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Recursive Identification of MIMO Wiener Systems

Bi-Qiang Mu and Han-Fu Chen, Fellow, IEEE

Abstract—Stochastic approximation (SA) algorithms are proposed to
identify a multi-input and multi-output (MIMO) Wiener system, in which
the system input is taken to be a sequence of independent and identically
distributed (i.i.d.) Gaussian random vectors . The algo-
rithm for identifying the nonlinear part is designed with multi-variable
kernel functions. Under suitable conditions, we show that the estimates of
the coefficients of the linear subsystem and of the values of the nonlinear
function converge to the respective true values with probability one.

Index Terms—MIMO Wiener system, stochastic approximation, strong
consistency, -mixing.

I. INTRODUCTION

Wiener systems, composed of a linear subsystem followed by a static
nonlinearity, are often used to model diverse practical systems; see [1].
For example, in a pH control problem [2], the linear subsystem rep-
resents the mixing dynamics of the reagent stream in a stirred vessel
and the static nonlinearity describes the pH value as a function of the
chemical species contained. As was shown in [3], any time-invariant
system with fading memory may be approximated by aWiener system.
However, mainly single-input single-output (SISO) Wiener systems
have been dealt with in the existing literature to date with only a few
exceptions.
For MIMO Wiener systems, the linear subsystem is identified in [4]

by using the subspace method with the help of Bussgang’s theorem [5]
and Gaussian input. In [6], it is assumed that the nonlinear function
is invertible and the inverse function can be parameterized by using
basis functions; the consistent estimates are then obtained by applying
the subspace identification algorithm combined with the singular value
decomposition.
In this technical brief, we adopt the nonparametric approach to iden-

tify MIMO Wiener systems by applying a stochastic approximation
(SA) algorithm, without requiring invertibility of the nonlinear func-
tion.When the nonlinearity is estimated, themulti-variable kernel func-
tion is used in the SA algorithm. It is shown that the estimates for coeffi-
cients of the linear subsystem and for the static nonlinearity are strongly
consistent.
This technical brief is a multidimensional extension of [7] and [8],

but the extension is not straightforward. The system description, iden-
tifiability of the system, conditions imposed on the system, and proba-
bilistic properties of some system signals are given in Section II. The
estimation algorithms are proposed in Section III; their strong consis-
tency is proved in Section IV for the linear subsystem, and in Section V
for the nonlinear part. A numerical example is provided for demonstra-
tion in Section VI, and a brief conclusion is given in Section VII fol-
lowed by a technique Appendix.
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II. SYSTEM: IDENTIFIABILITY AND ITS PROBABILISTIC PROPERTIES

The system to be considered in the technical brief is as follows:

(1)

where and
are the and matrix-valued poly-

nomials with unknown coefficients but with known orders and ,
respectively, and is the backward-shift operator: . More-
over, , , and are the system input, output,
and observation, respectively; is the observation noise. The
unknown nonlinear function is denoted by ,
where . The problem is to recursively estimate ,

, , , and at any fixed based on
the available input-output data .
The identifiability problem is to answer whether or not the system

can be uniquely defined by the input-output data . In general,
the answer, is negative. To see this, let be an nonsingular ma-
trix, and set , , ,
and . Then, the following system:

(2)

and the systems (1) share the same input-output data , but they
have different linear and nonlinear parts. So, in order to have theMIMO
Wiener system uniquely defined, the nonsingular matrix should be
fixed in advance.
Under what conditions, and are uniquely defined on the

basis of ? The following lemma provides an answer. The proof
can be found in [11].
Lemma 1: Assume is stable. Under any of the following two

equivalent conditions, Un1 and Un2, and are uniquely de-
fined on the basis of :

Un1. and have no common left factor, and is
of row-full-rank.
Un2. There are no -vector polynomial and -vector poly-
nomial (not both zero) with orders strictly less than and ,
respectively such that , where

.
We now proceed to fix . We use to denote the Euclidean norm

for a vector or the Frobenius norm for a matrix , and use to denote
the identity matrix. Let us first list assumptions to be imposed on the
system.
H1: The input is a sequence of i.i.d. Gaussian random

vectors and is independent of .
H2: and have no common left factor, is of row-

full-rank and is stable: det .
H3: is a measurable vector-valued function satisfying the fol-

lowing condition:

(3)

where , , and , are constants.
H4: is a sequence of i.i.d. random vectors with and

.
From H2, it is clear that

(4)

0018-9286/$31.00 © 2012 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 3, MARCH 2013 803

where , , , . Assuming
, we have

(5)

and by H1 and . It is clear
that . Define

...
...

. . .
...

(6)

where for .
With the help of Lemma 1, we have the following lemma.
Lemma 2: Assume H2 holds. The matrix defined by (6) is of row-

full-rank.
The proof is given in the Appendix, while the corresponding asser-

tion for SISO systems can be found in [8] and [12].
As a consequence of this lemma, the matrix composed of the first
rows of is of row-full-rank, and hence is nonsingular for all

sufficiently large .
By H3, is meaningful. Noting

, , where .
We need an additional condition H5.
H5: The matrix is nonsingular.
It is clear that H5 is a multidimensional extension of the condition

used in [7]–[10] for SISO Wiener systems. In order to fix co-
efficients of the identified system, let us choose in (2) to be equal
to . Then, for system (2), . Therefore, under
H5, without loss of generality, we may assume that for
system (1).
The probabilistic behavior of

plays
an important role in convergence analysis of the algorithms to be
proposed below.
Introducing

. . .

. . .
. . .

...
...

. . .
. . .

...

we then obtain the state-space representation for (1):

(7)

For the process , we denote by the -algebra
generated by . Define

The process is called -mixing if .

Remark 1: It is clear that under H1 and H2, is a time-ho-
mogeneous Markov chain taking values in , where

denotes the Borel -algebra in , and is an
-mixing process with mixing coefficient exponentially decaying
to zero [8], [13]–[15]

(8)

It is worth noting that the mixing property is hereditary [13] in the
sense that the process for any measurable function pos-
sesses the same mixing property as that of . So, the processes like

and and so on are all -mixing se-
quences with mixing coefficients exponentially tending to zero.

III. RECURSIVE IDENTIFICATION ALGORITHMS

A. Estimation of

We first estimate the impulse responses and then the coefficients
of and .
Lemma 3: Assume H1–H5 hold. Then

(9)

Proof: From (5), it is seen that ,
. The Gaussian vector ,

is zero mean with covariance Matrix .

It is straightforward to verify that can be factorized
with

It then follows that and
is a Gaussian vector

, and hence the components of
can be expressed as follows:

Noting that components of are orthogonal to each other, we obtain

(10)

where .
By H1 and (10), we have

since , , and . The proof is
completed.
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Based on (9), we apply the stochastic approximation algorithm with
expanding truncations (SAAWET) [16] to recursively estimate

(11)

(12)

where is an arbitrarily chosen sequence of positive real numbers
increasingly diverging to infinity, is an arbitrary initial value, and
denotes the indicator function of a set .
Remark 2: Algorithm (11) would be the conventional Rob-

bins-Monro (RM) algorithm if the indicator function were removed.
The matrix obtained from the modified RM algorithm is compared
with the sphere of radius : If the matrix remains in the sphere
then the algorithm continues as the RM algorithm. Otherwise, the
algorithm restarts from the origin and the truncation sphere enlarges
its radius from to .
From (4), it follows that:

(13)

which, by identifying coefficients for the same orders of at both sides,
implies

(14)

and

(15)

where denotes .
For , , by (15), we obtain the following linear

algebraic equation:

(16)

where is given by (6).
Below, in Theorem 1 we show that a.s. as . As

a consequence, since is of row-full-rank thanks to Lemma 2

...
...

. . .
...

is also of row-full-rank when k is sufficiently large. Thus, can serve
as the th estimate of with for .
The estimates for are naturally defined

as follows:

(17)

(18)

B. Nonparametric Estimation of

We now recursively estimate for any fixed . By using
the estimates obtained for the coefficients of the linear subsystem we
can estimate the internal signals on the basis of the state-space rep-
resentations of the linear subsystem. Then, applying SAAWET incor-
porated with a multi-variable kernel function we obtain estimates for

. Let us start with estimating .
Define

...
. . .

...
...

...

and . Then, (1) can be presented in the state-space form

(19)

where is an matrix, is an matrix, and is an
matrix, for , and for .

Replacing and in and with and given by (17)
and (18), respectively, , , we obtain the esti-
mates and for and at time , and hence, the estimate
for is given as follows:

(20)

with an arbitrary initial value .
To estimate , let us introduce the kernel function and its

estimate as follows:

(21)

where is the window width of the kernel function , and we set
, .

We apply SAAWET incorporated with the kernel function rather
than the nonparametric kernel estimation method [13] and the support
vector machines [17] to estimate .
Let , such that . With
and arbitrary we recursively estimate as follows:

(22)

IV. CONSISTENCY OF ESTIMATES FOR LINEAR SUBSYSTEM

We now proceed to prove strong consistency of the estimates given
in Section III. In the sequel to save the space, whenever the extension
of a proof from SISO to MIMO systems is easy and the corresponding
proof can be carried out in a similar way as that for SISO systems, we
simply refer to [7] and [8] instead of giving the detailed proof.
The proof of the following lemma can be found in [8] as the proof

of Lemma 4 there.
Lemma 4: Let be a zero mean -mixing sequence

with the mixing coefficients exponentially decaying to



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 3, MARCH 2013 805

zero. If for some , then
a.s.

Lemma 5: Assume H1–H5 hold. For any the fol-
lowing holds:

(23)

(24)

Proof: By noticing , we
have , where

and
. Since and the impulse responses

exponentially decay to zero as , i.e., ,
, , it is shown that and for

some , which imply (23).
For (24) it suffices to show the convergence of each element (indexed

by ) of the series, i.e., for , ,

(25)

where ,
.

Define

for , . By Remark 1, is an -mixing
sequence with mixing coefficients satisfying (8). By the -inequality
[18] and then the Schwarz inequality, for any ,
we have , which implies

. Then
the first term at the right-hand side of (25) converges by Lemma 4.
Since and are mutually independent and , we

have

By the martingale convergence theorem [18], the last term in (25)
converges too. For details, we refer to [8].
Theorem 1: Assume H1–H5 hold. Then, , , defined by

(11)-(12) satisfy

(26)

Proof: We rewrite (11) as

where
.

Since is the single root of the linear function , by the
convergence rate theorem of SAAWET [16], it suffices to prove

(27)

Write as , where

By Lemma 5, we find that (27) is true, and hence (26) holds.
Corollary 1: From (6), (17) and (18), by Theorem 1 the following

convergence rates are derived: ,
, and , , , for

any .

V. CONSISTENCY OF THE ESTIMATES OF THE NONLINEARITY

Lemma 6: Assume H1–H3 hold. The following limits take place

(28)

Proof:

for any given , it follows that
. Hence, by the Borel-Cantelli lemma, we derive that

. By the growth rate restriction on , the
second assertion of the lemma can be proved in a similar way since
is Gaussian with variance .
Lemma 7: Assume H1–H4 hold. Then

(29)

(30)

(31)

where and
, and the following also holds a.s.:

(32)

(33)

(34)

(35)

(36)
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Proof: We prove the first limit in (29). Noting
with , we have

The second limit in (29) and (30), (31) can be proved in a similar
manner.
Convergence of the series (32)-(35) can be proved by a treatment

similar to that used in [8] consisting of verifying the conditions
required in Lemma 4, while for (36) the convergence theorem for
martingale difference sequences (mds) is applied by noticing that

and are mutually independent and , hence
.

Lemma 8: Assume that H1–H5 hold. There exists a constant
with such that

(37)

Proof: From (19) and (20), we have

Since is stable and , there exists a such that

(38)

where

with and being constants.
By Corollary 1 and Lemma 6, we have ,

which incorporating with (38) implies .
Since and are of the same order, we have

Theorem 2: Assume that H1–H5 hold. Then defined by (22)
is strongly consistent:

(39)

Proof: The algorithm (22) can be rewritten as

where .

Since is the unique root of , by Theorem 2.2.1
in [16], for (39) it suffices to prove

(40)

for any convergent subsequence , where
.

Write as , where

Noticing by Lemmas 6 and 8 it follows that:

(41)

Hence, (40) holds for .
For , we have

(42)

By the second limit in (29) of Lemma 7 and by convergence of the
series in (35) it follows that (40) holds for .
Convergence of the first series in (36) assures that (40) holds for
.

It remains to show (40) for . For this it is first shown
that if is a convergent subsequence of

, then for all large enough and sufficiently
small

(43)

and
(44)

where is a constant, which is independent of but may depend
on sample path . We then have

(45)

On the right-hand side of the equality in (45), the second term tends to
zero as by (32), the last term tends to zero as by the
first limit in (29) and (44), while the first term is analyzed as follows.
By (29), (33), (44), and , we have

(46)

Thus, (40) is also valid for .
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Fig. 1. Estimates for .

Fig. 2. Estimates for .

Fig. 3. Estimates for .

VI. NUMERICAL EXAMPLE

Let the linear subsystem be given as follows:

(47)

where , ,

, and , and let the nonlinear

function be given by with

. Let the observation noise be i.i.d..

By H1 is i.i.d. and independent of .
It is noticed that corresponding to the system (47) equals , so the

coefficients of the linear subsystem and the nonlinear function to be
estimated coincide with those listed above.
The estimates of are given by Fig. 1–4, respectively,

the estimated curve for is given by Fig. 5, where the lower sur-
face represents the estimation errors, while the estimates for and

Fig. 4. Estimates for .

Fig. 5. Estimates for and estimation errors.

Fig. 6. Estimates for at some particular points.

at some particular points, namely, the estimates for ,
, and are presented in Fig. 6.

VII. CONCLUSION

In this technical brief, recursive estimation algorithms are designed
forMIMOWiener systems, which estimate both the matrix coefficients
of the linear subsystems and the values of the nonlinear functions at any
fixed points of interest. Under a set of reasonable conditions, all esti-
mates are proved to be strongly consistent. It is noted that for the non-
linear function , there is only a growth rate restriction as tends
to infinity. No other conditions like invertibility and expansion to a
linear combination of basis functions are needed. The numerical simu-
lation complements the theoretical analysis given in the technical brief.
For further research it is of interest to consider identification of MIMO
Wiener–Hammerstein systems and Hammerstein–Wiener systems.

APPENDIX

Proof of Lemma 2: Notice that
, where
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, , and is
the adjoint matrix of .
The linear subsystem (1) can be expressed as

and hence

Consequently, we have

(48)

If the matrix were not of row-full-rank, then there would exist a
vector with such that ,
i.e.,

(49)

In this case we show that (49) holds . Noticing (48) and (49),
for , we have

(50)

Hence, (49) holds for . Carrying out the similar treatment
as that done in (50), we find

(51)

Defining , we have

Consequently, and the orders of
and are strictly less than and , respectively. This, however,
contradicts H2 by Lemma 1.
Therefore, the matrix defined by (6) is of row-full-rank when H2

holds.
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