Wk =
(∑k

l=1 γ
2(1−δ)
l

)1/2
. With k tending to infinity,

one arrives at that the second term on the righthand side of (35)
converges a.s., and hence the second term on the righthand side
of (34) also converges a.s.

Define ψ
(4)
k � ξ̄kuk−i and Fk � {uj−i , ξ̄j+1 , i ≤ j ≤ k}

for fixed i. Thus, we have ξ̄k ∈ Fk−1 and E
[
ψ

(4)
k |Fk−1

]
=

ξ̄kE [uk−i |Fk−1 ] = 0, so {ψ(4)
k ,Fk} is an m.d.s. and supk E

(|ξ̄kuk−i |Δ |Fk−1) = supk
(
E|ξ̄k |Δ × E(|uk−i |Δ |Fk−1)

)
<

∞ for some Δ > 2 due to Theorem A3 in the Appendix and
the boundedness of uk . From Theorem A2 it follows that

k∑

l=1

γ1−δ
l ξ̄lul−i = O

(
Wk

(
logWk

)
 )
<∞,

where Wk =
(∑k

l=1 γ
2(1−δ)
l

)1/2
. With k tending to infinity,

one derives that the third term on the righthand side of (34)
converges a.s.

Finally, define ψ(5)
k � γ1−δ

k εkuk−i . It follows that {ψ(5)
k } is

a sequence of mutually independent random variables with zero
mean. By Assumption 4, Eε2

k <∞, which entails
∞∑

k=1

E
(
ψ

(5)
k

)2 =
∞∑

k=1

1
k2(1−δ)Eε

2
kEu

2
k <∞.

Hence, the last term on the right-hand side of (34) converges
a.s. by the Khintchine-Kolmogorov convergence theorem [30].
Thus, we conclude (31), while (32) can be similarly proved. The
proof is complete. �

With Lemma 2, we are ready to analyze the convergence of
the estimates for the linear subsystem.

Theorem 1: Assume that Assumptions 1–5 hold. Then the
following assertions take place: i) The estimates {hi,k , 1 ≤ i ≤
n∗} for the impulse responses given by (15) converge to {hi , 1 ≤
i ≤ n∗} almost surely with the rate:

|hi,k − hi | = o(k−δ ) a.s., ∀ δ ∈ (0, 1/2). (36)

ii) The order estimates are strongly consistent:

pk −−−→
k→∞

p a.s. and qk −−−→
k→∞

q a.s. (37)

iii) The estimates for the parameters of the linear subsystem
given by (16)–(17) converge to the true values with the rate:

|ai,k − ai | = o(k−δ ) a.s., ∀ δ ∈ (0, 1/2), 1 ≤ i ≤ p, (38)

|bi,k − bi | = o(k−δ ) a.s., ∀ δ ∈ (0, 1/2), 1 ≤ i ≤ q. (39)

Proof: We first show that θ(i,τ )
k and θ(i,ρ)

k given by (13) and
(14) converge to τhi and ρhi with the rate:

∣
∣θ

(i,τ )
k − τhi

∣
∣ = o(k−δ ) a.s.∀δ ∈ (0, 1/2), (40)

∣
∣θ

(i,ρ)
k − ρhi

∣
∣ = o(k−δ ) a.s.∀δ ∈ (0, 1/2) (41)

for 1 ≤ i ≤ n∗, respectively. Rewrite the recursive algorithm
(13) as θ(i,τ )

k = θ
(i,τ )
k−1 + γk

(− (θ(i,τ )
k−1 − τhi) + e

(i,τ )
k

)
, where

e
(i,τ )
k = zkuk−i − τhi = zkuk−i − Ezkuk−i . Thus, the corre-

sponding regression function of the algorithm (13) is −(x−
τhi) and the noise is e(i,τ )

k . By Theorem A1 in the Appendix,
for proving (40), it suffices to prove

∑∞
k=1 γ

1−δ
k (zkuk−i −

Ezkuk−i) <∞ a.s.,∀δ ∈ [0, 1/2). This is guaranteed by (31)

in Lemma 2, and hence (40) holds. By noticing Ezk (u2
k−i −

Eu2
k−i) = Ef(uk )

(
u2
k−i − Eu2

k−i
)

= ρhi, the algorithm (14)

can be rewritten as θ
(i,ρ)
k = θ

(i,ρ)
k−1 + γk

(− (θ(i,ρ)
k−1 − ρhi) +

e
(i,ρ)
k

)
, where

e
(i,ρ)
k = zk (u2

k−i − θ
(u)
k−i) − ρhi

=
(
zk (u2

k−i − Eu2
k−i) − Ezk (u2

k−i − Eu2
k−i)

)

+ (Eu2
k−i − θ

(u)
k−i)

∞∑

j=1

hjf(uk−j )

+ (Eu2
k−i − θ

(u)
k−i)ξ̄k + (Eu2

k−i − θ
(u)
k−i)εk . (42)

Thus, the corresponding regression function of the algorithm
(14) is −(x− ρhi) and the noise is e(i,ρ)

k . Similarly, by Theo-
rem A1 in the Appendix, for proving (41) it suffices to show
that

∞∑

k=1

γ1−δ
k e

(i,ρ)
k <∞ a.s.∀δ ∈ [0, 1/2). (43)

Clearly, (43) holds with e(i,ρ)
k replaced by the first term on the

righthand side of (42) by (32).
Since {uk} is a sequence of i.i.d. random variables with zero

mean, by Theorem A2,
∑k

i=1(u
2
i − Eu2

i ) = O(
√
k(log

√
k)
 )

for any 
 > 1/2. This means |θ(u)
k − Eu2

k | = | 1
k

∑k
i=1(u

2
i −

Eu2
k )| = O((log

√
k)
/

√
k) ≤ O(k−(1/2−ν )) for any suffi-

ciently small ν > 0. Thus, (43) with e
(i,ρ)
k replaced by the

second term on the righthand side of (42) takes place, since∑∞
j=1 hjf(uk−j ) is bounded.
For the third term on the right-hand side of (42), we have
∣
∣
∣
∣
∣

∞∑

k=1

γ1−δ
k (θ(u)

k − Eu2
k )ξ̄k

∣
∣
∣
∣
∣
≤

∞∑

k=1

γ
3/2−δ−ν
k |ξ̄k |

=
∞∑

k=1

γ
3/2−δ−ν
k (|ξ̄k | − E|ξ̄k |) +

∞∑

k=1

γ
3/2−δ−ν
k E|ξ̄k |.

For a fixed δ, we can always choose an appropriate ν > 0 such
that 3/2 − δ − ν > 1, so

∑∞
k=1 γ

3/2−δ−ν
k E|ξ̄k | <∞. By The-

orem A3, {|ξ̄k | − E|ξ̄k |} is a zero mean α-mixing with mixing
coefficient exponentially decaying to zero andE|ξ̄k |Δ <∞ for
some Δ > 2 under Assumption 4. Note that

∞∑

k=1

(
E
(
γ

3/2−δ−ν
k (|ξ̄k | − E|ξ̄k |)

)Δ)2/Δ

≤
∞∑

k=1

γ3−2δ−2ν
k (E|ξ̄k |Δ)2/Δ <∞.

Thus, we have
∑∞

k=1 γ
3/2−δ−ν
k (|ξ̄k | − E|ξ̄k |) <∞ a.s. by The-

orem A6. This yields that (43) with e(i,ρ)
k replaced by the third

term on the righthand side of (42) takes place.
Similarly, (43) also holds with e(i,ρ)

k replaced by the last term
of (42). Therefore, (41) holds.
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By Assumption 5 at least one of τ and ρ is nonzero, and the
convergence of θ(1,τ )

k and θ(1,ρ)
k implies that 1) the switching in

(15) will cease for |τ | �= |ρ| after a finite number of steps; 2) the
switching in (15) often happens for |τ | = |ρ|. Note that (15) is
either θ(i,τ )

k /θ
(1,τ )
k or θ(i,ρ)

k /θ
(1,ρ)
k at each step for |τ | = |ρ| and

both of them have the desired rate due to (40) and (41). Thus,
(36) holds for both cases thanks to (40) and (41). Accordingly,
(37) follows from [31], [26] under (36), while (38) and (39)
straightforwardly follow from (36) together with (37). Hence,
the proof is complete. �

Remark 4: The rates (38)–(39) in Theorem 1 will not be
influenced by the switchings in the algorithm due to the fact
that the estimates (13)–(14) are calculated at each recursive step
and the estimates θ(i,τ )

k , θ
(i,ρ)
k always have the rates (40)–(41)

independent of the switchings; and the rates (38)–(39) are on the
asymptotic property of the estimates. Since the order estimation
is also asymptotically convergent by (37), the rates (38)–(39)
hold in the asymptotic case.

Remark 5: Actually, the estimates (15), (16), and (17) are
asymptotically normal. This can be proved by using the similar
procedure as that carried out in Theorem 2, but their asymptotic
variances are difficult to derive explicitly due to the complicated
relationship. This means that the rates in Theorem 1 can be
improved and become Op(1/k1/2).

B. Convergence Analysis of the Recursive Algorithms for
Estimating f(·)

Prior to proving the convergence of the recursive algorithms
(26)–(30), we first show some properties of the averaging kernel
Kdk (x).

Lemma 3: Under Assumptions 1, 5, and 6, for the averaging
kernel Kdk (x) defined by (19), the following limits take place

EKdk (x) −−−→
k→∞

v(x), EKdk (x)f(uk ) −−−→
k→∞

v(x)f̃(x), (44)

where f̃(x) =
(
f(x−) + f(x+)

)
/2, which equals f(x) if f(·)

is continuous at x. In addition, if Assumption 7 also holds, then

EKdk (x) − v(x) =
d2
k v

′′(x)
2

∫

R
t2K(t)dt+ o(d2

k ), (45)

EKdk (x)f(uk ) − v(x)f(x)

= d2
k [v

′(x)f ′(x)+ v′′(x)f(x)/2 + v(x)f ′′(x)/2]
∫

R
t2K(t)dt

+ o(d2
k ), (46)

and if dk = O(1/kc) with 0 < c < 1/2, then

∞∑

k=1

1
k1−ζ

(
Kdk (x) − EKdk (x)

)
<∞ a.s., (47)

∞∑

k=1

1
k1−ζ

(
Kdk (x)f(uk ) −EKdk (x)f(uk )

)
<∞ a.s., (48)

where 0 ≤ ζ < (1 − c)/2.

Proof: By the definition of Kdk (x) we have

EKdk (x)f(uk ) =
∫ ū

u

1
dk
K
(y − x

dk

)
f(y)v(y)dy

=
∫ x

u

1
dk
K
(y −x
dk

)
f(y)v(y)dy+

∫ u

x

1
dk
K
(y −x
dk

)
f(y)v(y)dy

=
∫ 0

u −x
d k

K(t)f(x+ dk t)v(x+ dk t)dt

+
∫ ū −x

d k

0
K(t)f(x+ dk t)v(x+ dk t)dt

−−−−→
k−→∞

v(x)
(
f(x−) + f(x+)

)
/2. (49)

Moreover, if Assumption 7 holds, then by the Taylor expansion
we have

v(x+dk t)f(x+dk t)−v(x)f(x)=[v′(x)f(x)+v(x)f ′(x)]dk t

+[v′′(x)f(x) + 2v′(x)f ′(x) + v(x)f ′′(x)]d2
k t

2/2+o(d2
k ),

which implies

EKdk (x)f(uk ) − v(x)f(x)

=
∫

R
K(t)[v(x+ dk t)f(x+ dk t) − v(x)f(x)]dt

= d2
k [v

′(x)f ′(x)+ v′′(x)f(x)/2 + v(x)f ′′(x)/2]
∫

R
t2K(t)dt

+ o(d2
k ) −−−−→

k−→∞
0, (50)

where
∫

R tK(t)dt = 0 is used. The first assertion of (44)
and (45) can be similarly proved. Notice that {uk} is a se-
quence of i.i.d. random variables and so does the sequence
{Kdk (x) − EKdk (x)}. Utilizing the derivation similar to that
used in (49), we can prove E[Kdk (x)]

2 = O(1/dk ) = O(kc).
When 0 ≤ ζ < (1 − c)/2, i.e., 2(1 − ζ) − c > 1, we obtain

∞∑

k=1

E
( 1
k1−ζ (Kdk (x) − EKdk (x))

)2

=
∞∑

k=1

1
k2(1−ζ )E

(
Kdk (x) − EKdk (x)

)2

≤
∞∑

k=1

1
k2(1−ζ )E[Kdk (x)]

2

=
∞∑

k=1

1
k2(1−ζ )O(kc) =

∞∑

k=1

1
k2(1−ζ )−c <∞,

which implies (47) by the Khintchine-Kolmogorov convergence
theorem [30]. Similarly, we obtain (48). �

Lemma 4: Under Assumptions 1, 2, 4, and 5, it holds that

Qk −−−→
k→∞

{
∞ if μ(z ) �= 0,
1 if μ(z ) = 0,

(51)

where Qk is the decision number defined by (27).
Proof: First, one concludes that under Assumptions 1, 2,

4, and 5, the estimate μ(z )
k given by (26) converges to μ(z )

a.s. with the rate: |μ(z )
k − μ(z ) | = o(k−δ )∀ 0 < δ < 1/2. This
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can be proved similarly as that done in Theorem 1. Therefore,
|μ(z )
k | = |μ(z ) | + o(k−δ ).
By the definition of Qk , we have Qk = |μ(z )

k | log k + 1. If
μ(z ) �= 0, then Qk = |μ(z ) | log k + o(k−δ ) log k + 1 −−−→

k→∞
∞.

On the other hand, if μ(z ) = 0, then |μ(z )
k | = o(k−δ ), and hence

Qk = o(k−δ ) log k + 1 −−−→
k→∞

1. �
The next theorem makes an analysis of convergence of the

nonlinear part estimate, including its asymptotic normality.
Theorem 2: Under Assumptions 1–6, the estimate fk (x) de-

fined by (30) converges:

fk (x) −−−→
k→∞

f̃(x) a.s. (52)

If, in addition, Assumption 7 holds and dk = O(1/kc), 0 < c <
1/2, then fk (x) converges with the rate

|fk (x) − f(x)| = o(k−ς ) a.s. (53)

where 0 < ς = min(2c, (1 − c)/2 − ν) < 2/5 with sufficiently
small ν > 0. Moreover, if dk = O(1/k1/5), then fk (x) is
asymptotically normal:

√
kdk (fk (x) − f(x) −Bk ) −−−→

k→∞
N (0, χ2(x)), (54)

where

Bk = d2
kβ2

(
f ′′(x)/2 + f ′(x)v′(x)/v(x)

)∫

t2K(t)dt,

χ2(x) = β−1σ
2
∫

K(t)2dt/v(x),

with β2 = 5/3, β−1 = 5/6, and σ2 = Var(ξ̄k ) + Var(εk )
+
∑∞

j=2 h
2
jVar(f(uk )). This means that |fk (x) − f(x)| =

Op(1/k2/5). Furthermore, if the bandwidth dk = O(1/kc),
1/5 < c < 1/2, then (54) still holds with Bk = 0 and β−1 =
1/(1 + c).

Proof: By ergodicity of zk and by (38), (39), it is seen
from (30) that for proving (52) it suffices to show that
vk (x) −−−→

k→∞
v(x) a.s. and gk (x) −−−→

k→∞
g(x) a.s. We first

prove vk (x) −−−→
k→∞

v(x) a.s. The recursive algorithm (28) for

estimating the density v(x) of uk can be rewritten as vk (x)
= vk−1(x) + γk

(− (vk−1(x) − v(x)) + e
(v )
k (x)

)
, where e

(v )
k

(x) = Kdk (x) − v(x) =
(
Kdk (x) − EKdk (x)

)
+
(
EKdk (x)

− v(x)
)
. Clearly, the regression function of the algorithm (28) is

f(y) = −(y − v(x)) and e(v )
k (x) can be regarded as the noise.

By Theorem A1 in the Appendix for the convergence of vk (x)
it suffices to show that 1)

∑∞
k=1 γk

(
Kdk (x) − EKdk (x)

)
<∞

a.s. and 2) EKdk (x) −−−→
k→∞

v(x).

The convergence stated in 1) holds by (47) with ζ = 0, while
the convergence 2) is the first assertion of (44). Furthermore,
the assertion gk (x) −−−→

k→∞
g(x) a.s. can be proved in a similar

way, and hence (52) holds.
For proving (53), one needs to show that |vk (x) − v(x)| =

o(k−ς ) a.s. and |gk (x) − g(x)| = o(k−ς ) a.s. We first show
the first assertion. By Theorem A1 in the Appendix it
suffices to show that

∑∞
k=1(1/k

1−ς )
(
v(x) − EKdk (x)

)
<

∞ a.s. andEKdk (x) − v(x) = O(k−ς ). The assertions (45)
and (47) imply EKdk (x) − v(x) = O(d2

k ) = O(k−2c) and

∑∞
k=1

1
k 1−ζ

(
Kdk (x) − EKdk (x)

)
<∞ a.s. As a result, the

rate of the convergence for the term v(x) −EKdk (x) is
O(k−2c), while for the term EKdk (x) −Kdk (x) it is O(k−ζ ).
Since 0 ≤ ζ < (1 − c)/2, we can choose a sufficiently small

ν > 0 such that ϑ
Δ= (1 − c)/2 − ν > 0 and hence

∞∑

k=1

1
k1−ϑ

(
EKdk (x) −Kdk (x)

)
<∞ a.s.

So, the convergence rate is O(k−ς ) with ς = min(2c, ϑ) for
the bandwidth dk = O(1/kc) with 0 < c < 1/2. In particular,
when we choose 2c = (1 − c)/2 − ν, i.e., c = 1/5 − 2ν/5, the
two terms achieve the same convergence rate O(1/k2/5−4ν/5).
This makes the algorithm (28) achieve the fastest rate of conver-
gence O(1/k2/5−4ν/5) when c = 1/5 − 2ν/5. Similarly, one
can show |gk (x) − g(x)| = O(k−ς ) a.s. By (30), these rates in-
corporating with (38) and (39) yield the assertion (53).

We now proceed to show the asymptotical normality
(54). For simplicity of notation, let us denote the constant

μ(z )(1 −
∑ p

j = 0 aj∑ q
j = 1 bj

) and its estimate μ
(z )
k (1 −

∑ p k
j = 1 aj , k∑ q k
j = 1 bj , k

) by

φ and φk , respectively, and set ωk
Δ=
∑k

j=2 hj (f(uk−j ) −
Ef(uk−j )) + ξ̄k + εk . Thus, we have g(x) = v(x)(f(x) +
φ) and zk = f(uk−1) + ωk +

∑k
j=2 hjEf(uk ) = f(uk−1) +

ωk + φ+O(λk ) for some 0 < λ < 1. Noting that

√
kdk (φk − φ) =

√
kdk × o(k−δ ) = o(1),

by Theorem 1 and the relation |μ(z )
k − μ(z ) | = o(k−δ ), ∀ 0 <

δ < 1/2, we see from (30) that for proving (54) it suffices to
show

√
kdk

(gk (x)
vk (x)

− g(x)
v(x)

−Bk

)
−−−→
k→∞

N (0, χ2(x)). (55)

First, we have

gk (x)
vk (x)

− g(x)
v(x)

=
gk (x)v(x) − g(x)vk (x)

vk (x)v(x)

=

(
gk (x) − g(x)

)− (f(x) + φ)
(
vk (x) − v(x)

)

vk (x)

= J1(x) + J2(x),

where

J1(x)
Δ=

(
gk (x) − Egk (x)

)− (f(x) + φ)
(
vk (x) − Evk (x)

)

vk (x)
,

which is asymptotically normally distributed, and

J2(x)
Δ=

(
Egk (x) − g(x)

)− (f(x) + φ)
(
Evk (x) − v(x)

)

vk (x)
,

is the bias term.
We first consider the bias term J2(x). Simple calculation

indicates that the recursive forms (28) and (29) can be expressed
by vk (x) = 1

k

∑k
i=1 Kdi (x) and gk (x) = 1

k

∑k
i=1 Kdi (x)zi+1 ,

respectively. Further, by Assumption 6ii) it follows from (45)
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and (46) that

Evk (x) − v(x) =
1
k

k∑

i=1

(EKdi (x) − v(x))

=
1
k

k∑

i=1

(v′′(x)d2
i

2

∫

R
t2K(t)dt+ o(d2

i )
)

=
d2
k v

′′(x)
2

∫

R
t2K(t)dt

(
1
k

k∑

i=1

(
di
dk

)2
)

+ o(d2
k )

=
d2
kβ2v

′′(x)
2

∫

R
t2K(t)dt+ o(d2

k )

and

Egk (x) − g(x) =
1
k

k∑

i=1

(EKdi (x)zi+1 − g(x))

=
1
k

k∑

i=1

(EKdi (x)f(ui) − v(x)f(x))

+
1
k

k∑

i=1

(
EKdi (x)

i∑

j=2

hjEf(uk ) − v(x)φ
)

=
1
k

k∑

i=1

(EKdi (x)f(ui) − v(x)f(x))

+
1
k

k∑

i=1

(EKdi (x) − v(x))φ+O(1/k)

= d2
kβ2 [v′(x)f ′(x) + v′′(x)f(x)/2

+ v(x)f ′′(x)/2]
∫

R
t2K(t)dt

+ (Evk (x) − v(x))φ+ o(d2
k ),

where the condition 1
k

∑k
i=1(

di
dk

)2 −−−−→
k−→∞

β2 in Assumption 6ii)

is used. Since vk (x) −−−→
k→∞

v(x) a.s., one derives

J2(x) = d2
kβ2 [f ′′(x)/2 + v′(x)f ′(x)/v(x)]

∫

R
t2K(t)dt

+ o(d2
k ) = Bk + o(d2

k ),

which implies

√
kdk

(gk (x)
vk (x)

− g(x)
v(x)

−Bk

)
=
√
kdkJ1(x) + o

(√
kd5

k

)

=
√
kdkJ1(x) + o(1)

due to dk = O(1/k1/5). Thus for asymptotic normality it re-
mains to show

√
kdkJ1(x) −−−→

k→∞
N (0, χ2(x)). (56)

The term gk (x) − Egk (x) in J1(x) can be decomposed into

gk (x) − Egk (x) =
1
k

k∑

i=1

(
Kdi (x)zi+1 − EKdi (x)zi+1

)

=
1
k

k∑

i=1

(
Kdi (x)f(ui)− EKdi (x)f(ui)

)
+

1
k

k∑

i=1

Kdi (x)ωi+1

+
1
k

k∑

i=1

(
Kdi (x) − EKdi (x)

) i∑

j=2

hjEf(uk )

=
1
k

k∑

i=1

(
Kdi (x)f(ui) − EKdi (x)f(ui)

)
+

1
k

k∑

i=1

Kdi (x)ωi+1

+ (vk (x) − Evk (x))φ+O(1/k).

Since vk (x) −−−→
k→∞

v(x) a.s., one obtains

J1(x) = J11(x) + J12(x) + J13(x) + o(1),

where

J11(x) =
1
k

k∑

i=1

(
Kdi (x)f(ui) − EKdi (x)f(ui)

)
/v(x),

J12(x) = −f(x)

(
1
k

k∑

i=1

(
Kdi (x) − EKdi (x)

)
)

/v(x),

J13(x) =
1
k

k∑

i=1

Kdi (x)ωi+1/v(x).

Let us first show that
√
kdk
(
J11(x) + J12(x)

)
converges to zero

in probability. Clearly, we have

Var(J11(x))

=
1

v(x)2k2

k∑

i=1

(
E
[
Kdi (x)f(ui)

]2 − [EKdi (x)f(ui)
]2
)

due to the mutual independence of {uk}. A treatment similar to
that used in (49) leads to E

[
Kdi (x)f(ui)

]2 = d−1
i v(x)f(x)2

∫
K(t)2dt+O(di) and

[
EKdi (x)f(ui)

]2 = v(x)2f(x)2 +
O(d2

i ). Thus,

Var(J11(x)) =
f(x)2

∫
K(t)2dt

v(x)kdk

(
1
k

k∑

i=1

dk
di

)

+
f(x)2

k

+O
(dk
k

)
+O

(d2
k

k

)
.

This entails

kdkVar(J11(x)) =
f(x)2

∫
K(t)2dt

v(x)

(
1
k

k∑

i=1

dk
di

)

+O(dk )

=
β−1f(x)2

∫
K(t)2dt

v(x)
+ o(1), (57)
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where the condition
(

1
k

∑k
i=1

dk
di

)
−−−−→
k−→∞

β−1 in Assumption 6

is used. Similarly, we have

kdkVar(J12(x)) =
β−1f(x)2

∫
K(t)2dt

v(x)
+ o(1),

kdkCov(J11(x), J12(x)) = −β−1f(x)2
∫
K(t)2dt

v(x)
+ o(1).

It follows that

Var
(√

kdk
[
J11(x) + J12(x)

])
= kdkVar(J11(x))

+ kdkVar(J12(x)) + 2kdkCov(J11(x), J12(x)) = o(1),

which implies
√
kdk
(
J11(x) + J12(x)

) −−−−→
k−→∞

0 in probability.

Therefore, to show the asymptotic normality (56), it suffices to
prove

√
kdkJ13(x) −−−→

k→∞
N (0, χ2(x)), (58)

which will be given in Appendix D. �

IV. ILLUSTRATIVE EXAMPLE

Consider the Hammerstein system

yk + a1yk−1 + a2yk−2

= f(uk−1) + b2f(uk−2) + b3f(uk−3) + ξk , f(uk ) = u3
k ,

where a1 = 0.3, a2 = 0.6, b2 = 0.8, and b3 = −1.8, and the
true orders (2, 3) of the linear subsystem are unknown. It is
seen that

∑3
j=1 bi = 0, and hence the nonlinear part cannot be

identified by the algorithms given in [8]–[10], while it can be
estimated by the algorithm proposed in the paper.

Let the input signal {uk} be a sequence of i.i.d. random
variables uniformly distributed over [−1, 1]. Assume that the
internal noise {ξk} and the observation noise {εk} are se-
quences of mutually independent Gaussian random variables:
ξk ∈ N (0, 0.32) and εk ∈ N (0, 0.32). The resulting signal-
to-noise ratio (SNR) is 8.4285 dB. The sample size at each
Monte-Carlo experiment is N = 3000. The simulation results
below are based on 101 Monte-Carlo experiments. The im-
plementation of each experiment is summarized as follows: 1)
Estimate the impulse responses by the algorithms (13)–(15); 2)
Estimate the orders of the linear subsystem by the estimated im-
pulse responses with the help of the SVD method introduced in
the Appendix; 3) Estimate the parameters of the linear subsys-
tem by (16)–(18); 4) Estimate the nonlinear part by (26)–(30).
In one implementation, the needed recursive steps for correctly
finding the true orders of the linear system is an important index
to evaluate the order estimation algorithm, which is defined as
the minimum number such that the estimated orders are correct
when the recursive steps are greater than or equal to the number.

Fig. 2 illustrates the distribution of the needed recursive steps
for correctly finding the true orders of the AR-part, the X-part,
and the linear subsystem by box plots, respectively. It is seen
that the first quantile (the 25th percentile), the second quantile
(median), and the third quantile (the 75th percentile) of the
needed steps for correctly finding the true orders of the linear
subsystem are 117, 194, and 256, respectively. This means that
the steps for correctly finding the true orders (2, 3) are less than
194 in half simulations. In the following plots, the solid lines,

Fig. 2. Boxplot of the needed steps for correctly finding the true orders
of the AR-part, the X-part, and the linear subsystem, respectively.

Fig. 3. Recursive estimates for AR-part. The black solid lines, black
dashed lines, dotted lines (blue and red) represent the true values, the
estimates based on the average of 101 experiments, and the one unit of
standard deviation of the corresponding estimates, respectively.

dashed lines, dotted lines represent the true values, the estimates
based on the average of 101 experiments, and the one unit of
standard deviation of the corresponding estimates, respectively.
The recursive estimates for the parameters of the linear part are
presented in Figs. 3 and 4, while Fig. 5 gives the estimates for
the nonlinear part for its arguments taking values in the interval
[−1, 1]. Figs. 3 and 4 show that the estimates have a large
fluctuation before the true orders are correctly found for all the
experiments. To some extent, this is caused by the estimation
algorithm (16)–(18) since the obtained parameter estimation is
incorrect when the estimated orders are wrong. Meanwhile, it
is also seen from Fig. 5 that the nonparametric estimate for the
nonlinear part based on kernel functions are subjected to so-
called boundary effects, a phenomenon in which the bias of an
estimator increases near the endpoints of the estimation interval
[32]. To reduce the impact of these boundary effects, boundary
kernels can be applied by modifying kernel estimators near
boundaries (see [33] for details). From the simulation results it
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Fig. 4. Recursive estimates for X-part. The black solid lines, black
dashed lines, dotted lines (blue and red) represent the true values, the
estimates based on the average of 101 experiments, and the one unit of
standard deviation of the corresponding estimates, respectively.

Fig. 5. Nonparametric estimate for the nonlinear part in the interval
[−1, 1]. The black solid line, black dashed line, blue dotted lines represent
the true values, the estimates based on the average of 101 experiments,
and the one unit of standard deviation of the estimates, respectively.

TABLE I
STATISTICAL RESULTS ON THE TIME SPENT BY THE ALGORITHM FOR 101

RUNS: UNIT (SECONDS)

Quantile 5% 25% 50% 75% 95% Avg
Time 4.4073 4.4146 4.4187 4.4243 4.4360 4.4197

is clearly seen that the proposed recursive algorithms perform
very well as predicted in the preceding theoretical analysis.

In order to illustrate the computational complexity of the
algorithm proposed, the quantiles and the average of the time
spent by the algorithm for 101 runs are reported in Table I. This
result shows that the algorithm can be operated quickly and thus
is suitable for real-time applications. The hardware used for this
computation includes a 3.5 GHz Intel Core i5 CPU and an 8
GB RAM while the software platform is Matlab 2014b running
under OS X 10.10 operation system.

V. CONCLUSION

Recursive identification algorithms for Hammerstein systems
have been proposed based on stochastic approximation incor-
porated with kernel functions. The new findings include the
following key aspects. 1) Some restrictive conditions used in
the literature have been removed; 2) The orders of the linear
subsystem may be unknown and are consistently estimated re-
cursively. 3) Almost sure convergence rate of the estimate for
the parameters of the linear subsystem has been established;
4) The rate of point-wise convergence and asymptotic normal-
ity of the estimate for the nonlinearity have been derived.

Note that the recursive estimates for the orders and param-
eters of the linear subsystem are implemented with the help
of recursively estimated impulse response sequences. For fur-
ther research it is of interest to derive recursive estimates for
both the orders and parameters of the linear subsystem directly
based on the input-output data rather than on some intermediate
estimates.

APPENDIX

A. Stochastic Approximation With Linear Functions

The stochastic approximation is a recursive method used for
estimating roots of an unknown function f(·) (regression func-
tion) from the observation that may be corrupted by errors and
noises. It updates the estimate as follows:

xk = xk−1 + γkOk , (59)

where γk is the step size and it may be taken as γk = 1/k, and
Ok is the observation of f(·) at time k. The observation Ok can
always be decomposed as Ok = f(xk−1) + εk , where f(xk−1)
represents the value of f(·) at xk−1 and εk is the resulting
observation error.

Since all regression functions of the recursive algorithms in-
volved in the paper are linear, i.e., f(x) = −(x− x∗), where x∗

is the parameter that needs to be estimated, we only introduce
the convergence results of stochastic approximation with linear
regression functions.

Theorem A1: ([34, Theorem 2.5.1, Remark 2.5.2, and
Theorem 2.6.1])

Let the estimation sequence {xk} be produced by the stochas-
tic approximation algorithm (59) with linear regression function
f(x) = −(x− x∗). Then the recursive estimate xk converges
to the true value x∗ if and only if the observation noise εk can
be decomposed into two parts εk = ε′k + ε′′k such that

∞∑

k=1

γkε
′
k <∞ a.s. and ε′′k −−−−→

k−→∞
0 a.s.

Further, xk converges to x∗ with the rate |xk − x∗| = o(γδk )
if the observation noise εk can be decomposed into two parts
εk = ε′k + ε′′k such that

∞∑

k=1

γ1−δ
k ε′k <∞ a.s. and ε′′k = O(γδk ) a.s.

for some δ ∈ (0, 1].
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B. Convergence for Series of Random Variables

Theorem A2: ([35, Lemma 2]) Let {Xk,Fk} be a martin-
gale difference sequence satisfying supk E(|Xk |Δ |Fk−1) <
∞ a.s. for some Δ > 2. Let {Mk} be a sequence of random
variables such that Mk is Fk−1 measurable. Then

k∑

i=1

MiXi+1 = O
(
Wk

(
logWk

)
)
a.s., ∀
 > 1/2

with Wk = (
∑k

i=1 M
2
i )1/2 .

For the process {Xk, k = 1, 2, . . .}, denote by F j
i the σ-

algebra generated by {Xs, 1 ≤ i ≤ s ≤ j}. For simplicity, F k
1

is abbreviated as Fk . Define

α(k) Δ= sup
n,A∈Fn ,B∈F∞

n + k

|P (A)P (B) − P (AB)|.

The process {Xk} is called α-mixing if α(k) −−−→
k→∞

0, and the

numbers α(k) are called the mixing coefficients of the random
process {Xk}.

Theorem A3: ([36, Theorem 1] [25, Lemma 4.2]) Let {Xk}
be a stable autoregressive moving average (ARMA) process
driven by a white noise sequence {ek} with a continuous den-
sity function. Then {Xk} is α-mixing with mixing coefficients
(or mixing rates) decaying exponentially to zero. Moreover, if
E|ek |ν <∞ for some ν > 0, then E|Xk |ν <∞.

Theorem A4: ([37, Lemma 1]) Let {Xk} be an α-mixing
with the mixing coefficientsα(k). Let r1 , r2 , r3 be positive num-
bers such that r−1

1 + r−1
2 + r−1

3 = 1. Suppose that Y and Z are
random variables measurable with respects to the σ-algebras Fl

and Fl+k , respectively. Then

|E(Y Z) − EY EZ| ≤ 10(α(k))
1
r 3 (E|Y |r1 )

1
r 1 (E|Z|r2 )

1
r 2 .

Theorem A5: ([38, Lemma 1.1]) Let {Xk} be an α-mixing
with mixing coefficients α(k). Let mk, tk , k = 1, . . . , n be in-
tegers such that 1 = m1 < t1 < · · · < mn < tn with mk+1 −
tk ≥ l, k = 1, 2, . . . , n− 1. Suppose that Y1 , Y2 , . . . , Yn are
random variables with |Yk | ≤ 1 and Yk is measurable with re-
spect to F tk

mk
. Then

|E(Y1 · · ·Yn ) − EY1 · · ·EYn | ≤ 16(n− 1)α(l).

Theorem A6: ([39, Lemma 4]) Let {Xk,Fk} be a zero
mean α-mixing with the mixing coefficients α(k) exponentially
decaying to zero and

∑∞
k=1(E|Xk |Δ)

2
Δ <∞ for some Δ > 2.

Then
∞∑

k=1
Xk <∞ a.s.

C. Estimating the Effective Rank of a Matrix

The method of estimating the effective rank of a matrix cor-
rupted by disturbance is based on the following theorem. Let
A = [aij ] be anm× nmatrix of complex valued elements. One
now seeks for an m× n matrix B = [bij ] of rank r minimizing
the criterion

‖A−B‖F =

⎡

⎣
m∑

i=1

n∑

j=1

|aij − bij |2
⎤

⎦

1/2

,

where ‖ · ‖F denotes the Frobenius norm of a matrix. Let the
singular value decomposition (SVD) of A be

A = UΣV, (60)

where U and V are m×m and n× n unitary matrices, respec-
tively, and Σ = [σjj ] is an m× n nonnegative diagonal matrix
whose elements are ordered such that σ11 ≥ σ22 ≥ · · ·σll ≥ 0,
where l = min(m,n). The diagonal elements are called the sin-
gular values of A.

Theorem A7: ([27, Theorem 7.2]) The uniquem× nmatrix
of rank r ≤ rank (A) which best approximates the m× n ma-
trix A in the Frobenius norm sense is given by A(r) = UΣrV,
where U and V are as given in (60) while Σr is obtained from
Σ by keeping its r largest singular values and setting the rest to
zero. This optimal approximation provides the minimum of the
criterion:

‖A−A(r)‖F =

⎡

⎣
l∑

j=r+1

σ2
jj

⎤

⎦

1/2

. (61)

As r approaches to l, this sum in (61) is decreasing and even-
tually becomes zero at r = l. To provide a convenient measure
for this approximation independent of the size of matrix A,
consider the normalized ratio:

ν(r) =
‖A(r)‖F
‖A‖F =

√
σ2

11 + σ2
22 + · · · + σ2

rr

σ2
11 + σ2

22 + · · · + σ2
ll

, 1 ≤ r ≤ l.

Clearly, this normalized ratio approaches its maximum 1 as
r tends to l. If the quantity ν(r) is close to one for some r
significantly smaller than l, then the matrixA is of low effective
rank. On the other hand, if in order for ν(r) to be close to one,
the corresponding r must take values close to l (i.e., r ≈ l), then
A is said to be of high effective rank.

Based on the explanation given above, the estimate of the
effective rank of the matrix Lk (s, t), s ≥ 1, t ≥ 1 is given by

rk (s, t) = min{r | ν(r) ≥ �, 1 ≤ r ≤ s},
where ν(r), 1 ≤ r ≤ s is the normalized ratio of the matrix
Lk (s, t), s ≥ 1, t ≥ 1 and � is a fixed threshold close to but less
than one, e.g., � = 0.999 [27], [28].

Remark 6: Note that a method for estimating the rank of
the matrices L(s, t) by using Lk (s, t) was given in [26] based
on the characteristic polynomial of the matrix Lk (s, t)LTk (s, t).
Our practical experience shows that the SVD method is more
robust and performs better than the method used in [26] and
hence the SVD method is adopted in this paper. It is also seen
from the illustrative example in Section IV that the SVD method
works well since the true orders are almost correctly found for
all 101 runs when the data size is greater than 500.

D. Proof of Asymptotic Normality for Theorem 2

Theorem A8: ([30, Corollary 1 in Section 9.1]) If {Xk} are
mutually independent with EXk = 0 and

∑k
j=1 E|Xj |Δ =

o(sΔ
k ) for some Δ > 2, where s2

k =
∑k

j=1 EX
2
j , then

∑k
j=1

Xj/sk −→ N (0, 1).
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Proof of Asymptotic Normality for Theorem 2 Let us con-
tinue to show the asymptotic normality (54) with the help of
Theorem A8, where we apply the technique of big blocks sep-
arated by small blocks [40, Theorem 7.5, pages 228–231] and
[41].

Define the σ-algebra Fk
Δ= {uj , ξj+1 , εj+1 , j ≤ k} and

Zk
Δ= Kdk (x)ωk+1 . Thus, {Zk ,Fk} is adapted and the se-

quence {Zk} is an α-mixing with exponentially decaying mix-
ing coefficients α(k) by Theorem A3, i.e., α(k) = O(λk ) for
some 0 < λ < 1. Let the integer sequences {p̃k}, {q̃k}, and {r̃k}
be defined as follows:

p̃k
Δ=
⌊
(kdk )β

⌋
, q̃k

Δ= �
√
p̃k�, r̃k Δ=

⌊
k

p̃k + q̃k

⌋

,

where β(Δ − 1) < Δ/2 − 1 for some Δ > 2, and �x� denotes
the integer part of a real number x. Clearly, 0 < β < 1/2. Fur-
ther, define

ϕm =
lm∑

j=km +1

√
dk
k
Zj , ϕ

′
m =

lm + q̃k∑

j= lm +1

√
dk
k
Zj ,

ϕ′′
r̃+1 =

k∑

j= k̃+1

√
dk
k
Zj ,

where k̃
Δ= r̃k (p̃k + q̃k ), and km

Δ= (m− 1)(p̃k + q̃k ), lm
Δ= (m− 1)(p̃k + q̃k ) + p̃k for m = 1, . . . , r̃k . Define also the

partial sums

Sk =
r̃k∑

m=1

ϕm , S
′
k =

r̃k∑

m=1

ϕ′
m , S

′′
k = ϕ′′

r̃+1 .

Then we have
√
kdkJ13(x)v(x) = Sk + S ′

k + S ′′
k . Let us first

show that ES ′2
k and ES ′′2

k converge to zero. Clearly,

dkVar(Kdi (x)) =
dk
di
v(x)

∫

K(t)2dt− dkv(x)2 = O(1)

for all 1 ≤ i ≤ k since dk monotonically decreases and
Cov(Zi, Zj ) = O(1) for 1 ≤ i < j ≤ k.

Observe that

ES ′2
k =

r̃k∑

m=1

Var(ϕ′
m ) + 2

∑

1≤i<j≤r̃k
Cov(ϕ′

i , ϕ
′
j ),

where at the righthand side the first term is estimated as

r̃k∑

m=1

Var(ϕ′
m ) =

dk
k

r̃k∑

m=1

lm + q̃k∑

j= lm +1

Var(Zj )

+ 2
dk
k

r̃k∑

m=1

∑

lm +1≤i<j≤lm + q̃k

Cov(Zi, Zj )

≤ O
( q̃k r̃k

k

)
+O

(dk r̃k q̃
2
k

k

)
−→ 0,

while the second term is estimated as

∑

1≤i<j≤r̃k
Cov(ϕ′

i , ϕ
′
j) =

dk
k

∑

1≤i<j≤r̃k

li + q̃k∑

s= li +1

lj + q̃k∑

t= lj +1

Cov(Zs, Zt)

=
dk
k

r̃k −1∑

i=1

r̃k∑

j=i+1

li + q̃k∑

s= li +1

lj + q̃k∑

t= lj +1

(
α(t− s)

)Δ −2
Δ

(dsdt)(Δ−1)/Δ

≤ O

(
dk q̃

2
k r̃k

kd
2(Δ−1)/Δ
k

r̃k −1∑

l=1

(
α(lp̃k )

)Δ −2
Δ

)

= O

(
q̃2
k r̃k

kd
1−2/Δ
k

λp̃k (Δ−2)/Δ(1 − λp̃k (Δ−2)(r̃k −1)/Δ)
1 − λp̃k (Δ−2)/Δ

)

= O

(
q̃2
k r̃kλ

p̃k (Δ−2)/Δ

kd
1−2/Δ
k

)

−→ 0,

where Theorem A4 is used. Analogously, one derives

ES ′′2
k =

dk
k

k∑

j= k̃+1

Var(Zj ) + 2
dk
k

∑

k̃+1≤i<j≤k
Cov(Zi, Zj )

≤ O
( p̃k + q̃k

k

)
+O

(dk (p̃k + q̃k )2

k

)
−→ 0.

Therefore, one needs only to show that Sk in distribution con-
verges to N (0, χ2(x)v2(x)). By Theorem A5 we have

∣
∣
∣
∣
∣
E

[
r̃k∏

m=1

exp(jtϕm )

]

−
r̃k∏

m=1

E [exp(jtϕm )]

∣
∣
∣
∣
∣

≤ 16(r̃k − 1)α(q̃k ) −→ 0,

since α(k) exponentially tends to zero, where j is the imaginary
unit. This means that Sk and the random variable

∑r̃k
m=1 Ym

asymptotically are identically distributed as k −→ ∞, where
{Ym ,m = 1, . . . , r̃k} are mutually independent with EYm = 0
and Ym andϕm have the same distribution. So, to establish (54),
it remains to show that the distribution of

∑r̃k
m=1 Ym converges

to N (0, χ2(x)v2(x)). Clearly,

r̃k∑

m=1

EY 2
m =

r̃k∑

m=1

Eϕ2
m

=
dk
k

⎛

⎝
r̃k∑

m=1

lm∑

j=km +1

EZ2
j + 2

r̃k∑

m=1

∑

km +1≤i<j≤lm
Cov(Zi, Zj)

⎞

⎠.

For the first term at its righthand side,

dk
k

r̃k∑

m=1

lm∑

j=km +1

EK2
dj

(x)Ew2
j+1

=

⎛

⎝1
k

r̃k∑

m=1

lm∑

j=km +1

dk
dj

⎞

⎠ v(x)
∫

K2(t)dtEw2
k +O(d2

k )

−→ χ2(x)v2(x).
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For dealing with the last term, let us divide the index set {(i, j) |
km + 1 ≤ i < j ≤ lm} into two disjoint subsets Q1

Δ=
{(i, j) | i, j ∈ {km + 1, . . . , lm}, 1 ≤ j − i ≤ tk} and Q2

Δ=
{(i, j) | i, j ∈ {km + 1, . . . , lm}, tk < j − i < p̃k}, where tk
is such that tk −→ ∞ and dk tk −→ 0. Thus, we have

2dk
k

r̃k∑

m=1

∑

km +1≤i<j≤lm
Cov(Zi, Zj )

=
2dk
k

r̃k∑

m=1

∑

Q 1

Cov(Zi, Zj ) +
2dk
k

r̃k∑

m=1

∑

Q 2

Cov(Zi, Zj ),

where the first term at the righthand side is

2dk
k

r̃k∑

m=1

∑

Q 1

Cov(Zi, Zj ) = O

(
dk tk p̃k r̃k

k

)

= o(1),

while the last term item is estimated by

2dk
k

r̃k∑

m=1

∑

Q 2

Cov(Zi, Zj )

= O

⎛

⎝
r̃k∑

m=1

∑

Q 2

dk
k

( 1
didj

)Δ −1
Δ (

α(j − i)
)Δ −2

Δ

⎞

⎠

= O
([
d

2
Δ −1
k

p̃k −1∑

l=tk +1

(
λ

Δ −2
Δ

)l][1
k

r̃k∑

m=1

p̃k −1∑

i=1

(dk
di

) 2 (Δ −1 )
Δ
)])

= O
(
d

2
Δ −1
k

(
λ

Δ −2
Δ

)tk )
= o(1),

where the covariance inequality given in Theorem A4 is used.
Therefore, we have

∑r̃k
m=1 EY

2
m −→ χ2(x)v2(x). Using the

Cr -inequality [34, Page 6] leads to

E|Ym |Δ = E|ϕm |Δ ≤
(dk
k

)Δ/2
p̃Δ−1
k

lm∑

j=km +1

E|Zj |Δ

= O

⎛

⎝
(dk
k

)Δ/2
p̃Δ−1
k

lm∑

j=km +1

1
dΔ−1
j

⎞

⎠ ,

which implies

r̃k∑

m=1

E|Ym |Δ = O

⎛

⎝ p̃Δ−1
k

(kdk )Δ/2−1

⎛

⎝1
k

r̃k∑

m=1

lm∑

j=km +1

(dk
dj

)Δ−1

⎞

⎠

⎞

⎠

= O

(
p̃Δ−1
k

(kdk )Δ/2−1

)

= o(1).

Thus, we have shown that

r̃k∑

m=1

E|Ym |Δ
/
(

r̃k∑

m=1

EY 2
m

)Δ/2

= o(1).

By Theorem A8 we conclude that
∑r̃k

m=1 Ym converges to
N (0, χ2(x)v2(x)) in distribution, and the asymptotic normal-
ity (54) has now been established. �
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